Ph. D QUALIFYING EXAMINATION COMPLEX ANALYSIS-SPRING 2002

Work all six problems. All problems have equal weight. Write the solution to each problem in a separate bluebook.

Convention: We denote by Δ the open unit disk and by \overline{A} the closure of A in \mathbb{C} .

1. It is known that for any smooth complex valued function g on $\overline{\Delta}$, there is a smooth function in Δ so that $\frac{\partial u}{\partial \overline{z}} = g$. Now let $\Omega \subset \mathbb{C}$ be Δ with the origin and the line segment $[\frac{1}{2}, 1]$ deleted:

$$\Omega = \Delta \setminus \{ z \in \mathbb{R} : z = 0 \text{ or } \frac{1}{2} \le z \le 1 \}.$$

Prove that given any function $f \in C^{\infty}(\Omega)$ there is a smooth function $u \in C^{\infty}(\Omega)$ so that $\frac{\partial u}{\partial \bar{z}} = f$.

Hint: Use the Runge approximation theorem.

2. (1). Write down an entire function $f : \mathbb{C} \to \mathbb{C}$ in the form of an infinite product so that its set of zeros equals $\{\log n : n = 2, 3, 4, ...\}$.

(2) State the definition of an entire function being finite order.

(3) Is there an entire function of finite order whose zero set is $\{\log n : n = 2, 3, 4, ...\}$? Prove the existence or the non-existence of such functions.

3. Prove that

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin \frac{z}{2} e^{i(\frac{1}{2} - t)z}}{z} dz = \begin{cases} 1 & \text{if } 0 < t < 1\\ 0 & \text{if } t < 0 \text{ or } t > 1. \end{cases}$$

4. Let Δ^* be the punctured disc. We let \mathcal{P} be the set of all subharmonic functions v on Δ^* such that $\limsup_{z\to z_0} v(z) \leq 0$ for all $z_0 \in \partial \Delta$ and $\limsup_{z\to 0} v(z) \leq 2002$. Prove that for any $v \in \mathcal{P}$, $v(z) \leq 0$ in Δ^* .

5. Show that the function

$$w = \log\left(\frac{1+z}{1-z}\right) + \frac{2z}{1+z^2},$$

maps Δ one-one and onto the full *w*-plane with four half-lines deleted. Find the locations of the four end points of the four half-lines.

6. (1). We let A be the interior of an equilateral triangle. Prove that any one-one, onto holomorphic map $f: A \to \Delta$ can be extended to a holomorphic function $\tilde{f}: U \to \mathbb{C}$ defined on an open neighborhood $U \supset \bar{A}$.

(2). We let B be the interior of a triangle whose three interior angles are $\frac{\pi}{5}$, $\frac{2\pi}{5}$ and $\frac{2\pi}{5}$. Prove that no one-one, onto holomorphic map $f : B \to \Delta$ can be extended to a holomorphic function $\tilde{f} : U \to \mathbb{C}$ defined on an open neighborhood $U \supset \bar{B}$.