Do all five problems.

1. Let μ be a finite measure on \mathbb{R} . Prove that for every $x \in \mathbb{R}$,

$$|\mu(\{x\})| \le \limsup_{\xi \to \infty} |\hat{\mu}(\xi)|.$$

Here $\hat{\mu}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} d\mu(x)$ denotes the Fourier transform of μ .

2. Let $f: S^1 \to \mathbb{R}$ be a Hölder continuous function on S^1 with Hölder exponent α . Thus

$$\sup_{x,y\in S^1,\,x\neq y}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty.$$

Prove that for some constant C > 0 depending on (the Hölder norm of) f but independent of n, the Fourier coefficient $\hat{f}(n) = \frac{1}{2\pi} \int_{S^1} f(x) e^{-inx} dx$ satisfies $|\hat{f}(n)| \leq C/|n|^{\alpha}$.

3(a). Let *E* be a Banach space and E^* be its dual. Assume that E^* is uniformly convex. Prove that for every $f \in E$, there is one and only one *g* in the weak^{*} unit ball in E^* such that $||f||_E = \langle f, g \rangle$, where $\langle \cdot, \cdot \rangle$ is the pairing between *E* and E^* .

(b). Suppose that f and g are two real-valued functions in $L^3(I)$, where I = [a, b], and that

$$||f||_3 = ||g||_3 = \int f(x)^2 g(x) \, dx = 1.$$

Prove that g(x) = |f(x)| for almost every $x \in I$. You may do this either directly or else using part (a).

4. Let μ be a positive Borel measure supported in a compact set $E \subset \mathbb{R}$, with μ not identically zero. Assume that there are constants a > 0 and C > 0 such that for all intervals I, $\mu(I) \leq C|I|^a$.

- (a) Define $K_b(x) = |x|^{-b}$ for b > 0. Prove that $\mu * K_b$ is well-defined and continuous for all b < a.
- (b) Give an explicit positive lower bound for the Hausdorff dimension of E. (Recall that the Hausdorff dimension of E is defined to be the supremum of values α' such that the Hausdorff α' -dimensional measure of E is infinite.)

5. Let T be a unitary operator on a Hilbert space H such that its spectrum $\sigma(T)$ is a countable set. Prove that there exists a sequence $\{n_j\} \subset \mathbb{N}$ such that $T^{n_j} \to I$ (the identity operator) in the strong operator norm topology.

(Hint: prove that there exists a sequence of exponentials $\{e^{in_jt}\}$ such that $e^{in_jt_k} \to 1$ when $e^{it_k} \in \sigma(T)$. You may use Dirichlet's theorem that for any finite set $\{t_k\}_{k=1}^N$ and for every $\epsilon > 0$, there exists an $n \in \mathbb{N}$ such that $|e^{int_k} - 1| < \epsilon$ for $k = 1, \ldots, N$.)

Do all five problems.

- 1. Let $f \in C^2(\mathbb{R})$ be a function such that $M_k = \sup_{x \in \mathbb{R}} |f^{(k)}(x)| < \infty$ for k = 0, 1, 2.
 - (a) Prove that $M_1 \leq 2\sqrt{M_0M_2}$. (Hint: use the second order Taylor formula for f(x+t) about t = 0.)
 - (b) Show that the only functions for which equality is attained in part (a) are the constant functions.

2. Let *m* be Lebesgue outer measure on \mathbb{R} and let μ be any outer measure on \mathbb{R} . Suppose that all Borel sets in \mathbb{R} are μ -measurable and, furthermore, that for every set $A \subset \mathbb{R}$, $\mu(A)$ is the infimum over all open sets $U \supset A$ of $\mu(U)$. If

$$\limsup_{\rho \to 0} \frac{\mu([x - \rho, x + \rho])}{2\rho} \ge 1$$

for all $x \in \mathbb{R}$, prove that $\mu(A) \ge m(A)$ for every subset $A \subset \mathbb{R}$.

3. Let $\mathcal{H} = \oplus \mathcal{H}_j$ be an orthonormal decomposition of the Hilbert space \mathcal{H} into finitedimensional subspaces \mathcal{H}_j , and let $\{c_j\}$ be a sequence of positive numbers. The generalized cube determined by these data is the set

$$\mathcal{Q} = \left\{ v \in \mathcal{H} : v = \sum_{j=1}^{\infty} v_j \text{ with } v_j \in \mathcal{H}_j \text{ and } \|v_j\| \le c_j \right\}.$$

- (a) Prove that the condition $\sum_{j=1}^{\infty} c_j^2 < \infty$ is necessary and sufficient for the compactness of Q.
- (b) Prove that every compact set $E \subset \mathcal{H}$ is contained in some compact generalized cube \mathcal{Q} .

4. Let $\{A_i\}_{i=1}^{\infty}$ be a sequence of measurable subsets of a measure space (X, μ) . Suppose that

$$\sum_{i=1}^{\infty} \mu(A_i) < \infty.$$

Let $Z = \{x \in X : x \in A_i \text{ for infinitely many } i\}$. Prove that $\mu(Z) = 0$.

5. Assume that $f \in \mathcal{L}^1(\mathbb{R})$ and that

$$\left| \int \phi''(x) f(x) \, dx \right| \le 3 \|\phi\|_{\infty}$$

for every $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R})$. Prove that there is a Lipschitz continuous function g such that f(x) = g(x) for almost every x.