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A–1 Considertheplanecontainingboththeaxisof thecone
and two oppositeverticesof the cube’s bottom face.
Thecrosssectionof theconeandthecubein thisplane
consistsof a rectangleof sides� and ��� � inscribedin
anisoscelestriangleof base� andheight � , where � is
theside-lengthof thecube. (The ��� � sideof therect-
anglelies on thebaseof thetriangle.)Similar triangles
yield ��� ���	��
� ��� ��������� 
 , or � ����� � � ��� �������

A–2 First solution: to fix notation,let � be the areaof re-
gion �����! , and " betheareaof ���$#�% ; further let&

denotetheareaof sector'(��� , which only depends
onthearclengthof � . If ) *,+.-0/ denotestheareaof tri-
angle ) *1+.-/ , thenwehave �2� &43 ) '(�� 5/6�4) '(���5/
and "7� &83 ) '(��%9/:�;) '(��#</ . But clearly ) '(�� 5/=�) '(��#�/ and ) '(���5/>�	) '(��%?/ , andso � 3 "@� � & .
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Secondsolution: We may parametrizea point in � by
any of A , B , or CD�FE�G<HJI>K��LB � A � . Then � and " are
just the integralsof B0M�A and ANM�B over theappropriate
intervals;thus � 3 " is theintegralof AOM�B5�PBQM�A (mi-
nusbecausethelimits of integrationarereversed).ButM�C$�RAOM�B$�1B0M�A , andso � 3 "@�TS.C is preciselythe
radianmeasureof � . (Of course,onecanperfectlywell
do this problemby computingthe two integralssepa-
rately. But what’s thefun in that?)

A-3 If at leastone of UV�LW � , UYXZ�LW � , UYX X���W � , or UYX X XZ�LW � van-
ishesat somepoint W , then we are done. Hencewe
may assumeeachof UV�LA � , UYXZ�[A � , UYX XZ�[A � , and UYX X XZ�[A �
is either strictly positive or strictly negative on the
real line. By replacing UV�[A � by �OUV�[A � if necessary,
we may assumeUYX XZ�LA �	\^] ; by replacing UV�[A � byUV�_�A � if necessary, we mayassumeUYX X XZ�[A �!\T] . (No-
tice that thesesubstitutionsdo not changethe sign ofUV�[A � UYX��LA � UYX`X��LA � UYX`X XZ�[A � .) Now UYX XZ�[A �$\	] implies thatU X �[A � is increasing,and U X X X �[A �!\�] implies that U X �[A �
is convex, so that UYX��LA 3 W �!\ UYX��LA � 3 WaUYX XZ�LA � for all

A and W . By letting W increasein the latter inequality,
we seethat UYX��LA 3 W � mustbepositive for sufficiently
large W ; it follows that UYX��LA �b\c] for all A . Similarly,UYX��LA �$\�] and UYX XZ�[A ��\�] imply that UV�[A �!\�] for allA . ThereforeUV�LA � UYX��LA � UYX`XZ�[A � UYX`X XZ�[A �N\R] for all A , and
wearedone.

A-4 The numberof digits in the decimalexpansionof �Nd
is the Fibonaccinumber �ed , where � K �f
 , �hg?�i
 ,
and �hdj�f�hd I>K 3 �hd I g for k \l� . It follows that
the sequencemn� dpo , modulo11, satisfiesthe recursion� d �c�_�!
 �_q�r<s�t � d I>K 3 � d I g . (Noticethattherecur-
sionfor � d dependsonly on thevalueof � d I g modulo
2.) Using theserecursions,we find that �Nu�v ] and�Ow�vx
 modulo11,andthat � u v7
 and �hw�vx
 mod-
ulo 2. It follows that �Od7vy�Nd<zJ{ (mod 11) for allk}|~
 . We find that among � K�� �Og � �O� � �O� � �N� , and�O{ , only � K vanishesmodulo11. Thus11 divides �Nd
if andonly if k4�T��� 3 
 for somenonnegativeinteger� .

A–5 Definethe sequence�b� by the following greedyalgo-
rithm: let � K bethediscof largestradius(breakingties
arbitrarily),let � g bethediscof largestradiusnotmeet-
ing � K , let � � bethediscof largestradiusnot meeting� K or � g , andsoon,up to somefinal disc � d . To see
that �l�x� d��� K ��� � , considera point in � ; if it lies in
oneof the �b� , we aredone.Otherwise,it lies in a disc� of radius� , whichmeetsoneof the �b� having radius� |f� (this is the only reasona disc can be skipped
in our algorithm). Thus the centerslie at a distance�9� � 3 � , andso every point at distancelessthan �
from thecenterof � liesatdistanceatmost � 3 ��� � �
from thecenterof thecorresponding� � .

A–6 Recallthe inequalities � �N"�� g 3 � " & � g | � � �O"P��� " & �
(AM-GM) and � �O"P��� " & �V| � ) �O" & / (Law of Sines).
Also recall that the area of a triangle with integer
coordinatesis half an integer (if its vertices lie at� ] � ]�� � ��� ��� � � �L� � �6� , the areais � � � � � �a� �<� ), and that
if � and " have integercoordinates,then � �O"P� g is an
integer(Pythagoras).Now observethat

� ) �N" & /=��� �O"�� g 3 � " & � g 3�� ) �N" & /
��� �O"�� g 3 � " & � g 3 � � �N"���� " & �� � ) �O" & / 3 
 �

andthat thefirst andsecondexpressionsareboth inte-
gers. We concludethat

� ) �O" & /���� �O"P� g 3 � " & � g 3



� ) �O" & / , and so � �O"�� g 3 � " & � g � � � �N"���� " & ���� ) �O" & / ; that is, " is a right angleand �O"��~" & ,
asdesired.

B–1 Noticethat

�[A 3 
 � A � { �;�[A { 3 
 � A { � � �
�[A 3 
 � A � � 3 �LA � 3 
 � A � � �

�LA 3 
 � A � � �;�[A � 3 
 � A � � �2���[A 3 
 � A �
(differenceof squares).The latter is easilyseen(e.g.,
by AM-GM) to have minimum value 6 (achieved atA���
 ).

B–2 Considera triangle as describedby the problem; la-
bel its vertices � � " � & so that �l����W ��� � , " lies on
the A -axis, and

&
lies on the line B �^A . Further

let �¡�¢��W � � � � be the reflectionof � in the A -axis,
and let �£�¤� �6� W � be the reflectionof � in the lineB��¢A . Then �O"^�y��" and � & � & � , and so
theperimeterof �O" & is ��" 3 " &T38& �¥|������¦ ��W�� � � g 3 �LW 3 � � g � � � W g 3 � � g . It is clearthat
this lower boundcanbeachieved; just set " (resp.

&
)

to betheintersectionbetweenthesegment��� andtheA -axis(resp.line A1��B ); thustheminimumperimeter
is in fact � � W g 3 � � g .

B–3 We usethe well-known result that the surfaceareaof
the“spherecap” m��LA � B ��§ � �_A g 3 B g 3 § g �	
 �¨§ | §n© o
is simply ��ª �_
:� §n© � . (Thisresultis easilyverifiedusing
calculus;weomit thederivationhere.)Now thedesired
surfaceareais just ��ª minusthe surfaceareasof five
identicalhalvesof spherecaps;thesecaps,upto isome-
try, correspondto §«© beingthedistancefrom thecenter
of the pentagonto any of its sides,i.e., § © ��¬®�¯±° � .
Thus the desiredareais ��ª � �g$² ��ª ��
��¬®�¯±° � ��³ �´ ª ¬µ�¯ ° � ��� ª (i.e., "@� ªe��� ).

B–4 For convenience,define U�¶N· dY�[¸ � � ¹ �¶.º 3 ¹ �d>º , sothat
the given sum is »�[¼ � k � �¢½ ¶0d IJK� � © ���!
 ��¾�¿VÀ r�Á ��Â . If¼ and k areboth odd, then »Ã�[¼ � k � is the sumof an
odd numberof Ä.
 ’s, and thus cannotbe zero. Now
considerthe casewhere ¼ and k have oppositepar-
ity. Note that ¹ �¶ º 3 ¹���� ��z K¶ º �Å�Æ�Ç
 for all
integers ¸ � � � ¼ . Thus ¹ �¶ º 3 ¹ ¶0d I � I>K¶ º �^k8�}

and ¹ �d º 3 ¹ ¶0d I � IJKd º �È¼É�Ê
 ; this implies thatU�¶N· dp�L¸ � 3 U�¶N· dp�L¼�k(�b¸��P
 � �;¼ 3 k(� � is odd,andso�_�!
 ��¾_¿VÀ r�Á ��Â �������!
 ��¾_¿VÀ r�Á ¶0d I � IJK Â for all ¸ . It follows
that »�[¼ � k � � ] if ¼ and k haveoppositeparity.

Now supposethat ¼¢� � � and k8� �<Ë arebotheven.
Then ¹ g �g�¶ º �f¹ g � z Kg�¶ º for all Ì , so » canbecomputed
astwice thesumoveronly evenindices:

»� � � � ��Ë�� � �
gÎÍÎÏ IJKÐ
� � ©

���!
 � ¾�Ñ À Ò Á ��Â �2»�Z� � ËZ� ��
 3 �_�!
 � ÍÓzJÏ �Ó�

Thus »Ã� � � � �<ËZ� vanishesif andonly if »�Z� � ËZ� vanishes
(if 
 3 �_�!
 � ÍÓzJÏ � ] , then � and Ë have oppositeparity
andso »��� � Ë�� alsovanishes).

Piecingour variouscasestogether, we easily deduce
that »�L¼ � k � � ] if andonly if thehighestpowersof 2
dividing ¼ and k aredifferent.

B–5 Write Ô¥�	��
 ] K�Õ�Õ w �Ö
 ��� � . Then

� Ô�� 
 ] Õ�Õ�Õ�
¦ 
�×
 ] I>K�Õ�Õ w

� 
 ] Õ�Õ�Õ� �_
O� 
� 
 ] IJK_Õ�Õ w 3 � � �
where � � 
 ] I g ©�©�© . Now the digits after the deci-
mal point of 
 ] Õ�Õ�Õ � � aregivenby � ������� �®�«� , while the
digits after thedecimalpoint of K{ 
 ] IpÕ�Õ�Õ aregivenby� ]�]�]�]�]�«�®� 
«����������� �«�®� . It follows that the first 1000
digits of � Ô aregivenby � ��������� �«�®� �����¨
 ; in particu-
lar, thethousandthdigit is 
 .

B–6 First solution:Write �e�[k � �Tk � 3 W�k g 3 � k 3DØ . Note
that �e�Lk � and�e�Lk 3 ��� have thesameparity, andrecall
thatany perfectsquareis congruentto 0 or 1 (mod4).
Thusif �e�Lk � and�e�Lk 3 ��� areperfectsquares,they are
congruentmod4. But �e�[k 3 ��� �Ã�e�Lk � v � k g 3 � � (mod
4), which is not divisible by 4 if k and � have opposite
parity.

Secondsolution:We provemoregenerallythatfor any
polynomial Ù�� § � with integercoefficientswhich is not
a perfectsquare,thereexists a positive integer k such
that Ù��[k � is not a perfectsquare.Of courseit suffices
to assumeÙ�� § � hasnorepeatedfactors,which is to sayÙ�� § � andits derivative Ù!XZ� § � arerelatively prime.

In particular, if we carry out the Euclideanalgorithm
on Ù�� § � and Ù!X�� § � without dividing, we get an in-
teger � (the discriminantof Ù ) such that the great-
est common divisor of Ù��Lk � and Ù!XZ�[k � divides �
for any k . Now thereexist infinitely many primes �
such that � divides Ù��[k � for some k : if there were
only finitely many, say, � K � �®�«� � � Í , thenfor any k di-
visible by ¼ �ÚÙ�� ]�� � K � gÜÛ«Û®Û � Í , we have Ù��[k � vÙ�� ]�� �LÝb�ÞP¼ � , that is, Ù��[k ��� Ù�� ]�� is not divisible
by � K6� �«�®� � �pÍ , so mustbe Ä.
 , but then Ù takessome
valueinfinitely many times,contradiction. In particu-
lar, we can choosesomesuch � not dividing � , and
choosek suchthat � divides Ù��Lk � . Then Ù��[k 3 ��� � vÙ��[k � 3 �6�pÙ!X��Lk � �LÝßaÞÜ� � (write out the Taylor series
of the left side); in particular, since � doesnot divideÙ!X��Lk � , we canfind some� suchthat Ù��Lk 3 ��� � is di-
visibleby � but notby � g , andsois notaperfectsquare.

Third solution: (from David Rusin,David Savitt, and
RichardStanley independently)Assumethat k � 3 W�k g 3
� k 3;Ø is a squarefor all k \�] . For sufficiently largek ,

�[k �Îà�g 3 
� W�k K à�g �Ö
 � g � k � 3 W�k g 3 � k 3DØ� �Lk ��à�g 3 
� W�k K à�g 3 
 � g�á

2



thusif k is a largeevenperfectsquare,we have k � 3W�k g 3 � k 35Ø ���[k �Îà�g 3 Kg W�k K à�g � g . Weconcludethisisan
equalityof polynomials,but theright-handsideis nota
perfectsquarefor k anevennon-square,contradiction.
(Thereadermight try generalizingthis approachto ar-
bitrary polynomials. A relatedargument,dueto Greg
Kuperberg: write � k � 3 W�k g 3 � k 3DØ as k ��à�g timesa
power seriesin 
 � k andtake two finite differencesto

getanexpressionwhich tendsto 0 as kDâ£ã , contra-
diction.)

Note: in casek � 3 W�k g 3 � k 3ÖØ hasno repeatedfac-
tors,it is asquarefor only finitely many k , by atheorem
of Siegel; work of Baker givesan explicit (but large)
boundon such k . (I don’t know whetherthe graders
will acceptthisasasolution,though.)
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