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Contributor Profiles:
Richard K. Guy

Richard’s connection to
Crux Mathematicorum has been
invisible to most readers. But
for the nine-year period 1986-
1995, while Bill Sands was
Editor-in-Chief, they shared an
editorial office at the University
of Calgary and discussed a fair
proportion of the problems pub-
lished in Crux Mathematicorum
during that period. From 1991
to 2003, Richard was also on the
Editorial Board of CRUX. This overlapped Richard’s own 25-year period of
service as Unsolved Problems Editor of the American Mathematical Monthly.
Richard also founded the Skoliad, and continues an occasional collaboration
with the Olympiad Corner Editor, colleague Robert Woodrow. Readers may
have noticed a short article by Richard printed in the February 2007 issue
[2007 : 37-39].

He has published 300 papers; he has edited Reviews in Number Theory
(1973-1983) and Proc. Symp. Appl. Math. 43(1991) for the AMS; he has
collaborated with John Conway and Elwyn Berlekamp in writing the four
volumes of Winning Ways, with Hallard Croft and Ken Falconer in Unsolved
Problems in Geometry, with John Conway in The Book of Numbers, and with
Loren Larsen and Paul Vaderlind in The Inquisitive Problem Solver; and he
wrote Unsolved Problems in Number Theory and Fair Game on his own.

When not doing mathematics, he still likes to wander or ski in the
mountains, usually with his wife Louise. The picture shows him on the
summit of The Towers on his 90t" birthday in September 2006, with Mt.
Assiniboine in the background.

According to Richard, he is the luckiest Guy in the world! There are
many reasons for such a claim, the most important ones being

(i) he has been married to the best wife imaginable for 66 years;
together they raised 3 children, and they currently have 5 grandchildren and
2 great grandchildren;

(ii) he was paid for doing what he liked—doing mathematics and telling
other people about it—for 43 years;

(iii) for the last 25 years, he has continued to be honoured and rewarded
for doing the mathematics he likes to do; and

(iv) he has been privileged to know and work with some of the best
mathematicians in the world: Elwyn Berlekamp, John Conway, Pal Erdés,
the Lehmers, Eric Milner, Alexander Oppenheim, John Selfridge, ...
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SKOLIAD nro. 100

Robert Bilinski

Please send your solutions to the problems in this edition by 1 September,
2007. A copy of MATHEMATICAL MAYHEM Vol. 2 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_— e r———— ——

Nos questions proviennent ce mois-ci du Concours de I’Association
Mathématique du Québec 2005 (niveau secondaire). Nous remercions
Véronique Hussin, Université de Montréal qui s’occupe des concours de
I’AMQ du secondaire.

Concours de I’Association Mathématique du Québec
(niveau secondaire) 3 février 2005

1. (Le robot et les pommes.) Une caisse de bois est séparée en
9 compartiments comme indiqué sur le dessin. Un ingénieur a
programmé un robot pour qu’il remplisse la caisse de pommes
par paquets de quatre en laissant tomber une pomme dans |[11|28|17
chaque compartiment de facon a former un carré 2 x 2. 5 12] 7

Est-il possible pour le robot d’aboutir a la configuration a
droite 2 partir d’une caisse vide ?

2. (Huit carrés dans un rectangle.) Diviser un rectangle de longueur égale 3
9 cm et de largeur égale a 3 cm en huit carrés.

3. (Une étonnante distribution.) Une distribution statistique est composée
de 10 nombres naturels : x;, x3, T3, T4, T5, Y1, Y2, Y3, Y4, Ys. Lorsqu’ils
sont placés en ordre croissant, ces nombres nous donnent en fait la distribu-
tion suivante : xy, @2, 3, T4, Ts, Ys, Y4, Y3, Y2, y1. Nous avons plusieurs
informations :

(1) Les couples (x1,y1), (2,y2), (%3,y3), (x4,ys) €t (z5,ys), sont tous
sur la droite d d’équation y = —2x + 24.

(2) La moyenne de cette distribution est 9, 4.

(3) La médiane et le mode ont tous deux la méme valeur.
(4) Les nombres x3 et x4 sont consécutifs.

(5) Le premier membre de la distribution vaut 1.

(6) (La droi;ce d croise la parabole d’équation y = %az2 + 8x — 8 au point
T2,Y2)-
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Trouver les valeurs de la distribution originale =, x2, x3, x4, x5, Y1,
Y2, Ys, Y4, Ys. Suggestion : La médiane est le nombre tel que 50% des obser-
vations sont plus petites ou égales a ce nombre et 50% supérieures ou égales.
Le mode est la valeur qui est observée le plus souvent.

4 (La belle somme de Gilbert.) Considérons les 6 facons possibles de per-
muter (c’est-a-dire mélanger) les chiffres du nombre 123 et additionnons le
tout. La somme trouvée s’écrit 123 + 132 + 213 + 231 + 312 + 321 = 1332.

Quel résultat aurions-nous obtenu si nous avions fait la somme des
5040 facons de permuter les chiffres du nombre 1234567 ?

5. (Le voyage a Québec.) Juliette et Philippe partent en méme temps et par-
courent les 250 km qui séparent Montréal de Québec dans deux voitures
identiques. Philippe parcourt la premiére moitié du trajet 2 80 km/h et la
seconde moitié a3 120 km/h. En fait, il arrive en méme temps que Juliette qui
a roulé tout le long a vitesse constante. La consommation d’essence de ce
type de voiture dépend de la vitesse du véhicule. Elle est donnée par la for-
mule ¢ = 10+ 2”—0, oll v est la vitesse en km/h et c la consommation en litres

par 100 km. Sachant que ce jour-13, le litre d’essence vaut 0,80%, combien
ont-il dépensé ensemble pour le voyage ?

6. (Les ages multiples.) Du 21 aodit 1989 au 7 mai (inclusivement) 1990, Jean
a eu 5 fois I’age de sa fille Claire. Du 8 mai au 20 aodt (inclusivement) 1992,
Jean a eu 4 fois I'age de sa fille. Trouver la date de naissance de chacun.

Note : par 4dge, on entend la définition usuelle qui est le nombre
d’années complétes écoulées depuis la naissance.

7. (La poule géometre.) Une figure plane
en forme d’ceuf est délimitée par quatre
arcs de cercles désignés par AB, BF, FE
et EA mis bout 3 bout de la facon indiquée
par la figure a droite. Sachant que le rayon
AO est de longueur 1, déterminer I’aire de
la figure.

Contest of the Mathematical Association of Quebec
(Secondary Level) February 3, 2005

1. (The robot and the apples.) A wooden case is separated
into 9 compartments as in the drawing. An engineer has pro- | 6 |16|10
grammed a robot to fill the case with apples by dropping four 11128[17
apples at a time, one into each compartment of a 2 x 2 square.

Is it possible for the robot to finish with the configuration | % |[12]| 7
shown if it starts with an empty case?




68

2. (Eight squares in a rectangle.) Divide a rectangle of length 9 cm and width
3 cm into eight squares.

3. (An astonishing distribution.) A statistical distribution is composed of
10 natural numbers: x,, x2, T3, T4, T5, Y1, Y2, Ys, Y4, Ys- When placed in
increasing order, these numbers are: x©y, x2, 3, T4, Ts, Ys, Ya, Y3, Y2, Y1-
We also have the following information:

(1) The couples (x1,y1), (%2,y2), (T3,y3), (€4,¥ya), and (x5, ys) are all on
the line d with equation y = —2x + 24.

(2) The mean of the distribution is 9.4.

(3) The median and the mode are both the same value.
(4) The numbers 3 and x4 are consecutive.

(5) The first member of the distribution is 1.

(6) The line d crosses the parabola having equation y = %.’132 + 8x — 8 at
the point (x2, y2).

Find the values of the original distribution x,, z3, x3, T4, x5, Y1, Y2, Y3,
Y4, ys. Note: The median is the number such that 50% of the observations
are less than or equal to the number and 507 are greater than or equal. The
mode is the value which is repeated most often.

4. (Gilbert’s beautiful sum.) Consider the 6 different numbers obtained by
permuting (mixing) the digits of the number 123. The sum of these numbers
is 123 + 132 + 213 + 231 + 312 + 321 = 1332.

What result would be found if we summed the 5040 different numbers
obtained by permuting the digits of the number 1234567?

5. (The trip to Quebec.) Julia and Phillip leave at the same time and cross
the 250 km that separate Montreal and Quebec in two identical cars. Phillip
does the first half of the trip at 80 km/h and the second half at 120 km/h.
He arrives at the same time as Julia, who travelled at a constant speed the
whole trip. The fuel consumption for that type of car depends on the speed
of the vehicle. It is given by the formula ¢ = 10 + 2%, where v is the speed

in km/h and c the consumption in liters per 100 km. On that particular day,
one litre of gasoline cost $0.80. How much did they spend on gas altogether
for the trip?

6. (Age multiples.) From August 21, 1989 to May 7, 1990 (inclusive), John
was 5 times as old as his daughter Claire. From May 8, 1992 to August 20,
1992 (inclusive), John was 4 times as old as his daugther. Find the date of
birth of each of them.

Note: By age, we mean, as usual, the number of complete years that
have passed since birth.
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7. (The geometric hen.) An egg-shaped
figure in the plane is composed of four arcs
of circles, designated by @, ﬁ‘, F/‘J\E‘,
and EA, put end to end as indicated in the
figure. Knowing that the radius AO has
length 1, determine the area of the figure.

Next we give the solutions to the team round of the fifth annual CNU
contest for high school students, run by Ron Persky at Christopher Newport
University [2006 : 258-260].

1. Mr. Smith pours a full cup of coffee and drinks 2 of it, deciding it is too
strong and needs some milk. So he fills the cup with milk, stirs it, and tastes
again, drinking another i cup. Once again he fills the cup with milk, stirs

it, and finds that this is just as he likes it. What ratio amount of coffee

— does
Mr. Smith like? amount of milk
r. Smith like?

Solution by Anna Beaudin, Montreal, PQ.

After he drinks another i cup, only half of the % cup that remains is

coffee. This means that g is coffee, the rest being milk. Hence, the ratio of
coffee to milk is 2.

2. You have three inscribed squares, with A B c
the corners of each inner square at the i
point along the sides of its outer square. E
(Thus, for example, AB = }AC and

BD = LBE.) The area of the largest
square is 64 cm?. What is the area of the
smallest square?

Solution by the editor.

By the Theorem of Pythagoras, we have BC? + CE? = BE?2. Thus,
BE? = 2 AC? + - AC? = 3AC?. This means that at each stage, the
area of the next smaller square is g times the area of the current square.
Therefore, the area of the smallest square is (g)2 .64 = 25 m>.

3. Solve the equation cos 2z = cos z for 0 < = < 2.

Solution by the editor.

Since cos2x = 2cos?x — 1, the given condition is equivalent to
2 cos? x—cosx—1 = 0, a quadratic equation in the variable cos . Factoring
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gives (2cosx + 1)(cosx — 1) = 0, which yields cosz = 1 or cosz = —1.
Then, since 0 < = < 27, we have = € {0, 2%, 27},

4. The centre of a circle of radius 1 ¢cm is on the circumference of a circle of
radius 3 cm. How far (in cm) from the centre of the big circle do the common
tangents of the two circles meet?

Solution by the editor.

Let O; and O be the centres of the
circles of radii 3 and 1, respectively. Let
P be the point where the common tan-
gents of the two circles meet. Let A and
B be the points of contact of one of the
common tangents with the circles of radii
3 and 1, respectively, as shown. Let =
denote the length of O,P. By similar
triangles, we have  : 1 = (x + 3) : 3,
which simplifies to « = 2. Therefore,
the distance from the centre of the big
circle to the point where the common

9

tangents meet is PO, = 5

5. One root of 2ha? + (3h — 6)z — 9 = 0 is the negative of the other. Find
the value of h.

Solution by the editor.

Note that h # 0, since the given equation has only one root, = = —g,
if h = 0. Divide the equation by 2h to get

o6, 9

2
T 2h

Then the sum of the roots is —(3h — 6)/(2h). However, since one root is the
negative of the other, the sum must be 0; that is, 3h — 6 = 0, which means
that h = 2.

6. Solve the equation /16x + 1 — 2v/16x + 1 = 3.

Solution by the editor.

Let y = ¥/16x + 1. Then the given equation becomes y? — 2y —3 = 0,
or (y—3)(y+1) =0. Thus, y =3 ory = —1. Since y = v/16x + 1 > 0,
we cannot have y = —1. Therefore, y = 3; that is, +/16z +1 = 3. Then
16x + 1 = 3% = 81, which yields = = 5.

A B

7. In the figure ABCD, all four sides have length 10
and the area is 60. What is the length of the shorter
diagonal AC?
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Solution by the editor.

Drop a perpendicular from the vertex A to
the side BC meeting it at E. Since the area
of the rhombus is 60, we see that the altitude

AE = 6. By the Theorem of Pythagoras, we A 10 p
have BE = 8, which implies that EC = 2. Then 107,

the length of the shorter diagonal, AC, can be

obtgined by applying the Theorem of Pythagoras B E C

again:

AC = /62+22 = /40 = 2v10.

8. A man has 1000 equilateral triangular pieces of mosaic, all of side length
1 cm. He constructs the largest possible mosaic in the form of an equilateral
triangle.

(a) What is the side length of the mosaic?

(b) How many pieces will he have left over?

Solution by the editor.

(a) Some mosaics in the form of an equilateral triangle that can be con-
structed from the triangular pieces are shown below.

AA & &

Notice that the number of pieces in the rows of these mosaics are
1, 3, 5, 7, ...(from top to bottom). If one of these mosaics has sides of
length n, then the number of pieces in the bottom row is 2n — 1, and the
total number of pieces in the mosaicis 1 +3+5+7+---+ (2n —1) = n2.
(An alternate approach is to notice that each of these mosaics that can be
constructed from the triangular pieces uses n? pieces for some positive
integer n, and has sides of length n.)

The largest value of n such that n? < 1000 is n = 31. Thus, the largest
possible mosaic has sides of length 31, which is the answer to part (a). The
number of pieces left over is then 1000 — 312 = 1000 — 961 = 39, which
answers part (b).

—_— N r————

That brings us to the end of another issue. Continue sending in your
contests and solutions.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Mark
Bredin (St. John's-Ravenscourt School, Winnipeg), Monika Khbeis (Father
Michael Goetz Secondary School, Mississauga), Eric Robert (Leo Hayes High
School, Fredericton), Larry Rice (University of Waterloo), and Ron Lancaster
(University of Toronto).

_—_—m NS ——————

Mayhem Editorial

Jeff Hooper

Welcome to another year of Mathematical Mayhem! 1 must apologize
for my greetings not appearing in the first issue of 2007. Although the first
issue of CRUX with MAYHEM appears in February of each year, the editing
of material for this issue actually occurs in November. With the changeover
in duties and the usual rush of late fall, T simply missed doing this.

Before introducing myself as the new editor of Mathematical Mayhem,
I wish to thank my predecessor, Shawn Godin. In the middle of last year,
Shawn reluctantly decided to step down as Mayhem editor. Shawn is an
Ottawa-area high school teacher and education consultant, who has managed
to squeeze in all of his Mayhem duties on top of his already heavy schedule.
He also recently decided to return to university to work toward his doctorate.
With all of these commitments and a young family, Shawn felt that it was the
proper time to step down.

It would be difficult to overstate Shawn’s contribution to Mayhem.
Over his years of involvement, he has kept Mayhem alive and true to its
original purpose as a source of mathematical problems and problem-solving
ideas suitable for high school students. We will continue down that road.
We will miss you, Shawn, and we wish you well with your new challenges!
You are welcome back anytime!

Now, a few words about your new Mayhem editor. T am an Associate
Professor in the Department of Mathematics and Statistics at Acadia Univer-
sity in Nova Scotia. Before that, I spent several years at the Universities of
Cambridge, Durham, and Waterloo. My main area of mathematical interest
is number theory, but I also have an interest in mathematics education. This
educational slant has led me down a number of other paths, including cur-
riculum consulting for the Nova Scotia Department of Education and serving
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as Nova Scotia’s provincial coordinator for the Maritime Mathematics Com-
petition written by regional high school students. Many problems from these
competitions have appeared previously in the Skoliad. When not busy with
all of these other things, I usually spend time with my children, or else play
music (poorly).

Last fall the CRUX with MAYHEM Editorial Board began a discussion
regarding the focus of Pélya’s Paragon. When Polya’s Paragon was started a
number of years ago by Paul Ottaway, there was a specific direction to the
articles: they focused on a technique or idea that was important in problem-
solving and then illustrated that technique on two or three problems. Since
then, the content of the Paragon has varied quite a lot. We have decided to
return to the original format for future Paragons. This means that we will
not have a Paragon every month, but only when we find an article that fits
the mold. However, we will continue to welcome articles. I wish to invite
readers to submit to us short articles intended for a high school audience.
If you feel they fit the mold for a Paragon article, be sure to point that out.
We are also always in need of good Mayhem problems. If you can supply us
with some, we would be most grateful.

In closing, let me thank all of you for the work you put into Mayhem,
either directly or even by just reading and working the problems. I would be
very happy to hear from you if you have comments or suggestions. I hope
you enjoy the 2007 volume of Mayhem!

_—_—m NS ——————

Mayhem Problems

Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le premier juillet 2007. Les solutions recues aprés cette date ne seront prises
en compte que s’il nous reste du temps avant la publication des solutions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I'anglais.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein, de
I"Université de Montréal, d’avoir traduit les problémes.

—_—_— N~ S O ————

M282. Proposé par J. Walter Lynch, Athens,
GA, USA.

Quatre rectangles sont arrangés en un motif
carré, de sorte qu’ils entourent un carré plus pe-
tit. Soit S l'aire du carré extérieur et Q celle du
carré intérieur. Si S/Q = 9 + 4+/5, déterminer le
rapport des cotés des rectangles.
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M283. Proposé par Neven Juri¢, Zagreb, Croatie.
Trouver la relation entre x et y, si
x? +ycos’a = zsinacosa et xrcos2a + ysin2a = 0.
(On suppose que x et y sont tous deux non nuls.)
MZ284. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Montrer que

an (3) 1o () ot () = 5

M285. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Soit a, b et c trois nombres strictement positifs tels que a+b+c > 3abc.
Montrer que a? 4+ b% + ¢? > 2abc.
M286. Proposé par K.R.S. Sastry, Bangalore, Inde.

Si zy + yz + zx = 1, montrer que

@) T n Yy " z . 2 ]
1+22 1492 1422 /O +22)(1+y2)1+22)’
2
B ——+ st =

14 22 1+ y2 14 22 r+y+z—xyz
M287. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Avec la régle et le compas, construire la moyenne harmonique de deux
nombres réels donnés a et b.

M282. Proposed by ]. Walter Lynch, Athens,
GA, USA.

Four rectangles are arranged in a square pat-
tern so that they enclose a smaller square. Let S
be the area of the outer square and Q the area of
the inner square. If S/Q = 9 + 4/5, determine
the ratio of the sides of the rectangles.

M283. Proposed by Neven Juri¢, Zagreb, Croatia.

Determine the relationship between z and y if

2

m2+ycos a = xsinocoso and xrcos2a + ysin2a = 0.

(Assume that both = and y are non-zero.)
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M284. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Prove that
1 (1 (L) fant (L) = T
tan (2) + tan (4 + tan 13) = 1°

M285. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Let a, b, and c be strictly positive numbers such that a + b + ¢ > 3abc.
Prove that a? + b% 4 ¢? > 2abc.
M286. Proposed by K.R.S. Sastry, Bangalore, India.

If zy + yz + zx = 1, show that

@) T n Yy " z . 2 ]
1+22 1492 1422 /O +22)(1+y2)(1+22)
2
B s =

1+ x2 1+ y2 14+ 22 r+y+z—zyz

M287. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Given two positive real numbers a and b, construct their harmonic mean
with straightedge and compass.

—_— N r——

Mayhem Solutions

M232. pProposé par Nicholas Buck, College of New Caledonia, Prince
George, CB, et John Grant McLoughlin, Université du Nouveau-Brunswick,
Fredericton, NB.

On peut recouvrir un échiquier standard de 8 lignes par 8 colonnes
avec 32 dominos, chaque domino couvrant deux cases adjacentes. Suppo-
sons qu’'on enléve au hasard deux cases. Si le nouvel échiquier obtenu ne
peut plus étre recouvert par 31 dominos, quelle est la probabilité pour que :

1. les deux cases enlevées soient dans 1a méme ligne ?

2. les deux cases enlevées se touchent en un sommet (diagonalement,
horizontalement ou verticalement) ?
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Solution par Jean-David Houle, Cégep de Drummondville, Drummondyville,

QC.

Supposons, sans perte de généralité, que les cases de I'échiquier sont
alternativement noires et blanches, comme celles d’un échiquier standard.
On montre tout d’abord que le nouvel échiquier ne peut plus étre recouvert
par 31 dominos si et seulement si les deux cases retirées sont de la méme
couleur.

En effet, un domino recouvre deux cases adjacentes verticalement ou
horizontalement, donc les deux cases sont toujours de couleurs différentes,
soit une noire et une blanche. Si on recouvre I'échiquier par 31 dominos, il
doit donc y avoir 31 cases blanches et 31 cases noires. Puisque I'échiquier
original contient 32 cases de chaque couleur, les deux cases retirées doivent
étre de couleurs différentes. [ Réd : De plus, si les deux cases retirées sont
de couleurs différentes, elles sont aux coins opposés d’un rectangle de di-
mensions pair par impair et ce rectangle peut toujours étre recouvert par des
dominos. En séparant I'échiquier avec des tranches dans la direction de la
dimension impaire du rectangle, on obtient des rectangles qui ont tous au
moins une dimension paire et qui peuvent donc tous étre recouverts avec
des dominos.] Ceci indique que si on ne peut plus recouvrir I’échiquier par
31 dominos, les deux cases retirées sont de la méme couleur.

1. Une ligne contient 4 cases de la méme couleur, alors aprés avoir retiré
la premiére case, il reste 3 cases de la méme couleur sur la méme ligne. Donc
la probabilité est

cas favorables 3
T = 2~ 00,1935
cas possibles 31

2. Deux cases qui se touchent en un sommet verticalement ou horizon-
talement sont nécessairement de couleurs différentes, donc les deux cases
retirées se touchent diagonalement. On note que pour une couleur donnée,
18 cases ont 4 contacts diagonaux, 12 cases on 2 contacts diagonaux et 2 cases
on un contact diagonal. Donc la probabilité est

cas favorables 18-4+12-2+2-1 98

: = = — =~ 0,0988.
cas possibles 32-31 992

Autre solution soumise par Richard I. Hess, Rancho Palos Verdes, CA, E-U.

M233. Proposed by Richard K. Guy, University of Calgary, Calgary, AB.

Can you place eight distinct integers selected from 0 to 12 at the vertices
of a cube so that the twelve edges have the differences 1, 2, ..., 12 between
their end-points ?

Either find a way to do this, or prove that it is impossible.

Solution by the proposer, modified by the editor.

Since 12 is one of the differences, the numbers 0 and 12 must be on
two adjacent vertices of the cube. Since 11 is another difference, either a
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vertex labelled 11 is adjacent to the vertex labelled 0 or a vertex labelled 1
is adjacent to the vertex labelled 12. However, these two possibilities are
related by the mapping f(n) = 12 — n. Let us assume that a vertex labelled
1 is adjacent to the vertex labelled 12. Here are three such distinct cubes :

Also solved by Richard I. Hess, Rancho Palos Verdes, CA, USA. The proposer suspects
that there may be as many as a dozen or more distinct solutions.

M234. Proposé par K.R.S. Sastry, Bangalore, Inde.

Soit J un nombre de deux chiffres sans communs diviseurs autres que 1.
En permutant ces deux chiffres, on obtient un nombre I qui est p% plus grand
que J. Trouver toutes les valeurs possibles de p, p étant un nombre naturel
positif plus petit que 100.

Solution par Jean-David Houle, Cégep de Drummondyville, Drummondyville,
QC, modifié par le rédacteur.

Soit J = 10z +y ol x et y sont des entiers entre 1 et 9, avec (z,y) = 1.
Donc I = 10y + x. Aussi, T = (1 + %) J. En isolant p, on obtient :

I—-J 900(y —
p = 100 - = y—2)
J J

M

Puisque p est un nombre naturel, alors y > x et 10z + y | 900(y — x).

Supposons que J et y — = ont un diviseur commun plus grand que 1.
Alors ils ont un diviseur principal commun q. Puisque ¢ | J = 10z + y
etg|y—x,ona

q| (10z+y) — (y—x) = 1lx.

Puisque ¢ < y — x < 9, on obtient ¢ | z. Doncgq | (y — =) + * = y, qui
est une contradiction, parce qu’ils n’ont aucun diviseur commun plus grand
que 1. Ainsi, (J,y — x) = 1.

Donc J | 900. Les valeurs possibles pour J sont {12, 15, 18, 25, 45}.
En remplacant ces valeurs dans (1), on trouve p € {75, 240, 350, 108, 20}.
Puisque p < 100, onap =20 et p = 75.

En outre résolu par Michelle Ellenburg et Christopher Odom, étudiants, Angelo State
University, San Angelo, TX, E-U; et Richard I. Hess, Rancho Palos Verdes, CA, E-U.



78

M235. Proposé par Ron Lancaster, Université de Toronto, Toronto, ON.

Résoudre I'équation
2£B + 2m+1 + e + 2{E+2006 — 4{0 + 4:E+1 + e + 4m+2006 .

Solution par Jean-David Houle, Cégep de Drummondyville, Drummondyville,

QcC.
On simplifie I'équation :
23:(1+21+...+22006) — 4m(1+41+...+42006)’
1+21+...+22006 — 2m(1+41+_..+42006)‘
On remplace les séries géométriques par leur sommes :

1 _ 92007

1 2006 __ — 2007 __
1+2 4 + 2 = —q—5 2 1
1 s006 _  1—42007 42007 _
et 1+4 4 +4 = 14 = 3
Donc :
1+21+..-+22006 — 2:1:(1+41+..-+42006),
92007 _ 1 _ o=, 42997 — 1
3 ’
2m _ (3) (22007 _ 1) _ (3) (22007 _ 1) _ 3
— T 42007 _ 7 - (22007 4 1) (22007 _ 1) T 22007 1 1 °

On peut en approximer le résultat :
= 10gs (ga0r ) ~ 1082(5m057) = 1 (@ES
T = 08 (22007 + 1) ~ 1082 (22007) = log,3 — 2007 =~ —2005,415.

En outre résolu par RICHARD 1. HESS, Rancho Palos Verdes, CA, E—y; et JOSH TREJO
et MANDY RODGERS, étudiants, Angelo State University, San Angelo, TX, E-U.

M236. Proposed by Edward ]. Barbeau, University of Toronto, Toronto,
ON.

A traveller to a strange island discovers that it is inhabited by knights
who can only make true statements and knaves who can only make false
statements. One day a traveller encountered three inhabitants, whom we
will call A, B, and C, and asked, “How many knights are there among you
three?”

A made an answer, which the traveller missed, but which was
understood by the other two. When B was asked what A said, B responded,
“ A said that there is one knight among us.”

“Don’t believe B,” exclaimed C, “he is lying.”

What are B and C?
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Solution by Mandy Rodgers and Josh Trejo, students, Angelo State Univer-
sity, San Angelo, TX, USA.

Since B and C made contradictory statements, they cannot both be
knaves, or both knights. Thus, there are two cases to consider: B is a knight
and C is a knave, or B is a knave and C is a knight.

Assume first that B is a knight and is telling the truth (and C is a knave).
Then A really did say that there is one knight. Now, if A were a knight, his
statement “There is one knight among us” would need to be true and would
lead to a contradiction, since both A and B would be knights. If A were a
knave, his statement “There is one knight among us” would need to be false,
which would again lead to a contradiction, since B would be the one and only
knight. Hence, B cannot be a knight.

Therefore, B is a knave and is telling a lie (and C is a knight), which
answers the question asked. We should explore this possibility to see if it can
actually occur. Assume that B is a knave and C is a knight. Then A did not
say that there is one knight. Now, if A were a knight, he could have said that
there were 2 knights, which would be consistent, since both A and C would
be knights. If A were a knave, he could have said they were all knights or all
knaves. Thus, although it is not possible to determine whether A is a knight
or a knave, we do know that B is a knave and C is a knight.

Also solved by JEAN-DAVID HOULE, Cégep de Drummondville, Drummondville, QC;

and MICHELLE ELLENBURG and CHRISTOPHER ODOM, students, Angelo State University,
San Angelo, TX, USA.

M237. Proposed by K.R.S. Sastry, Bangalore, India.

Let ABC be an isosceles triangle with AB = AC, and let the lengths
of the sides be integers with no common divisor other than 1. The incentre

I divides the internal angle bisector AD such that }% = g. Determine the
radius of the incircle of AABC.
Solved by Richard 1. Hess, Rancho Palos Verdes, CA, USA. 4

Let a and b be relatively prime integers such that
a = BCand b = AC = AB, and let § = /DAC. o
We know that siné = 1a/b and sin® = IE/AI. Since
IE = ID, we conclude that I E

. . a _ %
sinf = 55 = o5 B - c

Hence, since a and b are relatively prime, we have a = 48 and b = 25. Then
EC = DC = a = 24; thus, AE = AC — EC = 1. Now,

sin @

r = IEF = AFEtan0 = tanf =
sin 6 _ 24/25 _ 24

V1 —sin%6 - 7/25 o

There was one incorrect solution submitted.

cos 6
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Problem of the Month

Ian VanderBurgh

This month, we have a couple of problems demonstrating that knowing
too much algebra may be dangerous!

Problem #1 (1974 Gauss Contest). A car is driven up a 1 km long hill at 30
km/h, and continues down the other side, which is also 1 km in length. The
speed the car must be driven on the down slope, in km/h, in order to average
60 km/h for the whole trip is

(A) 30 (B) 90 (©) 60 (D) 120 (E) none of these

It is tempting to answer 90 km/h, since the average of 30 and 90 is 60,
but this somehow seems too easy. (To boot, you probably have that nagging
voice in the back of your head reminding you of something your Grade 5
mathematics teacher told you about this sort of problem.. . .)

The most important thing to remember in solving this problem is that
speed equals distance divided by time, which is the same as distance equals
speed multiplied by time, or time equals distance divided by speed.

Solution #1: To drive up the 1 km hill at 30 km/h takes % hour, or 2 minutes.
To average 60 km/h over the whole 2-km trip, the total driving time must be
% hour, or 2 minutes. Then the downhill part of the trip must take2—2 =0

minutes. Since this is not possible, the answer must be (E).

Now, that was a surprising answer!
If we know some algebra (and try to use it), the solution becomes a bit
more complicated.

Solution #2: Suppose the car is driven down the hill at v km/h. To find the

average speed, we find the total distance driven (2 km in this case) and divide
by the total time. The time for the uphill portion is % hour as in Solution #1

above. The time for the downhill portion is 1/v hour. Therefore, the total
time is % + % hour. Hence, the average speed, in km/h, is

N

which simplifies to

2_60(1+1) _2+60
o 30 v/ )

Thus, 60/v = 0, which is impossible.
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Let's try a couple of variations of the problem. First, try the problem
with 40 km/h instead of 30 km/h. Try it by both of the methods used above.
Did you get 120 km/h? (Going uphill for 1 km at 40 km/h should take ﬁ
of an hour, which is 1% minutes, leaving half a minute out of the total of 2
minutes to drive the remaining 1 km downhill.)

What happens if we replace the 30 km/h with 20 km/h? If we proceed
mathematically (without thinking), we find that the car must be driven down
the hill at —60 km/h. One wonders what that really means! This shows that
we always need to think about what we are doing.

Suppose the car is driven uphill at « km/h and then downhill at v km/h.
What are the possible values of « that allow us to solve the problem (that is,
to get a positive value for v)?

We model Solution #2 from above. The time to drive uphill is 1/u
hours and to drive downhill is 1/v hours. Therefore, the total driving time
is (1/u) + (1/v) hours, and the average speed is

2 = 60
1 1 :
__|__
u v
Now we solve for v in terms of u:
1 1
2 = 60<+),
u v
1 1 . 1
30 v v’
1 30u
v = = .
1_1 u — 30
30 u

We know that w is a positive real number. For v to be a positive real number,
we need u— 30 > 0, or u > 30. Thus, an uphill speed of more than 30 km/h
allows us to find a downbhill speed that gives an average speed of 60 km/h.

For what integer values of u can we find a positive integer value of v
that gives an average speed of 60 km/h? We know already that

30u _
v — _ 30u — 900 + 900 = 30+ 900 )
u— 30 u — 30 u — 30

900

For v to be an integer, we need 5 to be an integer, and for this we need

u
u — 30 to be a divisor of 900. You can list out the divisors of 900 and the
corresponding values of u.

So, a problem that starts out being quite simple has lots of interesting
ideas that can be gleaned from it. The most important thing to remember
here is the very first simple solution. Thinking about this type of problem in
a clever way will often get you the answer more easily than using a formal
algebraic approach.
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Let's try to apply this way of thinking to another problem.

Problem #2. Jeff is on a railway bridge joining A to B, and is g of the way
across from A. He hears a train approaching A; it is travelling at 80 km/h.
If he runs towards A, he will meet the train at A. If he runs towards B, the
train will overtake him at B. How fast can he run?

Solution #1: Let’s try this algebraically first. Suppose the bridge has a length
R, the train is a distance d from point A, and Jeff’s running speed is v. The
amount of time it would take Jeffto runto A is gR/v and torunto B is gR/v.
(Each of these quantities is distance divided by speed.) The amount of time
it would take the train to get to A is d/80 and to get to B is (d + R)/80.
Since Jeff and the train would arrive at A or B at the same time,

3 5
R d 2R d+ R
8 = — and st _a+ .
v 80 v 80
Now we have two equations with three unknowns and want to solve for v.
Try fiddling with these before going on!

Any luck? We could solve this by substituting one equation into the
other, but here’s a more clever way. By subtracting the first equation from
the second one, we get

iR R
v 80’
which yields v = 20 km/h. Hence, Jeff runs at 20 km/h.
But perhaps we can find a better method. How about this?

Solution #2: In the amount of time that Jeff runs g of the way across the

bridge, the train gets to A. Suppose that Jeff runs 2 of the way across the
bridge towards B, not A. Once Jeff has run this dlstance he is g + g 3
of the way from A to B, and the train is at A. But we also know that ]eff
and the train get to B at the same time with Jeff running in this direction.
Therefore, the train will travel the length of the entire bridge while ]eff runs
the remaining 411 of the length of the bridge. Thus, the train’s speed is 4 times

leff's speed; that is, Jeff’s speed is Z—O = 20 km/h.

Isn’t that nice? To finish off, here is a problem of the same type for you
to try:

A train passes completely through a tunnel in 10 minutes. A sec-
ond train, twice as long, passes through the tunnel in 11 minutes.
If both trains are travelling at the same speed, 72 km/h, determine
the length of the tunnel and the lengths of the trains.

B SN D W
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THE OLYMPIAD CORNER
No. 260

R.E. Woodrow

We begin this number with the problems of the Second Round and Final
Round of the Hungarian National Olympiad Grades 11-12 for 2003-2004.
Thanks again go to Christopher Small, Canadian Team leader to the IMO in
Athens, Greece in 2004, for collecting them for our use.

HUNGARIAN NATIONAL OLYMPIAD 2003-2004
Grades 11-12, Round 2

1. Let n be an integer, n > 1. Define

A — \/n+1+\/n+4+\/n+7 \/n+10+\/n+13
n n—+3 n+ 6 n+9 n+ 12
and B =— 1 1 1 1 1

\/n—1+\/n—|—2 vn+5 \/n+8+\/n+11'

Determine which of the following relations holds (depending on n): A > B,
A =B,or A< B.

2. Let a, b, and c denote the sides of a triangle opposite the angles A, B,
and C, respectively. Let r be the inradius and R the circumradius of the
triangle. If ZA > 90°, prove that

T asin A
R — a+b+c’

3. Prove that the equation z3 + 2pz? + 2p%z + p = 0 cannot have three
distinct real roots, for any real number p.

4 1et ABCD be a cyclic quadrilateral with AB = 2AD and BC = 2CD.
Letd = AC and o« = ZBAD be given. Express the area of ABC D in terms
of d and a.

Grades 11-12, Final Round

1. Let ABC be an acute triangle, and let P be a point on side AB. Draw
lines through P parallel to AC and BC, and let them cut BC and AC at X
and Y, respectively. Construct (with straightedge and compass) the point P
which gives the shortest length XY . Prove that the shortest XY is perpen-
dicular to the median of ABC through C.
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2. Let a, b, and c be distinct positive integers which are the side lengths
of a triangle. There is a line which cuts both the area and the perimeter
of the triangle into two equal parts. This line cuts the longest side of the
triangle into two parts with ratio 2 : 1. Determine a, b, and ¢ for which abc
is minimal.

3. LetH = {1, 2, 3, ..., 2004}. We denote by D the number of subsets
of H such that the sum of the elements of the subset has a remainder of 7
when divided by 32. We denote by S the number of subsets of H such that
the sum of the elements of the subset has a remainder of 14 when divided
by 16. Prove that S = 2D.

_—_— NS —————

Next we give the problems of the First Round (Specialized Mathematics
Classes), Grades 11-12 of the Hungarian National Olympiad. Thanks again
go to Christopher Small, Canadian Team Leader to the IMO in Athens, Greece
in 2004, for collecting the set.

HUNGARIAN NATIONAL OLYMPIAD 2003-2004
(Specialized Mathematics Classes) Grades 11-12
First Round

1. Letnbea positive integer, and let a and b be positive real numbers.
Prove that

log(a™) + <71L) log(a™ 'b) + (g) log(a™ ?b%) 4 - - - + log(b™)
= log((ab)"2n_1) .

2. Let H be a finite set of positive integers none of which has a prime factor
greater than 3. Show that the sum of the reciprocals of the elements of H is
smaller than 3.

3. Consider the three disjoint arcs of a circle determined by three points on
the circle. For each of these arcs, draw a circle at the mid-point of the arc
and passing through the end-points of the arc. Prove that the three circles
have a common point.

4. A palace which has a square shape is divided into 2003 x 2003 square
rooms of the same size which form a square grid. There might be a door
between two rooms if they have a common side. The main gate leads to
the room at the northwest corner. Someone has entered the palace, walked
around for a while and upon returning to the room at the northwest corner
for the first time, immediately left the palace. It turned out that this person
visited each of the other rooms 100 times, except the room at the southeast
corner. How many times did this person visit the room at the southeast
corner?
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5. Let ag, a1, ..., Gn, an4+1 be real numbers such that a9 = a,+1 = 0.
Prove that there is a number k (0 < k£ < n) such that

@) ag+1+---+agy; >0foreveryi=1,...,n —k+1, and
(b) aj+---+ar < 0foreveryj=0,..., k.
—_—— NS ———

To complete the problems section we give the Final Round of the Finnish
High School Mathematics Contest. My thanks go to Matti Lehtinen, Helsinki,
Finland; and to Christopher Small, Canadian Team Leader to the IMO in
Athens, Greece in 2004, for collecting them for our use.

FINNISH HIGH SCHOOL MATH CONTEST 2004
Final Round
February 6, 2004 — Time allowed: 3 hours

1. The equations
22 +2ax+b* = 0 and 22 +2bx+c% = 0

both have two different real roots. Determine the number of real roots of
the equation
:c2—|—2cw—|—a2 = 0.

2. Leta, b, and c be positive integers such that

av3+b
b\/§+c

is a rational number. Show that
a? +b% + 2
a+b+ec
is an integer.

3. Two circles with radii » and R are externally tangent at a point P. De-
termine the length of the segment cut from the common tangent through P
by the other common tangents.

4. The numbers 2005! + 2, 2005! + 3, ..., 2005! + 2005 form a sequence
of 2004 consecutive integers, none of which is a prime number. Does there
exist a sequence of 2004 consecutive integers containing exactly 12 prime
numbers?

5. Finland is going to change its monetary system again and replace the Euro
by the Finnish Mark. The Mark is divided into 100 pennies. There shall be
coins of three denominations only, and the number of coins a person has to
carry in order to be able to pay for any purchase less than one Mark should
be minimal. Determine the coin denominations.
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Now we turn to readers’ solutions to problems given in the December
2005 number of the Corner, for the 38™ Mongolian Mathematical Olympiad,
Final Round, appearing [2006 : 505].

1. Let n and k be natural numbers. Find the least possible value for the car-
dinality of a set A that satisfies the following condition: There exist subsets
Aq, ..., A, of A such that any union of £ of the A; is equal to A, but any
union of k — 1 of them is not equal to A.

Comment by Pierre Bornsztein, Maisons-Laffitte, France.

. n
The answer is (k: = 1).

This problem is equivalent to problem #6 of the final round of the 8!
Korean Mathematical Olympiad. A proof appears in [2000 : 11].

2. For a natural number p, one can move between two integer points in a
plane when the distance between the points is p. Find all primes p for which
the point (2002, 38) can be reached from the point (0,0) using permitted
moves.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

The desired primes are those not of the form 4k + 3.
Let p be a prime.

Case1. p =3 (mod 4).

It is well known that p is not the sum of two squares. Therefore, moves
can only be done in the directions of the coordinate axes. In that case, both
coordinates of any point which can be reached must be multiples of p. But
2002 = 2 X 7 X 11 x 13 and 38 = 2 x 19 have no common prime divisor of
the form 4k + 3. Thus, it is impossible to reach (2002, 38) for such a p.

Case 2. p = 2.
One can reach (2002, 38) by 1001 moves of the form (z, y) — (242, y),
and 19 moves of the form (z,y) — (z,y + 2).

Case 3. p =1 (mod 4).

It is well known that there exist two positive integers a and b such that
p = a® 4+ b%. Moreover, since p is prime, we must have a and b coprime,
and one of them, say a, is even.

Let us consider moves of the following four types:

1. (z,y) — (z +a,y +b), 2. (z,y) — (z +a,y —b),
3. (w,y)—>(w+b,y+a), 4. (w,y)—»(a:+b,y—a).

We will prove that we can reach (2002, 38) from (0, 0) using only these four
moves and their inverses (where the inverse of (z,y) — (z + a,y + b) is

(z,y) — (x — a,y — b)).
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Let z; denote the number of moves of type ¢ (where =; may be negative,
meaning that we use the inverse of the move of type ¢ |z;| times). We want
to prove that there exist integers =1, x2, T3, x4 such that

2002 = a(xy; +x2) +b(xs+x4) and 38 = a(xz —x4)+b(x1 —x2) .

But, since a and b are coprime, there exist integers «, 3, ~, 8 such that
2002 = aa + b3 and 38 = a~y + bd. Note that 3 and § are even. Then, for
all integers m and n, we have

2002 = a(a+bm)+b(B—am) and 38 = a(y + nb)+ b(d —na).

Hence, we want to find integer solutions to the system

r1+x2 = a+bdbm,
1 —x2 = &—na,
3+ x4 = [B—am,
rx3—x4y = ~v+nb.

But the only condition which has to be satisfied to solve this system in the
integers is that a + bm and ~ + nb are even. Since b is odd, this can be done
by suitable choices for m and n, and we are done.

4. Given are 131 distinct natural numbers, each with prime divisors not
exceeding 42. Prove that four of them can be chosen whose product is a
perfect square.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Let x4, ..., 131 be the given numbers. Direct checking shows that
there are exactly 13 primes not exceeding 42. Denote them by pq, ..., p13.

Consider the 131130 — 8515 products x;x; (with repetition if any) of
any two of the given numbers. Consider each of these products, say P, as a
13-tuple (ay,...,a13), where a; is the exponent, reduced modulo 2, of p; in
the prime decomposition of P (thus, a; € {0, 1}). Since 8515 > 8192 = 213,
two of these products, say z;z; and x,,x,,, must be associated with the same
13-tuple. If {¢, j} N {m, n} = 0, this ensures that z;x;x,,z, is a perfect
square, and we are done.

Otherwise, without loss of generality, we may assume that ;7 = n,
which means that z;x,, is associated with (0,0,...,0). In that case, omit
xz; and x,, from the given numbers and repeat the above procedure. Since
129128 — 8256 > 2'%, we may find again two products, say @,z and z;x.,
which are associated with the same 13-tuple. If {r, s} N {¢, u} = 0, this
ensures that =,z x;x, is a perfect square, and we are done. Otherwise,
without loss of generality, we may assume that s = wu, which means that
x,x; is associated with (0,0,...,0). Then x;x,,x,x; is the desired square.

5. Let ag, ai, ... be an infinite sequence of positive real numbers. Show
that 1 + a,, > ¥/2a,_; for infinitely many positive integers n.
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Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Suppose, for the purpose of contradiction, that there exists no > 0
such that 1 + a,, < ¥/2a,_q forall n > ng. We have /2 < 1 + %, from
Bernoulli’s Inequality. Hence, for all n > nyg,

1
an < nt anp—1—1. (1)
n
We prove by induction on p > 1 that
w3
Anotp < (No+p+ 1)( = — _> - 2
Mo —|— ]. k=ng+2 k

This is true for p = 1, because in this case it is just (1) with n = ng+1. Now
let us assume it holds for some given p > 1. Using (1) withn =ng +p+1
and then applying the induction hypothesis, we get

n0+P+2a

no+p+1
an no+P+11

< (n0+P+2)< " > —)—1

No + 1 k=mg+2 k

a,, no+p+2 1
= 2 °O -
(TLO + p + ) <n0 + 1 Z ) ’

k=no+2

Ano+p+1 S no+p — 1

which ends the induction.
It is well known that > % diverges to 4+oco. For sufficiently large p,

+p+1
nozp 1 > Qng )
N0 + 1

k=n0+2

For such a p, the inequality (2) forces a,,+, to be negative, a contradiction.

—_—_— N~ S O ————

Next we look at a solution from a reader to problem 1 of the 19" Balkan
Mathematical Olympiad, which appeared [2005 : 506].

1. Let A, Aa, ..., A, (n > 4) be points in the plane such that no three
of them are collinear. Some pairs of distinct points among A;, Az, ..., A,
are connected by line segments in such a way that each point is connected to
at least three others. Prove that there exists & > 1 and distinct points X,
Xa, oo, Xop € {41, Az, ..., Ay} such thatforeach1 <i <2k —1, X is
connected to X ;11 and X is connected to X;.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

An equivalent formulation is the following: A finite simple graph for
which each vertex has degree at least 3 contains an even cycle.
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Consider the longest path (using pairwise distinct vertices) in the graph,
say X1, X2, ..., X,. According to the maximality of the path, each vertex
adjacent to X; must belong in the path. Since X; has degree at least 3, X;
is adjacent to X,. and X, where 2 < r < s.

Now, among the three integers 2, r, and s, at least two have the same
parity. Then, X; is adjacent to X, and to X, where 2 < a < b < p and
a =b (mod 2). Thus, X1-X,-Xg41—. - -—Xp—X is the desired even cycle.

—_—— NS ———

Now we move to solutions from readers to problems of the Bulgarian
Mathematical Olympiad, Final Round, 2003, given [2005 : 506-507].

3. Given the sequence {yn}2> , defined by y; = y2 = 1 and
Ynt2 = (4k —5)yYny1 — yn +4 — 2k, n > 1,

find all integers k such that every term of the sequence is a perfect square.

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; and Pierre
Bornsztein, Maisons-Laffitte, France. We give the write-up of Bornsztein.

The desired values are kK = 1 and k = 3.

Assume that k is an integer such that {y,}2° ; contains only perfect
squares. Then y3 = 2k — 2 is an even square, say 4a?. Thus, k = 2a2% 4+ 1
for some non-negative integer a.

Moreover, the recurrence relation yields y, = 8k2? — 20k 4+ 13 and
ys = 32k — 120k2 + 148k — 59. Thus, y5 = 256a® — 96a* + 8a2 + 1.

But, if @ > 2, we have

256a% — 96a* + 8a% +1 < 256a® — 96a* + 9a® = (16a”® — 3a)?,
while, since a(32a®> — a — 6) > 0,

256a® — 96a* +8a%> +1 > 256a°® — 96a* — 3243 + 9a% + 6a + 1
= (16a® —3a —1)2.

Thus, (16a® —3a —1)2 < ys < (16a® — 3a)?, which contradicts the fact that
ys IS square.

Therefore, a € {0, 1}, which leadsto k = 1 or k = 3.

Conversely, consider the cases k = 1 and k£ = 3.

Casel. k=1.

One can verify by induction that the sequence {y,}$> ,is1,1,0,1, 1,
0,1, 1,0, ... which is periodic with period 3. Since it contains only squares,
k = 1 is a solution of the problem.

Case 2. k£ = 3.
Then yp42 = 7TYn+1 — yn — 2 for n > 1. We will prove that, for all
n > 1, we have y,, = 22 where

rGy = 3 = 1 and Tnt2 = 3$n+1 — X - (1)
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First, we prove that for the sequence {x,,}° , defined by (1), we have

n—
:Bi_H +22+1 = 3Tpi1n foralln > 1. 2
This is clearly true for n = 1. Assume that it holds for some given n > 1.
Then
w2 o 4al  +1 = z2 ,+3z1x, — x>, (induction hypothesis)
mi-q—z 4+ 0 (3Tpnt1 — Tn)
= mi+2 + Zpxp42 from (1)
= Tn42 (:Bn+2 + .’Bn) = 3$n+2$n+1 from (1)

This proves the relation for n + 1, and ends the induction.
It follows that, for all n > 1, we have:

:ci+2 = (Bxpt1— xn)? = 7mi+1 + (2mi+1 + a:i — 6Zp1Tn)
= Tx2 , —x2—2 from (2).

2 : .
Hence, {x2}° , satisfies the same recurrence relation as does {yn};?:lz).

Since y; = z? and y» = 2, it easily follows by induction that y,, = z2
for all n > 1. Thus, k£ = 3 is a solution of the problem, and we are done.

Remark. Using (2), we can prove that z,, = f2,,41 for all n > 1, where {f,}
is the Fibonacci sequence.

—_—— N r——r— S ———

Next we move to the February 2006 number of the Corner and solutions
from readers to problems of the 2003 Vietnamese Mathematical Olympiad,
given [2006 : 25-27].

3. Find all polynomials P(z) with real coefficients, satisfying the relation
(2> + 322 +3x+2)P(x — 1) = (23 — 32% 4+ 3z — 2)P(x)
for every real number x.

Solution by Michel Bataille, Rouen, France.
Let P be a real polynomial satisfying the given condition; that is,
(z+2)(z*+z+1D)P(x—-1) = (z—2)(z2 —z+1)P(z). (1)

Since the polynomials x 42, 2+ x4+ 1, = — 2, and 2 — £ 4+ 1 are irreducible
over R, we see that P(z) is divisible by (z + 2)(z2 4+ = + 1). Thus,

P(z) = (z+2)(z* + = +1)Q(x) 2
for some real polynomial Q(z), and (1) yields

Plz—1) = (z—2)(2® — 2 +1)Q(a). ©)
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Taking £ = 2 in (3) gives P(1) = 0, which implies that P(z) is divisible
by  — 1. Since P(—2) = 0 (in view of (2)), taking x = —1 in (3) gives
Q(—1) = 0. Therefore, Q(x) is divisible by = + 1, and then so is P(x).
Lastly, taking « = 1 in (1) gives P(0) = 0, so that P(z) is divisible by x as
well. Summing up, we see that P(z) = (z+2)(z+1)z(x—1)(z2+z+1)S(x)
for some real polynomial S(x).

Now, substituting into (1), we obtain S(z) = S(z — 1) for all z € R,
and an immediate induction shows that S(n) = S(0) for all non-negative
integers n. Thus, the polynomial S(x) — S(0) has infinitely many roots. It
follows that S(x) is a constant polynomial.

Conversely, substituting P(z) = k(z + 2)(z + 1)z(z — 1) (2®> +x + 1)
in (1) leads to an identity, for all ¥ € R.

In conclusion, the solutions of the problem are the polynomials of the
form P(z) = k(z 4+ 2)(z + 1)z(x — 1)(«® + = + 1), where k € R.

b 1et P(x) = 423 — 202 — 152 + 9 and Q(x) = 122 + 622 — Tz + 1.
(i) Prove that each of these polynomials has three distinct real roots.

(ii) Let o and 3 be the greatest roots of P(x) and Q(x), respectively. Prove
that o? 4 332 = 4.

Solution by Michel Bataille, Rouen, France.

(i) The polynomial P is a continuous function, and it is easily checked

that P(—2) < 0, P(—=%) > 0, P(0) > 0, P(1) < 0, and P(¢’) > 0.

Hence, P has three distinct roots «, o, and a5 satisfying

(oS (17%5)1 ar € (0,1), az € (_27_%)- 1)
Similarly, Q has three distinct roots, 3, 31, and 3> such that
BE(3,1), BLe(0,3), B2€(—-2,—-1). )

(ii) A polynomial S(x) whose roots are exactly a?, a2, and a2 is readily
obtained by taking S such that S(z?) = —P(x) - P(—z). Here, since

S(x?) = —(9-22%+ z(42® — 15))(9 — 22? — z(42® — 15))
= x%(42* — 15)% — (9 — 22?)?,

we obtain S(x) = 1623 — 12422 + 261z — 81. Similarly, the roots of the
polynomial
T(x) = 144z — 2042> + 37z — 1

are 32, 82, and 32.

Now, transforming 7'(x) through the relation y = 4 — 3z (that is,
substituting x = (4—y)/3 in T'(z)) leads to T'((4 — y) /3) = —3S(y), which
shows that {a?, a2, a3} = {4 —33%, 4—33%, 4—382}. Furthermore, from
(1) and (2),

a? e (L), ei€ (1), ofe (34,
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so that o? < a® < o2 and
4-38%¢€ (1,4, 4-382 € (4,4), 4-38% € (-8,1),

so that 4 — 382 < 4 — 332 < 4 — 303%. The desired result, a® = 4 — 332,
follows.

6. Let f be a function defined on the set of real numbers R, taking values
in R, and satisfying the condition f(cotx) = sin 2z + cos 2z for every x
belonging to the open interval (0, 7). Find the least and the greatest values
of the function g(x) = f(x) - f(1 — «) on the closed interval [—1, 1].

Solution by Michel Bataille, Rouen, France.

We show that g has a minimum value of 4 — /34 and a maximum value
of 1/25 on [—1,1].
For z € (0, ), we have

f(cotx) = sin2xz 4 cos2x = 2sinxzcosx + cos?x —sin’zx
2 —
= sin’xz(2cotx 4 cot?xz —1) = cot’® +22 cotw — 1
cot“x +1
Hence, for all z € R,
2
_ —1 "+ 2x -1
flx) = f(cot(cot (w)) = i1

Since g(2 + h) = f(2 + h)f(3 —h) = g(3 — h) for all real h, it is
sufficient to study the values of g(% +h) for h € [0, g] . An easy computation
gives
16h* — 136h% + 1
16h4 + 24h2 4 25

. 9 20z + 3
where ¢ is defined on [0, 3] by ¢(z) = 1627 + 340 735"

¢’ (x) has the same sign as —80x2 — 24x + 107, it follows that ¢ reaches its

g(5+h) = = 1-8¢(h?),

Since the derivative

) 9 _ V34 3 . . 20 _ V/34-3
maximum on [0, 3] at zo = = — 59 With ¢(z0) = Ty il
and its minimum at 0 with ¢(0) = % Thus, the extreme values of g(% +h)

are 1 — 8¢(xp) = 4 — v/34 (minimum) and 1 — 8¢(0) = 2—15 (maximum).

7. Let a be a real number, o # 0. Consider the sequence of real numbers
{zn}, n=1,2 3, ..., defined by z; = 0 and z,,1(z,, + @) = a + 1 for
n=1,23,....

(i) Find the general term of the sequence {z,}.

(ii) Prove that the sequence {x,} has a finite limit when n — +4oo. Find
this limit.



93

Solved by Houda Anoun, Bordeaux, France; and Mohammed Aassila,
Strasbourg, France. We give the solution of Anoun, modified by the editor.

For convenience , let 3 = —a — 1. Then 8 # —1, and the given
recurrence relation becomes z,,+1 (8 +1 — x,,) = 8.

Let u,, = I 1 for eachn. Thenw; =1andforn=1,2,3, ...,

—z.
u 1 _ /8 + 1- Tn
n+1 1—xpt1 B+1—zp) —zp1(B+1—xy)
B+1—x, B4+l —-z,
Btl-zn B~ 1w = LTPAun

Casel. 3 =1.

Then uy,4+1 = 14 u,. Thus, u, is an arithmetic sequence, and we have
u, =nforn =1, 2, 3,.... Consequently, the general term of the original

. 1 1 .
sequence {z,}isz, =1— — =1— -, and lim =, = 1.
Un n n— oo

Case 2. 3 # 1.

Letv, =14+ (8 — 1)u,. Thenv; = Bandforn=1,2,3, ...,

Unt1 = 14+ (B—Dupyr = 1+ (8 —1)(1 + Bu,)
= B+ (B-1)Pu, = Pv,.
Thus, {v, } is a geometric sequence. Forn =1, 2, 3, ..., we have v,, = ™.
Then u,, = ”ﬁ"__ll = Bﬁ __11, and the general term of the original sequence
{x,} is
_ _ i _ _ -1 o+ 2
Tp o= 1— = = 1— _'l'kfizifI?Tiif

If |3] < 1, then nli_)n;)ﬁ" = 0, and hence lim z, = 1 — p-1 _ 8.

n— 00 —1
If |3] > 1, then lim |3|™ = oo, and hence lim =, = 1.
n—oo n—oo
In summary, the general term is
1- 1 if o = —2,
Ty = n
" 14— a*t2 if a £ —2,

(—a—1)m —1"'
and the sequence {x,,} has a finite limit in all cases.

10. For each integer n > 1, denote by s,, the number of permutations
(a1,a2,...,ay) of the first n positive integers such that each permutation
satisfies the condition 1 < |ap — k| < 2for k = 1, 2, ..., n. Prove that
1.75 - 8,1 < 8, < 2+ 5,1 for all integers n > 6.
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Solution by Mohammed Aassila, Strasbourg, France.

Let n be an integer greater than 6. It can be shown (by induction, for
example) that

Sp = Sp_2+ Spn_a+ 2(371—3 + Sn—a+---+ 30) .
Then, using this to compute s,,_;, we see that
Sp = Sp—1t 8Sn—2+Sn_3+ Sn—4— Sn_s5- (1)

Replacing n by n — 1 yields

Sn—1 = Sp—2t+Sn_3+Sn_a4+ Sn_5— Sn—_s6 - (2)
Solving (2) for s,,_2 + s,,_3 and substituting in (1), we get
Spn = 2851 — 2Sp_5+ Sn—¢6 - (3)

Since s,,_5 > s,_g, this shows us that s,, < 2s,,_1, which establishes the
right hand inequality.

To prove the left hand inequality, we proceed by induction. It can be
directly checked that s; = 0, s, = 1, s3 = 2, s4 = 4, and s5 = 7, which
means that %sn_l < s, forn = 2, 3, 4, and 5, with strict inequality unless
n = 5. We will assume that %sn_l < s,forn=2,3,..., kfor someinteger
k > 5, with strict inequality unless n = 5. Using this hypothesis four times
successively on (3), we get

Skr1 = 28k — 28kg—a + Sk—5 > 28k — 2Sk_4
4\4 4290 7
> 28k — 2(?) Sk = 32015k > 1Sn—1,

which establishes the induction.
_—,— TN~ T——

Next we look at a solution to one of the problems of the XXIX Russian
Mathematical Olympiad, V (Final) Round — 10t Form given [2005 : 27-28].

1. (N. Agakhanov) Let M be a set containing 2003 different positive real
numbers, such that for any 3 different elements a, b, ¢ from M the number
a? + bc is rational. Prove that it is possible to choose a natural number n
such that for each a from M the number a+/n is rational.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.
We present the proof in several steps.

Step 1. If a, b € M and a # b, then a(a + b) is rational.

Choose distinct elements ¢, d € M different from a and b. Then
a(a +b) = (a® + be) + (d? + ab) — (d? + be), which is rational.
Step 2. If a, b € M, then b/a is rational.

If a = b, then b _ 1, which is clearly rational. On the other hand, if

a
b _ bla+b) . . .
a # b, then a = aath) is rational by virtue of Step 1.
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Step 3. If a € M, then a? is rational.
Choose b in M different from a. Then a(a + b) = a? (1 + g). Since

a(a+b)and 1+ g are both rational, so is a?.

Step 4. If a € M, then there exists a positive integer n and a rational number
g such that a = g/n.

Since a? is rational, we have a®> = -, where r and s are positive

integers. Then a = \/g = %\/rs. Take n = rs and q = %

® |3

Step 5. We now complete the proof.
Fix any element f € M. Then f = q+/n, where n is a positive integer
and q is rational. In view of Step 2, if a is any element of M, then % =q

(rational). Hence, a = q1 f = q1q+/n. Thus, ay/n = q1qn, which is rational.
—_— T r——

And next, the one solution on file from readers for problems of the
XXIX Russian Mathematical Olympiad, V Final Round — 11t Form given
[2006 : 27-28].

1. (N. Agakhanov, A. Golovanov, V. Senderov) Let «, 3, ~, and 7 be positive
numbers such that, for all =,

sinax 4+ sinBx = sin~yx + sinTx .
Prove thata = v ora = 7.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

We need only assume o + 3 # 0.
Differentiating the given identity three times, we obtain

acosax + BcosBx = ~ycosyx+ TcosTx,

oBcosax + B3cosBr = ~3cosyx + t3cosTx.

In particular, when = = 0, we have
at+p = v+, M
a®+p4° = P+ @)
Cubing both sides of (1), we obtain
o’ + 8% +3af(a+B) = ¥+ 77+ 3y7(v+7);

hence, a8 = ~r.
Consequently,

(a—YN)(a=7) = 2 —(y+1a+v1 = &> — (a+B)a+aB = 0.

Therefore, « = yora = 7.
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The next block of solutions from readers are for problems of the
Romanian Mathematical Olympiad 9t" Grade, given [2006 : 85].

1. Find positive integers a and b such that, for every z, y € [a, b], we have

141 e,
x|y

Solved by José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain; and Matti Lehtinen, National Defence College, Helsinki,
Finland. We give the solution by Diaz-Barrero.

| =

< = and

SRl

Letz, y € [a,b]. Froma < z, y < b, we have% < %, ”

2 < 1+1 < 2, Since a < l—l—1 < b, we must have a < 2 and 2 < b,
b x Yy a x Yy b a
which yields ab = 2. Since a and b are integers, the required interval is [1, 2].

2. An integer n > 2 is called friendly if there exists a family A, Ao, ...,
A,, of subsets of the set {1, 2, ..., n} such that:

(i) i ¢ A; foreveryi € {1,2,...,n};

(ii) ¢ € A; if and only if j ¢ A;, for every distinct ¢, j € {1, 2, ..., n};
(iii) A; N A; is non-empty for every ¢, j € {1, 2, ..., n}.
Prove: (a) 7 is a friendly number, and (b) n is friendly if and only if n > 7.

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland.

The table

Ay Ay A3 Ay As Ag Ar
1 — - — — + 4+ +
2 + - + - - - +
3 + — — + - + -
4+ + - - 4+ - -
5 — + + - — + -
6 — + - + - — +
T - - + + o+ - -

(4 indicates membership, — non-membership in A;) shows that 7 is friendly.
For any n > 7, taking Ay, ..., A7 from the table and A, = {1, 2, ..., 7}
for 8 < k < n, we get a system of sets showing that n is friendly. It remains
to show that no n with 2 < n < 6 is friendly. Assume, on the contrary,
that some n, 2 < n < 6, is friendly and that A, ..., A,, are the subsets
involved in the definition of friendliness. Assume that A, say, is the set
having the least number of elements among these sets. Assume there is only
one element, say 2, in A;. By (iii), A; N Ay = {2}, which contradicts (i). This
rules out the friendliness of 2. Assume then that A; has just two elements,
say 2 and 3. Then, by (iii), 2 must be in A3 and 3 must be in A, in violation
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of (ii). This rules out n = 3, and shows that every set A; has to have at least
3 elements. Now (ii) implies that in a membership table like the one above,
the number of +’s has to be equal to the number of —’s outside the main
diagonal. For n = 4, n = 5, and n = 6 the number of +’s must be 6, 10,
and 15, respectively, and these numbers clearly are less than 3n in each of
the cases.

3. Prove that the mid-points of the altitudes of a triangle are collinear if and
only if the triangle is right.

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland.

Consider AABC, with Z/C = 90°. Then AC and BC are two of its
altitudes. The line connecting their mid-points bisects every line segment
connecting C and AB. Now let C be the largest angle in ABC, C < 90°.
The feet D and E of the altitudes from A and B are on the segments BC
and AC. Thus, the distances of the mid-points P and Q of AD and BE from
AB is less than the distance of the mid-point S of the altitude CF. Hence,
P and Q are in the half-plane determined by the parallel to AB through S.
Therefore, P, Q and S are not collinear. Finally, let C > 90°. In this case,
the feet D and F of the altitudes dropped from A and B lie on the extensions
to BC and AC. Their mid-points P and Q now lie farther away from AB
than the mid-point S of the altitude CF. Again, P and Q are both in one
of the half-planes determined by the parallel to AB through S. Thus, P, Q,
and S are not collinear.

4. Let P be a plane. Prove that there exists no function f : P — P such
that for every convex quadrilateral ABC D, the points f(A), f(B), f(C),
f(D) are the vertices of a concave quadrilateral.

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland.

Assume such a function f exists. Take any convex pentagon ABCDE.
Since any four of its five vertices are the vertices of a convex quadrilateral, the
convex hull of {f(A), ..., f(E)} hasto be atriangle. Assume the vertices are
f(A), f(B), f(C). Since no three of the images can be collinear, f(D) and
F(E) are distinct interior points of f(A)f(B)f(C). The lines f(A)f(D),
f(B)f(D), f(C)f(D) divide f(A)f(B)f(C) into six triangles, and f(F) is
an interior point of one of these (again, no three of the five images can be
collinear). It is easy to see that f(E), f(D), and some two of the vertices of
F(A)f(B)f(C) are vertices of a convex quadrilateral, a contradiction.

—_— N r————

That completes this number of the Corner. 1 need your nice solutions
and generalizations sent in within a few months, particularly now that the
backlog is cleared up and we are looking at using your submissions within a
year.
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BOOK REVIEWS
John Grant McLoughlin

Math Made Visual

By Claudia Alsina and Roger B. Nelsen, published by the Math Association
of America, 2006.

ISBN 0-88385-746-4, hardcover, 190 pages, US$49.95.

Reviewed by ]. Chris Fisher, University of Regina, Regina, SK

The book begins with a quotation from Martin Gardner:

A dull proof can be supplemented by a geometric analogue so
simple and beautiful that the truth of a theorem is almost seen at
a glance.

These words sum up the authors’ attitude toward proofs by pictures. Their
goal here is to provide tools for devising one’s own visual proofs. CRUX
with MAYHEM readers may be familiar with the work of one of the authors,
Roger B. Nelsen. In addition to having created many of his own “proofs
without words”, he has published two collections entitled Proofs without
Words. Co-author Claudia Alsina likewise has good credentials.

The book comes in three parts. Part I consists of twenty chapters, each
five or so pages in length and each describing a method to visualize some
mathematical idea. The method is illustrated by means of several examples
followed by a handful of exercises called challenges. The examples include
some of the authors’ favorite proofs without words, thankfully now with
some words of explanation for those of us who find a proof without any words
to be an annoyance.

Some of these proofs without words 1 have seen before, such as the
proof of the Pythagorean Theorem, which comes in the chapter titled “Em-
ploying Isometry”. You see a square containing four copies of an initial trian-
gle whose sides are labeled a, b, c. The picture makes it quite clear that the
total area of the white portion inside the large square remains unchanged
as three of the four shaded triangles are translated to new positions. The
authors might have included the caption a? 4+ b = ¢2, but were content to
leave that to the reader.

2
2

a a

In the same chapter as this proof of the Pythagorean Theorem are
four other worked examples with proofs based on rotations and translations.
Among the four challenges that follow these results: Find the area of a con-
vex octagon that is inscribed in a circle and has four consecutive sides of
length 3 and the remaining four sides of length 2. Happily, Part III of the
text consists of solutions or substantial hints to all the challenges of Part I.
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(To solve the challenge just mentioned, divide the octagon into isosceles
triangles from the centre of the circumcircle. Next rearrange the triangles,
alternating the ones with base lengths 2 and 3. This new octagon can be
inscribed in a square of side 3 + 2v/2, and whence, the area of the octagon
is (34+2v2)2 —4(v/2-v2)/2 =13 +12V2.

The authors have done a fine service by collecting together this nice
mathematics, thus making it more accessible. 1 had forgotten about the proof
of the mediant property that appeared in Mathematics Magazine in 1990: For
positive numbers a, b, ¢, d,

< 2te o

b b+d d’

SRS
alo

a c a—+c

3 q and b1 d
It is clear which slopes are steeper. Although the
obvious algebraic argument is no harder than this
visual argument, the visualization would certainly

make a more convincing classroom presentation.
The hundreds of visual arguments included by the authors are all ele-

mentary and transparent. However, many of these results have easier and
more informative proofs. For example, a theorem of affine geometry affirms
that if a line intersects a hyperbola in points A and B and its asymptotes in
A’ and B’, then segments AA’ and BB’ have the same length. The authors
restrict their theorem to a rectangular hyperbola and provide a clumsy verifi-
cation using coordinates, an approach that seems out of place here. Probably
most CRUX with MAYHEM readers would introduce affine coordinates with
A’ = (1,0), B’ = (0,%1), and the origin as the intersection point of the
asymptotes, then appeal to symmetry. (This would have been a good place
to introduce the notion of an affine reflection, but the authors restrict their
transformations to the more familiar Euclidean isometries.) We see in such
examples, as well as in a general lack of references to original sources, that
the book is simply a collection of items the authors have gathered over the
years; it is not intended to be a work of careful scholarship.

For me, the only unsuccessful portion of the book is Part 11, where the
authors “. .. present some general pedagogical considerations concerning the
development of visual thinking, practical approaches for making visualiza-
tions in the classroom and, in particular, the role that hands-on materials
may play in this process.” The sermon lasts 26 pages, but I saw nothing sub-
stantial; if the authors intended an important message, I certainly missed the
point. Most of the other 150 pages contain a pleasant variety of interesting
theorems, problems, and techniques.

I do not believe that the authors were successful in their goal of teaching
readers how to devise their own neat visualizations. 1 wonder if such a skill
can be taught. On the other hand, they have produced a nice collection of
results and proofs that are worth knowing. 1 prefer this book to Nelsen’s
previous two collections because of its useful index and its explanations that
accompany the visualizations.

The picture shows lines of slope

b d
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Sensational Shape Problems & Other Puzzles

By Ivan Moscovich, published by Sterling Publishing Co., Inc., 2005

ISBN 1-4027-2347-4, soft cover, 128 pages, US$9.95.

Reviewed by Tanya Thompson, Collingwood Collegiate Institute,
Collingwood, ON.

This book is one of twelve in Tvan Moscovich’s Mastermind Collection.
It presents recreational mathematics and puzzles visually in a pleasing way
that entices the reader to play. As in all his books, the presentation is beau-
tiful, and visual layouts help one to understand the essence of each problem.

This book presents a variety of puzzles (or “Thinkthings”, as Moscovich
calls them), from historical classics to innovative originals. Dissections, T-
puzzles, tangrams, Pythagorean Theorem problems, packing puzzles, and
geometrical paradoxes are all explored. The book provides answers for the
problems, and historical facts are also presented where appropriate.

One of my favourite Thinkthings is a classic from the geometrical para-
doxes, called “Disappearing Face Magic”, consisting of a line of six faces of
men in hats. When the picture is cut into two strips along an indicated black
line, and the lower strip is slid to the left, one of the faces disappears. The
reader is left to ask, “Which face disappeared?” Martin Gardner, one of the
foremost advocates for recreational mathematics, has named this concept
the Principle of Concealed Distribution. Moscovich mentions this principle
in the book. In [1, pp. 117-128], Gardner explains it in greater detail.

As a high school mathematics teacher who loves recreational mathe-
matics, 1 feel that Sensational Shape Problems & Other Puzzles is a great
set of engaging problems. These problems are fun, as well as helpful in de-
veloping critical thinking and spatial skills necessary for curriculum-based
problems. They could be used as warm-up activities or as investigations all
their own. A wonderful thing about recreational problems is that they are
appropriate for many different levels and abilities. Since basic mathematical
skills are not always a requirement, many different learners can find success.
With success comes confidence, and for many students confidence is key.

Martin Gardner once wrote, “A teacher of mathematics, no matter how
much he loves his subject and how strong his desire to communicate, is per-
petually faced with an overwhelming difficulty: How can he keep his students
awake? ...The best way, it has always seemed to me, to make mathematics
interesting to students . . .is to approach it in a spirit of play” [2, p. xi]. This
book does just that. The Thinkthings motivate students to play. The stu-
dents will have fun problem-solving and become excited about mathematics.
What could be better than that?

References

[1] Martin Gardner, Mathematics, Magic and Mystery, Dover
Publications, Inc., New York, 1956.

[2] Martin Gardner, 1975 Mathematical Carnival: A New Round-up of
Tantalizers and Puzzles from “Scientific American”, Knopf Publishing
Group, 1975.
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Double Counting Using Incidence Matrices
Yufei Zhao

1. Introduction.

Combinatorics problems appear often on mathematics competitions,
and they frequently involve scenarios where individuals are associated with
organizations, following a set of rules. Here is one such scenario.

Example 1. In a certain committee, each member belongs to exactly three
subcommittees, and each subcommittee has exactly three members. Prove
that the number of members is equal to the number of subcommittees.

To investigate problems like this, we need a method of representing
and visualizing the setup. We employ incidence matrices for this purpose. In
our incidence matrices, each row represents an individual, and each column
an organization. A matrix entry is set to 1 if the individual corresponding to
its row belongs to the organization corresponding to its column; otherwise,
the entry is set to 0. (Of course, the roles of rows and columns could be
interchanged.) Two possible incidence matrices for Example 1 are shown.

11100 00 00O0
111 00 0O 0 00111000
1 0 01100 0 0O0O0OOO0OT1T1T1
1 0 00 011 10 01 0 01 00
01 01010 01 0010010
01 00101 0 01 001001
0 01 1001 10 001 0 0 01
0 01 0110 01 0001100

0 01 100010

Let us define the notation that we will be using for incidence matrices.
Let » and c denote the number of rows and columns, respectively, let M
denote the number of 1s, and let R; and C; denote the number of 1s in the
i™" row and 5™ column, respectively.

In most of our examples, we will look at an incidence matrix from two
perspectives—by rows and by columns. This will allow us to obtain either an
identity or an inequality that can be used to prove certain properties.

2. Counting the number of 1s.

When presented with an incidence matrix, one might ask, how many 1s
are there? That is, what is the value of M?

If we count the 1s row-by-row, we see that M is the sum of R; over all
rows ¢. On the other hand, counting the 1s column-by-column yields M as
the sum of C; over all columns j. We have proved the following:

Copyright © 2007 Canadian Mathematical Society
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Proposition 1. If A is an incidence matrix with r rows and ¢ columns having

row sums R;, fori =1, 2, ..., r and column sums Cj, forj =1, 2, ..., ¢,
then

™ C

SR= Y0

=1 j=1

We now apply this proposition to Example 1, where the incidence
matrix has R; = C; = 3 for all s and j. The equation in the proposition
yields 3r = 3c. Thus, » = ¢, which is the desired result.

3. Counting pairs of 1s.

Often a restriction is imposed that applies to every pair of organizations
(or individuals). For example, it may be that every two organizations share
exactly one common member. Such problems can usually be approached by
counting pairs of 1s. Specifically, we are interested in the number of pairs of
1s that lie in the same column (or row).

Proposition 2. Let A be an » X c incidence matrix with column sums Cj.
Suppose that, for every two rows, there exist exactly ¢ columns that contain

1s from both rows. Then
r . /C;
t = 7).
<2> Z ( 2 )

j=1

Proof: Let T denote the set of all unordered pairs of 1s that lie in the same
column. We count the elements of 7 in two different ways.

Counting by rows: For any two rows, there are t pairs of 1s among these
rows that belong to 7'; thus, |T| = t(3).

Counting by columns: In the 5" column, there are C; 1s and thus (029 )

pairs of 1s. Counting over all the columns gives || = 3 ((’;J)

i=1

The result follows by equating the above two expressions. ]
3.1. Inequalities.

Sometimes we are not given enough information to produce a combi-
natorial identity. Instead, we have to work with inequalities and bounds.

Many incidence-matrix problems are concerned with the existence of a
certain subconfiguration. Such problems are often solved by contradiction.
Assuming that the opposite result holds, we can count a particular set (for
example, the set of all pairs of 1s that belong to the same column) in two
different ways, once by rows and once by columns. If we can establish an
upper bound in one count and a lower bound in the other count such that
the upper bound is less than the lower bound, then a contradiction is reached.

The above idea is illustrated in the following problem, given in the 2002
International Mathematics Competition for University Students [3].
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Example 2. (IMC 2002) Two hundred students participated in a mathematical
contest. They had six problems to solve. It is known that each problem was
correctly solved by at least 120 participants. Prove that there must be two
participants such that every problem was solved by at least one of these two
students.

Proof: Assume that the contrary is true; that is, for every two students, there
is some problem that neither of them solved. Consider the 6 x 200 incidence
matrix for this configuration, where an entry in the matrix is 1 if the student
corresponding to the column did not solve the problem corresponding to the
row, and is 0 otherwise. The setup is illustrated below.

Problem 1 o100 ---0
Problem 2 110 0
Problem 3 0 0O 1
Problem 4 0 1 1 1
Problem 5 101 .- 1
Problem 6 010 ---0

Let 7 denote the set of pairs of 1s that belong to the same row. We
now consider the cardinality of 7" from two different perspectives.

Counting by columns: We assumed that for every two students, there
was a problem that neither of them solved. Thus, for every two columns,
there is at least one pair of 1s among these two columns that belong to the
same row. Hence, we can find an element of 7 in every pair of columns.
Since there are (*)°) pairs of columns, we have [T| > (*3°) = 19,900.

Counting by rows: We are told that each problem was solved by at least
120 students. This means that there are at most eighty 1s in each row. Thus,
each row contains at most (820) pairs of 1s. Since there are six rows, we have
17| < 6(%) = 18,960.

The above two inequalities are clearly contradictory. The desired
conclusion follows. |

3.2. Convexity of (7).

Because we are often interested in counting pairs of 1s, the function
f(n) = (%) appears frequently. Let us extend this function to the real num-

bers in the obvious way: f(x) = zz(x—1). Note that f is a convex function.

n
Lemma 1. Let a4, as, ..., a, be positive integers, and let s = > aj. Then
k=1

a; as as an s(s —mn)
“en > ——
() (3 (3) 2 (3) 2 75
Proof: Since f(x) = %m(az — 1) is convex, we have, by Jensen’s Inequality,

flai) + flaz) +--- + flan) f<5> '

n - n

from which the result follows easily. [ ]
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In fact, we can tighten the bound in Lemma 1.

Lemma 2. Let a4, a3, ..., a, be positive integers, and let s = > ag. If
k=1
s = nk + r, where k and r are integers such that 0 < r < n, then

() (GG e (5) 2 (5) rnnla)

Proof: Without loss of generality, we may assume thata; > as > --- > a.,.

Since a4, a2, ..., a, are integers, the vector (a1, as,...,a,) must majorize
the vector (k + 1,...,k + 1,k,..., k). Since f(n) = (}) is convex, we have,
——
7 times n—r times

by Karamata’s Majorization Inequality [1],

flar) + f(az) +---+ f(an) > rf(k+1)+ (n—1)f(k),

and the result follows immediately.
We may also use an optimization argument. We want to minimize the

n
value of '21 (%)). Suppose that there exist some indices ¢ and j such that
1=

a; —a; > 1. Then

)+ () -0 - ()
a;(a; — 1) + aj(a; —1) ai(a;i+1) (a; —1)(a; —2)

2 2 2 2
= aj_ai_1>0‘

Thus, by replacing any such (a;, a;) by (a; + 1,a; — 1) in the sum Y~ (%),
=1

we decrease the sum. By repeating this process, we can transform any initial
sequence into one where no two terms differ by more than 1. When the
process terminates, the sequence must consist of the term k 4 1 repeated
r times and the term k repeated n — r times. Since we never increased
the sum, the initial sum must be at least as great as the final sum, which is
r(*1) + (n — 7)(%). The result follows.

Now we present a problem from the 1998 International Mathematical
Olympiad [4] that can be solved using this idea.

Example 3. (IMO 1998) In a competition, there are a contestants and b
judges, where b > 3 is an odd integer. Each judge rates each contestant as
either “pass” or “fail”. Suppose k is a number such that, for any two judges,
their ratings coincide for at most k contestants. Prove that k/a > (b—1)/2b.

Proof: Let us form an incidence matrix as usual. Let there be b rows, each
representing a judge, and a columns, each representing a contestant. Make
the entries 1 or 0, representing “pass” or “fail”, respectively.
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Let 7 denote the set of pairs of entries that belong to the same column
and are either both 0 or 1. Again, we will count 7 in two different ways.

Counting by rows: Since the ratings of any two judges coincide for at
most k contestants, for every two rows, at most k pairs belong in 7. Since
there are () ways to choose two rows, we have |T| < k(2) = 1 kb(b — 1).

Counting by columns: If a column has p 1s and q Os, then it contributes

(%) + (9) pairs to 7. Note that p + g = b is odd. By Lemma 2,

0+ = (1)) - 052

Since there are a columns, we must have |[T| > 1 a(b — 1)2.
Combining the inequalities for 7, we get 1 a(b — 1)2 < 1 kb(b — 1).
Thus, k/a > (b — 1)/2b. |

4. Counting with weights.

Let us revisit the idea of counting 1s. However, this time, we will assign
a “weight” to each 1 in such a way that the weights of all the 1s in each row
sum to 1. Then the sum of all the weights in the matrix is equal to r. The
following proposition comes from this idea.

Proposition 3. Let A = (a;;) be an r X c incidence matrix with row sums R;
and column sums C;.
(@) If R; >0for1§i§r,thenz%=r.
i’j ’L
() fC; >0for1<j< c,thenz‘gi =c.

2

Proof: To prove (a), we calculate
aij r 1 c r 1 r
S (mie) - X(rm) =xi--
2,3 =1 Jj=1 i=1
The proof of (b) is similar. ]

The following proposition leads to an application of this idea.

Proposition 4. Let A = (a;;) be an r X ¢ incidence matrix with row sums
R; and column sums C; such that R; > 0and C; > 0for1 < i < r and
1<j<ec lfC; > R;whenever a;; =1, thenr > c.

Qij QAij .
B, > c, forall1 < ¢ < rand

Proof: 1f C; > R; whenever a;; = 1, then

1 < j < c. From Proposition 3, we have
aij aij
r = —_— > — = c.
Z R, — Z C;
z7.7 z7.7

This completes the proof. [ ]
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Note that » = ¢ if R, = C; whenever a;; = 1. This equality version
of Proposition 4 is somewhat stronger than that used in the solution of
Example 1. It is worth noting that when this equality case of Proposition 4
is extended to real matrices, it provides an immediate solution to a problem
which appeared recently on the Canadian Mathematical Olympiad [6]. The
problem is included below, and the solution is left as an exercise.

Example 4. (CMO 2006) In a rectangular array of non-negative real numbers
with m rows and n columns, each row and each column contains at least one
positive element. Moreover, if a row and a column intersect in a positive
element, then the sums of their elements are the same. Prove that m = n.

Now, we will use this technique to solve a problem from the Third
Round of the 16" Iranian Mathematical Olympiad 1998-1999 [2].

Example 5. (Iran 1998/1999) Suppose that Cy, ..., C, (n > 2) are circles of
radius 1 in the plane such that no two of them are tangent, and the subset
of the plane formed by the union of these circles is connected. Let S be the
set of points that belong to at least two circles. Show that |S| > n.

Proof: Let us set up a matrix with n columns, each representing a unit circle,
and |S| rows, each representing an intersection point. An entry is 1 if the
corresponding point lies on the corresponding circle, and 0 otherwise. Since
no circle is disjoint from the rest, and since no two circles are tangent, every
column contains at least two 1s. As well, by definition, each row contains at
least two 1s. We are required to show that | S| > n. Inlight of Proposition 4,
we will show that R; < C; whenever a;; = 1.

Suppose that a;; = 1. Each 1 in row ¢ distinct from a;; corresponds
to a circle that goes through the point represented by row 7. Any such circle
meets the circle C; at exactly two points, as no tangency is allowed. We will
associate each 1 in row i distinct from a;; with a 1 from column j different
from a;; that represents the second intersection. Note that no 1 in column
7 is associated with two different 1s in row ¢, as this would mean that three
different unit circles are passing through the same two points, which is not
possible. Thus, there is an injection from the 1s in row ¢ to the 1s in column 3,
thereby implying that R; < Cj.

1 — 1
1
1 a;; =1 1
!
1 — 1

By Proposition 4, the number of rows is greater than or equal to the
number of columns, implying that |S| > n. ]
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We will play one more variation on this technique. Sometimes we may
not be able to compare R; and C; when a;; = 1, but we may be able to
make the comparison when a;; = 0. The next proposition is an analogue of
Proposition 4.

Proposition 5. Let A = (a;;) be an r X c incidence matrix with row sums R;,
and column sums Cj, suchthat 0 < R; < cfor1 <i<rand0< C; <r
for1 < j <e. lf C; > R; whenever a;; = 0, thenr > c.

Proof: Suppose, on the contrary, that » < c¢. Then, whenever a;; = 0, we

have 0 < » — C; < ¢ — R;, and hence, R G Recalling that M
C — Ri r — Cj

denotes the number of 1s in A, we have

M = ZRi = Z(C—Ri) RiR, = Z(Z(l—aﬁ)) RiR.

C — i1 C —
. (1 - aij)Ri (1 - aij)Ci
o Z C — Ri < Z T — CJ‘
2V ,J
(& I C (& C
- Y (Sa-en), S = Seme S -
j=1 <i=1 r—C; j=1 r—C;j
This is clearly impossible. Therefore, » > c. ]

As an application, the following example is a special case of Fisher’s
Inequality for block designs [5].

Example 6. Let Sy, S, ..., S, be distinct subsets of {1, 2, ..., n}, such
that |S; N S;| = 1forall ¢ # j. Prove that m < n.

Proof: The result holds trivially if the collection is empty (m = 0) or if
m = 1. Thus, we may assume that m > 2. It is easy to see that none of the
sets S; are empty. Hence, we will assume that all of the sets are non-empty.

As usual, we consider the incidence matrix A for the collection of sets.
The m rows of A correspond to sets and the n columns correspond to the
elements, where a;; is 1 if element j belongs to set S;, and 0 otherwise.

Now let us show that the hypotheses of Proposition 5 are satisfied. If
any row has all 1s, say the first row, then the constraint |S; N S;| = 1 for all
i # 1 forces |S;| = 1, which, along with |S; N S;| = 1, implies that m = 2,
and n > 2 because the sets are distinct. If any column has all 0s, then that
element belongs to none of the sets and we may simply remove that column.
We may do this until every column satisfies C; > 1 because if the result holds
for this reduced matrix, it certainly holds for the original matrix A. Finally,
if any column has all 1s, say the first column, then |S; N S;| = 1 implies that
no other column may contain two 1s. As well, at most one row may contain a
single 1 (in the first column), and each of the other » — 1 rows must have the
second 1 in distinct columns. Hence, the number of columns must be greater
than or equal to the number of rows, giving m < n in this case as well. We
are now ready to employ Proposition 5.
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Let us consider any a;; = 0. By the given condition, for every 1 in
column j, its corresponding subset must intersect with A;. Thus, we may
associate each 1 on C; with a 1 in row ¢ such that the element represented
by the 1 on R; also belongs to the subset represented by the 1 on C;. Note
that this association is injective, since having two 1s on C; both associated
with the same 1 in R; implies that some two subsets intersect in at least two
elements. The injective mapping implies that there must be at least as many
1s in the " row as there are in the j column.

1 — 1
S
1 a,-j_O 1
T
1 « 1

Therefore, R, > C; for any a;; = 0. It follows from Proposition 5
(with the roles of rows and columns interchanged) that m < n.
5. Final Remarks.

A large number of combinatorial contest problems can be solved by
counting in two ways. Incidence matrices help us to visualize a situation and
find the set that should be counted. But it is often easier to bypass the use of
a matrix in the final presentation of a solution. The direct use of set theory
notation, for example, may give a cleaner presentation at the inconvenience
of leaving the reader clueless as to where the ideas came from.
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PROBLEMS

Toutes solutions aux problémes dans ce numéro doivent nous parvenir au plus
tard le 1er septembre 2007. Une étoile (%) aprés le numéro indique que le probléme
a €té soumis sans solution.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais. Dans la section des
solutions, le probléme sera publié dans Ia langue de Ia principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein, de
I’Université de Montréal, d’avoir traduit les problémes.

We have recently discovered that problem 3188 [2006 : 514, 516] is the
same as Mayhem problem M252 [2006 : 264, 265]. We are replacing it in this
issue with a new problem. Any solutions for the originally posed problem
3188 will be treated as a solution for Mayhem problem M252. My thanks to
Vedula Murty for pointing this out.

—_— N r———

3188. Remplacement. Proposé par José Luis Diaz-Barrero, Université
Polytechnique de Catalogne, Barcelone, Espagne.

Soit 21, 22, ..., 2z, les zéros du polynéme complexe
A(z) = 2"+ apn—12""'+---+a1z+ao,

ol ag # 0. Montrer que

n zZ1 ) oo Zn
z1 1+ 22 1 1
1 1 2 ... 1
det | *2 T2 =a§.
Zn 1 1 cee 1422

3213. Proposé par Mihaly Bencze, Brasov, Roumanie.

(a) Soit a et b deux nombres réels positifs avec a < b et soit f : [a,b] — R
une fonction continiment différentiable et strictement monotone.
Montrer qu’il existe un nombre réel c € (a, b) tel que

(a+b)f(c) = af(a)+bf(b).

(b)x Soit a1, az, ..., a, n nombres réels positifs aveca; < az < --- < an
etsoi f : [a1,a,] — R une fonction contintiment différentiable et stric-
tement monotone. Montrer qu’il existe un nombre réel ¢ € (a1, a,) tel

que
( Z ak).f(c) = Z ai f(ak) .
k=1

k=1
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3214. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit ABC un triangle acutangle.

tan A tan B tan C > (§)2
=) -

A+B+C

(a) Montrer que

(b) Montrer que Acot A+ Bcot B+ CcotC < (g)z

()% Déterminer les meilleures constantes 0 < c; < c3 < (g)z et
cy > (2)2 telles que

tan A
Z > et cy < Z AcotA < c3.

- A ,
cyclique cyclique

3215. Proposé par Shaun White, étudiant, Ecole Secondaire Vincent
Massey, Windsor, ON.

Soit k, £, et m trois entiers plus grand que 2. On appelle un entier n
expressible pour (k, £, m) s’il existe des nombres réels positifs a1, ao, ...,
k

ai telsque [ a; =1et
=1

m

k
Z Zaz—l—g 1 = n,

=1 \j=1

ot les indices étant pris modulo k.

Supposons que pour un certain triplet (k, £, m) 'entier 1987 n’est pas
expressible, tandis que 2005 I'est. Trouver le triplet ordonné (k, £, m).
3216. Proposé par Mihaly Bencze, Brasov, Roumanie.

Si a, b, c et d sont des entiers positifs, montrer que

5( 1 B 1 )
at+b+ec+d+1 (a+1)(b+1)(c+1)(d+1)
1
<4+ ¥ [t arperD)

cyclique

3217. Proposé par Michel Bataille, Rouen, France.

Soit {L,,} la suite de Lucas définie par Lo = 2, L; = 1, et, pourn > 1,
L,+1 =L, + L,_1. Montrer qu’on a, pour tous les entiers n non négatifs,

[n/2] n+1 sz [n/2] n—k Lk:
D <2k:—|—1)2" = 2 ( k >22k

k=0 k=0
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3218. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, MI, E-U.

Soit n un entier tel que n > 2. Dans R™, soit E I’ensemble des points
(1, x2,...,2,) telsque z; > 0 pourtouslesiet0 < x;+x2+-- -+, < 1.
1

Calculer I'intégrale sur E de la partie fractionnaire de

1+ x24T

3219. Proposé par Dan Vetter, Regina, SK.

A I'approche d’une voiture, un vautour (avec une éducation universi-
taire!) piqueniquant sur la route va toujours s’envoler dans une direction
choisie pour maximiser la distance minimale entre lui et la voiture. Montrer
que le rapport de la vitesse de la voiture et celle de I'oiseau est sec 9, ou 0
est I’angle entre la trajectoire du vautour et la route.

3220. Proposé par Marian Tetiva, Birlad, Roumanie.

Soit n un entier positif. Montrer qu’on peut trouver une partition de
I'ensemble {12, 22, ..., n2?} des n premiers carrés parfaits en quatre sous-
ensembles, ayant chacun la méme somme de leurs éléments, si et seulement
sin = 8k oun = 8k — 1, pour un certain entier k > 2.

3221. Proposé par Juan-Bosco Romero Marquez, Université de Valladolid,
Valladolid, Espagne.

Soit ABC un triangle de c6tés a, b et c opposés respectivement aux
angles A, B et C. Soit AH la perpendiculaire au c6té BC avec H sur BC.
Posons m = BH et n = CH. Montrer que a(bm + c¢n) — be(b 4 ¢) est
positif, négatif ou nul, suivant que I’angle A est obtus, aigu ou droit.

3222. Proposé par Pham Van Thuan, Hanoi University of Science, Hanoi,
Vietnam.

Etant donné des nombres réels positifsa, betctelsquea+b+c =1,
montrer que

1—-—a)(1-0b)(1—-¢)
(1—a?)?+(1-02)"+(1-¢2)?

Q| =

3223. Proposé par Achilleas Pavlos Porfyriadis, étudiant, American
College de Thessalonique “Anatolia”, Thessalonique, Gréce.

Soit a, b et c des nombres réels positifs satisfaisant

1,1, 1 1
atete = e
Montrer que
b 33
et t ey < 2
a2 +1 b2+1 c2+1 4
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3224. Proposé par ]. Chris Fisher et Harley Weston, Université de Regina,
Regina, SK.

Soit AgByCy un triangle isocéle dont I’angle au sommet Ay est différent
de 120°. On définit une suite de triangles A,, B,,C,, dans laquelle le triangle
A;11B;1C;4+1 est obtenu 2 partir du triangle A; B;C; en prenant la réflexion
de chaque sommet par rapport au c6té opposé (c.-a-d. B;C; est perpendi-
culaire au segment A;A;, et le coupe en son milieu ). Montrer que les trois
angles tendent vers 60° lorsque n — oo.

[ Ed : Ce probléme est un cas particulier d'un probléme ouvert décrit par
Judah Schwartz, “Can technology help us make the mathematics curriculum
intellectually stimulating and socially responsible?”, International Journal of
Computers for Mathematical Learning, 4 (1999), pp. 99-119.]

3225%. Proposé par Panos E. Tsaoussoglou, Athénes, Gréce.

Soit donné (B,3) un secteur angulaire saillant de sommet B et
d’angle 3. Soit (A, ) un secteur angulaire saillant dont les cotés £ et m
coupent ceux de (B, 3) en quatre points distincts P, Q, R et S, de sorte que
P soit situé entre A et Q d’une part et entre B et S d’autre part.

(a) SilI'angle o est donné, peut-on choisir A et £ de telle sorte que
[PBQ] + [APS] = [PQRS],

ol [XY Z] dénote I'aire du polygone XY Z?

(b) Quand peut-on construire les droites £ et m avec des outils euclidiens
de facon a satisfaire la condition (a) pour une valeur de « donnée?

3188. Replacement.  Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let zq, 23, ..., 2z, be the zeroes of the complex polynomial
A(z) = 2"+ ap_12""'+---+a1z+ao,

where ag # 0. Prove that

n zZ1 z2 e Zn
z1 1+ 22 1 1
z2 1 1422 ... 1

det = a?.
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3213. Proposed by Mihaly Bencze, Brasov, Romania.

(a) Let a and b be positive real numbers with a < band let f : [a,b] — R
be a continuously differentiable and strictly monotone function. Show
that there is a real number ¢ € (a, b) such that

(a+b)f(c) = af(a)+bf(b).

(b)x Let a4, as, ..., a, be positive real numbers witha; < az < --- < a,
and let f : [a1,a,] — R be a continuously differentiable and strictly
monotone function. Show that there is a real number ¢ € (a;, a,,) such

that
( Z ak>f(c) = Z arf(ag) .
k=1

k=1

3214. Proposed by Mihaly Bencze, Brasov, Romania.
Let ABC be an acute-angled triangle.

tan A tan B + tan C > (§)2

(a) Prove that ~ T B =

™

2
(b) Prove that A cot A+ Bcot B + Ccot C < (g) .

2 2
)% Determine the best constants ¢; > 6 and 0 < ¢z < e3 < T
T

2
such that
tan A
> and < AcotA < .
Z A ~Z C1 C2 X Z CcO s C3
cyclic cyclic

3215. Proposed by Shaun White, student, Vincent Massey Secondary
School, Windsor, ON.

Given any integers k, £, m, greater than 2, an integer n is called ex-
pressible for (k, £, m) if there exist positive real numbers a4, as, ..., ax

k
such that ] a; =1 and
=1

3 (Zam 1)m _

=1

where the subscripts are taken modulo k.
Suppose that for some (k, £, m) the integer 2005 is expressible while
1987 is not. Find the ordered triple (k, £, m).
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3216. Proposed by Mihaly Bencze, Brasov, Romania.

If a, b, ¢, and d are positive integers, prove that

5( 1 B 1 )
a+b+c+d+1 (a+1)(b+1)(c+1)(d+1)

1 1
= 4+Z [a+1+(a+1)(b+1)] ’

3217. Proposed by Michel Bataille, Rouen, France.

Let {L,} be the Lucas sequence defined by Lo = 2, L; = 1, and
L,41 = Ly + L1 for n > 1. Prove that, for all non-negative integers n,

we have
L"Z/:2J<n+1)L2k B an/:u (n—kz> Ly
2k+1) 27 k )22k

k=0 k=0

3218. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, MI, USA.

Let n be an integer with n > 2. In R"™, let E be the set of points
(1, 22,...,2y) suchthat z; > 0foralliand 0 < 1 + 22 + -+ - + x, < 1.
1

Calculate the integral over E of the fractional part of

zit T2+t Tn

3219. Proposed by Dan Vetter, Regina, SK.

A vulture with a university education, when approached by a car while
dining on the road, will always fly off in a direction chosen to maximize the
distance of closest approach of the car. Show that the ratio of the speed of
the car to the speed of the bird is sec 8, where 6 is the angle that the vulture’s
flight path makes with the road.

3220. Proposed by Marian Tetiva, Birlad, Romania.

Let n be a positive integer. Prove that the set {12, 22, ..., n2?} of the
first n perfect squares can be partitioned into four subsets each having the
same sum of elements if and only if n = 8k or n = 8k — 1 for some integer
k> 2.

3221. Proposed by Juan-Bosco Romero Marquez, Universidad de Val-
ladolid, Valladolid, Spain.

Let ABC be a triangle with sides a, b, c opposite the angles A, B, C,
respectively. Let AH be perpendicular to the side BC with H on BC. Set
m = BH and n = CH. Prove that a(bm + ¢n) — be(b + ¢) is positive,
negative, or zero according as Z A is obtuse, acute, or right-angled.
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3222. Proposed by Pham Van Thuan, Hanoi University of Science, Hanoi,
Vietnam.

Given positive real numbers a, b, ¢ such that a + b+ ¢ = 1, prove that

1—-—a)(1-0b)(1—-¢) < 1

-+ -+ -7 = 8

3223. Proposed by Achilleas Pavlos Porfyriadis, student, American
College of Thessaloniki “Anatolia”, Thessaloniki, Greece.

Let a, b, c be positive real numbers which satisfy

1 1 1 . 1
a b c abc’
Prove that /3
a b c 3vV3
+ + < 2=
a?24+1 b2+1 241 4

3224. Proposed by ]. Chris Fisher and Harley Weston, University of
Regina, Regina, SK.

Let AgBoCy be an isosceles triangle whose apex angle Ag is not 120°.
We define a sequence of triangles A,,B,,C,, in which AA;1B;1C;41 is
obtained from A A;B;C; by reflecting each vertex in the opposite side (that
is, B;C; is the perpendicular bisector of A;A; 1, and so forth). Prove that
all three angles approach 60° as n — oco.

[Ed: This problem is a special case of an open problem described by
Judah Schwartz in “Can technology help us make the mathematics curriculum
intellectually stimulating and socially responsible?”, International Journal of
Computers for Mathematical Learning, 4 (1999), pp. 99-119.]

3225%. Proposed by Panos E. Tsaoussoglou, Athens, Greece.

The sides £ and m of an acute angle o with vertex A intersect the sides
of a fixed acute angle 3 with vertex B in four distinct points P, Q, R, and S,
labelled so that P lies between A and Q and also between B and S.

(a) If the measure of Z« is fixed, can A and £ be chosen so that
[PBQ] + [APS] = [PQRS],
where [ XY Z] denotes the area of polygon XY Z?

(b) When are the lines £ and m constructible with Euclidean tools to satisfy
the condition in part (a) for a given fixed value of o?

NN —
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

Tom Leong, Brooklyn, NY, USA has indicated that we omitted a crucial
line in his featured solution to problem 3098 [2006 : 532-535]. At the end
of the paragraph containing equations (1) and (2), it should have been noted
that a solution to the problem follows because si(am) = —sk(bn—m—k+2),
and consequently

n—k+1 n—k+1
Y P(K) = > sk(am)+ Y. sk(bm) = 0.
KeF m=1 m=1

We apologize for this omission.

—_—_— N S O —————
2969. [2004 : 368, 371; 2005 : 411-413] Proposed by Vasile Cirtoaje,
University of Ploiesti, Romania.

Let a, b, ¢, d, and r be positive real numbers such that » = vabed > 1.
Prove that

1 n 1 n 1 n 1 > 4
(1+a2 " (1462 1402 (A+d2 = Q+r)?

Remarks by Fan Zhang, Ottawa, ON.

The featured solution to this problem [2005 : 411-413] established the
following generalization. For any natural n > 2, let a4, a2, ..., a, > 0such
that a;as -+ -a,, = r™. Then

1 " 1 n " 1 > n
(1+a1)? (14 a2)? 14a,)? = (1+ Yaraz---a,)?

if and only if » > /n — 1.

For n = 2, the editor proved that » > /2 — 1 is necessary but not
sufficient, and provided a sufficient condition » > 0.5. The editor pointed
out that the minimum sufficient value of » was not known. We will now show
that 0.5 is the minimum sufficient value for ». We will do this by showing
that » > 0.5 is necessary in order that

1 1 2
+ >
(1+a)? (1402 — (1+7)?

when a and b are positive real numbers and r? = ab.
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Proposition. Suppose that v/2 — 1 < r < 0.5. Then there exist positive real
numbers a and b such that ab = r2 and

1 1 2
Tra)? T @HpE S @rn2

1—7r3—9p2—

In fact, one may take a = " and b = r?/a.

r2 +2r—1
3 2
Proof: We first observe that, if a = 1_21“#, then
r?2+4+2r —1
a1—-2r+r4)/(1—7) rt/(1 —7)

Fr1+vV2)(r+1-v2) ~ (r+1+v2)(r+1-2)

1 1 2
Gt T atnr S Trn
statement, f(r) < 0, where

To show that we will prove the equivalent

1 1

ita2 ' (1+,~z)2_ (1fr)z

fr) = (1+a)? (1 + f)2<1+r)2a2 .

Using a computer algebra system, f(r) simplifies to
f(r)y = —2ar? + 4a®r — 6a?r? + 4ar® — 2ar* + 4a%r — 2a°r?
+ a*r? — 2a%r* — r? + 275 + r® —2a% — a*
= (r—a)®(2a®r + a®r?® — a® + 2ar — 2a
+2a*r + 2ar® + 2ar? — r? 4+ r* + 21"3)
= (r—a)?’[(r*+2r—-1)a*-2(1—-7*—-7r*>—r)a
+(r*+2r —1)r?] .

1= =" =" and noticing that

Substituting a = —5————
r2+4+2r —1

2r3+3r2 -1 (2r—1)(r+1)?

- e — r2t2r—1 '
we see that
_ (27“—1)(7’-|—1)2>2 2 5 (1—r3—r2—r>2
Fr) = ( r2 4+ 2r — 1 (¥t 2r —1) | — r242r —1
(2r — 1)2(r + 1)*[(2r — 1)(r + 1)%(r — 1)?] <o
(7’2—|—2T—1)3 .

Y WS W Y o
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3114. [2006 : 107, 109] Proposed by Sefket Arslanagié¢, University of
Sarajevo, Sarajevo, Bosnia and Herzegovina.
Let a, b, c be positive real numbers such that
1 1 1

arl b1 tTerr — %

Prove that L 1 L
4a+1+4b+1+4c+1 =z 1.

1. Solution by Alex Remorov, student, William Lyon Mackenzie Collegiate
Institute, Toronto, ON.

Note that for any positive real number =z,
SN SR
4r+1 = z+1 3

M

because this inequality is equivalent in succession to

1 > 2—x ’
ar+1 — 3(xz+1)
3xr+3 > (2—x)(4x+1),

4z —4x+1 > 0,
(22 —1)> > o,

which is obviously true.
Setting x = a, b, cin (1) and adding, we obtain

1 1 1 1 1 1

+ + > + +

datl T wmri st 2 ariteri e =L

II. Generalization by Charles R. Diminnie, Angelo State University, San
Angelo, TX, USA.

We shall prove the generalization that if x¢, x4, ..., x,, are positive real
n n
numbers such that > = n, then % > 1. The proposed
k=0 Tk +1 k=0 "°Tr +1

inequality is the special case where n = 2.
Since the result is obvious when n = 1, we assume n > 1. For any real
number z,

n+1)*(xz+1)—(n+1)2@RPz+ 1)+ 2 -1z +1)(z+1)
= (n+1)%*(x—n’z)+ n?-1)(*z+1)(z+1)
= > -1(n’z+1)(x+1)— (n+1)%)
= n?-1)(n%*z>-2nzx+1) = (n*-1)(nx—-1)> > 0.
with equality if and only if £ = 1/n. In particular, for positive , we may
divide by (n + 1)?(x + 1)(n2x + 1) and re-arrange terms to get
1 1 n?—1

n2x +1 — a:-l-l_(n-l-l)"" @
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with equality if and only if x = 1/n.
Finally, apply (2) to xg, x1, ..., T, to obtain

= n?—1 n? -1
Z_: mk—l-l ka+1 ("+1)(n+1)2 =n-T17 =L

with equality if and only if 29 = 2y = -+ - = z,, = 1/n.

Also solved by ARKADY ALT, San Jose, CA, USA; ROY BARBARA, University of Beirut,
Beirut, Lebanon; MICHEL BATAILLE, Rouen, France; MANUEL BENITO, OSCAR CIAURRI,
and EMILIO FERNANDEZ, Logroiio, Spain; JIM BLACK, student, Missouri State University,
Springfield, MO, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; RICHARD 1. HESS, Rancho
Palos Verdes, CA, USA; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong, China; DRAGOLJUB MILOSEVI¢
and G. MILANOVAC, Serbia; VEDULA N. MURTY, Dover, PA, USA; CAO MINH QUANG,
Nguyen Binh Khiem specialized high school, Vinh Long, Vietnam; JOEL SCHLOSBERG, Bayside,
NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; L1 ZHOU, Polk Community
College, Winter Haven, FL, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

About half of the solvers used calculus or convexity and Jensen’s Inequality. Zhou showed
that the result is actually true for a, b, ¢ € (—oo0, —1) U (—1/4, 00). Several other general-
izations were obtained. Benito, Ciaurri, and Fernandez proved thatifn > 3 and a1, ..., an

_2thenzk2 > 1, for k = °EL,

n
are positive real numbers such that 3 — e g

_1
= +1
Their proof is a straightforward generalization of Solution I above Janous proved that if n > 2

and x1, 2, ..., ©n are positive real numbers such that Z = a, wherea < m is a

ﬁ

constant, then Z Bz +1 > = a)+ for all constants b > 1. The special case when n = 3,

a = 2, and b = 4 1s the proposed inequality. Quang established the similar result that if
> m >1, theni;:1 m > s

=1

Y o WV W S o
3115. [2006 : 107, 109] Proposed by Arkady Alt, San Jose, CA, USA.

Let a, b, c, be the lengths of the sides opposite the vertices A, B, C,
respectively, in triangle ABC. Prove that
cos® A cos® B cos® C < a? + b2 + c?

a + b + c 2abc

Essentially the same solution by Charles R. Diminnie, Angelo State
University, San Angelo, TX, USA; and Li Zhou, Polk Community College,
Winter Haven, FL, USA.

Let R be the circumradius of AABC. By the Law of Sines, we have

Z (b2 + % — a2) sin? A

cyclic
. Z a? (b2 + ¢ — a2) . 2(cl2b2 + b2%c2 + c2a2) — (a4 + b* + c4)
- 4R? B 4R?

cyclic
(a+b+c)(a+b—c)(b+c—a)(c+a—Db)
4R?
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Hence,
Z (b2 + % — az) cos’ A = Z (b2 + % — a2) (1 — sin? A)
cyclic cyclic
< Z(b2+c2—a2)=a2—|—b2—|—cz,
cyclic

which is equivalent to Y~ (2bccos® A) < a? 4 b* 4 ¢?. Dividing both sides
cyclic
by 2abe, the result follows immediately.

Also solved by MOHAMMED AASSILA, Strasbourg, France; SEFKET ARSLANAGIC,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; ROY BARBARA, University of Beirut,
Beirut, Lebanon; MICHEL BATAILLE, Rouen, France; MANUEL BENITO, OSCAR CIAURRI, and
EMILIO FERNANDEZ, Logroiio, Spain; APOSTOLIS K. DEMIS, Varvakeio High School, Athens,
Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; VEDULA N. MURTY,
Dover, PA, USA; ALEX REMOROV, student, William Lyon Mackenzie Collegiate Institute,
Toronto, ON; JUAN-BOSCO ROMERO MARQUEZ, Universidad de Valladolid, Valladolid, Spain;
JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA,
USA; TITU ZVONARU, Comanesti, Romania; and the proposer. There were also two incorrect
solutions.

Both Janous and Zvonaru showed that the given inequality is equivalent to

Z a,z(b2 + % — a2)3 < 4(1,2bzc2(a.2 + b2 + cz) E
cyclic

and remarked that this is a special case of Crux problem #3116 (by the same proposer). Zvonaru
also pointed out that if AABC is an acute triangle, then the following is a very simple proof
of the given inequality:

Z cos® A < Z cos A Z b2 4+ 2 — a2 _ a? + b2 4 ¢2
- 2abc - 2abc )

cyclic e cyclic a cyclic
B e W N
3116. [2006 : 107, 110] Proposed by Arkady Alt, San Jose, CA, USA.

For arbitrary real numbers a, b, ¢, prove that

Za(b+c—a)3 < 4dabc(a+b+c).

cyclic

Essentially the same solution by Sefket Arslanagié¢, University of Sarajevo,
Sarajevo, Bosnia and Herzegovina; Michel Bataille, Rouen, France; and Joel
Schlosberg, Bayside, NY, USA.

4abc(a+b+c)—2a(b+c—a)3 = (a®*+b*+c®*—2ab—2ac—2bc)? > 0.
cyclic

The equality holds if and onlyifa =bandec=0,b=canda =0,0orc=a
and b = 0.

Also solved by ROY BARBARA, University of Beirut, Beirut, Lebanon; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; VEDULA N. MURTY, Dover, PA, USA;
PETER Y. WOO, Biola University, La Mirada, CA, USA; L1 ZHOU, Polk Community College,
Winter Haven, FL, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.
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3117. [2006 : 107, 110] Proposed by Li Zhou, Polk Community College,
Winter Haven, FL, USA.

Let a, b, c be the lengths of the sides and s the semi-perimeter of
A ABC. Prove that

Z(a+ b)\/ab(s — a)(s —b) < 3abc.

cyclic

Essentially the same solution by Mohammed Aassila, Strasbourg, France;
Sefket Arslanagi¢, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; Charles R. Diminnie, Angelo State University, San Angelo, TX,
USA; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; and Titu
Zvonaru, Comanesti, Romania.

We have
abc® — (a + b)*(s — a)(s — b) :(ma_4a+wzr?—g—bf]
— (4ab — (a + b)2)02 —+ (a —+ b)2(a _ b)z
4

= Ya—-b)[(a+b)?—c >0,

since ¢ < a-+b by the Triangle Inequality. Equality holds if and only if a = b.
It follows that (a+b)+/ab(s — a)(s — b) < vabvabc? = abe, with equality
if and only if a = b. Then

Z(a—i—b)\/ab(s—a)(s—b) < Zabc = 3abc,

cyclic cyclic

with equality if and only if AABC is equilateral.

Also solved by ARKADY ALT, San Jose, CA, USA; MICHEL BATAILLE, Rouen, France;
MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logroiio, Spain; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; JOHN G. HEUVER, Grande Prairie, AB;
DRAGOLJUB MILOSEVIC and G. MILANOVAC, Serbia; VEDULA N. MURTY, Dover, PA, USA;
ALEX REMOROYV, student, William Lyon Mackenzie Collegiate Institute, Toronto, ON; PETER
Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

B e SN D W

3118. [2006 : 108, 110] Proposed by D.]J. Smeenk, Zaltbommel, the
Netherlands.

Let BE and CF be altitudes of the acute-angled triangle ABC with
E on AC and F on AB. Let BK and CL be the interior angle bisectors of
Z/ABC and ZAC B, respectively, with K on AC and L on AB. Let I denote
the incentre of AABC, and let O denote its circumcentre. Prove that E, F,
and I are collinear if and only if K, L, and O are collinear.

1. Solution by Francisco Bellot Rosado, I1.B. Emilio Ferrari, Valladolid, Spain.

This nice problem was proposed (but not used) at the 38™ IMO held at
Mar del Plata (Argentina), in 1997.
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We use a result known as the “Theorem of Transversals”, which
establishes necessary and sufficient conditions for a line which cuts two sides
of a triangle to pass through some of the noteworthy points of the triangle.
For a detailed discussion of the subject, see [1].

Since AABC is acute, a necessary and sufficient condition for K, L,
and O to be collinear is

BL . CK . .
ﬂ-sm2B+ﬂ-sm20 = sin2A. @
A necessary and sufficient condition for E, F, and I to be collinear is
BF CFE
ﬁ-b-i-ﬂ-C—a. (2)
In our case, since BE and CF are altitudes, we have BF = a - cos B,
FA=b-cosA, CE =a-cosC,and EA = c- cos A. Thus, equation (2)
takes the form cosB | cosC _ 1; that is,
cos A cos A
cos B+ cosC = cosA. 3)

On the other hand, since BK and CL are internal bisectors, the

. . . . BL a CK a
theorem on internal bisectors gives us directly that IA =3 and KA = o
Therefore, equation (1) can be written as %sin 2B + %sin 2C = sin2A;

that is,

cos B (Si:B) + cosC (%) = cos A (%) .

Using the Law of Sines, we reduce this equation to (3), and we are done.
I1. Solution by Michel Bataille, Rouen, France.

In areal coordinates relative to AABC, we have
I(a,b,c), E(acosC,0,ccosA), and F(acosB,bcosA,D0).
Hence, I, E, and F are collinear if and only if

a acosC acosB
b 0 bcosA | = 0,
c ccosA 0

which reduces to cos A(cos B 4+ cos C — cos A) = 0.

Similarly, from the areal coordinates O(acos A,bcos B,ccosC),
K(a,0,c), and L(a, b,0), we see that O, K, and L are collinear if and only
if cos B+ cosC —cos A = 0.

In conclusion, if O, K, and L are collinear, then I, E, and F are also
collinear (in any triangle ABC). Conversely, if I, E, and F are collinear and
/A # 90°, then O, K, and L are collinear.

References

[1] Francisco Bellot Rosado, Un théoréme peu connu : le théoréme des
transversales ; Mathématique et Pédagogie, n°® 153, 41-55, 2005.
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Also solved by MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ
Logrofio, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; JOEL SCHLOSBERG, Bayside, NY, USA;
L1 ZHOU, Polk Community College, Winter Haven, FL, USA; TITU ZVONARU, Comanesti,
Romania; and the proposer.

Demis posed the following question: If the side BC is a constant and the points K, L,
and O remain collinear, then

1. does A lie on an interesting curve?
2. do we obtain the maximum or minimum distance of A from BC ifand only if AB = AC?

w
3119. [2006 : 108, 110] Proposed by Michel Bataille, Rouen, France.

Let » and s denote the inradius and semi-perimeter, respectively, of
triangle ABC. Show that

T S
3v3,/— < ,/tan (A tan (1B t 1C<\/j.
oS i (3A) +fran (38) + fran (30) < |

A combination of nearly identical solutions from Mohammed Aassila,

Strasbourg, France; Li Zhou, Polk Community College, Winter Haven, FL,
USA; and the proposer.

. A r B r C r
Since tanE = tanE = and tanE = the
proposed inequalities may be rewritten as
33 1 1 1 < Vs

<
N \/s—a+\/s—b+\/s—c - r
The inequality on the left is an immediate consequence of Jensen’s

Inequality (which, in the present context, is just the Power Mean Inequality).
Specifically, using the convexity of 1/+/¢, we obtain

1 1 1 1 _ 3V3

> 3. =
\/s—a+\/s—b+\/s—c - \/(s—a)—i—(s—b)—l—(s—c) Vs
3

Equality holds if and only if AABC is equilateral.
The other inequality is a consequence of the AM-GM Inequality, as
follows:

1 1 1
Ve =060 (o + g+ e
= Vs-b(s—c)+V(s—c)(s—a)+ /(s —a)(s—b)
2s—b—-c 2s—c—a 2s—a—>b
< 2 + 2 + 2
Area(ABC) _ Vs(s —a)(s—b)(s—c) ’

= 8§ =

which yields the desired result. Once again, equality holds if and only if
ANABC is equilateral.
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Also solved by ARKADY ALT, San Jose, CA, USA; SEFKET ARSLANAGIC, University
of Sarajevo, Sarajevo, Bosnia and Herzegovina; OSCAR CIAURRI, Universidad de La Rioja,
Logrofio, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; CHARLES R. DIMINNIE,
Angelo State University, San Angelo, TX, USA; JOHN G. HEUVER, Grande Prairie, AB; JOE
HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
D.M. MILOSEVIC, Pranjani, Yugoslavia; VEDULA N. MURTY, Dover, PA, USA; JOEL
SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
TITU ZVONARU, Comanesti, Romania.

Y WSS L W

3120. [2006 : 108, 110] Proposed by Michel Bataille, Rouen, France.

Let ABC be an isosceles triangle with AB = BC, and let F be the
mid-point of AC. Let « = ZBAX, where X is a variable point on the ray
BF. Aslong as a # w/2, the reflections of the line BF in BA and X A
intersect. Let that point of intersection be denoted by M.

Find lim |cosa|-CM.

a—mw/2

Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Letr = AF (= %AC’). We shall see that r is the desired limit. Since
line M B is the reflection of BF across BA, and line M X is the reflection of
line BF across AX, then A is equidistant from the three sides of ABM X.
Indeed, if a (= ZBAX) is sufficiently near = /2, then r is the inradius when
A and M are on the same side of BX, and the exradius otherwise. Let
0 = /BMA = /XMA. Then o — 6 = w/2 when A is the incentre, and

a+ 60 = /2 when A is the excentre. Either way, we have | cos a| = | sin 6)].
Next, observe that the line M B is fixed, and as a« — 7 /2, the point M goes
to infinity along that fixed line and M A/MC — 1. But |cosa| = |sin#)|;
therefore,
lim/ |cosa|MC = lim/ |sin@|MA = r = AF.
a—Tm/2 a—T/2

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, University of Beirut, Beirut, Lebanon; OSCAR CIAURRI,
Universidad de La Rioja, Logroiio, Spain; CHIP CURTIS, Missouri Southern State University,
Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; RICHARD
I. HESS, Rapcho Palos Verde§, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; VACLAV KONECNY, Big Rapids, M1, USA (two solutions); JOEL SCHLOSBERG,
Bayside, NY, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; and the
proposer.

———— | NS

3121. [2006 : 108, 110] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let n and r be positive integers. Show that

(L0 [ () = oot
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Solution by Michel Bataille, Rouen, France.

The proposed inequality is equivalent to

1 & 1(77,—1) [1 1 (n)r} < T 1 1
27— k\k—1 2nr \ k ~r4+1 (r+1)r

Let L denote the left side of (1). Then

r= 2SR E-GRY]

. no/m 1 /n
Since 1;::0 (k) = 2™, we have 0 < 2_n<k:) <lfork=1,2, ..., n.
Using simple calculus, it is easy to show that the function f defined

by f(z) = (1 — z"), for x € [0, 1], attains its absolute maximum M at
. Hence,

Tr = 7@« + 1)1/7‘

- () < 2 -

k
. f( 1 ) . T 1
B (r+1)Y7)  r41 (r+1)4r’
and (1) follows.

Also solved by MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ
Logroiio, Spain; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; LI ZHOU,
Polk Community College, Winter Haven, FL, USA; and the proposer.

The proof featured above actually shows that the given inequality holds for all positive
real numbers r. This was pointed out explicitly by Benito, Ciaurri, and Fernandez.

Y e W Y o W o
3122. [2006 : 108, 111] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let AABC and A A’B’C’ have right angles at A and A’, respectively,
and let h, and h,s denote the altitudes to the sides a and a’, respectively.
If b > cand b’ > ¢, prove that

Vaa’ + 2\/haha < \/5(@4-\/@).

Solution by Michel Bataille, Rouen, France.

Since ah, = bc and a’h,, = b’c’, the proposed inequality may be
expressed as

Vaa’' + 24/ bz/;,c/ < \/E(v b + vec) .
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Squaring and multiplying by aa’ gives the equivalent inequality
(aa’)? + 4bb’cc’ < 2aad’ (bb’ + cc’),
which may be rewritten as
(aa’ — 2bb’)(aa’ —2¢c’) < 0. @

By means of the Cauchy-Schwarz Inequality, we get

aa’ = b2+ 2/ (b)2 + ()2 > bb +cc’ > 2¢c

(the last inequality because b > c and b’ > ¢’). Thus, the second factor of
(1) is non-negative.
Since b2 + ¢? < 2b% and (b')2 + (c¢')2 < 2(b')2, we get

aa’ = Vb2 +c2\/(0)2 + ()2 < V2b- V2V = 2bV,

and the first factor in (1) is non-positive. The result follows at once.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; ROY BARBARA, University of Beirut, Beirut, Lebanon (2 solutions); CHIP
CURTIS, Missouri Southern State University, Joplin, MO, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; ALEX REMOROV, student, William Lyon Mackenzie Collegiate
Institute, Toronto, ON; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola Univer-
sity, La Mirada, CA, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; TITU
ZVONARU, Comanesti, Romania; and the proposer.

Barbara and the proposer point out that, if the triangles are similar, then the proposed
inequality simplifies to a 4+ 2h, < +/2(b 4+ c¢). Barbara provided a visualization of this
inequality, shown below. Clearly, a + 2h, is the distance from £ to £ and \/i(b + ¢) is
the length of the diagonal of the large square.

______________________________ ¢
C hab
a c
b
a a
b
c a
bh“ c
______________________________ el

3123. [2006 : 111] Proposed by Joe Howard, Portales, NM, USA.
Let a, b, c be the sides of a triangle. Show that

abc(a + b+ ¢)?
a? 4+ b2 4 ¢2

> 2abc + H(b+c—a).

cyclic
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Solution by Titu Zvonaru, Comanesti, Romania.

We prove that the given inequality is true for any three non-negative
numbers a, b, and ¢ such that a? + b2 4+ ¢2 > 0.
For any such a, b, and ¢, we have

abc(a + b+ c)2 — (a2 +b% + 02) <2abc—|— H (b+c— a))

cyclic

= abc<z a®+2) bc> — (a® + b + cz)<2(a2b+ a*c) — > az)

cyclic cyclic cyclic cyclic
= Z (a3bc —+ 2abzc2) — Z (a4b + a*c + 2ab3c? — a5)
cyclic cyclic
= Za3(a2+bc—ab—ac) = Za3(a—b)(a—c) >0,
cyclic cyclic

by Schur’s Inequality. The desired inequality follows immediately. Equality
holds if and only if @ = b = ¢ or two of the numbers a, b, ¢ are equal and
the third is zero.

Also solved by ARKADY ALT, San Jose, CA, USA; SEFKET ARSLANAGIC, University
of Sarajevo, Sarajevo, Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, France; MANUEL
BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio, Spain; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo
State University, San Angelo, TX, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA;
JOHN G. HEUVER, Grande Prairie, AB; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; DRAGOLJUB MILOSEVIC and G. MILANOVAC, Serbia; VEDULA N. MURTY, Dover,
PA, USA; ALEX REMOROV, student, William Lyon Mackenzie Collegiate Institute, Toronto,
ON; PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College,
Winter Haven, FL, USA; and the proposer.

B e SN D W

3124, [2006 : 109, 111] Proposed by Joe Howard, Portales, NM, USA.

Let a, b, c be the sides of AABC in which at most one angle exceeds
/3, and let r be its inradius. Show that

V/3(abc)
7a2+b2+02 2r.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

Let R and s denote the circumradius and semiperimeter of AABC,
respectively. We first use the well-known formulas abc = 4Rrs and
a® + b + 2 = 2(s® — r? — 4Rr) to write the given inequality as
V/3Rs > 52 — r?2 — 4Rr. This is equivalent to

s2—+V3Rs—r(4R+7r) < 0,
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or (s —x1)(s + x2) < 0, where

V3R + V3R2 + 16Rr + 472
2
—V3R + v/3R? + 16Rr + 4r2
5 .
Obviously, s + x> > 0. Therefore, we just have to prove that s < x;.

Now, it is known ([1, section 37, and also p. 256]) that for any triangle
satisfying the given condition, we have s < v/3(R + 7). [Ed: A proof of this
may also be found in Howard’s featured solution to #2887 [2004 : 519].]
To show that s < x4, it then suffices to show that

r, =

and z, =

2V3(R+7r) < V3R+ 3R? + 16Rr + 4r2 .

Using some simple algebra, it is easily seen that this inequality is equivalent
to 3(R + 2r)2 < 3R% + 16Rr + 472 , or 2r < R, which is a celebrated and
well-known result of Euler.
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Also solved by MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio,
Spain; VEDULA N. MURTY, Dover, PA, USA; and the proposer whose proof is virtually the same
as the one given above. There was also an incomplete solution.

Janous mentioned that triangles which satisfy the described condition were “baptized”
as “triangles of Bager’s type I1” (see [2, 256-261]).
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