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SKOLIAD no. 101
Robert Bilinski

Please send your solutions to the problems in this edition by 1 October,
2007. A copy of MATHEMATICAL MAYHEM Vol. 3 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_— N

This month we present a selection of problems from the 6t Annual
CNU Regional High School Mathematics Contest. Thanks go to R. Persky,
Christopher Newport University, Newport News, VA.

6™ Annual CNU Regional
High School Mathematics Contest (2005)

1. There are 8 girls and 6 boys at the Math Club at Central High School. The
Club needs to send a delegation to a conference, and the delegation must
contain exactly two girls and two boys. The number of possible delegations
that can be formed from the membership of the club is

(A) 480 (B) 420 (C) 576 (D) 1680

4. The remainder of 71 divided by 9 is
(A) 3 (B) 4 ©r (D) 5

7. When (z% — 3)7 is multiplied out and simplified, one of the terms has
the form Kz* where K is a constant. Find K.

(A7 (B) —7 ©) 35 (D) —35

8. Two points are picked at random on the unit circle % 4+ y? = 1. What is
the probability the the chord joining the two points has length at least 1?

OF (B 3 © 3 (D) 3

11. Let m be a constant. The graphs of the linesy = x —2and y = mz + 3
intersect at a point whose z—coordinate and y—coordinate are both positive
if and only if

A m=1 (B) m< 1 © m>-3 D -2<m<1

13. Let f(x) be a function such that f(x) + 2f(—=x) = sinz for every real
number x. What is the value of f(%)?

(A) -1 (B) —3 © 3 (D)1
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15 V7443 - V71-4/3 =
(A) 4 (B) 2v/3 © V6 (D) 2

29. One root of mz2? — 10z + 3 = 0 is two thirds of the other root. What
is the sum of the roots?

» 3 (B) 3 © (D) 3
33. calculate the expression1 X 1! +2x 2! 4+3 X 3! 4+ --- +n x nl.

(A) (n2+n+1)n! B) (n+1)!—-1
©) (n+2)!—n! (D) (nh)?2 -1

36. A rectangle has length 4 and height 2.
What is the area of the shaded region, which
is the intersection of the two semicircles
pictured?

WE+2v3 B FT-2v3 (O F-2v3 (D)F +2v3

6™ Concours CNU Régional
de Mathématiques (2005)

1.1 y a 8 filles et 6 garcons au Club de Maths de I’école. Le Club doit former
une délégation a envoyer a un congres, et la délégation doit se composer
exactement de deux filles et de deux garcons. Le nombre possible de
délégations qui peuvent étre formées a partir des membres du Club est

(A) 480 (B) 420 (©) 576 (D) 1680

4 Le reste de 7190 divisé par 9 est

(A)3 (B) 4 @7 (D) 5

7. Quand (zz — 23)7 est développé et simplifié, un des termes a la forme
Kz* ol K est une constante. Trouver K.

A7 (B) —7 ©) 35 (D) —35
8. Deux points sont choisis au hasard sur le cercle unitaire 2 + y2 = 1.
P Y

Quelle est la probabilité que la corde joignant les deux points ait une longeur
d’au moins 1?

OF (B 3 © 3 (D) 3
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11. Soit m une constante. Les dessins des lignesy =z —2ety =mz + 3
s’intersectent au point d’'abscisse et d’ordonnée toutes deux positives si et
seulement si

A m=1 B)m<1 (€ m> -2 D) -2<m<1

13. soit f(x) une fonction telle que f(x) + 2f(—x) = sinz pour tout
nombre réel . Quelle est la valeur de f(%)?

A) —1 (B) —1 © 3 (D)1
15. V7 +av3 - V7 —4av3 =
(A) 4 (B) 2v3 © V6 (D) 2

29. Une racine de ma? — 10z + 3 = 0 est les deux tiers de I’autre racine.
Quelle est la somme des racines ?

() 3 (B) 3 © 3 (D)
33. Que vaut I'expression 1 X 1! +2 x 2! +3 X 3! +.-- 4+ n X n!.

A) (m?24+n+1)n! B) (n+1)!—-1
©) (n+2)! —n! (D) (n)2 -1

36. un rectangle a une longueur de 4 et une
hauteur de 2. Quelle est I’aire de la région ha-
churée, qui est l'intersection des deux demi-
cercles dessinés?

4

WF+2v8 B F-2v8 O F-2v3 ((D)F+2v3

—_—_—— N r—— S ———

Next we give the official solutions to the 227¢ W.]. Blundon contest
[2006 : 354-356].

1. An automobile went up a hill at an average speed of 30 km/hr and down
the same distance at an average speed of 60 km/hr. What was the average
speed for the trip?

Official solution.

Let d be the distance one way, t; the time going up the hill, and ¢, the
time going down. Since 30t; = d = 60t,, then t; = 2t,. The required speed

2d_ _ _120ta = 40 km/hr.

is =
t1 + t2 2tz + t2
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2. LetPhea point in the interior of rectangle ABCD. If PA =9, PB = 4,
and PC = 6, find PD.

Official solution.
Since PD? = ¢? 4+ d?, ¢? = 92 — d?,

and d? = 62 — b?, we have c | D
PD? = 92 _—a?+62 -0 d 6 |
= 117 — (a? + b?) N\
= 117 —-16 = 101. a 4: 9
b c A

Hence, PD = +/101.

3. Find the area of the region above the x—axis and below the graph of
24+ (y+1)2 =2.

Official solution.

The graph of the equation z2 + (y +1)2 = 2
is a circle of radius +/2 with centre at (0, —1). The
circle intersects the z—axis at (+1,0). The area of
the required region is clearly a quarter of the circle
of radius +/2 minus the area of the triangle with
base length v/2 and height /2. That is,

area of the region = —7r(\/§)2 - %(\/5)2 =

4. A square is inscribed in an equilateral triangle. Find the ratio of the area
of the square to the area of the triangle.

Official solution.

Let = be the length of each side of :
the square. Note that the top triangle is |
equilateral and all the right triangles are \/31‘:
30°-60°-90° triangles. Using the values of ,
tan 60° and sin 60°, the sides of the right !
triangles are calculated as shown. The base :
of the equilateral triangle is =+ 2% and the !

V3 I
height is  + @ x

Sl

The required ratio is = 28+/3 — 48.

5. Find the number of solutions to the equation 2z + 5y = 2005 for which
both z and y are positive integers.
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Official solution, expanded by the editor.

The given equation can be rewritten as 2z = 5(401 —y). If x and y are
integers satisfying the equation, then = must be divisible by 5; that is, x = 5¢
for some integer t. Then 10t = 5(401 — y), which simplifies to 2t = 401 — y.
If y > 0, then 2¢ < 401 and hence ¢ < 200 (since t is an integer). We also
want ¢ > 0to get x > 0. Thus, 1 < ¢ < 200.

Each integer ¢ such that 1 < ¢ < 200 gives positive integers £ = 5t and
y = 401 — 2t which are solutions of the original equation. Hence, there are
exactly 200 solutions which are positive integers.

6. For what values of a does the equation 422 4+ 4ax + a + 6 = 0 have real
solutions?
Official solution, modified by the editor.

A quadratic equation has real solutions if and only if its discriminant is
non-negative. The discriminant of the given equation is

A = (4a)®> —4(4)(a+6) = 16(a®> —a —6) = 16(a — 3)(a + 2).
We seethat A > 0if and onlyifa > 3 ora < —2.
7. Ace runs with constant speed and Flash runs z times as fast, z > 1. Flash
gives Ace a head start of y metres, and, at a given signal, they start off in the
same direction. Find the distance Flash must run to catch Ace.
Official solution.

Let d be the distance Flash must travel to catch Ace, let v be Ace’s
speed, and let ¢ be the time needed to catch up. Then we have d = vzt and
_rY

also d — y = vt. Eliminating v, we have d — y = g Hence, d = —

8. Show that 3» — 2n — 1 is divisible by 4 for any positive integer n.

Official solution.

We consider two cases.
For n even, we write n = 2m. Then

3"—2n—-1 = 3™ -22m) -1 = 3*" —4m —1
= (3™ -1)(3"+1)—4m.

Clearly, 3™ — 1 and 3™ + 1 are even; whence, 4 divides (3™ — 1)(3™ + 1).
Thus, 4 divides 3™ — 2n — 1.
For n odd, we write n = 2m + 1. Then

3" —2n—-1 = 3™ _22m4+1) -1 = 3>t _3 _4m
= 3(3™—-1)(3™+1) —4m.
As above, 4 divides (3™ — 1)(3™ + 1). Thus, 4 divides 3™ — 2n — 1.
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0. 1f the polynomial P(x) = 3 — 2? + = — 2 has the three zeroes a, b,
and ¢, find a® + b3 + 3.

Official solution.

We have
Pla) = a*—d*+a—-2 = 0,
Pb) = bB¥—-b>+b-2 =0,
Plc) = A—-c?4+c—-2 = 0.

Summing these three equations, we get
a+b*+c—(a?+b*+c*)+(a+b+c)—6 = 0.

Since a? + b2 +c%2 = (a+ b+ ¢)?2 — 2(ab + bc + ca), we get

a®+b*+c® = (a+b+c)®>—2(ab+bc+ca)—(a+b+c)+6.

But we also have
23—z 4+xr—-2 = (x—a)(x—>b)(z—c)
= x® — (a+ b+ c)x? + (ab + bc + ca)x — abc,
which implies that @ + b 4+ ¢ = 1 and ab + bc + ca = 1. Therefore,
a+b+c® =12-21)—-1+6 = 4.

10. A circle of radius 2 is tangent to both sides of an angle. A circle of radius
3 is tangent to the first circle and both sides of the angle. A third circle is

tangent to the second circle and both sides of the angle. Find the radius of
the third circle.

Official solution.

Let = be the radius of the third circle, and let a be the shortest
distance from the vertex of the angle to the first circle. By similar trian-

gles, we have 2 ; 2_a —; 7, and hence a = 8. By similar triangles again,
we have 2% 13? tez_a ; 2 implying that 18: T =5. Hence, z = 2.

—_—_— N~ S O ————

That brings us to the end of another issue. Please send in solutions!
We had no readers’ solutions to feature this month.

B o W S o
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Mark
Bredin (St. John’s-Ravenscourt School, Winnipeg), Monika Khbeis (Father
Michael Goetz Secondary School, Mississauga), Eric Robert (Leo Hayes High
School, Fredericton), Larry Rice (University of Waterloo), and Ron Lancaster
(University of Toronto).

—_—_— N~ S @ ———

Mayhem Problems

Please send your solutions to the problems in this edition by 1 August 2007.
Solutions received after this date will only be considered if there is time before
publication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

M288. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

The following figure can be cut into two pieces and reassembled into a
square, by simply cutting off the ‘tab’ and placing it in the cutaway at the
top, as shown in the second image.

)

Determine a method to cut the given figure into three pieces which
can be reassembled to form a square. (Find a method which is essentially
different from cutting it into two pieces; for example, cutting the tab into
two pieces would not be considered different from the two-piece dissection.)

M289. Proposed by K.R.S. Sastry, Bangalore, India.

Solve the following equation for real z:

10g(:c+,/5ac—%) = —log(:c— 53:—14—3) .
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M290. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Give a purely geometric proof that tan™" (1) + tan™' (3) = Z.

M291. Proposed by Robert Bilinski, Collége Montmorency, Laval, QC.

The right triangle having sides 3, +/7, and 4, has the strange property
that the two integer lengths sum to the value under the square root sign for
the length of the third side.

1. Find another such triangle.

2. Prove that there are infinitely many such triangles, and show how to
construct them.

3. Does the formula work only for integers?

M292. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Let = be a positive number. Prove that \/m T (e + \/m t [ > 1,

where [z] and {z} represent the integer part and the fractional part of z,
respectively.

M293. Proposed by Bruce Shawyer,
Memorial University of Newfoundland,
St. John’s, NL.

Eight equal circles are mutually tangent
in pairs and tangent externally to a unit cir-
cle. Determine the common radii of the eight
smaller circles.

M288. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

La figure ci-dessous peut étre coupée en deux morceaux qu’on peut
réarranger pour former un carré, comme le montre le second dessin.

Trouver une méthode pour couper la figure donnée en trois morceaux
pouvant former un carré par réarrangement. (Cette méthode doit étre essen-
tiellement différente de la premiére ; simplement couper en deux le morceau
ajouté pour former le premier carré ne compte pas.)
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M289. Proposé par K.R.S. Sastry, Bangalore, Inde.

Trouver les solutions réelles de I’équation :

10g(w+,/5w—%) = —log(:c— 5:13—14—3) .

M290. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Trouver une démonstration purement géométrique de I'égalité

tan=t (3) + tan () = 7.

M291. Proposé par Robert Bilinski, Collége Montmorency, Laval, QC.

Le triangle rectangle de cotés 3, v/7 et 4 posséde la curieuse propriété
qu'un de ses cOtés est la racine carrée de la somme des c6tés mesurés par
des entiers.

1. Trouver un autre tel triangle.

2. Montrer qu’il existe une infinité de tels triangles et décrire leur construc-
tion.

3. La formule n’est-elle valable que pour des entiers ?

M292. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Soit = un nombre positif. Montrer que \/a: -1[-33%33} + w{f][;] > 1, ol

[x] et {x} désignent respectivement les parties entiéere et fractionnaire de x.

M293. Proposé par Bruce Shawyer,
Université  Memorial de Terre-Neuve,
St. John’s, NL.

On couronne le cercle unité avec huit
petits cercles égaux tangents et tangents deux
a deux. Trouver leur rayon commun.

_—_—m NS —e————
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Mayhem Solutions

M238. Proposé par John Grant McLoughlin, Université du Nouveau-
Brunswick, Fredericton, NB.

Soit PQ une corde d’une parabole et soit R le point milieu de PQ. Soit
S un point sur la parabole tel que la tangente en S est paralléle 3 PQ. Si T
désigne le point d’intersection des tangentes en P et Q, montrer que R, S
et T sont colinéaires.

Solution par Jean-David Houle, Cégep de Drummondville, Drummondyville,
QC.

Placons la parabole et les points sur un plan cartésien. On choisit nos
axes tels que le sommet de la parabole se situe a I'origine. Soit la parabole
d’équation y = ax? et les points P(p, ap?) et Q(q, ag?). On va prouver que,
sous ces conditions, les points R, S, et T ont la méme abscisse, et sont par
le fait méme colinéaires.

Soit r I’abscisse du point R. Puisque R est le point milieu de la corde
joignant P et Q, son abscisse est donc la moyenne de celles des points P et
Q; cest-a-dire r = 1(p + q).

Soit s I’abscisse du point S. Puisque la tangente en S et la corde PQ
sont paralléles, elles ont la méme pente. Nous avons donc I’équation suivante
a résoudre pour s :

d(ax?) — ous — aq® —ap® _ a(q® —p?)
dx q—7p q—0p

r=s

Puisque p # ¢, on a 2as = a(p + q) et on obtient s = %(p + q).

Maintenant, on va trouver I’équation des tangentes aux points P et Q.
Les dérivées de la parabole aux points P et Q nous donneront les pentes de
ces tangentes. Ainsi, les équations des tangentes sont :

Yy = 2apx — ap2 et y = 2aqx — aq2 .
Pour trouver I'abscisse ¢ du point T', on résout I'équation suivante pour ¢ :

2apt — ap? = 2aqt — aq?,
2at(p—q) = a(p’—q?).

Ainsi, t = 1(p + q), parce que p # q.
Donc, les points R, S et T ont la méme abscisse %(p + q) et sont
colinéaires.

En outre résolu par HASAN DENKER, Istanbul, Turquie ; et TITU ZVONARU, Comanesti,
Roumanie. Une solution incorrecte a aussi été soumise.
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M239. Proposed by Yakub N. Aliyev, Baku State University, Baku,
Azerbaijan.

If a, b, ¢ > 0, prove that

1 1 1 (a+b+c)?
< .
a—l—b+b—|—c+c+a - 6abc

Solution by Vedula N. Murty, Dover, PA, USA.

We have (a + b)? — 4ab = (a — b)2 > 0, and hence, 4ab < (a + b)2.
Similarly, 4bc < (b + ¢)? and 4ca < (¢ + a)?. Therefore,

dab ( + 1 n 1 ) 4ab + 4bc n 4ca b
ave a-+b b+ec c+a a—l—bc b-l—ca c+a
< (a+bec+ (b+c)a+ (c+a)b

= 2(ab+ bc+ ca). ¢))
Using the well-known inequality ab + bc 4 ca < a? + b? + c2, we obtain

3(ab+bc+ca) < a®?+b%>+c*+ 2(ab+ be+ ca)
= (a+b+o)?. (2)

Combining (1) and (2), we have

1 1
4ab
@ c(a—+—b+b—+—c+c—|—a

Dividing by 4abc gives the desired result.

Also solyed by MOHAMMED AASSILA, Strasbourg, France; ARKADY ALT, San jose,
CA, USA; MIHALY BENCZE, Brasov, Romania; HASAN DENKER, Istanbul, Turkey; RICHARD
I. HESS, Rancho Palos Verdes, CA, USA; JEAN-DAVID HOULE, Cégep de Drummondyville,
Drummondville, QC; BABIS STERGIOU, Chalkida, Greece; and TITU ZVONARU, Comanesti,
Romania.

2
) < g(a+b—|—c)2.

M240. Proposé par I'Equipe de Mayhem.

En utilisant une seule fois chacun des chiffres de 0 a4 9, trouver quatre
carrés parfaits (positifs) tels qu’il y en ait un de quatre chiffres, un de trois,
un de deux et un dernier de un chiffre. (Note : Il y a plus d’une solution.
Combien pouvez-vous en trouver ?)

Solution par Jean-David Houle, Cégep de Drummondyville, Drummondyville,
QcC.

Evidemment, nous ne devons pas considérer les carrés qui comportent
au moins 2 nombres identiques. Sous cette condition, on peut démontrer
qu’aucun carré de 1, 2, ou 3 chiffres ne contienne de 0. En rédigeant une table
comprenant tous les nombres carrés a considérer (de 1, 2, 3, ou 4 chiffres, sans
répétition, et comprenant le chiffre 0 dans le cas des nombres a 4 chiffres),
on obtient 37 nombres.
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Pour chaque carré a 4 chiffres, on inscrit les carrés a 2 chiffres possibles
(ceux dont les chiffres n’apparaissent pas dans le carré a 4 chiffres). Pour
chaque paire, on inscrit ensuite les carrés a 1 chiffre qui n’apparaissent pas
dans le carré 3 4 chiffres ou dans celui a 2 chiffres. En vérifiant si il est pos-
sible de trouver un carré a 3 chiffres comprenant les 3 chiffres non-utilisés,
on obtient les 4 solutions suivantes : (9, 81, 576, 2304), (9, 16,784, 3025),
(9,81, 324, 7056), et (1,36, 784, 9025).

Autres solutions soumises par HASAN DENKER, Istanbul, Turquie; et TITU ZVONARU,
Comanesti, Roumanie. Une solution incompléte a aussi été soumise.

M241. Proposed by ]. Walter Lynch, Athens, GA, USA.

Three gunfighters, called Quick, Fast, and Slow, stand one at each vertex
of an equilateral triangle. Quick is faster on the draw than Fast, and Fast is
faster than Slow. If z intends to fire at y, we will say that = targets y. We
will assume that if x fires at y, then y will be hit, and that if  and y both
target each other, the one who is slower on the draw will be hit before he
can fire. A combatant cannot fire once he has been hit.

In the first phase of the confrontation, each combatant targets one of
the other two and fires a maximum of one round. No man knows how fast
the other two are, and the targeting choices are made randomly and cannot
be changed during the first phase.

If two combatants survive the first phase, they face each other in a
second phase and the fastest draw wins. If only one combatant survives the
first phase, he is the winner (and there is no second phase).

Find the probability that:

(a) Quick survives; (b) Fast survives; (c) Slow survives.

Solution by Richard 1. Hess, Rancho Palos Verdes, CA, USA.

There are 8 targeting possibilities in the first round as shown by the
table of outcomes below, where Quick, Fast, and Slow are denoted by Q, F,
and S, respectively.

Targets for Q, F, and S { [ Ed.: First Round Survivor] L Final Survivor ‘

F,Q,Q Slow Slow
F,Q,F Quick and Slow Quick
F, S Q None None
F, S F Quick Quick
S, Q, Q Fast Fast
S, Q,F None None
S, S, Q Quick and Fast Quick
S, S, F Quick and Fast Quick

Thus, the probability of survival for Quick is %, for Fast is %, and for
Slow is .
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Also solved by Jean-David Houle, Cégep de Drummondville, Drummondyville, QC. A
solution submitted by Hasan Denker, Istanbul, Turkey used the assumption that the one who
is slower on the draw will always be hit before he can fire. In that case, the probability that Quick

survives is % the probability that Fast survives is %, and the probability that Slow survives is %.

M242. Proposé par Houda Anoun, Bordeaux, France.

Pour quels nombres naturels = le nombre z* + 3 + 22 4+ x + 1 est-il
un carré parfait ?

Solution par Jean-David Houle, Cégep de Drummondyville, Drummondyville,

QcC.
Disons que f(z) = z* +x3 + 22 + = + 1.

Cas 1. z est un nombre pair.
Notons que

(m2+%w)2 = :c4—|—:c3+%:c2 < f(x)
et (w2+%m+1)2 = w4+x3+%w2—|—x+1 > f(x),

alors (ac2 + %w)z < f(z) < (mz + %x2 + 1)2.
L’égalité survient si z = 0. Dans tous les autres cas, le polynéme f(x)

est compris entre deux carrés parfaits consécutifs et ne peut donc pas étre,
lui aussi, un carré parfait.

Cas 2. = est un nombre impair.
Pour x > 5, on a

(m2+%w—%)2 = m4+m3—%x2—%m+% < f(x)

et (m2+%w+%)2 = m4+m3+%w2+%m+% > f(x),

2 2

donc (:c2 + %w — %) < f(z) < (:B2 + %:c + %) .
Le polyndme f(x) est compris entre deux carrés parfaits consécutifs et

ne peut donc pas étre, lui aussi, un carré parfait.

Ceci étant dit, il ne reste qu’a vérifier les valeurs de = qui sont impaires
et inférieures 3 5. Sixz =1, alors x* + 23 + 22 +x +1 = 5, qui n’est pas un
carré parfait. Si z = 3, alors % 4+ 22 + 2 + x + 1 = 121 = 112, qui donne
une solution.

Le seul nombre naturel x satisfaisant I'énoncé est x = 3.

Autres solutions soumises par ALINA ALT et ARKADY ALT, San José, CA,
E-U; RICHARD 1. HESS, Rancho Palos Verdes, CA, E-U; EDWARD T.H. WANG, Université
Wilfrid Laurier, Waterloo, ON; et TITU ZVONARU, Comainesti, Roumanie. Une solution
incompléte a aussi été soumise.
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A,
M243. p d by K.R.S. Sast M
3. Proposed by astry, A ” A

Bangalore, India.

In the 7-point star shown, no
three lines are concurrent. Find the As As

SUmA1+A2+...+A7.

As

Solution by Hasan Denker, Istanbul, Turkey.

The given 7-point star, with no three lines concurrent, generates
pentagon ABCDE, as shown.
Ay

Considering triangles AEA3;, A7,A4B, A1 A5C, and A;AgD, the
following relationships are obtained:

A+ E =
B =
C =
D =

180° — As,

180° — Ay — Ar,
180° — A; — A5,
180° — Ay — Ag .

Summing these equations, we can then conclude that

A+B+C+D+E

= (180° — Ag) + (180° — A, — A7)
+(180° — A; — A5) + (180° — Ay — Ag)
= 720° — (A; + A+ A3+ Ay + A5 + Ag + Ar).
However, A+ B+ C + D + E = 540°. Hence,
540° = 720° — (A1 + Az + Az + Ay + As + Ag + A7) .
Therefore, A, + Ay + A3 + Ay + A5 + Ag + A7 = 180°.

There was one incomplete solution submitted.
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Problem of the Month

Ian VanderBurgh

This month, we give some thought about repeating decimals (decimals,
decimals, decimals, decimals. . . )

Problem #1 (2006 Canadian Open Mathematics Challenge)
SupTgose n and D are integers with n positive and 0 < D < 9. Determine n

if 310 — 0.9D5 = 0.9D59D59D5....

I knew that I should have paid more attention in elementary school! If
you're like me, you probably remember that % = 0.33333 ... which can also
be written as 0.3. Maybe you remember that g = 0.7 = 0.7777.... How
about %? Do you know that this equals 0.142857?

To solve Problem #1, it would be helpful to convert the repeating dec-
imal to a fraction. But how do we do this? Let’s look at two different ways.

In the first approach, we set x = 0.9D5 = 0.9D59D59D5.... Then

1000z = 9D5.9D59D5 ... = 9D5.9D5. Thus,
999x = 1000x —x = 9D5.9D5 — 0.9D5 = 9D5 (an integer!)
_ 9Ds5
999

Does this method look familiar? It may, if you have ever tried to prove that
0.9 actually equals 1.
For a second approach, we rewrite 0.9D59D59D5. .. as

9D5 9D5 9D5

108 T 108 Tree T

9D5

03 and common

This is an infinite geometric series with first term a =

. 1 ) .
ratio »r = —_; thus, its sum is
108

9D5
a 705 _ 9D5  9D5
1—r 7__1 ~1000—-1 999
108

It is reassuring to get the same answer in two different ways. Try using

— 1234 — abc
one or both of these methods to show that 0.1234 = 9999 and 0.abc = 999"

Can you come up with some general rules for converting repeating decimals
to fractions?
Now we are ready to solve Problem #1.

Solution to Problem #1: From the given information and our comments

above, we know that gnﬁ = 0.9D5 = %. Clearing the fractions yields
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999n = 810(9D5). We can simplify this by dividing both sides by 27, giving
37n = 30(9D5). Since 37 is a factor of the left side, it must be a factor of
the right side. Since 37 and 30 have no common factors, then 37 must divide
exactly into 9D5. How can we determine D? One way would be to get out a
calculator and try to find a multiple of 37 that is between 900 and 1000 and
ends with a 5. This wouldn’t be too hard.

Here is another approach. We first note that

37X 20 = 740 < 9D5 < 1120 = 37 x 30.

Hence, 9D5 = 37 x 25 because no other number in the permissible range
when multiplied by 37 will end in 5. Therefore, D = 2.

But we want the value of n. Recall that 37n = 30(9D5) = 30(925).
Hence, n = 30(925)/37 = 750.

As with many problems involving a repeating decimal, the decimal gets
converted to a fraction. So the amount of knowledge of repeating decimals
that we need is not enormous.

Here is another such problem to keep you busy over the next month:

Problem #2 (1992 AIME) Let S be the set of all rational numbers r» with
0 < r < 1, that have a repeating decimal expansion of the form 0.abc, where
the digits a, b, and c are not necessarily distinct. To write the elements of S
as fractions in lowest terms, how many different numerators are required?

Good luck! I've put a few hints at the end.

In February’s Problem of the Month, we looked at a problem involving
determining the average number of “change points” in sequences of 0s and
1s. This involved counting the total number of change points over all such
sequences in a clever way.

Imagine my surprise on the first Saturday in December (about the time
I was writing the February column), when I saw the following problem on the
2006 William Lowell Putnam Mathematical Competition. (I have modified
this problem slightly to remove the special case of n = 2 and to remove some
of the more technical notation.)

Problem #3. A permutation =« of {1, 2, ..., n} (with n > 3) has a local
maximum at position k if the two neighbouring numbers (or, in case k = 1
or k = n, the one neighbouring number) are both smaller than the number
in position k. (For example, if n = 5, then 2, 1, 4, 5, 3 has local maxima
in positions 1 and 4.) What is the average number of local maxima of a
permutation of {1, 2, ..., n}, averaging over all such permutations?

We will try to solve this problem by the same technique that we used
in February: fixing a position and counting the total number of permutations
with a local maximum in that position.

Solution to Problem #3: First consider position 1. How many permutations
have alocal maximum in position 1? Whether or not there is a local maximum
at position 1 depends on the numbers in positions 1 and 2. Any pair of



145

numbers can give a local maximum at position 1 if they are arranged with the
larger number first. (For example, the pair 3 and 5 gives a local maximum in
position 1 if the 5 comes before the 3.)

There are (g) possible pairs of numbers that can be placed in positions

1 and 2. There is only one way to arrange a given pair to get a local maximum
in position 1. There are then (n — 2)! ways of filling out the rest of the
permutation. Thus, there are

() -2t = g = §

permutations with a local maximum in position 1. In other words, among
all such permutations, there are %n! local maxima in position 1. By a similar
argument, there are %n! local maxima in position n.

Now consider a position k with 1 < £k < n. How many local maxima
are there at position k? Whether there is a local maximum at position k&
depends on the numbers in positions k¥ — 1, k, and k + 1. Any triple of
numbers can be arranged to form a local maximum at position k in two ways.
For example, if we choose 1, 3, 7, then a local maximum occurs in the middle

if (and only if) they are arranged as 1, 7, 3 or 3, 7, 1. There are (g) ways of
choosing the three numbers that will go in positions k — 1 through £+ 1, two
ways of arranging these numbers to form a local maximum at position k, and
(n — 3)! ways to arrange the remaining n — 3 numbers in the permutation.
Thus, there are

n 2n! n!
2<3>(”‘3)! S momym T =g

permutations with a local maximum at position k. In other words, there are
%n! local maxima at position k£ among all such permutations. (Remember
that there are n — 2 values for k£ that we have to keep track of in this case.)

Hence, the total number of local maxima over all such permutations is

%n! + %n! + (n—2) (%n') = %(n + 1)n!.

Since the total number of permutations of {1, 2, ..., n} is n!, the average
number of local maxima is %(n +1).

It’s always neat to see an old technique come in handy. That's part
of the reason why we practice solving problems—the more we practice, the
more techniques we learn, and the more likely we are to think, “Hey, wait a
second! I know what to do here.”

Hints for Problem #2:
e Convert the repeating decimal to a fraction.
e When is this fraction irreducible? How many of these cases are there?

o If the given fraction is reducible, what happens? What are the possible
denominators when reduced? What are the possible numerators?
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Polya’s Paragon

The Pigeonhole Principle

Jeff Hooper

In problem-solving, we can sometimes get to the answer using the most
direct approach (which is often the first one we think of). But there may be
approaches to a problem that are indirect or non-constructive; they force
a solution or situation to happen, but not explicitly. In fact, even in cases
where a direct attack works, these alternative methods sometimes provide
simpler, more elegant solutions. In this issue we will explore one of these
ideas and look at a number of problems in which it can be applied.

The simplest version of this idea is easy to explain. Suppose you have
10 balls and 9 boxes, and you must put all the balls into the boxes in some
manner. There are of course lots of ways to do this. You could, for instance,
put all of the balls in one box and leave the others empty, or you could try
to distribute the balls evenly. But, no matter how you do it, at least one of
the boxes must get more than one ball! This is because there are more balls
than boxes.

Now I hope this is clear. Even if you tried to fill the boxes with one ball
each, there would still be that one extra ball at the end, and it would need
to go somewhere! Once you place it in a box, you must have (at least) two
balls in one of the boxes.

It may surprise you that this idea is important enough to have a name.
It is called the pigeonhole principle. Its name evokes an image of lots of
pigeons fighting to get into a smaller number of holes to roost. It simply
says that you cannot stuff lots of things into an insufficient number of boxes.
A slightly more formal statement might be:

Pigeonhole Principle. If more than n objects (pigeons) are distributed into
exactly n boxes (holes), then (at least) one of the boxes must contain more
than one of the objects.

If the number of objects is a lot larger than the number of boxes, then
we can make slightly stronger conclusions. Suppose we had 19 balls to place
in 9 boxes. Can you see why it now must be the case that one (or possibly
more) of the boxes must have at least 3 balls? So there is a more general
version of the pigeonhole principle:

Pigeonhole Principle (General Version). Let & > 1. If more than kn objects
(pigeons) are distributed into exactly n boxes (holes), then (at least) one of
the boxes must contain more than k objects.

Even this generalization seems fairly obvious. What might surprise you
is the number of situations in which this principle can be applied. Often there
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is some subtlety that makes the application not quite immediate. Let’s look
at some examples.

Example 1: At a conference there are 100 people participating. Show that
there must be two of them who know the same number of other participants.

Solution: We will treat the 100 participants as ‘pigeons’; we need to put them
into ‘holes’. But what sort of holes? It seems that we should assign to each
participant the number of other participants he or she knows. This will be
a number between 0 and 99. But wait! That’s 100 holes! It seems possible
that we might be able to assign all 100 numbers to the 100 different people.
The pigeonhole principle does not seem to apply.

There’s a subtlety though. Suppose person X receives the number 99.
Then this person must know everybody else, and so nobody can be assigned
the number 0! But now we must assign each participant a number from 1 to
99, and the pigeonhole principle applies. If no individual gets assigned the
number 99, then the 100 people are each assigned one of the 99 numbers 0
through 98, and again we may apply the pigeonhole principle. In any case,
two people must have the same number, which means that they know the
same number of participants.

Example 2: Let S = {2, 3, 5, 7, 11, 13, 17, 19} be the set of prime numbers
less than 20. Show that there are four non-empty subsets of S with the same
sum.

Solution: We will set up this problem by taking the possible sums to be the
‘holes’ and the various subsets to be the ‘pigeons’. Since S has 8 elements,
there are 28 — 1 = 255 non-empty subsets of S. The sums which are possible
for non-empty sets lie between 2 (corresponding to the subset {2}) and 77
(the sum of all the elements of S), for a total of 76 possible values. Since
255 = 3 . 76 + 27, the general version of the pigeonhole principle applies
here with £ = 3; namely, there must be a sum which corresponds to at least
4 subsets.

Here is an old favourite of mine that completely stumped me once when
I was a student. (I wasn’t thinking of the pigeonhole principle at the time.)

Example 3: Suppose that each square of a 3 x 7 chessboard is painted red or
black at random. Show that the board must contain a rectangle whose four
corner squares are all coloured the same.

Solution: At first glance, this does not look like the sort of problem where
the pigeonhole principle would help. The squares look like boxes, but where
are the pigeons? You may be tempted, as I was, to start working out the
possibilities.

But wait a moment! Let’'s get a little more creative. Look at the
columns of the board. There are 7 columns each containing 3 squares. No
matter how the board is painted, each column must contain some pair of
squares of the same colour, because there are 3 squares per column and only
2 colours. (We are applying the pigeon-hole principle with the 3 squares as
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the pigeons and the 2 colours as the holes.)

Now, in order for a rectangle to have its four corners coloured the same
colour, there must be two different columns in which squares of the same
colour are placed in the same two rows. For example, we might have black
squares in rows 1 and 2 in two different columns Z and j.

This leads us to consider the possible ways of placing pairs of squares
of the same colour in a column of 3 squares. There are (g) = 3 ways to place
a pair of black squares, and the same number of ways to place a pair of red
squares. Thus, there are 2(2) = 6 ways altogether. Since there are 7 columns
in the board, there must be (at least) 2 different columns in which a pair of
squares of the same colour are placed in the same way. Here we are applying
the pigeonhole principle with the columns as the pigeons and the possible
ways of placing a pair of like-coloured squares in a column as the holes. Now
that’s subtle! But it leads to the desired conclusion: the board must contain
a rectangle whose four corner squares are painted with the same colour.

Problems for further study:

I now offer you a few problems to try out. Remember to keep in mind
the idea of distributing things. Be on the lookout for the ‘pigeons’ you're try-
ing to distribute and the ‘holes’ into which they are going. Identifying these
may require a little creativity on your part. Good luck! Feel free to contact
me for further discussion of your solutions (jeff.hooper@acadiau. ca).

1. Suppose we distribute 5 points in the interior of a square S of side
length 2. Prove that some pair of these points must have distance less
than /2.

2. Take any set A consisting of 10 natural numbers between 1 and 99.
Show that there must be two disjoint subsets of the set A which have
the same sum.

3. Let A be any set of 20 distinct integers chosen from the arithmetic pro-
gression1, 4, 7, ..., 100. Show that there must be two distinct integers
in A which sum to 104.

4. Suppose that 5 points are placed randomly on a sphere. Show that there
must be a hemisphere which contains at least 4 of them.

5. Let « be any real number, and let A = {z, 2z, 3z, 42, ..., (n — 1)x}.
Show that there must be at least one number in the set A which differs
from an integer by at most 1/n.

6. Suppose that k colours are available to paint the squaresof a (k+1) xn
chessboard. What is the largest value of n, in terms of k, for which the
board can be painted in such a way that there is no rectangle whose
four corner squares have the same colour?

——— | NS
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THE OLYMPIAD CORNER
No. 261

R.E. Woodrow

We begin this number with the problems of the XX Olimpiadi
Italiane della Matematica. My thanks go to Christopher Small, Canadian
Team Leader to the IMO in Athens, Greece for collecting them for our use.

XX OLIMPIADI ITALIANE DELLA MATEMATICA
Cesenatico, 7 May 2004

1. Reading the temperatures in Cesenatico for the months of December and
January, Stefano notices an odd feature: on each day in that period, except
for the first and the last, the lowest temperature was the sum of the lowest
temperatures on the day before and the day after.

The lowest temperature was 5°C on December 3 and 2°C on January 31.
Find the lowest temperature on December 25.

2. Letr and s be two parallel lines in the plane, and P and Q two points such
that P € r and Q € s. Consider circles Cp and Cg such that Cp is tangent
to r at P, Cq is tangent to s at Q, and Cp and Cq are tangent externally to
each other at some point, say T'. Find the locus of T' when (Cp, Cq) varies
over all pairs of circles with the given properties.

3. (2) Determine whether the number 20052004 can be written as the sum
of the squares of two positive integers.

(b) Determine whether the number 20042°°5 can be written as the sum
of the squares of two positive integers.

4. Antonio and Bernardo play the following game: In the beginning there
are two piles of tokens, one with m tokens and the other with n tokens. Each
player in turn chooses one of the following moves:

e remove one token from one pile;
e remove one token from each of the two piles;
e move one token from one pile to the other.

The player with no possible moves loses.

Antonio always moves first. Depending on m and n, determine whether
one of the two players has a winning strategy, and, if so, show who is the
winning player.
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5. Determine whether the following statement is true or false: For every

sequence xi, x2, 3, ... of non-negative real numbers, there exist two
sequences a;, asz, as, ... and by, by, bz, ... of non-negative real numbers
such that

® ¢, = a, + b, for each n;
® aj; + -+ + a,, < m for infinitely many m; and

® by + ...+ b < £ for infinitely many 2.

6. Let Pbea point inside the triangle ABC. Say that the lines AP, BP,
and C P meet the sides of ABC at A’, B’, and C’, respectively. Let
AP BP CP
T ==, Y= -—, z = -
PA’ PB’ PC’
Prove that zyz = =z +y + 2 + 2.
%

Next we give the First and Second Papers of the Seventeenth Irish
Mathematical Olympiad given in May 2004. Thanks again to Christopher
Small, Canadian Team Leader to the IMO in Athens, for collecting them for
our use.

17® IRISH MATHEMATICAL OLYMPIAD
First Paper — May 8§, 2004

1. (a) For which positive integers n does 2n divide the sum of the first n
positive integers?

(b) Determine, with proof, those positive integers n (if any) which have
the property that 2n + 1 divides the sum of the first n positive integers.

2. Each of the players in a tennis tournament played one match against each
of the others. If every player won at least one match, show that there is a
group A, B, C of three players for which A beat B, B beat C, and C beat A.

3. Let AB be a chord of length 6 of a circle of radius 5 centred at O. Let
PQRS denote the square inscribed in the sector O AB such that P is on the
radius OA, S is on the radius OB, and Q and R are points on the arc of the
circle between A and B. Find the area of PQRS.

4. prove that there are only two real numbers z such that

(x—1)(x—2)(x — 3)(x —4)(x —5)(x —6) = 720.

5. Let a, b > 0. Prove that
V2(va(a+b)3 +byVa2 +b2) < 3(a+ b?),
with equality if and only if a = b.
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17® IRISH MATHEMATICAL OLYMPIAD
Second Paper — May 8, 2004

1. Determine all pairs of prime numbers (p, q), with 2 < p, ¢ < 100, such
that p 4+ 6, p+ 10, g + 4, g + 10, and p + g + 1 are all prime numbers.

2. Let A and B be distinct points on a circle T'. Let C be a point distinct
from B such that |[AB| = |AC| and such that BC is tangent to T at B.
Suppose that the bisector of ZABC meets AC at a point D inside T'. Show
that ZABC > 72°.

3. Suppose n is an integer > 2. Determine the first digit after the decimal
point in the decimal expansion of the number v/n3 + 2n2 + n.

4. Define the function m of the three real variables z, y, and z by
m(z,y,z) = max{z?, y?, 22}.

Determine, with proof, the minimum value of m if z, y, and z vary in R
subject to the restrictions ¢ +y + 2z = 0 and 22 4+ y2? + 22 = 1.

5. Let p and g be distinct primes and let S be a subset of {1, 2, ..., p — 1}.
Let N(S) denote the number of solutions of the equation

Zwi = 0 (mod p) ,

=1
where z; € S, i =1, 2, ..., g. Prove that V(S) is a multiple of q.

—_—_— N~ S O ————

Our last set of problems is the IMO Squad Selection Problems 2004
from the New Zealand Mathematical Olympiad. Thanks to Christopher Small,
Canadian Team Leader to the IMO in Athens, for obtaining them for us.

NEW ZEALAND MATHEMATICAL OLYMPIAD
IMO Squad Selection Problems 2004

1. Let I be the incentre of triangle ABC, and let A’, B’, and C’ be the
reflections of T in BC, CA, and AB, respectively. The circle through A’,
B’, and C'’ passes also through B. Find the angle ZABC.

2. Two players are taking turns to write integers on the blackboard in the
range from 1 to 1000. The first player starts by writing the number 1. If the
number a was already written on the board (please note that the numbers
written at early stages are not erased), then the next number may be either
a+1 or 2a, provided that the last number does not exceed 1000. The player
who writes 1000 wins. Which player, the first or the second, has a winning
strategy?
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3. For positive x1, 2, y1, y2, prove the inequality

33_% n ﬂf_% > (1 + x2)?
Y1 Y2 Y1+ Y2

4. TFor each positive integer n, let w(n) be the number of positive prime
divisors of n. Find the smallest positive integer k such that for all n

2v(n) < k¥m.

5. Let I be the incentre of triangle ABC. Let points A; # A, lie on the line
BC, points B; # By lie on the line AC, and points C; # C- lie on the line
AB so that AT = AT = Azl, BI = B{1I = B->1, CI = C1I = CsI. Prove
that A; A; + B1B; + C:C> = P, where P is the perimeter of AABC.

6. On each cell of a square 9 x 9 grid there is a trained beetle. Upon a
whistle, each beetle moves to one of the neighbouring cells having a vertex
but not an edge in common with the beetle’s previous cell. The result is that
some cells become empty and in some cells there are now several beetles.
Find the minimal possible number of empty cells.

7. A function f(x) is defined on the interval [0, 1], so that £(0) = f(1) =0
and

f (“;b) < fa)+ 1)

for all @ and b from [0, 1].
(a) Show that the equation f(x) = 0 has infinitely many solutions on [0, 1].

(b) Are there functions on [0, 1] which satisfy the above conditions but are
not identically zero?

8. Prove that any prime number 22" 41 cannot be represented as a difference
of two fifth powers of integers.

—_— N r——

I want to apologize for overlooking some solutions from Michel Bataille,
Rouen, France, which were lost in my filing system. Bataille’s name should
have been added to the list of solvers for the following problems:

- Yugoslav Qualification 2"d Round, Problem 1 [2005 : 374; 2006 : 507 ;

- 27%eme Olympiade Belge, Problem 4 [2005 : 375 ; 2006 : 5097 ;

- Bosnia and Herzegovina, National Olympiad Selection Test, Problems
2 and 4 [2005 : 436; 2007 : 22];

- 15t Irish Olympiad, Problems 1, 4, 5, 8, and 9 [2005 : 437-439;
2007 : 28, 30, 33].

—_—— N r—— S ———
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Now we turn to solutions from our readers to problems of the 10th
Grade Romanian Mathematical Olympiad given [2006 : 85-86].

1. Let OABC be a tetrahedron such that 0A L OB L OC L OA, let r be
the radius of its inscribed sphere, and let H be the orthocentre of triangle
ABC. Prove that OH < r(v3 +1).

Solution by José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain.

Let A4, Ap, Ac, and Ap be the area of triangles OBC, OAC, OAB,
and ABC, respectively. Taking into account that triangles OBC, OAC, and
OAB are projections of ABC in mutually orthogonal directions, we have

A2 = A2 + A2 + A2
Applying the AM-QM Inequality, we get
A = A3+ AL +AZ > ;(Aa+ A+ A0)?,

and hence,
A A A
A+ Ap+ Ac < V3. )
Ao
Since OH is perpendicular to triangle ABC, the volume of the tetrahedron
OABC is

30H-Ap = 3;7(Aa+Ap+Ac+A0),
from which we get

Ap+ A+ Ac+ Ao < AA+AB+AC)
=7r|(l+ .
Ao AO

OH =r

Finally, using (1), we obtain OH < r(1 + v/3).

2. The complex numbers z1, 23, ..., z5 have the same non-zero modulus,

5 5
and > z; = > zf = 0. Prove that 2z, 25, ..., z5 are the complex coordi-
1=1 =1

nates of the vertices of a regular pentagon.

Solved by Michel Bataille, Rouen, France; and José Luis Diaz-Barrero,
Universitat Politécnica de Catalunya, Barcelona, Spain. We give Bataille’s
solution.

Let » be the common modulus of 2z, 22, ..., 2z5and p = z; - 29 -+ - 25
be their product. Note that |p| = »® # 0.
The complex numbers z;, 25, ..., 25 are the roots of the polynomial
5
H(z —z) = 2° — 012 + 0223 — 0322 + 042 — p,

k=1
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where o, (k = 1, 2, 3, 4) are the usual symmetric functions of the roots

5
21, z2, ..., z5. By hypothesis, o1 = 0. Since 205 = o? — > 22, we also
=1

have o2 = 0. Using z; - z; = 72, we compute:

o3 —= Zzizjzk = Z P = %Zzizj = %-0'72 =0

ZiZj

i<j 1<J
> p P < P
o4 = Zzizjzkzl = ZZ = 772227 = 772'0'71 = 0.
=1 =1
It follows that z,, 25, ..., z5 are the fifth roots of the non-zero complex

number p and, as such, are the complex coordinates of the vertices of a regular
pentagon.

—_—mmmmeN S ———

The next block of solutions are for problems of the 15™ Korean
Mathematical Olympiad appearing [2006 : 86-87].

1. The computers in a computer lab are connected by cables as follows: Each
computer is directly connected to exactly three other computers via cables.
There is at most one cable joining two computers and any pair of computers
in the lab can exchange data. (Two computers A and B can exchange data
if there exists a sequence of computers starting from A and ending at B in
which two computers next to each other in the sequence are directly joined
by a cable.)

Let k be the smallest number of computers in the lab whose removal
results in leaving just one computer in the lab or a pair of computers not able
to exchange data any more. Let £ be the smallest number of cables whose
deletion results in the existence of two computers that cannot exchange data
any more. Show that & = £.

Solution by Joan P. Hutchison, Macalester College, St. Paul, Minnesota,
USA.

In the language of graph theory, this problem asserts that vertex-
connectivity k£ equals edge-connectivity I in a connected 3-regular graph G.
Three-regularity implies that I < 3. Further, £ <[ because if a set of edges
disconnects the graph, then there is a set of vertices chosen one from each
edge that disconnects or leaves one vertex. Therefore, we have equality if
k = 3 and need only consider k € {1, 2}.

Suppose k = 1. Then there is a vertex v whose removal leaves two or
three components. Because v has degree 3, there must be an edge incident
with v whose removal disconnects the graph.

If kK = 2, suppose the removal of vertices v and w disconnects the
graph. If v is adjacent to w, then there are four edges joining {v, w} to the
rest of the graph. Since £ = 2, G\{v, w} has two components, each with
two edges to {v, w}. Either pair of edges disconnects the graph.
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If v is not adjacent to w, then there are two or three components in
G\{v, w}. If three, there are six edges joining {v, w} to the three compo-
nents and they must be divided 2, 2, and 2. Each such pair of edges separates
the graph. If there are two components A and B, then we may assume one
edge at v connects to A, while the other two connect to B. Similarly, the
edges incident with w are divided one and two. The removal of the two
singleton edges disconnects the graph.

2. Let ABCD be a rhombus with ZA < 90°. Let its two diagonals AC and
BD meet at a point M. A point O on the line segment M C is selected such
that O # M and OB < OC. The circle centred at O passing through points
B and D meets the line AB at point B and a point X (where X = B when
the line AB is tangent to the circle) and meets the line BC at point B and a
point Y. Let the lines DX and DY meet the line segment AC at P and Q,

respectively. Express the value of g—g

. MA
in terms of hen —= = ¢.
terms of ¢t whe MO t

Solution by Mohammed Aassila, Strasbourg, France.

Since the quadrilateral DX BY
is cyclic, we have

LAXD = /BYD
= /BOA = /BOP;

hence, quadrilateral BOPX is cyclic.
Consider the inversion I of pole O and
power OB?. Then the circle circum-
scribing BOP X maps to the line AB.
Thus, I(P) = A, which implies that
OP -0A = OB>.

Similarly, we obtain OQ - OC = OB?2. Therefore,

MA
0OQ OA MA+MO  yotl t+41

OoP 0OC MA-MO MA_ | " t_1°
MO

4 suppose that the incircle of AABC is tangent to the sides AB, BC, CA
at points P, Q, R, respectively. Prove the following inequality:

BC n CA n AB > 6

PQ QR RP —
Solved by Mohammed Aassila, Strasbourg, France; and Miguel Amengual

Covas, Cala Figuera, Mallorca, Spain. We present the solution of Amengual
Covas.

We use the standard notation a, b, c for the sides of triangle ABC, and
s for the semiperimeter.
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We have

PQ = 2(S—b)sing = 2(s—b) w
QR = 2(8—c)sin% = 2(s —c) W’
RP = 2(s—a)sing = 2(s—a)/ 0" DE=9

We apply the AM—-GM Inequality and use the above expressions for PQ, QR,
and RP to get

BC CA , AB _s/BC-CA-AB _ , & (abc)?
ﬁ+Q—R+R—P z 3 \ PQ-QR-RP — 3 \/s[(s—a)(s—b)(s—c)]z'

Finally, we use the well-known inequality abc > 8(s — a)(s — b)(s — ¢),
which is equivalent to Euler’s Inequality, to obtain

BC CA
PQ T or

Equality occurs only if A ABC is equilateral.

AB o=
+ﬁ23\/§_6.

5. Answer the following where m is a positive integer.
(a) Prove that if 2m+1 4 1 divides 32™ + 1, then 211 4 1 is a prime.

(b) Is the converse of (a) true?

Comment by Mohammed Aassila, Strasbourg, France.

Part (a) and its converse constitute Pepin’s Test of primality for Fermat
numbers (1877).

—_—— N r—— S ———

The next solutions are to problems of the X National Mathematical
Olympiad of Turkey, given [2006 : 87-88].

2. Two circles are externally tangent to each other at a point A and internally
tangent to a third circle I at points B and C. Let D be the mid-point of the
secant of I" which is tangent to the smaller circles at A. Show that A is the
incentre of the triangle BC D if the centres of the circles are not collinear.

Solution by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain.

Let E and F be the end-points of the diameter of I" which is perpen-
dicular to AD. Since the perpendicular bisector of a chord of a circle is a
diameter of this circle, EF passes through D. The diameters of the smaller
circles through A are perpendicular to AD and hence are parallel to EF.
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Therefore points B, A, and F are collinear, and C, A, and E are collinear.
(Proof: (1) Proposition 1 of the book of Lemmas of Archimedes states: “two
circles touch at P and if TU, VW be parallel diameters in them, PUW is
a right line”. (2) Points A and B are corresponding points in the inversion
centred at F with the power of the inversion equal to FD - FE, and points A
and C are corresponding points in the inversion centred at F' with the power
of the inversion equal to ED - EF.)

Let B’ and C’ be the reflections of B and C, respectively, across EF.
Then B’ and C’ lie on I'. Since BB’C’C is an isosceles trapezoid, BC’ and
B’C intersect at D. Thus,

/CBA = /CBF = /CEF = /FBC’' = /ABD
and /ACB = /ECB = /EFB = /B'CE = /DCA,

making A the incentre of triangle ABC.

5. In an acute triangle ABC with |[BC| < |AC| < |AB)|, the points D on
side AB and E on side AC satisfy the condition |BD| = |BC| = |CE|.
Show that the circumradius of the triangle ADE is equal to the distance
between the incentre and the circumcentre of the triangle ABC.

Solved by Michel Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT,
USA; and D.]. Smeenk, Zaltbommel, the Netherlands. We give Smeenk’s
solution.

Let O be the circumcentre of AABC and I its incentre. Let the projec-
tions of O and I onto AC be O5 and I, respectively, and let the projections
of O and I onto AB be O3 and I3, respectively. Let the projections of O
onto I, and II3 be D, and E;, respectively.
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We have

OD]_ = 02I2 = %(C — a) = %AD
and
OEl = 03[3 = %(b — a) = %AE -

Also, /D,OE, = /DAE. Hence,
AOD, E; is similar to AADE, and
the scale factor of the similarity is .

2
Since
/0D{I = ZOEiI = 90°,

we see that OI is the diameter of the
circumcircle of AOD; E;. Then OI is
the circumradius of AADE. B

Remark. The points O, E,, D,, and I are concyclic if and only if
/OIE; = /OD,E, = ZADE. Since IE, 1 AB, it follows that OI .. DE.

Next we turn to readers’ solutions to problems given in the April 2007
number of the Corner and the Japan Mathematical Olympiad 2003 given at
[2006 : 149-150].

1. A point P lies in a triangle ABC'. The edge AC meets the line BP at Q,
and AB meets CP at R. Suppose that AR = RB = CP and CQ = PQ.
Find ZBRC.

Solved by Mohammed Aassila, Strasbourg, France; and Miguel Amengual
Covas, Cala Figuera, Mallorca, Spain. We give the solution of Amengual
Covas.

Let S be the second point of intersection of the circumcircles of triangles
BPR and RCA.
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Since B, S, P, and R are concyclic, we have /BSR = /BPR; since
A, R, S, and C are concyclic, /RCA = ZRSA. Then

/BSR = /BPR = /QPC = /PCQ = ZRCA = RSA.

Thus, SR bisects /BSA. Since BR = RA, the angle bisector theorem gives
us BS = SA. Consequently, ZBRS = 90°. Then ZBPS = 90° (because
B, S, P, and R are concyclic).

We have
/CPS = 90° - /ZQPC = 90° — /BSR = /RBS = /ABS
and «ZSCP = /SCR = /SAR = /SAB.

Therefore, triangles ABS and CPS are similar. Since AABS is isosceles
with BS = S A, it follows that ACPS is isosceles with PS = SC. Also,

PS (o) 3AB 1

BS AB  AB 2’
making /S BP = 30° in right triangle PBS. Therefore,
/BRC = /BRS+ /SRC = /BRS+ /SRP
= /ZBRS + /ZSBP = 90° +30° = 120°.

3. Find the greatest real number k such that, for any positive a, b, ¢ with
a? > be,
(a? —bc)? > k(b® — ca)(c? — ab).

Solved by Mohammed Aassila, Strasbourg, France; Michel Bataille, Rouen,
France; and Pierre Bornsztein, Maisons-Laffitte, France. We give Bataille’s
solution.

The greatest k is 4.
First suppose that (a? — bc)?2 > k(b? — ca)(c®? — ab) whenever
a,b,¢c>0anda® > bc. Lett € (0,1). Since 12 > ¢ - t, we have

1 —t*)?% > k{* —t)(t* —1t),

14+t\2
<+>>kz.
t

1+4+t\2
kglim<i) = 4.

t—1 t

Now we will show that (a? — bc)? > 4(b? — ca)(c®> — ab) whenever
a, b, c > 0 and a? > bc. Assume on the contrary that

from which we deduce that

It follows that

(a® — bc)? < 4(b* — ca)(c? — ab) @
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for some positive a, b, ¢ such that a? > bc, and define
f(x) = (b%> — ca)x? + (a® — be)x + (c® — ab) .
From (1), either f(x) > 0 for all real = or f(z) < 0 for all real z. Actually,
the former holds since f(1) = a? + b? + ¢? — ab — bc — ca > 0 (note that
a = b = cis excluded by a? > be, and so a? 4 b2 + ¢ > ab + bc + ca).
It follows that b — ca is positive. Now, write

f(x) = (bx —c)®> — ag(x) — z(a® — bc),

where g(x) = cx? — 2ax + b. Since a®? — bc > 0 and

c c(c? — ab) + b(b? — ac
S () et —ab) £be?—ac)

b b2
(since ¢? — ab has the same sign as b2 — ca by (1)), we have f (%) < 0,
a contradiction. This completes the proof.

_—_—m NS —e————

Next we look at solutions to problems of the Hungarian Mathematical
Olympiad 2002-2003 First Round given at [2006 : 150].

1.4 rectangular brick has volume V = x cm3, and surface area § = y cm?.
Find the minimal volume for which z = 10y.

Solution by Houda Anoun, Bordeaux, France.

Let a, b, and c be the dimensions of the brick. Then * = abc and
y = 2a® + 2b? + 2¢2. By the AM-GM Inequality, we have

23 = (@R < TSy
- 3 6

When =z = 10y, we get 2/3 < %; that is, £ > 603 = 216000. Moreover,

when a = b = ¢ = 60 we have x = 10y = 216000. Hence, the minimal
volume for which z = 10y is 216000.

3. Let ABC be a triangle. We drop a perpendicular from A to the internal
bisectors starting from B and C, their feet being A; and A,. In the same
way we define B;, B, and C;, C5. Prove that

2(A1As + B1By + C1C;) = AB+ BC +CA.
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Solution by Michel Bataille, Rouen, France.
Let I be the incentre of AABC'. Then,

w B A+C A

/LBAA;, = —— — = — = /BAI,
2 2 2 2
x C A+ B A

/CAA, = ——— = > — = LCAI.
2 2 2 2

Thus, A; and A, are on opposite sides of the bisector AI. Moreover,
A B) . C
2 2

2

™ 7T
LITAA, = — — LJATA, = — — (
2 2
(since ZAIA; = w — ZAIB) and similarly, /ZTAA; = g It follows that

C B
TA; = Alsin (E) and JTA; = AIlsin (5) . ¢))
With the familiar notations a = BC, b = C A, and ¢ = AB, we also have
B C
AA; = csin (E) and AA, = bsin (E) . 2

Now, observe that A, A,, I, and A; are (in this order) on the circle with
diameter AI. Ptolemy’s Theorem gives A; A3 AT = TAy-AA;+TA;-AA,,
from which, using (1) and (2), we get

B C
A; A, = csin? <2) + bsin? (2> .

There are analogous results for B; B, and C;C>. Now we have
2(A1Az + B1B; + C1C3)
C A B
= 2(a + b)sin® <2) + 2(b + ¢) sin? <2> + 2(c + a) sin? <2)

= (a4+b)(1—-cosC)+ (b+c)(1 —cos A) + (c+ a)(1cos B)

= 2(a+b+c)— [(ccosB+bcosC)
+(acosC’+ccosA)+(acosB+bcosA)]

= 2(a+b+c)—(a+b+c¢c) = a+b+c = AB+ BC+CA.

_—_—m NS —e————

Next we look at solutions for the Hungarian Mathematical Olympiad
2002-2003, Final Round given at [2006 : 151].

2. We colour the vertices of a 2003-gon with red, blue, and green such
that neighbours cannot have the same colour. In how many ways can we
accomplish this?



162

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Consider the graph whose vertices are the vertices of the 2003-gon and
whose edges are the edges of the 2003—gon. This graph is the cycle Czgo3,
and the problem is to determine the number of its proper colourings.

It is a classical exercise ([1], [2]) to prove that, more generally, the
number of proper colourings of C,, with g colours is

Pe,(q) = (g—1D)"+(-1)"(¢—1)
(called the chromatic polynomial of C,,). In particular, Pe,, , (3) = 22003 —2.
References

[1] L. Lovasz, Combinatorial problems and exercises, North-Holland,
exercise 9-39.

[2] 1. Tomescu, Problems in combinatorics and graph theory, Wiley,
exercise 10-16.

3. Lett be a fixed positive integer. Let f;(n) denote the number of integers

ksuchthat1 < k < n and (’:) isodd. (If 1 < k < t, then (’:) = 0.) Prove
that if n is a sufficiently great power of 2, then f tfln) = %, where 7 is an

integer determined by ¢ and independent of n.
Solution by Pierre Bornsztein, Maisons-Laffitte, France.

P )
Letn = 2P with 2P > 2t. Lett = > t;2°, where ¢; € {0, 1} for each :.
1=0
Note that this is the binary expansion of ¢ except that ¢; can be zero for some

i=p,p—1,.... Let r be the number of 7 such that t;, = 1. Then r is the
number of 1s in the binary expansion of ¢; thus, r is clearly independent of n.

p )
Forl1 < k < mn,letk = > k;2*, where k; € {0, 1} for each 7. Recall

=0
Lucas’ Theorem (see [1]), which states that

(}) = 121 (}') moa2).

l; is odd if and only if k; > t; for each <. Therefore, <l;> is odd if
and only if k; = 1 when ¢; = 1, and k; can be either 0 or 1 otherwise. It
follows from the definition of r that there are exactly 2P—" integers k such

Thus,

that 1 < k < n and <l;> is odd (note that » > 1 since ¢ > 0, which ensures

that at least one of the k;s is non-zero, so that k£ > 1). Then

ft(n) _ 2P—T _ 1

n 2P ?
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References

[1] T. Andreescu, R. Gelca, Mathematical Olympiad Challenges, Birk-
hauser, p. 84.

—_— N~ S O ————

To complete this number of the Corner, we look at solutions to the 2002
Kiirschak Competition given at [2006 : 151].

2. The Fibonacci sequence is defined by the following recursion: f; = fo =1
and f,, = f_1 + fn_2 for n > 2. Suppose that the positive integers a and

b satisfy:
min{ fn 'fn+1} < g < max{ In ’.fn—l—l} )
.fn—l .fn b fn—l .fn

Prove that b > f,4+1.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

The statement is false, as we can see by choosingn = 2anda = b = 1.
The correct statement is the one with strict inequalities:

. fn fn+1 a fn .fn—|—1
mm{fn_l' Fu } <% < max{fn_l’ A }

Lemma 1. Let x, y, 2, t, a, and b be positive integers such that yz — zt = 1
X a z
and " <3 <% Thenb > y + ¢t.

Proof: Since xb < ay and all the numbers are integers, we deduce that
xb < ay — 1. Similarly, ta < bz — 1. Therefore,

teb < tlay—1) = tay—t < (bz—1)y—t = bzy— (y+1),
which gives y + t < b(yz — tx) = b. |
Lemma 2. For each n > 1, we have f,,11fn—1 — ffl =(-1)".

Proof: The proof is by induction on n.

We have f3f; — f2 =2-1—12 = (—1)2. Hence, the result is true for
n = 2.

Assume that the result holds for some given n > 1. Then

fri2fn — f721+1 = (fay1+ fo)fn — frs1(fn + fr-1)
= —(fng1fn-1—f2) = —(-D)" = (—1)**H,
which completes the induction. ]

Now assume that

. .fn .fn+1} g { .fn .fn—i—l}
mm{fn_l' fm ) S8 SN T S
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Case 1. n is even.

From Lemma 2, we have fn,y1fn—1 — f2 = 1 > 0, and therefore,
frnir 5 Jno oy
—2™ _ Thus,
fn - fn—l f f
n a n
< = o< it
f'n,—l b .f'n,

Then, from Lemma 1, we have b > f,, + fn—1 = fn+1, as desired.
Case 2. n is odd.
Arguing as in Case 1, we obtain

n a n
frnt1 < 2 < f Y
fn b fn—l

and the desired conclusion follows once again from Lemma 1.

3. Prove that one can distribute all the sides and diagonals of a convex
3"—gon into groups of three segments such that in each group the three
segments form a triangle.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

We shall prove that the result holds for any convex 3k—gon, where k is
an odd integer.

LetA,,..., Ay, By,..., B, Cq, ..., Cy be the vertices of the 3k—gon,
in any order. Since k is odd, it follows that 2 is invertible modulo k. Let
% be its inverse. All subscripts are considered modulo k.

Note that for 1 < i < j < k, we have (i + j) # ¢ (mod k) and
3(i+ j) #Z j (mod k). Moreover, for a given i and m # i (mod k), there
exists a unique j # ¢ (mod k) such that m = (i + j) (mod k).

For 1 < ¢ < k, we form the triangles A;B;C;; for1 < 1 < 57 < k,
we form the triangles AiAjB%(iH), BiBjC%(Hj), and CiCjA%(iH). Now
a straightforward verification shows that these triangles use each side and
diagonal of the 3k—gon exactly once, as desired.

—_— N r———

The backlog of solutions is now cleared. Please send me your nice
solutions and generalizations soon for use in the Corner.
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BOOK REVIEW
John Grant McLoughlin

Mathematical Journeys

By Peter D. Schumer, published by the Wiley InterScience, 2004.

ISBN 0-471-22066-3, paperback, 199 pages, CDN$70.99.

Reviewed by Georg Gunther, Sir Wilfred Grenfell College, Memorial
University of Newfoundland, Corner Brook, NL.

The most common question that non-mathematicians have for
mathematicians is “what is it you guys actually do?” This delightful book
provides an answer to this question, illustrating the vastness of the subject,
the elegance and beauty of the kinds of reasoning that define mathematics,
and the intrinsic fascination of the kinds of problems that have driven the
development of this discipline for millennia.

Peter Schumer is an award-winning professor of mathematics at
Middlebury College in Vermont. This book grew out of a lecture series given
within the context of a math seminar.

Whether you are a professional mathematician, an educator, or a
student who is interested and wants to learn more, Mathematical Journeys
has something of value to offer. The sixteen chapters cover a broad spectrum:
number theory, combinatorics, geometry, graph theory—all presented with
a deft touch and a clear awareness of an ever-present historical context.

In some of the chapters, the author presents a number of problems and
lets the necessary mathematics develop naturally. Here is an example taken
from Chapter 2 (The Green Chicken Contest): Show that it is impossible to
weight two coins such that the probability of the three outcomes, two heads,
a tail and a head, or two tails, are equally likely. The readers are invited to
solve this problem on their own; however, having stated the problem, the
author gives a brief discussion of the relevant mathematics (in this case, some
elementary probability theory) and then provides an elementary solution.

Other chapters single out and develop one particular mathematical idea.
For example, Chapter 6 (The Harmonic Series . . . and Less) gives a beautiful
introduction to the thorny issues surrounding infinite series and the per-
plexing questions of convergence and divergence, all developed simply and
systematically, with numerous historical references.

All the chapters conclude with a selection of interesting and challenging
problems. An appendix provides comments and solutions to these problems.
For readers interested in digging deeper, the author has included a brief but
comprehensive bibliography.

This book should appeal to a wide audience. High-school students
should be able to follow the exposition. Teachers at all levels—high school,
college, or university—will be able to use this volume as a source of problems
or undergraduate research projects. Finally, students wishing to hone their
problem-solving skills will find much here to delight them.
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Butterfly Metamorphosis

Andy Liu

The Butterfly Theorem is a result which has acquired cult status. For
two important surveys, see [1] and [5]. Much of this is later repeated in
[3]. The setting of the Butterfly Theorem involves three concurrent chords
in a circle.

Butterfly Theorem. Let PQ, AB, and CD be D

three chords of a circle concurrent at a point

M, with A and D on one side of PQ and B A
and C on the other side. If PM = QM, then

XM = Y M, where X and Y are the points

of intersection of PQ with AC and BD,

. P Q
respectively.

C B
Our metamorphosis changes the setting to three concurrent cevians in

a triangle. We will use techniques developed below to give a simple proof of
the Butterfly Theorem.

Theorem. Let AD, BE, and CF be three concurrent cevians in AABC.
(a) First Metamorphosis: If /ADB = Z/ADC, then Z/ADF = /ADE.

(b) Second Metamorphosis: If /DAB = /DAC, then /DAX = /DAY,
where X is the point of intersection of FD and BE, and Y is the point
of intersection of ED and CF.

A

B D C
€) (b)

The condition ZADB = ZADC in part () is, of course, just a clumsy
way of saying that AD is an altitude. However, stating it this way high-
lights the relationship of this result to the Butterfly Theorem. This was, for
instance, not observed in [4].

Proof: Our approach here is by symmetry.
(a) We fold ZBDC along its bisector AD, so that the image C’ of C
lies on BD and the image E’ of E lies on AC’. The desired result is now

Copyright © 2007 Canadian Mathematical Society
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equivalent to D, E’, and F being collinear. By Ceva’s Theorem, we have

BD CE AF . BD BD 4. CFE C'E’

=— . =— .=— = 1. Since = = — while == = =—=-, we have
DC FEFA FB DC DcC’ EA E’A

BD C'E'’ AF

. . Z— = —1. By the converse of Menelaus’ Theorem, D, E’, and

DC’ E'A FB
F are indeed collinear.
A

B c’ D C

@ (b)
(b) Let K be the point of concurrency of AD, BE, and CF. This time,
we fold ZBAC along its bisector AD, so that the image C’ of C and the
image E’ of E lie on AB, while the image Y’ of Y is the point of intersection

of DE’ and KC’. The desired result is now equivalent to A, X, and Y’ being
collinear. By Menelaus’ Theorem, we have

EK BC DY _ BK FA CD _ |
KB CD YE ' KE AC DB '
C’I(FXDB_1 FKC’Dm_1
KF XD BC ' KC DB AF '
Multiplication and cancellation yields
FX DY EA CD BA _
XD YE AC DB AF
) BA BD
Because AD bisects ZC AB, we have ic = Do It follows that
EA CD BA  FA
AC DB AF = AF'’

S —

so that £X . DY A _ —1. By the converse of Menelaus’ Theorem,
XD Y'E' AF

A, X, and Y’ are collinear.

The First Metamorphosis later became Problem 5 of the 1994 Canadian
Mathematical Olympiad. Our approach is different from all known proofs.

The Second Metamorphosis appeared as Problem 6 in the Spring 2006
Senior Advanced Level Paper of the International Mathematics of the Towns.
Our approach is different from the official solution provided.
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The approaches we have used so far provide a plausible motivation to
perhaps the simplest proof of the Butterfly Theorem. We give the argument
in [2] (repeated in [1]) in this light.

We fold PQ along its perpen- D’ D
dicular bisector so that the image D’
of D is the point of intersection of
the circle and the line through D par- A
allel to PQ. What we want to prove M
isthat X coincides with the image Y’ l

of Y. This will follow if we can prove
that triangles DMY and D’M X are

congruent. P\ X Y /Q
We have DM = D’M . Hence, 5

C
/DMY = /MDD’ = /MD'D = /D'MX .

We will now prove that Z/MDY = /MD’X. Since ACBD is a cyclic
quadrilateral, /MDY = ZCAB. We will have /CAB = /MD’X if
we can prove that AD’M X is also a cyclic quadrilateral. Since ACDD’
is cyclic, ZD'AX + ZM DD’ = 180°. However, we have already proved
that ZM DD’ = /D'M X, so that /D’AX + Z/D’M X = 180° too. Hence,
AD’'M X is indeed cyclic, and it follows that M X = MY

Acknowledgment. The author would like to thank the anonymous referee for
some critical comments and useful references.
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 October 2007.
An asterisk (x) after a number indicates that a problem was proposed without a
solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8§,
French will precede English. In the solutions’ section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

—_—— N r—— S ———

3226. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, MI, USA.

Let ABC be a triangle. Let S = ) cos Aad P = I] cos 4

cyclic cyclic 2’
Prove that
S A B C
5 < avomx e s 2. e )
€) 7 = 2v/3 max sec o, sec -, sec o (;
(b) s > 4max{sec2 _C,seczA_B,seczc_A}.
P 4 4

3227. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, M1, USA.

Let a € [0, 1] and define

S CULSHE IS DN

n

oo
where ¢ is the Riemann Zeta Function, defined by ¢(k) = 1%' Prove that
p=1

lim =, =

n—oo e, ifa=1.

{1, if o € [0,1),

3228. Proposed by Mihaly Bencze, Brasov, Romania.
For z € (0, %), prove that

(n+1)! ( x )"—1 < (w)”—l n!
2 ﬁ (k 4 cos x) ~ \sinz S \2 ﬁ (k + cosz)
k=2 k=2
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3229. Proposed by Mihaly Bencze, Brasov, Romania.

(a) Let = and y be positive real numbers, and let n be a positive integer.

Prove that
n 1 n n—i (n)
@E+"Y e 2 n+1+2Y > L > (n41)2
k=0 (k)w Y i=1 k=0 (k+i)
(b)* Let =, x2, ..., & be positive real numbers, and let n be a positive
integer. Determine the minimum value of
T PIEREE T
(T + @2+ @)™ Y Vi s i
irdetig=n 1L Ty Ty
i1, ..., i >0

3230. Proposed by Mihaly Bencze, Brasov, Romania.

Let a, =, and y be positive real numbers. Prove that
(@t + x4+ y) (v +y +2) (22T + (2% + Dy) (v* T + (v* + V=)
> (2y)*(e+ vEy+y)".

3231%. Proposed by Ignotus, Tauramena, Casanare, Colombia.

(a) A flea lives on the real number line at the number 1. One fine day
it decides to take an n—day vacation. On the first day it jumps forward one
unit landing at the number 2. Thereafter, for the remaining n — 1 days, it
jumps forward a number of units of its choice, as long as the number of units
is a proper divisor of the number it is currently visiting. A sample 11-day
vacation is

1,2, 3,4,6,9, 12, 15, 20, 30, 45, 60.

What is the furthest away from home the flea can get during its n—day
vacation? Note that the 11-day vacation above does not get the flea as far
as possible; here is one that gets the flea further:

1, 2, 3,4,6,9, 12, 18, 27, 36, 54, 81.

(b) Suppose the flea wishes to visit, under the same rules as in (a), a
certain number n. What is the least number, V' (n), of vacation days it will
need to get there? For example, here is a scheme to get the flea to the number
100 in 13 days:

1,2, 3,4,6,9, 12, 18, 27, 36, 54, 72, 96, 100.

3232. Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let P be a point in the interior of Z/QOR. Find the segment AB of
minimum length which contains P with A on the ray OQ and B on the
ray OR.



171

3233. Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let A; A> A3 be a triangle, and let P be an interior point. The cevian
A, P intersects the opposite side at A/ for 1 < ¢ < 3. If [XY Z] denotes the
area of triangle XY Z, set A; = [PA;A/], Ay, = [PA3A}], As = [PA, Af],
and A = [A; A3 A3]. Find the locus of P if A; + A, + Az = L A.

3234, Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let ABC be an equilateral triangle, and let P be an interior point. The
lines AP, BP, and C P intersect the opposite sides at the points A’, B’, and
C’, respectively. Determine the position of the point P if

AC'+CB'+BA' = A'/C+C'B+ B’A.

3235. Proposed by Geoffrey A. Kandall, Hamden, CT, USA.

Let ABC be a triangle, and let A;, By, C; be points on the sides BC,
C A, AB, respectively, such that

BA1 CBl ACl

AIC B1A ClB
_ _ _ _ K +Ek+1
Let a = AA]_, ﬂ = BB]_, Y = CC]_, and A= W. Prove that

(a) a2 _'_162 _'_,)/2 — A(a2 + b2 + CZ);
(b) a262 + 5272 + "}’2(}2 — A2 (a2b2 + b262 + 62(12);
(c) a4+[84+74 — A2(a4+b4+c4)‘

3236. Proposed by Todor Mitev, University of Rousse, Rousse, Bulgaria.

Let a, b, c be positive real numbers such that abc = 1. Prove that
1 1 1 a b c
a+btc+—-—+-+- < 3+-+-+—.
a b c b c a

3237. Proposed by Michel Bataille, Rouen, France.
Find all integers n such that

™m — 12 2n — 14 24n

2n + 3n + 6n

= 1.

3238. Proposed by Michel Bataille, Rouen, France.

Let 7 = DBC be a triangle with DB = DC, and let A be a variable
point in the interior of 7. The perpendiculars to BC through the mid-points
of AB and AC meet DB and DC at P and Q, respectively. Find the locus
of A for which P, A, and Q are collinear.



172

3226. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, MI, E-U.

Soit un triangle ABC. Soit S = )  cos Adetp = Il cos 4
cyclique cyclique 2
Montrer que

S A B C
P < { 2 2 7} ;
(a) B 2v/3 max < sec 5 Sec 5, sec o5
(b) —1‘5; > 4max {sec2 =~ sec? ; , sec? ; }

3227. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, MI, E-U.

Soit a € [0, 1]. On définit

o (C(2)+“'+C(n+1)>n“'

n

oo
ou ¢ est la fonction z&ta de Riemann, defini par (k) = > z%' Montrer que
p=1

. 1, sia €]0,1),
lim z, = .
n— oo e, sia=1.

3228. Proposé par Mihily Bencze, Brasov, Roumanie.
Pour z € (0, %), montrer que

e ()

2 J] (k + cosx) ~ \sinz
k=2

g n!

(5> B T (k + cosz)
k=2

<

3229. Proposé par Mihily Bencze, Brasov, Roumanie.

(a) Soit = et y deux nombres réels positifs, et soit n un entier positif.
Montrer que

n 1 n n—i (n)
@+y)" ) g 212y Y R 2 (nt 1)
k=0 (k)w Y i=1 k=0 (k+i
(b)* Soit x1, x2, . .., xx k nombres réels positifs, et soit n un entier positif.
Déterminer la valeur minimale de
T RERE TN
(w1 + 22+ +xp)" Z 101 02 ik "
P S (3 Tk S

il,...,ikZO
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3230. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit a, x et y trois nombres réels positifs. Montrer que
(@ +z+y) (¥ +y+2) (@ + (@ + Dy) (v + (¥ + 1)2)
> (2y)*(@+vay+y)".

3231 . Proposé par Ignotus, Tauramena, Casanare, La Colombie.

(a) On imagine une puce vivant sur la droite réelle au nombre 1. Un
beau jour, elle décide de prendre n jours de vacances. Pour son premier jour,
elle saute vers la droite pour se poser au nombre 2. Pour les n — 1 jours
suivants, elle continue 3 sauter vers la droite d’'un nombre d’unités de son
choix, pourvu que ce nombre d’unités soit un diviseur strict du nombre ot
elle séjourne présentement. Voici un exemple possible pour des vacances de
11 jours :

1,2, 3, 4,69, 12, 15, 20, 30, 45, 60.

Quel est I’éloignement maximal que peut atteindre la puce pendant n
jours de vacances? 1l faut noter que I’exemple ci-dessus ne répond pas a la
question, car voici un meilleur choix, toujours pour 11 jours de vacances :

1, 2, 3,4,6,9, 12, 18, 27, 36, 54, 81.

(b) Supposons que, aux mémes conditions qu’en (a), la puce veuille
visiter un certain nombre n. Quel est le plus petit nombre V(n) de jours
de vacances nécessaires pour qu’elle puisse s’y rendre ? Par exemple, voici le
plan 3 suivre pour se rendre au nombre 100 en 13 jours :

1,2, 3,4,6,9, 12, 18, 27, 36, 54, 72, 96, 100.

3232. Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit P un point intérieur de I'angle QOR. Trouver le segment AB, de
longueur minimale, et qui contienne P, avec A sur le rayon OQ et B sur le
rayon OR.

3233. Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit P un pointintérieur d'un triangle A; A3 Az. La cévienne A; P coupe
le coté opposé en A/ pour 1 < i < 3. Si [XY Z] désigne I'aire du triangle
XY Z, posons A; = [PA3A]], Ay, = [PA3A}], A3 = [PA;A}] et
A = [A; Ax A3]. Trouver le lieu des points P tels que A; + Az + Az = % A.

3234. Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit P un point intérieur d’un triangle équilatéral ABC. Les droites
AP, BP et CP coupent respectivement les cotés opposés aux points A’, B’
et C’. Déterminer la position du point P si on a

AC'+CB'+BA' = A'/C+C'B+ B’A.



174

3235. Proposé par Geoffrey A. Kandall, Hamden, CT, E-U.

Soit respectivement A;, B; et C; des points sur les cotés BC, CA
et AB d'un triangle ABC, de sorte que

BA1 CBl ACl

AIC B1A ClB
. . . . kKP4 Ek+1
Soita = AA;,3=BB;,y=CC et = NCESIER Montrer que

(@ o® + B2+ 7% = A(a? + b 4 ?);
(b) a2ﬂ2 _|_ ﬂZ,YZ _|_ 72a2 — )\2 (a2b2 + bZC2 + 62(12);
(c) a4 +/84 +,74 — A2(a4 +b4 _|_ C4).
3236. Proposé par Todor Mitev, Université de Rousse, Rousse, Bulgarie.

Soit a, b et c trois nombres réels positifs tels que abc = 1. Montrer
que

1 1 1 a b c
at+btect+—+-+-<34+-+-4+—.
a b c b c a

3237. Proposé par Michel Bataille, Rouen, France.

Trouver tous les entiers n tels que

= 1.

™m — 12 2n — 14 24n
2m + 3n + 6™

3238. Proposé par Michel Bataille, Rouen, France.

Soit T = DBC un triangle avec DB = DC, et soit A un point variable
dans lI'intérieur de 7. Les perpendiculaires 3 BC passant par les milieux de
AB et de AC coupent respectivement DB et DC en P et Q. Trouver le lieu
de A pour lequel P, A et Q sont colinéaires.

NN —
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

We apologize for omitting the name of Peter Y. Woo, Biola University, La
Mirada, CA, USA from the list of solvers of 3102.

—_— N~ S ————

3125. [2006 : 111] Proposed by Walther Janous, Ursulinengymnasium,
Innsbruck, Austria.

Let mq, he, and w, denote the lengths of the median, the altitude, and
the internal angle bisector, repectively, to side a in AABC'. Define my, m,,
hy, he, wy, and w, similarly. Let R be circumradius of AABC.

(a) Show that

2 2
Zb;{c 12R.

cyclic e

IA

(b) Show that

2 2
Zb}jc > 12R.

cyclic

(c)x Determine the range of

1 b2 + 2
EZ we

cyclic

Solution by C.R. Pranesachar, Indian Institute of Science, Bangalore, India,
modified by the editor.

(a) Let the median through A meet BC at its mid-point D and meet
the circumcircle of triangle ABC at the point K, as shown in the diagram.

By Apollonius’ Theorem,
A

b>+c> = 2(AD? 4 BD?)

2(AD? + BD - DC)

2(AD? + AD - DK)

2AD - (AD + DK)

2m, - AK H# H
2mg - 2R = 4Rm, .

IN

b2 + 2 b? + 2

Thus, < 4R; whence,

a cyclic a

< 3(4R) = 12R.
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and R = A[ABC] we obtain

2 2 2 2
b+ ¢ :4R<b —}—c) > 4R,

(b) Since h, = w abe

ha 2be

b2 + 2

which implies that >

cyclic a

1 b2 + ¢?
(O Letsy == >
b R cyclic Wa

> 3(4R) = 12R.

. We will prove that the range of s,, is (4, o).

2be | cos é, we obtain

Using the formula w, =
b+c 2

b2 + ¢? b+c (b2+c2) > b+c
Rw, Rcos%

2bc R cos %

Since b = 2R sin B and ¢ = 2R sin C (by the extended Law of Sines), we get
B+C B-C

2 2 . . 4 sin cos —
bR+c > 2(sin B +ASmC) = 2 Y 2 = 4cosB ¢ .
Wa cos cos -
Hence,
B-C
Sy > 4 Z cos —— .

cyclic
Since cosx > 1 — 2z /w for 0 < = < 7 /2, we have

ZCOSB;C = Zcosw > Z(l—%|B—C|).

cyclic cyclic cyclic

Without loss of generality, assume that C < B < A. Then

S cosBoC > 3-1(B-C-C+A+A-B)

= 3-24-0c) >3-27 =1.
™ T

Thus s, > 4.
Takinga = 2and b = ¢ = = + 1, where z € (0, 00), we obtain

(2 4+ 2z + 5)(x + 3)V2=zx

(x+1)3 '
This is a continuous function of « on (0, o) and has the limits 4 and oo as x
tends to 0 and oo, respectively. Therefore, the range of s,, is (4, 00).

Also solved by ARKADY ALT, San Jose, CA, USA (parts (a) and (b)); SEFKET
ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and Herzegovina (parts (a) and (b));
MICHEL BATAILLE, Rouen, France (parts (a) and (b)); FRANCISCO BELLOT ROSADO,

Sw = 4+
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1.B. Emilio Ferrari, Valladolid, Spain (parts (a) and (b)); MANUEL BENITO, OSCAR CIAURRI,
and EMILIO FERNANDEZ, Logrofio, Spain (parts (a), (b), and (c)); DRAGOLJUB MILOSEVIC
and G. MILANOVAC, Serbia (part (b) only); VEDULA N. MURTY, Dover, PA, USA (parts (a) and
(b)); JOEL SCHLOSBERG, Bayside, NY, USA (part (b) only); PETER Y. WOO, Biola University,
La Mirada, CA, USA (parts (a) and (b)); LI ZHOU, Polk Community College, Winter Haven, FL,
USA (parts (a) and (b)); and the proposer (parts (a) and (b)). There were also three incomplete
solutions to part (c) of the problem.

Pranesachar’s solution contained some additional detail which has not been included in

2 2
the modified version above. He proved that the range of the sum % DR ,;’;c in part (a) is

2, .2 clic
(0,12] and the range of & 3 bwL in part (b) is [12, co). o
cyclic

B e WS D W

3126. [2006 : 171, 174; corrected 2006 : 303, 306] Proposed by Hidetoshi
Fukugawa, Kani, Gifu, Japan.

Let D be any point on the side BC of triangle ABC. Let I'; and I'y
be the incircles of AABD and AACD, respectively. Let £ be the common
external tangent to I'; and I'; which is different from BC. If P is the point
of intersection of AD and ¢, show that 2AP = AB + AC — BC.

Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Suppose that I'; is tangent to
BC, AB, ¢, and AD, at E, G, I, and
K, respectively, and that I', is tangent
to BC, AC, ¢, and AD, at F, H, J,
and L, respectively. Then,

A

AB + AC — BC

AG+ AH — EF

AK + AL —-1J

2AP + PK + PL — PI — PJ
2AP.

Also solved by CLAUDIO ARCONCHER, Jundiai, Brazil; SEFKET ARSLANAGIC,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, France;
FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain; APOSTOLIS K. DEMIS,
Varvakeio High School, Athens, Greece; IAN JUNE L. GARCES, Ateneo de Manila University,
The Phjlippjnes; JOHN G. HEUVER, Grande Prairie, AB; GEOFFREY A. KANDALL, Hamden,
CT, USA; VACLAV KONECNYY, Big Rapids, MI, USA; TAICHI MAEKAWA, Takatsuki City, Osaka,
Japan; JOEL SCHLOSBERG, Bayside, NY, USA; BOB SERKEY, Leonia, N], USA; D.]. SMEENK,
Zaltbommel, the Netherlands; PETER Y. WOO, Biola University, La Mirada, CA, USA; BIN
ZHAOQ, student, YunYuan HuaZhong University of Technology and Science, Wuhan, Hubei,
China; and the proposer.

This problem generated many different solutions, but Zhou’s was the neatest. Konecny
noted that a very similar problem was in the 20th USA Mathematical Olympiad. Three read-
ers did not see the printed correction to the problem and simply pointed out that there was
something wrong.

E D F o

B WSS L W
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3127. [2004—075] Proposed by Juan-Bosco Romero Marquez, Universidad
de Valladolid, Valladolid, Spain.

Let H be the foot of the altitude from A to BC, where BC is the
longest side of AABC. Let R, R;, and R, be the circumradii of AABC,
ANABH, and AACH, respectively. Similarly, let r, 1, 75 be the inradii of
these triangles. Prove that

(a) R2+ R2— R?is positive, negative, or zero according as angle A is acute,
obtuse, or right-angled.

(b) r?2+r2—r?is positive, negative, or zero according as angle A is obtuse,
acute, or right-angled.

Solution by Michel Bataille, Rouen, France.

(a) Let A = R? + R2 — R?. Since ABH and ACH are right triangles,
we have Ry = 1c = RsinC and R, = ;b = Rsin B (using the familiar
notation for AABC). Then

A = R3(sin?C +sin® B—1) = R?(sin? B — cos? C)

= R?(sinB —sin(Z — C)) (sinB +sin(Z — C)).

Using the identity (sin @ — sin 3)(sin & + sin 3) = sin(a — B) sin(a + 3),
we obtain

A = R? sin(B +C — %) sin(B —C + %) = R2?cos Acos(B —C).
Since A is the largest angle of AABC, angles B and C are acute; hence,
cos(B —C) > 0. Thus, A has the same sign as cos A, and the result follows.

(b) Let 6 = r2 + r2 — r? and h = AH. Since the inradius equals the
semiperimeter minus the hypotenuse for right triangles, we calculate

§ = Y(h+ HB—c)®>+ 3(h+ HC — b)%? —r2.

Since H is between B and C, we have HB+ HC = a. Also, HB = ccos B,
HC =bcosC, and 2h%? + HB? + HC? = b? + ¢?; hence,

6 = 3b*(1—cosC) + 1c*(1 —cosB) — th(b+c—a) — 12,

besinAd _ 2”—; and using the Law of Sines, we obtain

Noting that h =

d = 2RZ%sin® B(1 — cos C) + 2R?sin® C(1 — cos B)
— 2R?sin Bsin C(sin B + sin C — sin A) — r2.
Now, using the usual half-angle formulas, along with the identity

sin B+sinC —sinA = 4cos %Asin %B sin%C’
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and the known relation r = 4R sin A sin 1 Bsin C, we obtain
§ = 16RZ?sin? %B sin? %C (cos? %B + cos? %C
1 1 1 .21
— 2cos EA cos 5 B cos EC — sin EA)
= 8R2sin? %B sin? %C (1 + cos A+ cos B + cosC
1 1 1
— 4 cos EA cos ;B cos EC)
= 8R2sin? %B sin? %C(l + cos A+ cos B + cosC
— (sin A + sin B + sin C)) ;
Thus, 6 has the same sign as

0 = (1+cosA—sinA)+ (cos B+ cosC) — (sinB +sinC) .

But
6 = 2cos:A(cosiA—siniA)+2cos(2(B—C))(sintA—cosiA)
= 4 (sin %A—cos %A) sin (§ — %C) sin (Z — %B)

has the same sign as sin ; A — cos ; A. The result follows.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOHN G. HEUVER, Grande
Prairie, AB; JOEL SCHLOSBERG, Bayside, NY, USA (part (a) only); PETER Y. WOO, Biola
University, La Mirada, CA, USA; and the proposer.

In part (a) of the solution above, Bataille uses the trigonometric identity

(sina —sinB)(sina + sinB8) = sin(a — B) sin(a + B),
which is new to this editor. Perhaps we should not tell our students about this one, lest they
jump to the conclusion that there is a universal distributive law sin(a + 8) = sina + sin 3
at work here. Ed Barbeau has made similar observations about this identity in Fallacies, Flaws,
and Flimflam, Mathematical Association of America, 2000, pages 32-33.

Three of the solvers deduced that &’ (in the notation of the featured solution above)
satisfies 8 = (2R + » — s)/R and then obtained the desired connection between the size
of angle A and the sign of &' by a suitable reference: Heuver to page 232 of [D.S. Mitrinovié¢
et al., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 19897; Janous to
item 11.27 in [O. Bottema et al., Geometric Inequalities, Wolters-Noordhoff Publ., Groningen,
1969]; and Romero to problem 1088 [1985 : 289; 1987 : 124-125].

w
3128. Proposed by K.R.S. Sastry, Bangalore, India.

In triangle ABC, we have AB = AC =5, BC = 6. Let E be a point
on AC and F a point on AB such that BE = CF, /ZEBC # /FCB, and
sin® = 5/13, where 6 = ZEBC'. Let H be the point of intersection of BE
and CF, and let K be the point on BC such that HK | BC.

Find the length of HK.

Solution by Roy Barbara, University of Beirut, Beirut, Lebanon.

Let F’ be the mirror image of F in the altitude to BC through A. Let
u=/FCB,w=/ACB, a = Z/AEB, and 8 = ZEBF’. Since 0 # u, we
have F/ # E. Note that ABEF’ is isosceles, since BF' = CF = BE.
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B

From sinf® = 5/13 and cosw = 3/5, we obtain tan® = 5/12 and
tanw = 4/3. We have a = 0 4+ w. Thus, tana = tan(6 + w) = 63/16.
Since tana > 0, we see that « is an acute angle. Thus, E lies between F’
and C (since ABEF' is isosceles). Hence, uy = /FCB = /F'BC = 3+ 6.

Next, since 8 + 2a = = (summing the angles in ABEF"’), we calculate

2016
tan3 = tan(m — 2a) = —tan(2a) = 3713
We then deduce that
253
tanp = tan(B8+60) = 204 °

Since tan 6 = %, tanp = E, and BK + KC = BC = 6, we obtain

KC
HK — 6tanftan pu _ 1265.
tan @ + tan p 676

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern State
University, Joplin, MO, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; WALTHER
JANOUS, Ursulinengymnasium, Innsbruck, Austria; GEOFFREY A. KANDALL, Hamden, CT,
USA; VACLAV KONECNY, Big Rapids, MI, USA; TAICHI MAEKAWA, Takatsuki City, Osaka,
Japan; MICHAEL PARMENTER, Memorial University of Newfoundland, St. John’s, NL; JOEL
SCHLOSBERG, Bayside, NY, USA; BOB SERKEY, Leonia, NJ, USA; D.]. SMEENK, Zalthommel,
the Netherlands; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer. Our
solvers found many different ways to get to the solution. Two submissions were incorrect.

Konecny commented that he expected a “nicer” answer and asked what the value of
tan 6 would have to be to get HK = 2. This editor asks whether there are any pairs of “nice”
numbers for HK and tan 0, leaving the meaning of “nice” to our readers.

B SN D W

3129. [2006 : 172, 174] Proposed by K.R.S. Sastry, Bangalore, India.

In AABC, the adjacent internal trisectors of the angles B and C meet
at the point P, and the adjacent internal trisectors of the angles A and C
meet at the point Q.

Characterize those triangles in which AQ + BP = AB.
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Solution by Roy Barbara, University of Beirut, Beirut, Lebanon, modified by
the editor.

The triangles in which AQ + BP = AB are precisely those with a right
angle at C.

Denote by 3, 33, and 3~ the angles at A, B, and C, respectively, and
by R the circumradius of A ABC. Recall that for any real number 6,

sin30 = sin6(3 —4sin’0) = sinO(1 + 2 cos 26)
. . (T . (T
= 4s1n051n(§—0)s1n(§—|—0) .

These identities will be used without comment.

We have
AB 2R sin 3
- = -s1n - 2R(1 4+ 2cos27). 6]
sin ~y sin ~y
The Law of Sines in A AQC gives
AQ AC _ AC _ 2Rsin3p
siny  sin(a+7v) sin(% — 3) - sin(§ — B)
= 8Rsin,6sin(§ + B) = 4R(cos 3~ cos(% + 2,6'))
= 2R(1-2cos(} +28)). @)
Similarly,
BP
ey = 2R(1—2cos(§—|—2a)) . 3)

Using (1), (2), and (3), we see that AQ + BP = AB if and only if
1—2cos(%+28) +1—2cos(§ +2a) = 1+2cos2v;
that is,
cos 2y — % = —cos(§ + 2a) — cos(§ +20) . (4)
Now we rewrite both sides of (4):
cos2y— 3 = cos2y+cos? = 2cos(E —~)cos(E+7),
— cos(g + Za) — cos(g + 2,8)
= —2cos(a —B)cos(§ +a+ )
= —2cos(a—p3) cos(%" —7) = 2cos(a — B)cos(5 + v) .
Using these expressions in(4), we see that AQ + BP = AB if and only if
cos(5 —v)cos(5 +v) = cos(a—B)cos(§ +7). (5)

If there is a right angle at C (that is, if v = 7%), then both sides of
equation (5) are zero. If C is not a right angle (v # %), then (5) reduces to
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cos | — B3| = cos(Z — ~). In this case (5) is never satisfied, because the
cosine function is injective on [0, 7] and 0 < |[a - B| < a+ B = §F —v < 7.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern
State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens,
Greece; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; PETER Y. WOO, Biola
University, La Mirada, CA, USA; and the proposer.
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3130. [2006 : 172, 174] Proposed by Michel Bataille, Rouen, France.
Let A, B, C be the angles of a triangle. Show that
(cos %A + cos %B + cos %C) (csc %A + csc %B + csc %C)
— (cot A + cot 2B+ cot :1C) > 6v/3.
Essentially the same proof by Sefket Arslanagié¢, University of Sarajevo,
Sarajevo, Bosnia and Herzegovina; Dionne Bailey, Elsie Campbell, and
Charles R. Diminnie, Angelo State University, San Angelo, TX, USA; Walther

Janous, Ursulinengymnasium, Innsbruck, Austria; D. M. MiloSevié, Pranjani,
Yugoslavia; and D.]. Smeenk, Zaltbommel, the Netherlands.

Since A+ B+ C =m,and 0 < A, B, C < w, we have
0 = cosg = cos(%(A + B + C))
_ 1 1 1 14001 <1
= cos EA cos EB cos EC — cos EA sin EB sin EC
. 1 1 .1 o1 « 1 1
— sin EA cos ; Bsin EC — sin EA sin ; B cos EC .
We divide by sin 1 A sin 1 B sin 1C and re-arrange the terms to obtain
1 1 1~ _ 1 1 1
cot §A cot EB cot EC = cot EA + cot §B + cot EC .

Since cot 1 A, cot 2B, and cot 1C are each positive, we apply the AM-GM
Inequality to get

1 1 1 1 1 1
cot ; Acot ;Bcot ;C > 3\3/cot 5Acot ;Bcot ;C,

which implies that

{'/cot %Acot %B cot %C > V3. 6]
By another application of the AM—-GM Inequality, we have
(cos %A + cos %B + cos %C) (csc %A + csc %B + csc %C)
— (cot %A + cot %B + cot %C)
costA+cosiC cosiB+cosiC  cos;A+cosiB

sin %B sin %A sin %C

+

1 1 1 2
s/ cos ;A cos 3B cos ;C B f/ 1 1 1
> 6\/<sin%Asin%Bsin%C = 64/cot ;Acot ;Bcot ;C > 63,
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where we have used (1) to obtain the last inequality. Equality holds if and
only if cot A = cot 1 B = cot C. Since cot ¢ is injective on (0, Z), we see
that equality holds if and only if AABC is equilateral.

Also solved by ARKADY ALT, San Jose, CA, USA; SCOTT BROWN, Auburn University,
Montgomery, AL, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOHN G. HEUVER, Grande
Prairie, AB; KEE-WAI LAU, Hong Kong, China; VEDULA N. MURTY, Dover, PA, USA; PETER
Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College, Winter
Haven, FL, USA; and the proposer.

Janous showed that the proposed inequality is a special case of more general inequalities
for functions f, g : (0,w) — RT satisfying [[ f(A) > X and either [[ g(A) > w or

cyclic cyclic
I1 f(A)g(A) > v. In the first case,
cyclic

( > f(A)> < > g(A)> = f(Ag(A) > (w3,

cyclic cyclic cyclic
and in the second case,

(Z f<A>)<Z a(A)) =Y f(aga) > et/3.

cyclic cyclic cyclic

In both cases, equality holds for equilateral triangles. Janous also noted that the application of
inequalities 2.42, 2.32, 2.12, 2.28 in [1] yields more general inequalities of the form

(Z (COS(A/2))”> ( > (CSC(A/Z))”> — Y (cot(A/2))” > 6-37/2

cyclic cyclic cyclic
for any positive real number p.
References
[1] O. Bottema et al., Geometric Inequalities, Wolters-Noordhoff Publ., Groningen, 1969.
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3131. [2006 : 172, 175] Proposed by Michel Bataille, Rouen, France.

The normal at M to a conic with focus F meets the focal axis at V.
Let H and K be points on M F such that HN | MF and KN 1 MN.
-t =1 (% + 1) and NK = +ab (Where a > b > 0), show that

HN 2 b
KI = (a + b)/2 for some significant point I on M N.

1. Solution by D.]. Smeenk, Zaltbommel, the Netherlands.

One possible position for I is the point where the line M N intersects
the line perpendicular to M K at K: the right triangles HN K and NK1 are
similar; whence, IK/KN = KN/NH, and

vab:-+vVab . a +b
2ab/(a +b) 2

KI =

[ Ed.: We shall see below that the point I is more “significant” than can
be seen from Smeenk’s solution. It is, in fact, the centre of curvature of the
conic at the point M (that is, the centre of the circle whose curvature is the
same as the conic’s at their shared point M).]
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11. Solution for the case of an ellipse by Peter Y. Woo, Biola University, La
Mirada, CA, USA.

We assume that the conic is the ellipse z2/a? + y?/8% = 1; the focus
F is the point (c, 0), where c satisfies c? + 82 = a2. For some value of ¢,
0 <t < m/2, let M be the point (acost,3sint). Using standard calculus,
one determines the radius of curvature at M to be k3/(a3), where

k? = a?sin?t+ B%cos?t.

The slope of the tangent at M is —3 cost/asint, so that the slope of the

normal there must be asint/Bcost. Therefore, M N has the equation
asint

y — Bsint = Beost

(x — acost), or

cost)y — (asint)xr + c%sintcost = 0.
Yy

cZcost

This line meets the z—axis at NV < , 0); whence,

2 2 21,2
MN? = 3%sin?t + (M) = & )
(83 (83
Since the equation of the line M F is y = —(z — ¢)Bsint/(c — acost), the
distance from N to M F is

‘ Bc?sintcost

— Bc sint|
a

NH

N V/B2sin?t + (c — acost)? ’

The square-root term in the denominator simplifies as follows:

32 sin?t + (¢ — acos t)2 = B2 sin?t + ¢2 — 2accost + a? cos? t
= B2sin?t + ¢ — 2accost + (8% + c?) cos? t
= a® —2accost + c*cos’t = (a — ccost)?;

thus, NH = B¢sint/a, and

2 _ 2 2 B%k*  pB%c?sin?t
MH* = MN*—-NH* = o o
B?(a®sin®*t + (a® — ¢®) cos® t) — B%c®sin*t
_ B%*(a® —c®cos®t — c?sin?t) Bt
- a? T az’
Hence,
MH = 3/a @

(which, incidentally, is both the latus rectum of the ellipse and the radius of
curvature at (a, 0)).
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From the similar right triangles MNK and M HN, we see that
MK/MN = MN/MH. Combining this proportion with equations (1) and
(2), we see that
MN? k2
MH ~ o
Finally, from the similar right triangles IM K and NMH,

MK =

MN - MK K®
v = 2 mMar 5
MH aB’

so that I M is the radius of curvature at M, as claimed.

Complete solutions came from APOSTOLIS K. DEMIS, Varvakeio High School, Athens,
Greece; and the proposer.

The solutions of Bataille and Demis used a general form for a conic that produces the
centre of curvature for an arbitrary conic—Bataille’s is based on the latus rectum while Demis’
is based on the eccentricity. We have presented Woo’s solution even though it is valid only for
an ellipse, because it has the virtue of using familiar formulas. The corresponding formulas for
the hyperbola and the parabola may be obtained easily.

This problem provides a simple construction for the centre of curvature of a conic at any
point M that is not on the major axis: Join M to the foci F and F’; call N the point where the
bisector of /ZF M F’ meets FF’. (This is the normal to the conic at M in the case of a parabola,
MF' is taken to be the line through M that is parallel to the axis.) Define K to be the point
where the perpendicular to M N at N meets M F; then I is the point where the perpendicular
to M F at K meets the normal M N. Clearly, the numbers a and b that appear in the problem
are a function of M they are only indirectly related to the lengths of the semi-major and semi-
minor axes that are usually denoted by these letters. The notation seems to have been chosen
by Bataille for its nice relationship to the construction of the point I.

B SN D W

3132. [2006 : 172, 174] Proposed by Mihaly Bencze, Brasov, Romania.

Let F'(n) be the number of ones in the binary expression of the positive
integer n. For example,

F(5) = F (101(3)) = 2,
F(15) = F (1111(3)) = 4

Let Sp = Z n(ni(f)l)' where F¥(n) is defined recursively by F!' = F and
n=1

F¥ = Fo F* 1 fork > 2.
(a) Prove that S; = 21In2.
(b) Prove that 22In2— L < S, <4In2.
(c) Prove that 228 In2 — . < S§3 < 11In2.
(d)* Compute Si.

[ Ed: In this problem, the expression F*(n) means (F(n))k, rather than
the k" iterate of F, as stated above.]
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Solution to part (a) by Walther Janous, Ursulinengymnasium, Innsbruck,
Austria.

For any positive integer n, denote the binary representation of n by

§ zj(n)2j. Then F(n) = § zj(n), Now
j=0 j=0
) N ON _z(n)
S = Y min T Llein T L
—nn+1) n:lj:On(n+1) i ‘ n(n + 1)
oo oo 29-1 1
- ;wz::ouz:: (V291 4+ 27 +u) (2 + 2 +u+1)
- 23 (om L)
S \v2itt 42 w2t 42 42
B ;); (2v+1)29 (2w + 2)27
> 1 & 1 >© 1 > )n 1
- 2 = = 2In2.
Zz Z(21/4-1 2u+2> gz z:: n

Solution to parts (b) and (c) by the proposer.

We have F(2m) = F(m)and F2m +1) =1+ F(2m) = 1 4+ F(m).
Let ag S Sk S b Then

& Fkn) (14 F(m))* ©  Fk(m)
Sk = Z ‘n(n+1) Z (2m+1)(2m+2) + Z 2m(2m + 1)
k—1
) = () Frem
Z , (2m +1)(2m + 2) + Z (2m +1)(2m + 2)
Fk(m) > Fk(2m)
+ Z ', (2m +1)(2m + 2) + Z 2m(2m +1)

k—1 k

oo > FP(m)

B F¥(m) 1 1 p=1 (P>
- ln2+mZ::1 2(2m + 1) (m—l—l +m) + (2m + 1)(2m + 2)

k—
= () Frem
(2m +1)(2m +2)

= In2+ Sk+ Z

Hence,

S FP(m)
sk:21n2+22()z(2m+1)(2m+2) 1)

p=1
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1

, 1
Since Em T DEn T2 < dm(m T 1)’ from (1) we have

k—1 oo

1 k FP(m) 151k
S. < 2In2 4+ — — = < 2In2+4+ - b, .
c<am2eg 3 ()5 < zm2eg 3 (L)

= m(m + 1)

From part (a), we have b; = 21In 2 and, for k = 2, we conclude that

1/2
Sz S 21n2+§<1)b1 = 411’12;

thus, b, = 4In2. For k = 3, we have

S<21213 3 = 11In2
3 n+§ 1+2 - nsz,

which means that b3 = 111n 2.

On the other hand, 1 > 1 for m > 2, and
2m +1)(2m + 2) 5m(m + 1)
from (1) we have

() Z et n

m=2

2
Sk; Z 211’12-'-3

k—1 oo

> oz 2 (5 (5) P A S(1)) 200

= =, m(m + 1) =\ 12
k—1
2 k
+ - Z ( )ap.
5 p=1 p
For k = 2, we conclude from part (a) that

S, > 22— » 4 2(2 18 no_ 1
n2— — 4+ — ag = —In2 - —.
2 = 15 s5\1/) " 5 15

2k — 2
> 2In2—
= 30

Since a; = ¥ 1In2 — L, we have

Ss > 2m2— >4 2 (e, + (3 S U8, . 7
3 = AMETm T \)M T )% = o5 M 25

Part (a) also solved by JOEL SCHLOSBERG, Bayside, NY, USA; and the proposer. Part
(d) remains open.
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3133. [2006 : 172, 175] Proposed by Mihaly Bencze, Brasov, Romania.
Let ABC be any triangle. Show that

1+ 2sinA —cos2A

E; A B-C 3A 3(B—C) =1
cyclic 8 4+ 3 cos (5) cos (T) + cos <7) cos <7)

2
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Composite of almost identical solutions by Michel Bataille, Rouen, France;
and the proposer.

We first make the following observations:

1+ 2sin A —cos2A = 2sin A + 2sin’ A, 1)
reon(£)om (25) = e (A25C) s e (A252)
= cos (ﬂ_220)+cos (ﬂ'—223)
= sinC +sinB, )

2 cos (%) cos (3(32_ C)>

— cos (3(A+B—C)> 1+ cos (3(A+C—B)>

2 2
~ o (3(7r - 2C’)) + cos (3(« - 2B))
2 2
= —sin3C —sin3B. (3)

Using (2), (3), and the formula sin 3z = 3sinz — 4sin® z, we get
8 + 3 cos (%) cos (%) + cos (%) cos (y)
= 8+ %(sinB +sinC) — %(sin3B + sin 3C)
2(4 + sin® B + sin® C) > 2(3+ sin® A + sin® B + sin® C). (4
Let L denote the left side of the inequality in the problem statement.
Using (1) and (4), we obtain
3 (sin A + sin? A)

L < Z .2S3inA —|—.2:in2A . _ cyclic -
oo 2(3 + sin” A + sin” B + sin” C) cyzdjic(l + sin” A)

Hence, it suffices to show that 3 (sin A +sin? A) < 3 (1 +sin® A), which
cyclic cyclic
is equivalent in succession to

> (1+sin® A—sinA —sin®4) > 0,
cyclic
> (1 +sinA)(1—sinA)®> > 0.
cyclic
Since the last inequality is clearly true, our proof is complete.

Also solved by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

From the last inequality in the proof featured above, it is clear that equality cannot hold
in the given inequality. This was explicitly pointed out by Janous, who believes that the best
upper bound X for L is A = (90 4 69+/3) /229 =~ 0.915, attained when A= B = C = 5
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3134. [2006 : 173, 175] Proposed by Mihaly Bencze, Brasov, Romania.

Let O be the circumcentre of AABC. Let D, E, and F be the mid-
points of BC, C A, and AB, respectively; let K, M, and N be the mid-points
of OA, OB, and OC, respectively. Denote the circumradius, inradius, and
semiperimeter of AABC by R, r, and s, respectively. Prove that

s2 472

2R

2(KD + ME + NF) > R+ 3r +

Solution by Michel Bataille, Rouen, France, modified by the editor.

First, we prove that

KD? 1 2
-z = Z—l—cos A+ cosAcos(B—C). 1

We can assume that B is closer to A than to C.
If ZA is a right angle, then the points D and O coincide and (1) is
equivalent to R = 2K O, which is clearly true.

If ZA is acute, then

/KOD = /AOB+ /BOD
= 2C+ A
= w—(B-0C)

and OD = Rcos A. The Law of Cosines
applied in AKOD vyields (1).
If ZA is obtuse, then

A
:Z jo ::
B D (&)
A
/KOD = /BOD — /AOB m
— (r—A)—2C B( ID 70

= B-C

and OD = Rcos(m — A) = Rcos A. Again
the Law of Cosines in AKOD yields (1).
From (1), we get

KD _ Al (B-0C) "ol 2(B-0)
"2 = cos A + 2 cos + 1 sin
1 2
> {cosA + > cos(B — C)} )

and therefore,

KD > R‘cosA—i—%cos(B—C)’ > R[cosA—i—%cos(B—C)}.
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Similar inequalities hold for M E and N F. Adding these and using the well-
known formulas

r
A = 1+ —,
Z cos —+ R
cyclic
r? 4 s2 — 4R?
Z cosBcosC = ———— |
- 4R2
cyclic
r2 4+ s2 + 4Rr
and inBsinC = ————,
Z sin B sin iR

cyclic
we obtain
2(KD+ ME + NF)
> ZR{ Z cos A 4+ %Z cos(B — C)}

cyclic cyclic
r r24+s2—4R? r?4s2+44Rr
= R|2(1 —
R T
s2 4 r2
= R+3
+ 3r + oR

Also solved by PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
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3135. [2006 : 173, 176], corrected [2006 : 303, 306], corrected again
[2006 : 514, 516] Proposed by Marian Marinescu, Monbonnot, France.

Let Rt be the set of non-negative real numbers. For all a, b, c € R,
let H(a, b, c) be the set of all functions h : RT™ — R such that

h(z) > h(h(ax)) + h(bz) + cx

for all z € R*. Prove that H(a, b, c) is non-empty if and only if b < 1 and
4ac < (1 —b)2.

[Ed: The version of this problem that was originally printed in Crux
[2006 : 173, 176] was revised twice in later issues to correct typographical
errors. Above is the final corrected version [2006 : 514, 516], as submitted
by the proposer. Unfortunately, it is still not quite right, as can be seen by
observing that the zero function h(z) = 0 is always in H(a,b,c) if ¢ = 0.
The stated equivalence also fails in the case where ¢ > 0, a = 0and b = 1.
To avoid dealing with these special cases, we will correct the problem (once
more!) by requiring ¢ > 0 instead of just ¢ > 0 and then asking for a proof
that H(a, b, c) is non-empty if and only if b < 1 and 4ac < (1 — b)2. The
proposer’s solution is then essentially correct. ]
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Solution by the proposer, modified by the editor.

First suppose that b < 1 and 4ac < (1 —b)2. Let p be any real number
such that ap? — (1 — b)p + ¢ < 0. For example, choose p = (1 — b)/(2a) if
a > 0and p = ¢/(1 —b) if a = 0. Then the function h(x) = pz satisfies the
functional inequality in the problem. Thus, H(a, b, c) is non-empty.

Now suppose H(a, b, c¢) is non-empty. Choose h € H(a,b, c), and let
r = inf{h(x)/xz : € > 0}. Thenr > 0 and h(x) > rz for all x > 0. Then
h(bxz) > rbx and h(h(ax)) > rh(ax) > r?ax for all x > 0. Using the given
functional inequality (which is satisfied by h), we get h(z) > (ar?2+br+c)z
for all x > 0. Then, by the definition of », we must have ar? + br + ¢ < r;
that is, ar? — (1 — b)r + ¢ < 0. Since r is real and non-negative, it follows
that 4ac < (1 —b)2and b < 1.

Also solved by ROY BARBARA, University of Beirut, Beirut, Lebanon; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High
School, Athens, Greece; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola Univer-
sity, La Mirada, CA, USA; and L1 ZHOU, Polk Community College, Winter Haven, FL, USA.

Most solutions were for the first corrected version of the problem [2006 : 303, 306].

These solutions have been accepted as correct, since they contained the main ideas needed to
solve the problem in the form given above.

——— | NS

3136. [2006 : 173, 176] Proposed by Christopher ]. Bradley, Bristol, UK.

Let ABC be a triangle with circumcircle T'; let £ be a transversal which
meets the line BC at L, the line CA at M, and the line AB at N. Let I';
be the circle through A which is tangent to BC at L, and let I'; and T's be
similarly defined with respect to B and C. Let QR, RP, and PQ be the
common chords of T' and I'y, T and I'y, and I" and I's, respectively. Prove
that AP, BQ, and CR are concurrent.

Solution by Apostolis K. Demis, Varvakeio High School, Athens, Greece.

We denote the intersection point of BC and QR by A’, of CA and RP
by B’, and of AB and PQ by C’. Define K to be the point where BQ and
AP intersect; we are to prove that K lies also on CR. Also, let us denote the
second points of intersection of I' with I'y, I's, I's by D, E, F, respectively.

Applying the Theorem of Menelaus to triangle ABC with respect to
the transversal £, we get

AM CL BN
MC LB NA

The power of the point C’ with respecttoI' and I's is C’'A-C’'B = C'F -
C'C = C’'N?; whence,

C'N C'B C'B—-C'N

C’'A C'N C'N-C'A’
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Thus, (C’'N/C’A) - (C'B/C'N) = (C'B — C'N)2?/(C'N — C’A)?, or (in
terms of oriented line segments)

BC'  BN?
C'A  NA?’
Similarly,
cA’  CL? and AB’  AM?
A’'B LB2 B'C  MC?’
Therefore,
AB'’ CA’ BC'  AM? CL?* BN? _ L
B'C A'B C'’'A  MC? LB2 NA2 '

and, consequently, the points A’, B’, and C’ are collinear. The triangles
APB’ and BQA’ are therefore perspective from C’, so that, by Desargues’
Theorem, we deduce that the points K = AP N BQ, R = PB'NQA’, and
C = B’AN A’B are collinear. Thus, K is the common point of the lines CR,
BQ, and AP, as desired.

Comment. There are other interesting incidences to be discovered in this rich
configuration. For example, C’ lies on the line joining the points AP N BC
and BQ N AC. Also, C’ belongs to the Pascal line defined by the hexagon
ABECFD.

Also solved by PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
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