Mathematics Department Stanford University Real Analysis Qualifying Exam, Autumn 2003, Paper 1

1. Let f_n be a sequence of continuous functions on \mathbb{R} satisfying $0 \leq f_n(x) \leq f_{n+1}(x) \leq 1$ for all $x \in \mathbb{R}$ and all $n \in \{1, 2, \ldots\}$. Let $f(x) = \lim f_n(x)$.

(a) Show that for all x we have $f(x) \leq \liminf_{y \to x} f(y)$.

(b) Assume that f is continuous at a point x. Show that for all $\varepsilon > 0$, there exist δ, N so that $|f_n(y) - f_n(x)| < \varepsilon$ whenever $|y - x| < \delta$ and n > N.

2. Suppose that $f_n : [0,1] \to [0,\infty)$ are non-negative Lebesgue measurable functions with $f_n(x) \to 0$ a.e. $x \in [0,1]$, and assume $\sup_n \int_0^1 \varphi(f_n(x)) \, dx \leq 1$ for some continuous function $\varphi : [0,\infty) \to [0,\infty)$ such that $\lim_{t\to\infty} t^{-1}\varphi(t) = \infty$. Prove that $\int_0^1 f_n(t) \, dt \to 0$.

3. Suppose $f \in L^1([0, 2\pi])$ and $\hat{f}(n) = \int_0^{2\pi} f(x)e^{-inx} dx$, $n = 0, \pm 1, ...$ Prove the following: (a) $\sum_{|n|=0}^{\infty} |\hat{f}(n)|^2 < \infty \Rightarrow f \in L^2([0, 2\pi]).$

(b) $\sum_{|n|=0}^{\infty} |n\hat{f}(n)| < \infty \Rightarrow$ the L^1 class of f has a representative f_0 which extends to all of \mathbb{R} as a 2π -periodic C^1 function.

- 4. Suppose $f \in L^1(\mathbb{R})$ and $\hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} dx$. Prove:
- (a) $\hat{f} \in C(\mathbb{R})$ with $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

(b) If f has compact support, \hat{f} cannot have compact support unless f = 0.

5. Let f be an arbitrary real-valued function on [0, 1], and for each $x \in (0, 1)$ define $\overline{D}f(x) = \limsup_{y \to x} \frac{f(y) - f(x)}{y - x}$.

(a) If $\beta \in \mathbb{R}$ and if $S_{\beta} = \{x \in (0,1) : \overline{D}f(x) > \beta\}$, prove that for each $\varepsilon > 0 \exists$ pairwise disjoint subintervals $[a_1, b_1], \ldots, [a_N, b_N] \subset [0, 1]$ such that $m^*(S_{\beta} \setminus (\bigcup_{i=1}^N [a_i, b_i])) < \varepsilon$ and $\beta(b_i - a_i) < f(b_i) - f(a_i)$ for each $i = 1, \ldots, N$. (Here m^* denotes Lebesgue outer measure.)

(b) If f is increasing on [0,1] show that the result of (a) directly implies the fact that $\overline{D}f(x) < \infty$ a.e. $x \in (0,1)$.

prove that

Mathematics Department Stanford University Real Analysis Qualifying Exam, Autumn 2003, Paper 2

1. Let *B* be a Banach space and *S* a linear map from *B* to C([0,1]) such that $||v_n|| \to 0$ in $B \Rightarrow Sv_n \to 0$ pointwise a.e. on [0,1]. Prove that *S* is a bounded operator from *B* to C([0,1]), assuming that C([0,1]) is equipped with its usual sup norm.

2. Let $\mathcal{B}(X)$ denote the set of functions $X \to \mathbb{R}$, where X is a given non-empty set.

(a) Describe a topology \mathcal{T} on $\mathcal{B}(X)$ such that pointwise convergence of f_n to f on X is equivalent to convergence of f_n to f with respect to the topology \mathcal{T} whenever $f, f_1, f_2...$ are given functions in $\mathcal{B}(X)$.

(b) If X is uncountable, show that \mathcal{T} (as in (a)) is not metrizable.

Hint: Assume a metric d for $\mathcal{B}(X)$ exists and consider the sets $\{x \in X : d(\delta_x, 0) > \varepsilon\}$ where $\varepsilon > 0$ and $\delta_x = 1$ at x and zero elsewhere.

3. Suppose (X, \mathcal{A}, μ) is an arbitrary measure space, $f_j \rightharpoonup f$ (weak convergence in L^2), and $g_j \rightarrow g$ pointwise with $g_j \ge 0$ and $g_j \mu$ -measurable for each j. Prove $\int_X g f^2 d\mu \le \lim \inf_{j\to\infty} \int_X g_j f_j^2 d\mu$.

Hint: First prove $\sqrt{g_j}f_j$ converges weakly to $\sqrt{g}f$ in the case when $g_j \leq K$ for some fixed K.

4. Let X be a normed linear space. X is said to be uniformly convex if there is a strictly increasing continuous function η on $[0, \infty)$ with $\eta(0) = 0$ such that $\frac{1}{2}||x+y|| \le 1 - \eta(||x-y||)$ for every $x, y \in X$ with ||x|| = ||y|| = 1.

If X is a uniformly convex Banach space, show that for any decreasing sequence $\{K_n\}_{n=1,2,3,\ldots}$ of nonempty closed convex subsets of $\{x \in X : ||x|| \le 1\}$, we have $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

5. Suppose f is AC on [0, 1]. Prove:

(a) $A \subset [0,1]$ Lebesgue measurable $\Rightarrow f(A)$ Lebesgue measurable.

Hint: Start by showing that f(A) has measure zero if A has measure zero.

(b) If f(0) = f(1) and $\hat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} dx$, then $n\hat{f}(0) \to as |n| \to \infty$.