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A1 The function g(x) = f(x, 0) works. Substituting
(x, y, z) = (0, 0, 0) into the given functional equation
yields f(0, 0) = 0, whence substituting(x, y, z) =
(x, 0, 0) yieldsf(x, 0) + f(0, x) = 0. Finally, substi-
tuting(x, y, z) = (x, y, 0) yieldsf(x, y) = −f(y, 0)−
f(0, x) = g(x) − g(y).

Remark: A similar argument shows that the possible
functionsg are precisely those of the formf(x, 0) + c
for somec.

A2 Barbara wins using one of the following strategies.

First solution: Pair each entry of the first row with the
entry directly below it in the second row. If Alan ever
writes a number in one of the first two rows, Barbara
writes the same number in the other entry in the pair. If
Alan writes a number anywhere other than the first two
rows, Barbara does likewise. At the end, the resulting
matrix will have two identical rows, so its determinant
will be zero.

Second solution: (by Manjul Bhargava) Whenever
Alan writes a numberx in an entry in some row, Bar-
bara writes−x in some other entry in the same row. At
the end, the resulting matrix will have all rows summing
to zero, so it cannot have full rank.

A3 We first prove that the process stops. Note first that
the producta1 · · · an remains constant, becauseajak =
gcd(aj , ak) lcm(aj , ak). Moreover, the last number in
the sequence can never decrease, because it is always
replaced by its least common multiple with another
number. Since it is bounded above (by the product of
all of the numbers), the last number must eventually
reach its maximum value, after which it remains con-
stant throughout. After this happens, the next-to-last
number will never decrease, so it eventually becomes
constant, and so on. After finitely many steps, all of the
numbers will achieve their final values, so no more steps
will be possible. This only happens whenaj dividesak

for all pairsj < k.

We next check that there is only one possible final
sequence. Forp a prime andm a nonnegative in-
teger, we claim that the number of integers in the
list divisible by pm never changes. To see this, sup-
pose we replaceaj , ak by gcd(aj , ak), lcm(aj , ak). If
neither of aj , ak is divisible by pm, then neither of
gcd(aj , ak), lcm(aj , ak) is either. If exactly oneaj , ak

is divisible bypm, thenlcm(aj , ak) is divisible bypm

butgcd(aj , ak) is not.

gcd(aj , ak), lcm(aj , ak) are as well.

If we started out with exactlyh numbers not divisible
by pm, then in the final sequencea′

1, . . . , a
′
n, the num-

bersa′
h+1, . . . , a

′
n are divisible bypm while the num-

bersa′
1, . . . , a

′
h are not. Repeating this argument for

each pair(p, m) such thatpm divides the initial product
a1, . . . , an, we can determine the exact prime factoriza-
tion of each ofa′

1, . . . , a
′
n. This proves that the final

sequence is unique.

Remark: (by David Savitt and Noam Elkies) Here are
two other ways to prove the termination. One is to ob-
serve that

∏

j aj
j is strictly increasing at each step, and

bounded above by(a1 · · · an)n. The other is to notice
that a1 is nonincreasing but always positive, so even-
tually becomes constant; thena2 is nonincreasing but
always positive, and so on.

Reinterpretation: For eachp, consider the sequence
consisting of the exponents ofp in the prime factoriza-
tions ofa1, . . . , an. At each step, we pick two positions
i andj such that the exponents of some primep are in
the wrong order at positionsi andj. We then sort these
two position into the correct order for every primep si-
multaneously.

It is clear that this can only terminate with all se-
quences being sorted into the correct order. We must
still check that the process terminates; however, since
all but finitely many of the exponent sequences consist
of all zeroes, and each step makes a nontrivial switch
in at least one of the other exponent sequences, it is
enough to check the case of a single exponent sequence.
This can be done as in the first solution.

Remark: Abhinav Kumar suggests the following proof
that the process always terminates in at most

(

n
2

)

steps.
(This is a variant of the worst-case analysis of thebub-
ble sortalgorithm.)

Consider the number of pairs(k, l) with 1 ≤ k < l ≤ n
such thatak does not divideal (call thesebad pairs). At
each step, we find one bad pair(i, j) and eliminate it,
and we do not touch any pairs that do not involve either
i or j. If i < k < j, then neither of the pairs(i, k)
and(k, j) can become bad, becauseai is replaced by a
divisor of itself, whileaj is replaced by a multiple of
itself. If k < i, then(k, i) can only become a bad pair
if ak dividedai but notaj , in which case(k, j) stops
being bad. Similarly, ifk > j, then(i, k) and (j, k)
either stay the same or switch status. Hence the number
of bad pairs goes down by at least 1 each time; since it
is at most

(

n
2

)

to begin with, this is an upper bound for
the number of steps.

Remark: This problem is closely related to the classi-
fication theorem for finite abelian groups. Namely, if
a1, . . . , an anda′

1, . . . , a
′
n are the sequences obtained



at two different steps in the process, then the abelian
groupsZ/a1Z×· · ·×Z/anZ andZ/a′

1Z×· · ·×Z/a′
nZ

are isomorphic. The final sequence gives a canonical
presentation of this group; the terms of this sequence
are called theelementary divisorsor invariant factors
of the group.

Remark: (by Tom Belulovich) Alattice is a partially
ordered setL in which for any twox, y ∈ L, there is a
unique minimal elementz with z ≥ x andz ≥ y, called
the join and denotedx ∧ y, and there is a unique max-
imal elementz with z ≤ x andz ≤ y, called themeet
and denotedx∨ y. In terms of a latticeL, one can pose
the following generalization of the given problem. Start
with a1, . . . , an ∈ L. If i < j but ai 6≤ aj , it is per-
mitted to replaceai, aj by ai ∨aj , ai ∧aj , respectively.
The same argument as above shows that this always ter-
minates in at most

(

n
2

)

steps. The question is, under
what conditions on the latticeL is the final sequence
uniquely determined by the initial sequence?

It turns out that this holds if and only ifL is distributive,
i.e., for anyx, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(This is equivalent to the same axiom with the oper-
ations interchanged.) For example, ifL is a Boolean
algebra, i.e., the set of subsets of a given setS under
inclusion, then∧ is union,∨ is intersection, and the dis-
tributive law holds. Conversely, any finite distributive
lattice is contained in a Boolean algebra by a theorem
of Birkhoff. The correspondence takes eachx ∈ L to
the set ofy ∈ L such thatx ≥ y andy cannot be written
as a join of two elements ofL \ {y}. (See for instance
Birkhoff, Lattice Theory, Amer. Math. Soc., 1967.)

On one hand, ifL is distributive, it can be shown that
thej-th term of the final sequence is equal to the meet of
ai1∧· · ·∧aij

over all sequences1 ≤ i1 < · · · < ij ≤ n.
For instance, this can be checked by forming the small-
est subsetL′ of L containinga1, . . . , an and closed un-
der meet and join, then embeddingL′ into a Boolean
algebra using Birkhoff’s theorem, then checking the
claim for all Boolean algebras. It can also be checked
directly (as suggested by Nghi Nguyen) by showing that
for j = 1, . . . , n, the meet of all joins ofj-element sub-
sets ofa1, . . . , an is invariant at each step.

On the other hand, a lattice fails to be distributive if
and only if it contains five elementsa, b, c, 0, 1 such that
either the only relations among them are implied by

1 ≥ a, b, c ≥ 0

(this lattice is sometimes called thediamond), or the
only relations among them are implied by

1 ≥ a ≥ b ≥ 0, 1 ≥ c ≥ 0

(this lattice is sometimes called thepentagon). (For a
proof, see the Birkhoff reference given above.) For each

of these examples, the initial sequencea, b, c fails to
determine the final sequence; for the diamond, we can
end up with0, ∗, 1 for any of∗ = a, b, c, whereas for the
pentagon we can end up with0, ∗, 1 for any of∗ = a, b.

Consequently, the final sequence is determined by the
initial sequence if and only ifL is distributive.

A4 The sum diverges. From the definition,f(x) = x on
[1, e], x ln x on (e, ee], x ln x ln lnx on (ee, eee

], and so
forth. It follows that on[1,∞), f is positive, continu-
ous, and increasing. Thus

∑∞
n=1

1
f(n) , if it converges,

is bounded below by
∫ ∞
1

dx
f(x) ; it suffices to prove that

the integral diverges.

Write ln1 x = lnx and lnk x = ln(lnk−1 x) for
k ≥ 2; similarly write exp1 x = ex and expk x =

eexpk−1 x. If we write y = lnk x, then x =
expk y anddx = (expk y)(expk−1 y) · · · (exp1 y)dy =

x(ln1 x) · · · (lnk−1 x)dy. Now on [expk−1 1, expk 1],
we havef(x) = x(ln1 x) · · · (lnk−1 x), and thus sub-
stitutingy = lnk x yields

∫ expk 1

expk−1 1

dx

f(x)
=

∫ 1

0

dy = 1.

It follows that
∫ ∞
1

dx
f(x) =

∑∞
k=1

∫ expk 1

expk−1 1
dx

f(x) di-
verges, as desired.

A5 Form the polynomialP (z) = f(z) + ig(z) with com-
plex coefficients. It suffices to prove thatP has degree
at leastn − 1, as then one off, g must have degree at
leastn − 1.

By replacingP (z) with aP (z) + b for suitablea, b ∈
C, we can force the regularn-gon to have vertices
ζn, ζ2

n, . . . , ζn
n for ζn = exp(2πi/n). It thus suffices to

check that there cannot exist a polynomialP (z) of de-
gree at mostn−2 such thatP (i) = ζi

n for i = 1, . . . , n.

We will prove more generally that for any complex
numbert /∈ {0, 1}, and any integerm ≥ 1, any poly-
nomialQ(z) for whichQ(i) = ti for i = 1, . . . , m has
degree at leastm−1. There are several ways to do this.

First solution: If Q(z) has degreed and leading coef-
ficient c, thenR(z) = Q(z + 1) − tQ(z) has degreed
and leading coefficient(1 − t)c. However, by hypoth-
esis,R(z) has the distinct roots1, 2, . . . , m − 1, so we
must haved ≥ m − 1.

Second solution: We proceed by induction onm. For
the base casem = 1, we haveQ(1) = t1 6= 0, soQ
must be nonzero, and so its degree is at least0. Given
the assertion form − 1, if Q(i) = ti for i = 1, . . . , m,
then the polynomialR(z) = (t−1)−1(Q(z+1)−Q(z))
has degree one less than that ofQ, and satisfiesR(i) =
ti for i = 1, . . . , m − 1. SinceR must have degree at
leastm − 2 by the induction hypothesis,Q must have
degree at leastm − 1.

Third solution: We use the method offinite differ-
ences(as in the second solution) but without induction.



Namely, the(m− 1)-st finite difference ofP evaluated
at 1 equals

m−1
∑

j=0

(−1)j

(

m − 1

j

)

Q(m − j) = t(1 − t)m−1 6= 0,

which is impossible ifQ has degree less thanm − 1.

Remark: One can also establish the claim by comput-
ing a Vandermonde-type determinant, or by using the
Lagrange interpolation formula to compute the leading
coefficient ofQ.

A6 For notational convenience, we will interpret the prob-
lem as allowing the empty subsequence, whose product
is the identity element of the group. To solve the prob-
lem in the interpretation where the empty subsequence
is not allowed, simply append the identity element to
the sequence given by one of the following solutions.

First solution: Put n = |G|. We will say that a se-
quenceS producesan elementg ∈ G if g occurs as the
product of some subsequence ofS. Let H be the set of
elements produced by the sequenceS.

Start withS equal to the empty sequence. If at any point
the setH−1H = {h1h2 : h−1

1 , h2 ∈ H} fails to be all
of G, extendS by appending an elementg of G not
in H−1H . ThenHg ∩ H must be empty, otherwise
there would be an equation of the formh1g = h2 with
h1, h2 ∈ G, or g = h−1

1 h2, a contradiction. Thus we
can extendS by one element and double the size ofH .

After k ≤ log2 n steps, we must obtain a sequence
S = a1, . . . , ak for which H−1H = G. Then the se-
quencea−1

k , . . . , a−1
1 , a1, . . . , ak produces all ofG and

has length at most(2/ ln 2) lnn.

Second solution:

Put m = |H |. We will show that we can append one
elementg to S so that the resulting sequence ofk + 1
elements will produce at least2m − m2/n elements of
G. To see this, we compute

∑

g∈G

|H ∪ Hg| =
∑

g∈G

(|H | + |Hg| − |H ∩ Hg|)

= 2mn −
∑

g∈G

|H ∩ Hg|

= 2mn − |{(g, h) ∈ G2 : h ∈ H ∩ Hg}|
= 2mn −

∑

h∈H

|{g ∈ G : h ∈ Hg}|

= 2mn −
∑

h∈H

|H−1h|

= 2mn − m2.

By the pigeonhole principle, we have|H∪Hg| ≥ 2m−
m2/n for some choice ofg, as claimed.

In other words, by extending the sequence by one el-
ement, we can replace the ratios = 1 − m/n (i.e.,

the fraction of elements ofG not generated byS) by a
quantity no greater than

1 − (2m − m2/n)/n = s2.

We start out withk = 0 ands = 1− 1/n; afterk steps,
we haves ≤ (1− 1/n)2

k

. It is enough to prove that for
somec > 0, we can always find an integerk ≤ c lnn
such that

(

1 − 1

n

)2k

<
1

n
,

as then we haven − m < 1 and henceH = G.

To obtain this last inequality, put

k = ⌊2 log2 n⌋ < (2/ ln 2) lnn,

so that2k+1 ≥ n2. From the facts thatlnn ≤ ln 2 +
(n − 2)/2 ≤ n/2 and ln(1 − 1/n) < −1/n for all
n ≥ 2, we have

2k ln

(

1 − 1

n

)

< −n2

2n
= −n

2
< − lnn,

yielding the desired inequality.

Remark: An alternate approach in the second solution
is to distinguish betwen the cases ofH small (i.e.,m <
n1/2, in which casem can be replaced by a value no
less than2m − 1) andH large. This strategy is used in
a number of recent results of Bourgain, Tao, Helfgott,
and others onsmall doublingorsmall triplingof subsets
of finite groups.

In the second solution, if we avoid the rather weak in-
equalitylnn ≤ n/2, we instead get sequences of length
log2(n lnn) = log2(n) + log2(lnn). This is close to
optimal: one cannot use fewer thanlog2 n terms be-
cause the number of subsequences must be at leastn.

B1 There are at most two such points. For example,
the points(0, 0) and (1, 0) lie on a circle with center
(1/2, x) for any real numberx, not necessarily rational.

On the other hand, supposeP = (a, b), Q =
(c, d), R = (e, f) are three rational points that lie on
a circle. The midpointM of the sidePQ is ((a +
c)/2, (b+ d)/2), which is again rational. Moreover, the
slope of the linePQ is (d−b)/(c−a), so the slope of the
line throughM perpendicular toPQ is (a− c)/(b−d),
which is rational or infinite.

Similarly, if N is the midpoint ofQR, thenN is a ratio-
nal point and the line throughN perpendicular toQR
has rational slope. The center of the circle lies on both
of these lines, so its coordinates(g, h) satisfy two linear
equations with rational coefficients, sayAg + Bh = C
andDg + Eh = F . Moreover, these equations have a
unique solution. That solution must then be

g = (CE − BD)/(AE − BD)

h = (AF − BC)/(AE − BD)



(by elementary algebra, or Cramer’s rule), so the center
of the circle is rational. This proves the desired result.

Remark: The above solution is deliberately more ver-
bose than is really necessary. A shorter way to say this
is that any two distinct rational points determine ara-
tional line (a line of the formax + by + c = 0 with
a, b, c rational), while any two nonparallel rational lines
intersect at a rational point. A similar statement holds
with the rational numbers replaced by any field.

Remark: A more explicit argument is to show that
the equation of the circle through the rational points
(x1, y1), (x2, y2), (x3, y3) is

0 = det







x2
1 + y2

1 x1 y1 1
x2

2 + y2
2 x2 y2 1

x2
3 + y2

3 x3 y3 1
x2 + y2 x y 1







which has the forma(x2 + y2) + dx + ey + f =
0 for a, d, e, f rational. The center of this circle is
(−d/(2a),−e/(2a)), which is again a rational point.

B2 We claim thatFn(x) = (lnx − an)xn/n!, wherean =
∑n

k=1 1/k. Indeed, temporarily writeGn(x) = (lnx−
an)xn/n! for x > 0 andn ≥ 1; thenlimx→0 Gn(x) =
0 andG′

n(x) = (lnx − an + 1/n)xn−1/(n − 1)! =
Gn−1(x), and the claim follows by the Fundamental
Theorem of Calculus and induction onn.

Given the claim, we haveFn(1) = −an/n! and so we
need to evaluate− limn→∞

an

ln n . But since the function
1/x is strictly decreasing forx positive,

∑n
k=2 1/k =

an − 1 is bounded below by
∫ n

2 dx/x = lnn −
ln 2 and above by

∫ n

1 dx/x = lnn. It follows that
limn→∞

an

ln n = 1, and the desired limit is−1.

B3 The largest possible radius is
√

2
2 . It will be convenient

to solve the problem for a hypercube of side length 2
instead, in which case we are trying to show that the
largest radius is

√
2.

Choose coordinates so that the interior of the hypercube
is the setH = [−1, 1]4 in R4. LetC be a circle centered
at the pointP . ThenC is contained both inH and
its reflection acrossP ; these intersect in a rectangular
paralellepiped each of whose pairs of opposite faces are
at most 2 unit apart. Consequently, if we translateC so
that its center moves to the pointO = (0, 0, 0, 0) at the
center ofH , then it remains entirely insideH .

This means that the answer we seek equals the largest
possible radius of a circleC contained inH and cen-
tered at O. Let v1 = (v11, . . . , v14) and v2 =
(v21, . . . , v24) be two points onC lying on radii per-
pendicular to each other. Then the points of the circle
can be expressed asv1 cos θ + v2 sin θ for 0 ≤ θ < 2π.
ThenC lies inH if and only if for eachi, we have

|v1i cos θ + v2i sin θ| ≤ 1 (0 ≤ θ < 2π).

In geometric terms, the vector(v1i, v2i) in R2 has
dot product at most 1 with every unit vector. Since
this holds for the unit vector in the same direction as
(v1i, v2i), we must have

v2
1i + v2

2i ≤ 1 (i = 1, . . . , 4).

Conversely, if this holds, then the Cauchy-Schwarz in-
equality and the above analysis imply thatC lies inH .

If r is the radius ofC, then

2r2 =

4
∑

i=1

v2
1i +

4
∑

i=1

v2
2i

=

4
∑

i=1

(v2
1i + v2

2i)

≤ 4,

sor ≤
√

2. Since this is achieved by the circle through
(1, 1, 0, 0) and(0, 0, 1, 1), it is the desired maximum.

Remark: One may similarly ask for the radius of the
largestk-dimensional ball inside ann-dimensional unit
hypercube; the given problem is the case(n, k) =
(4, 2). Daniel Kane gives the following argument to
show that the maximum radius in this case is1

2

√

n
k .

(Thanks for Noam Elkies for passing this along.)

We again scale up by a factor of 2, so that we are trying
to show that the maximum radiusr of a k-dimensional
ball contained in the hypercube[−1, 1]n is

√

n
k . Again,

there is no loss of generality in centering the ball at the
origin. LetT : R

k → R
n be a similitude carrying the

unit ball to this embeddedk-ball. Then there exists a
vectorvi ∈ R

k such that fore1, . . . , en the standard ba-
sis ofRn, x·vi = T (x)·ei for all x ∈ Rk. The condition
of the problem is equivalent to requiring|vi| ≤ 1 for all
i, while the radiusr of the embedded ball is determined
by the fact that for allx ∈ Rk,

r2(x · x) = T (x) · T (x) =

n
∑

i=1

x · vi.

Let M be the matrix with columnsv1, . . . , vk; then
MMT = r2Ik, for Ik the k × k identity matrix. We
then have

kr2 = Trace(r2Ik) = Trace(MMT )

= Trace(MT M) =

n
∑

i=1

|vi|2

≤ n,

yielding the upper boundr ≤
√

n
k .

To show that this bound is optimal, it is enough to show
that one can find an orthogonal projection ofR

n onto
Rk so that the projections of theei all have the same
norm (one can then rescale to get the desired configura-
tion of v1, . . . , vn). We construct such a configuration



by a “smoothing” argument. Startw with any projec-
tion. Let w1, . . . , wn be the projections ofe1, . . . , en.
If the desired condition is not achieved, we can choose
i, j such that

|wi|2 <
1

n
(|w1|2 + · · · + |wn|2) < |wj |2.

By precomposing with a suitable rotation that fixeseh

for h 6= i, j, we can vary|wi|, |wj | without varying
|wi|2 + |wj |2 or |wh| for h 6= i, j. We can thus choose
such a rotation to force one of|wi|2, |wj |2 to become
equal to 1

n (|w1|2 + · · · + |wn|2). Repeating at most
n − 1 times gives the desired configuration.

B4 We use the identity given by Taylor’s theorem:

h(x + y) =

deg(h)
∑

i=0

h(i)(x)

i!
yi.

In this expression,h(i)(x)/i! is a polynomial inx with
integer coefficients, so its value at an integerx is an
integer.

Forx = 0, . . . , p − 1, we deduce that

h(x + p) ≡ h(x) + ph′(x) (mod p2).

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumedh(x) andh(x + p)
are distinct modulop2, we conclude thath′(x) 6≡ 0
(mod p). Sinceh′ is a polynomial with integer coeffi-
cients, we haveh′(x) ≡ h′(x + mp) (mod p) for any
integerm, and soh′(x) 6≡ 0 (mod p) for all integers
x.

Now for x = 0, . . . , p2 − 1 andy = 0, . . . , p − 1, we
write

h(x + yp2) ≡ h(x) + p2yh′(x) (mod p3).

Thush(x), h(x + p2), . . . , h(x + (p − 1)p2) run over
all of the residue classes modulop3 congruent to
h(x) modulo p2. Since theh(x) themselves cover
all the residue classes modulop2, this proves that
h(0), . . . , h(p3 − 1) are distinct modulop3.

Remark: More generally, the same proof shows that
for any integersd, e > 1, h permutes the residue classes
modulopd if and only if it permutes the residue classes
modulope. The argument used in the proof is related
to a general result in number theory known asHensel’s
lemma.

B5 The functionsf(x) = x+n andf(x) = −x+n for any
integern clearly satisfy the condition of the problem;
we claim that these are the only possiblef .

Let q = a/b be any rational number withgcd(a, b) = 1
andb > 0. Forn any positive integer, we have

f(an+1
bn ) − f(a

b )
1
bn

= bnf

(

an + 1

bn

)

− nbf
(a

b

)

is an integer by the property off . Sincef is differen-
tiable ata/b, the left hand side has a limit. It follows
that for sufficiently largen, both sides must be equal to
some integerc = f ′(a

b ): f(an+1
bn ) = f(a

b ) + c
bn . Now

c cannot be0, since otherwisef(an+1
bn ) = f(a

b ) for
sufficiently largen has denominatorb rather thanbn.
Similarly, |c| cannot be greater than1: otherwise if we
taken = k|c| for k a sufficiently large positive integer,
thenf(a

b ) + c
bn has denominatorbk, contradicting the

fact thatf(an+1
bn ) has denominatorbn. It follows that

c = f ′(a
b ) = ±1.

Thus the derivative off at any rational number is±1.
Sincef is continuously differentiable, we conclude that
f ′(x) = 1 for all realx or f ′(x) = −1 for all realx.
Sincef(0) must be an integer (a rational number with
denominator1), f(x) = x + n or f(x) = −x + n for
some integern.

Remark: After showing thatf ′(q) is an integer for
eachq, one can instead argue thatf ′ is a continuous
function from the rationals to the integers, so must be
constant. One can then writef(x) = ax + b and check
thatb ∈ Z by evaluation ata = 0, and thata = ±1 by
evaluation atx = 1/a.

B6 In all solutions, letFn,k be the number ofk-limited per-
mutations of{1, . . . , n}.

First solution: (by Jacob Tsimerman) Note that any
permutation isk-limited if and only if its inverse isk-
limited. Consequently, the number ofk-limited per-
mutations of{1, . . . , n} is the same as the number of
k-limited involutions (permutations equal to their in-
verses) of{1, . . . , n}.

We use the following fact several times: the number
of involutions of {1, . . . , n} is odd if n = 0, 1 and
even otherwise. This follows from the fact that non-
involutions come in pairs, so the number of involu-
tions has the same parity as the number of permutations,
namelyn!.

For n ≤ k + 1, all involutions arek-limited. By the
previous paragraph,Fn,k is odd forn = 0, 1 and even
for n = 2, . . . , k + 1.

For n > k + 1, group thek-limited involutions into
classes based on their actions onk + 2, . . . , n. Note
that for C a class andσ ∈ C, the set of elements of
A = {1, . . . , k + 1} which map intoA underσ de-
pends only onC, not onσ. Call this setS(C); then the
size ofC is exactly the number of involutions ofS(C).
Consequently,|C| is even unlessS(C) has at most one
element. However, the element 1 cannot map out ofA
because we are looking atk-limited involutions. Hence
if S(C) has one element andσ ∈ C, we must have
σ(1) = 1. Sinceσ is k-limited andσ(2) cannot belong
to A, we must haveσ(2) = k + 2. By induction, for
i = 3, . . . , k + 1, we must haveσ(i) = k + i.

If n < 2k + 1, this shows that no classC of odd cardi-
nality can exist, soFn,k must be even. Ifn ≥ 2k + 1,



the classes of odd cardinality are in bijection withk-
limited involutions of{2k + 2, . . . , n}, soFn,k has the
same parity asFn−2k−1,k. By induction onn, we de-
duce the desired result.

Second solution: (by Yufei Zhao) LetMn,k be then×
n matrix with

(Mn,k)ij =

{

1 |i − j| ≤ k

0 otherwise.

Write det(Mn,k) as the sum over permutationsσ of
{1, . . . , n} of (Mn,k)1σ(1) · · · (Mn,k)nσ(n) times the
signature ofσ. Thenσ contributes±1 to det(Mn,k)
if σ is k-limited and 0 otherwise. We conclude that

det(Mn,k) ≡ Fn,k (mod 2).

For the rest of the solution, we interpretMn,k as a ma-
trix over the field of two elements. We compute its de-
terminant using linear algebra modulo 2.

We first show that forn ≥ 2k + 1,

Fn,k ≡ Fn−2k−1,k (mod 2),

provided that we interpretF0,k = 1. We do this by com-
puting det(Mn,k) using row and column operations.
We will verbally describe these operations for general
k, while illustrating with the examplek = 3.

To begin with,Mn,k has the following form.























1 1 1 1 0 0 0 ∅
1 1 1 1 1 0 0 ∅
1 1 1 1 1 1 0 ∅
1 1 1 1 1 1 1 ∅
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?

∅ ∅ ∅ ∅ ? ? ? ∗























In this presentation, the first2k + 1 rows and columns
are shown explicitly; the remaining rows and columns
are shown in a compressed format. The symbol∅ in-
dicates that the unseen entries are all zeroes, while the
symbol? indicates that they are not. The symbol∗ in
the lower right corner represents the matrixFn−2k−1,k.
We will preserve the unseen structure of the matrix by
only adding the firstk + 1 rows or columns to any of
the others.

We first add row 1 to each of rows2, . . . , k + 1.




























1 1 1 1 0 0 0 ∅
0 0 0 0 1 0 0 ∅
0 0 0 0 1 1 0 ∅
0 0 0 0 1 1 1 ∅
0 1 1 1 1 1 1 ?

0 0 1 1 1 1 1 ?

0 0 0 1 1 1 1 ?

∅ ∅ ∅ ∅ ? ? ? ∗





























We next add column 1 to each of columns2, . . . , k + 1.




























1 0 0 0 0 0 0 ∅
0 0 0 0 1 0 0 ∅
0 0 0 0 1 1 0 ∅
0 0 0 0 1 1 1 ∅
0 1 1 1 1 1 1 ?

0 0 1 1 1 1 1 ?

0 0 0 1 1 1 1 ?

∅ ∅ ∅ ∅ ? ? ? ∗





























For i = 2, for each ofj = i + 1, . . . , 2k + 1 for which
the(j, k + i)-entry is nonzero, add rowi to row j.





























1 0 0 0 0 0 0 ∅
0 0 0 0 1 0 0 ∅
0 0 0 0 0 1 0 ∅
0 0 0 0 0 1 1 ∅
0 1 1 1 0 1 1 ?

0 0 1 1 0 1 1 ?

0 0 0 1 0 1 1 ?

∅ ∅ ∅ ∅ ∅ ? ? ∗





























Repeat the previous step fori = 3, . . . , k +1 in succes-
sion.





























1 0 0 0 0 0 0 ∅
0 0 0 0 1 0 0 ∅
0 0 0 0 0 1 0 ∅
0 0 0 0 0 0 1 ∅
0 1 1 1 0 0 0 ?

0 0 1 1 0 0 0 ?

0 0 0 1 0 0 0 ?

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∗





























Repeat the two previous steps with the roles of the rows
and columns reversed. That is, fori = 2, . . . , k + 1, for
each ofj = i + 1, . . . , 2k + 1 for which the(j, k + i)-
entry is nonzero, add rowi to row j.





























1 0 0 0 0 0 0 ∅
0 0 0 0 1 0 0 ∅
0 0 0 0 0 1 0 ∅
0 0 0 0 0 0 1 ∅
0 1 0 0 0 0 0 ∅
0 0 1 0 0 0 0 ∅
0 0 0 1 0 0 0 ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∗





























We now have a block diagonal matrix in which the top
left block is a(2k + 1)× (2k + 1) matrix with nonzero
determinant (it results from reordering the rows of the
identity matrix), the bottom right block isMn−2k−1,k,
and the other two blocks are zero. We conclude that

det(Mn,k) ≡ det(Mn−2k−1,k) (mod 2),



proving the desired congruence.

To prove the desired result, we must now check that
F0,k, F1,k are odd andF2,k, . . . , F2k,k are even. For
n = 0, . . . , k + 1, the matrixMn,k consists of all ones,
so its determinant is 1 ifn = 0, 1 and 0 otherwise. (Al-
ternatively, we haveFn,k = n! for n = 0, . . . , k + 1,
since every permutation of{1, . . . , n} is k-limited.) For
n = k + 2, . . . , 2k, observe that rowsk andk + 1 of
Mn,k both consist of all ones, sodet(Mn,k) = 0 as
desired.

Third solution: (by Tom Belulovich) DefineMn,k as
in the second solution. We provedet(Mn,k) is odd for
n ≡ 0, 1 (mod 2k+1) and even otherwise, by directly
determining whether or notMn,k is invertible as a ma-
trix over the field of two elements.

Let ri denote rowi of Mn,k. We first check that ifn ≡
2, . . . , 2k (mod 2k + 1), thenMn,k is not invertible.
In this case, we can find integers0 ≤ a < b ≤ k such
thatn + a + b ≡ 0 (mod 2k + 1). Putj = (n + a +
b)/(2k + 1). We can then write the all-ones vector both
as

j−1
∑

i=0

rk+1−a+(2k+1)i

and as

j−1
∑

i=0

rk+1−b+(2k+1)i.

HenceMn,k is not invertible.

We next check that ifn ≡ 0, 1 (mod 2k + 1), then
Mn,k is invertible. Suppose thata1, . . . , an are scalars

such thata1r1 + · · · + anrn is the zero vector. Them-
th coordinate of this vector equalsam−k + · · ·+ am+k,
where we regardai as zero ifi /∈ {1, . . . , n}. By com-
paring consecutive coordinates, we obtain

am−k = am+k+1 (1 ≤ m < n).

In particular, theai repeat with period2k + 1. Taking
m = 1, . . . , k further yields that

ak+2 = · · · = a2k+1 = 0

while takingm = n − k, . . . , n − 1 yields

an−2k = · · · = an−1−k = 0.

Forn ≡ 0 (mod 2k + 1), the latter can be rewritten as

a1 = · · · = ak = 0

whereas forn ≡ 1 (mod 2k+1), it can be rewritten as

a2 = · · · = ak+1 = 0.

In either case, since we also have

a1 + · · · + a2k+1 = 0
from the(k+1)-st coordinate, we deduce that all of the
ai must be zero, and soMn,k must be invertible.

Remark: The matricesMn,k are examples ofbanded
matrices, which occur frequently in numerical appli-
cations of linear algebra. They are also examples of
Toeplitz matrices.


