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Article: CJB/2010/3  

 

Generalizations of Hagge’s Theorems 
 

Christopher J Bradley 

 

Abstract:  Two generalizations of Hagge’s theorems are described. In the first we consider what 

happens when one moves from the orthocentre to a general point. What one loses by doing so is 

the indirect similarity and hence one loses the centre of indirect similarity. Instead one proceeds 

from the centre of the circle under consideration. In the second generalization we consider pairs 

of triangles that have orthologic centres with respect to each other, so that an indirect similarity 

is the main feature preserved. 

 

1.    Introduction 

  

There are two unrelated generalizations of the Hagge configuration. 

 

The first generalization involves moving from the orthocentre H to another point K at the 

expense of losing the indirect similarity. It also appears that the material of Article: CJB/2010/2  

cannot be completely generalized, as there is a restriction on the facility for creating four circles 

from a cyclic quadrilateral. Also it does not appear there is a simple prescription that relates the 

point of perspective P between the triangles XYZ and UVW and the centre Q of the circle through 

K on which they lie. In the case of the Hagge construction Peiser [1] showed that the isogonal 

conjugate Pg of P is located in such a way that the nine-point centre N is the midpoint of QPg. In 

Sections 3 – 6 we give proofs of the main results that form the extensions of Hagge’s theorems 

and the four Hagge circle property.  In the Hagge construction AP, BP, CP are drawn to meet the 

circumcircle Γ at points D, E, F respectively. These points are then reflected in the sides BC, CA, 

AB to create three new points U, V, W. The first Hagge theorem is that the circle UVW passes 

through the orthocentre H. Next one draws AH, BH, CH to meet this circle at X, Y, Z respectively 

and the second Hagge theorem is that UX, VY, WZ are concurrent at P. It is interesting that in the 

present generalization one does not start with a point P, but with the centre Q of the proposed 

circle UVWK. 

 

The second generalization is designed to maintain the property that triangles ABC and XYZ have 

orthologic points with respect to each other and this leads to these triangles and their 

circumcircles being related by an indirect similarity and also to triangles DEF and UVW being 

related by the same indirect similarity. What is lost is the reflection property mentioned in the 

last paragraph. We describe these generalizations in turn and the following results hold for the 

first: 
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2.  Results for the first generalization 

 

Theorem 1 

Let ABC be a triangle and K any point not lying on its sides or extensions. With centre any point 

Q draw a circle Σ to pass through K. The intersections with Σ of circles BKC, CKA, AKB are 

denoted by U, V, W respectively. Then 

   (BU/CU)(CV/AV)(AW/BW) = – 1. (2.1) 

 

In this expression (BU/CU), for example, is taken as positive if KBUC is convex and negative 

otherwise. The converse is also true, that if U, V, W lie on a circle and this relation holds, then 

the circle passes through K. 

 

This result is due to Boreico [2]. 

 

Theorem 2 

Given the configuration of Theorem 1, suppose now AK, BK, CK meet Σ at X, Y, Z respectively, 

then UX, VY, WZ are concurrent at a point P. 

 

In other words the pairs (U, X), (V, Y), (W, Z) are in involution on Σ, by means of a perspective 

point. These results are shown in Fig. 1.  

 

 

3.      Proof of Theorem 1 

 

Invert with respect to K and denote inverse points by primes. We require U', V', W' collinear, 

which is the case by Menelaus’ Theorem if, and only if, (B'U'/C'U')(C'V'/A'V')(A'W'/B'W') = – 1. 

However, B'U'/C'U' = (BU/CU)(KB'/KC'). Multiplying three such relationships we get the 

required result.   

 

4.  Proof of Theorems 2, 3 and 4 

 

Theorem 2 

We use Cartesian co-ordinates with K as origin and let Σ have centre Q with co-ordinates (– ½, – 

½). This merely imposes a scale and a direction on the configuration, so there is no loss of 

generality. Then Σ  

   x
2
 + y

2
 + x + y = 0.       (4.1) 

 

We parameterize Σ by taking lines through K to be of the form y = mx and then m serves as the 

parameter of the point where this line meets Σ again. 
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Circle BKC and Σ meet on the line KU with equation (p – 1)x + (q – 1)y = 0, so the parameter for 

the point U is a = – (p – 1)/(q – 1). Similarly the parameters for V and W are respectively  

c = – (s – 1)/(t – 1) and e =  – (u – 1)/(v – 1).  Now circles CKA and AKB meet at A and K, so 

their common chord is the line AK, which therefore has equation (s – u)x + (t – v)y = 0. It follows 

that the parameter of X is b = – (s – u)/(t – v). Similarly Y and Z have parameters that are 

respectively d = – (p – u)/(q – v) and e = – (p – s)/(q – t).     
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Fig. 1 

The involution on Σ 

 

To prove that UX, VY, WZ are concurrent it is sufficient to show that the pairs (a, b), (c, d), (e, f) 

are in involution. This is because pairs in involution on a conic must arise from a vertex of 

perspective. Since an involution of pairs (h, k) is specified by an equation of the form lhk + m(h 

+ k) + n = 0 for some real numbers l, m, n (m
2
 ≠ nl) it follows that the pairs are in involution if 

the determinant with rows(ab, a + b, 1)(cd , c + d, 1), (ef, e + f, 1) vanishes. DERIVE verifies 

this is indeed the case.      
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Theorem 3 

Let VW meet AKX at L, with M, N similarly defined, then L, M, N, P are collinear. 

 

Proof 

Consider the hexagon VWUXKY on the circle Σ. VW^XK = L, WU^KY = M and UX^YV = P. It 

follows by Pascal’s theorem that L, M, P are collinear. Similarly M, N, P are collinear. 

 

The above theorems may be generalized even further, as the following theorem shows: 

 

Theorem 4 

Let ABC be a triangle and D, E, F any three generally situated points. Draw any conic Σ through 

D, E, F. Let conic BCDEF meet Σ at U, conic CADEF meet Σ at V and conic ABDEF meet Σ at 

W. Further let AD, BD, CD meet Σ at X, Y, Z respectively, then UX, VY, WZ are concurrent. 

 

Proof 

Project E, F to the circular points at infinity. 

Theorem 4 is illustrated in Fig. 2 
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Fig.2 

Illustration of Theorem 4 
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5. Restricted generalization of the four Hagge circle configuration 

 

We refer back to Article CJB/2010/2 for a detailed description of this configuration, but in brief 

what happens is as follows: Take a triangle ABC inscribed in a circle Γ. Let its orthocentre be D4. 

Take a point P anywhere (not on Γ or the sides of ABC), that will serve as a centre of inverse 

similarity. Draw the rectangular hyperbola through A, B, C, D4 and P. Its centre, as is well 

known, is a point M on the nine-point circle of ABC. Now perform a 180° rotation of A, B, C, D4 

about M to get the points A1, B2, C3, D. Then, wherever the initial selection of P is made, it is 

always the case that D lies on Γ and the points A1, B2, C3 are the orthocentres of triangles BCD, 

ACD, ABD respectively. The four Hagge circles of P with respect to the triangles BCD, ACD, 

ABD, ABC can now be drawn using the same inverse spiral symmetry about P in each case. 

 

If we now choose D4 to be a general point of triangle ABC other than the orthocentre, the same 

construction does not work. If P is chosen anywhere (not on Γ or the sides of ABC), then it turns 

out that the point D does not lie on Γ. In fact there is only one conic through A, B, C, D4 for 

which this turns out to be true. The point M that is the centre of this conic lies somewhere on the 

circular locus of points for which D4M produced to meet Γ at D is such that D4M = MD. P is 

restricted to lie anywhere on this conic, which may be a hyperbola or an ellipse. 

 

The next question to ask is how to draw the four circles that have the point P as their involution 

point. As we no longer have either Peiser’s [1] prescription or the inverse spiral symmetry to rely 

upon, there has to be some other method of obtaining the four circle centres from P. We draw on 

the property of the four Hagge circle configuration to provide the answer.  In that configuration it 

turned out that points Ak (k = 1, 2, 3, 4) lie on a line through P. We call this the A-line. Similarly 

there is a B-line, a C-line and a D-line. We insist for the generalization that these lines must 

exist. We now describe how to obtain the points A4, B4, C4. A4 is the intersection of A1P with 

AD4, B4 is the intersection of B2P with BD4 and C4 is the intersection of C3P with CD4. The circle 

Σ4 is now defined to be the circle A4B4C4.  

 

In order to justify the validity of the construction certain theorems have to be proved. 

 

Theorem 5 

The circle Σ4 passes through D4 and similarly Σ1, Σ2, Σ3 pass through A1, B2, C3 

 

Theorem 6 

Let circle BCD4 meet Σ4 at A4' then A4A4' passes through P. Similarly if circle CAD4 meets Σ4 at 

B4' then B4B4' passes through P etc. 
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Altogether there must be twelve such lines passing through P, three for each of the circles Σk, k = 

1, 2, 3, 4. However because of the symmetry of the configuration only one such case needs to be 

established. 

 

Theorem 7  

The centres Qk of the circles Σk, k = 1, 2, 3, 4 are collinear. Their radii are in proportion to their 

distances from P. 

 

In Fig. 3 we illustrate all the above properties. 
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The A, B, C, D, Q lines 
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6. Analysis and proofs 

 

Consider the circle Γ with equation 

 4m
2
(x

2
 + y

2
) + m(m

2
 + 1)(bdc + acd + abd + abc – a – b – c – d)x – (m

2
 + 1) (bdc + acd + abd             

        + abc + a + b + c + d)y + (m
2
 + 1)(ab + ac + ad + bc + bd + cd) – 2(m

2
 – 1) = 0. (6.1) 

                                                                                                       

It may be verified that it contains the points (x, y) where  

                                            x = {1/(2m)}(t – 1/t), y = {(1/2)}(t + 1/t),   (6.2) 

 

for t = a, b, c, d, provided abcd = 1 These define parametrically the hyperbola with equation y
2
 – 

m
2
x

2
 = 1 and the points with parameters a, b, c, d may be taken to define the points A, B, C, D,  

the cyclic quadrilateral inscribed in Γ. The centre M of the hyperbola is the origin and the image 

of ABCD under the 180° rotation about M defines the congruent quadrilateral A1B2C3D4 and 

moreover the points A1, B2, C3, D4 lie on the hyperbola and have parameters – a, – b, – c, – d 

respectively. The condition that four points on the hyperbola are concyclic is that the product of 

their parameters is 1. It follows that the sets of points (ABC3D4), (AB2CD4), (AB2C3D), 

(A1BCD4), (A1BC3D), (A1B2CD) are concyclic and that their equations may be obtained by 

altering signs in the equation of Γ as appropriate. The equation of the chord of the hyperbola 

joining points with parameters s and t is   

 

                                                     m(1 – st)x + (1 + st)y = s + t.     (6.3) 

 

The point P is now chosen on the hyperbola with parameter p. We can now put (s, t) successively 

equal to (a, – d), (– a, p) and get the equations of the lines D4A and A1P. Their intersection is by 

definition the point A4, which has co-ordinates (x, y), where 

 

                                x = {(a
2
 + 1)(d + p) – 2a(dp + 1)}/{2am(p – d)},    (6.4)          

                                y = {(a
2
 – 1)(d + p) + 2a(1 – dp)}/{2a(p – d)}.    (6.5) 

 

The co-ordinates of B4, C4 may now be obtained by using parameters b, c rather than a. Points 

B1, C1, D1 follow by using parameter a instead of d and b, c, d respectively instead of a. Points 

A2, C2, D2 follow by using parameter b instead of d and a, c, d respectively instead of a. Points 

A3, B3, D3 follow by using parameter c instead of d and a, b, d respectively instead of a. The 

equation of the line A1P is worth recording as it is what we have termed the A-line. It has 

equation 

 

                                               m(1 + ap)x + y(1 – ap) = p – a.    (6.6) 
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Proof of Theorem 5 

Take the co-ordinates of A4, B4, C4, D4 and construct a 4 x 4 matrix consisting of rows with 

entries (x
2
 + y

2
, x, y, 1) for each of the four points. Then take its determinant and factorize and 

DERIVE provides the answer 

 

                                       .   (6.7) 

 

Since abcd = 1 it follows that the four points are concyclic on a circle we denote by Σ4. A similar 

proof establishes the existence of circles Σ1, Σ2, Σ3.  

 

We now determine the equation of circle Σ4. This is done using Derive by the same method as in 

the proof of Theorem 5, but by using current co-ordinates instead of those of D4. The result is   

                  

                                                                                           (6.8) 

The line AP meets Σ4 at the point with co-ordinates (x, y) where  

x = – (1/(2bcm(a
2
p

2
(m

2
 + 1) + 2ap(m

2
 – 1) + m

2
 + 1))) x (a

2
bcp(m

2
 + 1)(b(c – p) – cp + 1) – 

a(b
2
c(c – p)(m

2
 +1) – b(c

2
p(m

2
 + 1) – c(3m

2
(p

2
 – 1) – p

2
 + 1) – p(m

2
 + 1)) + p(c – p)(m

2
 + 1)) + 

b(m
2
 + 1)(1 – cp) + c(m

2
 +1) – m

2
p – p),        (6.9) 

y = – (1/(2bc(a
2
p

2
(m

2
 + 1) + 2ap(m

2
 – 1) + m

2
 + 1))) x (a

2
bcp(m

2
 + 1)(b(c – p) – cp – 1) + a(b

2
c(c 

– p)(m
2
 + 1) – b(c

2
p(m

2
 + 1) + c(m

2
(p

2
 + 1) – 3p

2
 – 3) + p(m

2
 + 1)) – p(c – p)(m

2
 + 1)) – b(m

2
 + 

1)(cp + 1) – c(m
2
 + 1) + m

2
p + p).         (6.10) 

When these co-ordinates are substituted into the equation of circle BD4A1C they are found to 

satisfy it, and hence they are the co-ordinates of the point A4' lying on the A-line and the two 

circles. Similar analysis provides all twelve pairs of points on circles Σ1, Σ2, Σ3, Σ4 that are in 

involution through the involution point P. This completes the proof of Theorem 6. 
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The equations of the circles Σk, k = 1, 2, 3, 4 having been obtained it is now possible to find the 

co-ordinates of their centres. The co-ordinates of Q1, Q4, P may then be used to show these 

points are collinear. This is done by forming the determinant whose three rows are (x, y, 1) where 

(x, y) are successively the co-ordinates of the three points. The value of this determinant turns out 

to be  

(1/(32ab
2
c

2
d(abcp – 1)(bcdp – 1))) x ((a – d)(m

2
 + 1)(abcd – 1)(bcdp + 1)(b

3
c

2
p(m

2
 +1) + 

b
2
c

2
(cp(m

2
 + 1) – 2(m

2
(p

2
 – 1) + p

2
 + 1)) – b(2c(m

2
(p

2
 – 1) – p

2
 – 1) + p(m

2
 + 1)) – cp(m

2
 + 1))).                                                            

                                                                              (6.11) 

This vanishes, on account of the factor (abcd – 1) and so the three points are indeed collinear. 

Similarly any other two circle centres are collinear with P, so we have identified the existence of 

a Q-line containing all the circle centres and the point P.  This establishes the first part of 

Theorem 7. 

The second part of Theorem 7 is not difficult to check. The co-ordinates of all points are now 

known and it soon follows that triangles such as A4B4C4 and A1B1C1 are similar and that the 

enlargement factor is the same as PQ1/PQ4 (distances along the Q-line are signed, depending on 

which side of P the centres are, and this corresponds to whether the triangles are directly 

homothetic through P or whether a 180° twist is involved as well). See Fig. 3 again.   

7. Results for the second generalization 

Choose any point T, not on the sides of triangle ABC or their extensions, which will act as a 

pseudo-orthocentre. In the original Hagge configuration H acts as a centre of perspective and as 

an orthologic centre of triangles ABC and XYZ. The generalization that is appropriate is to ensure 

that T is an orthologic centre. An arbitrary circle is now drawn through T, which will serve as the 

generalized Hagge circle. CABRI indicates that there are generally two positions of T on the 

circle for which it will also act as a centre of perspective, but the configuration shown in Fig. 4 is 

not one of these cases, as that is not necessary for the generalization. 

 

To force T to be an orthologic centre drop the perpendiculars from T onto BC, CA, AB and 

suppose these lines meet the circle through T at points X, Y, Z respectively. This forces XYZ to 

have an orthologic centre with respect to ABC. Also the perpendiculars mean that, as may be 

proved by simple angle chasing, that triangle XYZ is similar to ABC and ordering of labels show 

that it is indirectly similar to ABC. It follows that the orthologic centre of ABC with respect to 

XYZ exists and is the point J in the figure. J and T will be corresponding points in the indirect 

similarity that necessarily arises as a result of the orthologic property, so J will lie on the 

circumcircle of ABC. 
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Standard methods may be used to find the centre P of inverse similarity and the axes of 

reflection (lines of inverse similarity). Only one is shown in Fig. 3.4.   

 

Having located P draw AP, BP, CP to meet the circumcircle at D, E, F respectively. Find the 

images U, V, W under the indirect similarity. These are bound to lie on the circle through T. Also 

triangles DEF and UVW are bound to be similar, as they are related by the indirect similarity. 
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Fig.4 

Showing an indirect similarity and the orthologic centres 

 

The following theorem now holds: 

 

Theorem 8 

 

XPU, YPV, ZPW are straight lines.  In other words triangles XYZ, UVW are in perspective with 

centre P, or since they all lie on a circle X, U and Y, V and Z, W are pairs in an involution on the 

circle through T by projection through P. 
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Despite there not being a perspective, some of Speckman’s results still hold or generalize. In 

particular the conics ABCPJ and XYZPT will be images of each other in the indirect similarity. 

These conics are not necessarily hyperbolae; and even then CABRI confirms that their 

asymptotes are parallel only when a perspective exists between triangles ABC and XYZ. 

However, triangles ABC and XYZ are paralogic, with paralogic centres at the opposite ends of the 

diameter to T and J respectively.  These are labeled T' and J' in the figure. 

 

Theorem 9 

 

Let VW meet XT at L, with M, N similarly defined, then LMN is a straight line.  

 

Theorem 10 

 

The midpoint conic (midpoints of AX, BY, CZ, DU, EV, FW) exists and is illustrated in Fig. 5 

along with the axis LMN. 

 

Theorem 10 is, of course, a general theorem concerning six points on a pair of conics connected 

by an indirect similarity and needs no separate proof. Theorem 9 is unproved, but CABRI 

indicated. See Fig. 5.  
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Fig. 5 

Cabri indicates the midpoint conic 

 

Proof of Theorem 8 

 

This is trivial since it is a direct consequence of the indirect similarity. The points A, P and D are 

mapped by the indirect similarity on to points X, P and U. Since APD is a straight line, it follows 

that XPU is a straight line, P being the only invariant point and lines being mapped into lines. 

Similarly YPV and ZPW are straight lines. 
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