Ph.D Qalifying Examination Complex Analysis Fall 2001

Do all six problems, each in a separate blue book. All problems have equal weight.

- **1.** Let Ω be the domain |z| < 2 and let $[0,1] \subset \Omega$ be the line segment between 0 and 1.
 - (a) Suppose $f : \Omega \to \mathbb{C}$ is a continuous function that is analytic over $\Omega \setminus [0, 1]$. Show that f is analytic over Ω .
 - (b) Show that there are bounded analytic functions $f : \Omega \setminus [0, 1] \to \mathbb{C}$ that can not be extended to analytic functions over Ω .

2. Let f(z) be an analytic function defined over |z| < 1 that maps |z| < 1 one-one and onto $\mathbb{C} \setminus (-\infty, -1/4]$. Find the most general form of f(z).

3. Establish the following identity

$$\left(\frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right)\frac{1}{t}=2\sum_{n=1}^{\infty}\frac{1}{t^2+4n^2\pi^2}.$$

(Hint: Consider the difference of the terms on the left and the right hand side.)

4. Let f and $g_0 \neq 0, g_2, \dots, g_n$ be analytic functions over the punctured disk $D^* = \{0 < |z| < 1\}$. Suppose g_0, \dots, g_n all have at most poles at z = 0. Suppose further that f satisfies the identity

$$g_0 f^n + g_1 f^{n-1} + \dots + g_n = 0.$$

Show that f has at most a pole at z = 0.

5. Let *B* be the square $\{|x| \leq 1, |y| \leq 1\}$ and let *T* be the boundary of *B*, in the *xy*-plane. Let $f: T \to \mathbb{R}$ be a piecewise smooth function defined over *T*. Show that there is a sequence of real polynomials $p_n(x, y)$ so that p_n converges uniformly to *f* on *T*. (Hint: The Runge's approximation theorem might be helpful.)

6. Let f(z) be an analytic function defined over the disk |z| < 2. Show that

$$\int_0^1 f(x) dx = \frac{1}{2\pi i} \oint_{|z|=1} f(z) \log z \, dz.$$

Here the path integral is taken counterclockwise.