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Preface

Problems on maxima and minima arise naturally not only in science and engi-
neering and their applications but also in daily life. A great variety of these have
geometric nature: finding the shortest path between two objects satisfying certain
conditions or a figure of minimal perimeter, area, or volume is a type of problem
frequently met. Not surprisingly, people have been dealing with such problems for
a very long time. Some of them, now regarded as famous, were dealt with by the
ancient Greeks, whose intuition allowed them to discover the solutions of these
problems even though for many of them they did not have the mathematical tools
to provide rigorous proofs.

For example, one might mention here Heron’s (first century CE) discovery that
the light ray in space incoming from a point A and outgoing through a point B
after reflection at a mirror α travels the shortest possible path from A to B having
a common point with α.

Another famous problem, the so-called isoperimetric problem, was considered
for example by Descartes (1596–1650): Of all plane figures with a given perime-
ter, find the one with greatest area. That the “perfect figure” solving the problem
is the circle was known to Descartes (and possibly much earlier); however, a rig-
orous proof that this is indeed the solution was first given by Jacob Steiner in the
nineteenth century.

A slightly different isoperimetric problem is attributed to Dido, the legendary
queen of Carthage. She was allowed by the natives to purchase a piece of land
on the coast of Africa “not larger than what an oxhide can surround.” Cutting the
oxhide into narrow strips, she made a long string with which she was supposed to
surround as large as possible area on the seashore. How to do this in an optimal
way is a problem closely related to the previous one, and in fact a solution is easily
found once one knows the maximizing property of the circle.

Another problem that is both interesting and easy to state was posed in 1775
by I. F. Fagnano: Inscribe a triangle of minimal perimeter in a given acute-angled
triangle. An elegant solution to this relatively simple “network problem” was given
by Hermann Schwarz (1843–1921).
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Most of these classical problems are discussed in Chapter 1, which presents
several different methods for solving geometric problems on maxima and minima.
One of these concerns applications of geometric transformations, e.g., reflection
through a line or plane, rotation. The second is about appropriate use of inequali-
ties. Another analytic method is the application of tools from the differential cal-
culus. The last two methods considered in Chapter 1 are more geometric in nature;
these are the method of partial variation and the tangency principle. Their names
speak for themselves.

Chapter 2 is devoted to several types of geometric problems on maxima and
minima that are frequently met. Here for example we discuss a variety of isoperi-
metric problems similar in nature to the ones mentioned above. Various distin-
guished points in the triangle and the tetrahedron can be described as the solutions
of some specific problems on maxima or minima. Section 2.2 considers examples
of this kind. An interesting type of problem, called Malfatti’s problems, are con-
tained in Section 2.3; these concern the positioning of several disks in a given figure
in the plane so that the sum of the areas of the disks is maximal. Section 2.4 deals
with some problems on maxima and minima arising in combinatorial geometry.

Chapter 3 collects some geometric problems on maxima and minima that could
not be put into any of the first two chapters. Finally, Chapter 4 provides solutions
and hints to all problems considered in the first three chapters.

Each section in the book is augmented by exercises and more solid problems
for individual work. To make it easier to follow the arguments in the book a large
number of figures is provided.

The present book is partly based on its Bulgarian version Extremal Problems in
Geometry, written by O. Mushkarov and L. Stoyanov and published in 1989 (see
[16]). This new version retains about half of the contents of the old one.

Altogether the book contains hundreds of geometric problems on maxima or
minima. Despite the great variety of problems considered—from very old and
classical ones like the ones mentioned above to problems discussed very recently
in journal articles or used in various mathematics competitions around the world—
the whole exposition of the book is kept at a sufficiently elementary level so that it
can be understood by high-school students.

Apart from trying to be comprehensive in terms of types of problems and tech-
niques for their solutions, we have also tried to offer various different levels of
difficulty, thus making the book possible to use by people with different interests
in mathematics, different abilities, and of different age groups. We hope we have
achieved this to a reasonable extent.

The book reflects the experience of the authors as university teachers and as
people who have been deeply involved in various mathematics competitions in
different parts of the world for more than 25 years. The authors hope that the book
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will appeal to a wide audience of high-school students and mathematics teachers,
graduate students, professional mathematicians, and puzzle enthusiasts. The book
will be particularly useful to students involved in mathematics competitions around
the world.

We are grateful to Svetoslav Savchev and Nevena Sabeva for helping us during
the preparation of this book, and to David Kramer for the corrections and improve-
ments he made when editing the text for publication.

Titu Andreescu
Oleg Mushkarov

Luchezare Stoyanov
September, 2005





Chapter 1

Methods for Finding Geometric
Extrema

1.1 Employing Geometric Transformations

It is a rather common feature in solving geometric problems that the object of study
undergoes some geometric transformation in order for it to be brought to a situation
that is easier to deal with. In the present section this method is used to solve certain
geometric problems on maxima and minima. The transformations involved are the
well-known symmetry with respect to a line or a point, rotation, and dilation. Apart
from this, in some space geometry problems we are going to use symmetry through
a plane, rotation about a line, and space dilation. We refer the reader to [17] or [22]
for general information about geometric transformations.

We begin with the well known Heron’s problem.

Problem 1.1.1 A line � is given in the plane and two points A and B lying on the
same side of �. Find a point X on � such that the broken line AX B has minimal
length.

Solution. Let B ′ be the reflection of B in � (Fig. 1). By the properties of symmetry,
we have X B = X B ′ for any point X on �, so

AX + X B = AX + X B ′ ≥ AB ′.

The equality occurs precisely when X is the intersection point X0 of � and the line
segment AB ′. Thus, for any point X on � different from X0,

AX + X B ≥ AB ′ = AX0 + X0 B,

which shows that X0 is the unique solution of the problem. ♠
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Figure 1.

The above problem shows that the shortest path from A to B having a common
point with � is the broken line AX0 B. It is worth mentioning that the path AX0 B
satisfies the law of geometrical optics at its common point X0 with �: the angle
of incidence equals the angle of reflection. It is well known from physics that this
property characterizes the path of a light beam.

Problem 1.1.2 A line � is given in space and two points A and B that are not in
one plane with �. Find a point X on � such that the broken line AX B has minimal
length.

Solution. This problem is clearly similar to Problem 1.1.1. In the solution of the
latter we used symmetry with respect to a line. Notice that if α is a plane containing
�, the symmetry with respect to � in α can be accomplished using a rotation in
space through 180◦ about �. Using a similar idea it is now easy to solve the present
problem. Let α be the plane containing � and the point A. Consider a rotation ϕ

about � that sends B to a point B ′ in α such that A and B ′ are in different half-planes
of α with respect to � (Fig. 2).

Figure 2.
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If X0 is the intersection point of � and the line segment AB ′, for any point X on
� we have

AX + X B = AX + X B ′ ≥ AB ′ = AX0 + X0 B ′,

with equality precisely when X = X0. So the point X0 is the unique solution of
the problem.

Notice that since AX0 and B ′X0 make equal angles with �, the pair of line
segments AX0 and B X0 has the same property. ♠

The main feature used in the solutions of the above two problems was that
among the broken lines connecting two given points A and B the straight line
segment AB has minimal length. The same elementary observation will be used
in the solutions of several other problems below, while the preparation for using it
will be done by means of a certain geometric transformation: symmetry, rotation,
etc.

The next problem is a classic one, known as the Schwarz triangle problem (it is
also called Fagnano’s problem).

Problem 1.1.3 Inscribe a triangle of minimal perimeter in a given acute-angled
triangle.

Solution. The next solution was given in 1900 by the Hungarian mathematician
L. Fejér.

Let ABC be the given triangle. We want to find points M , N , and P on the sides
BC , C A, and AB, respectively, such that the perimeter of �M N P is minimal.

First, we consider a simpler version of this problem. Fix an arbitrary point P on
AB. We are now going to find points M and N on BC and C A, respectively, such
that �M N P has minimal perimeter. (This minimum of course will depend on the
choice of P .) Let P ′ be the reflection of the point P in the line BC and P ′′ the
reflection of P in the line AC (Fig. 3 (a)). Then C P ′ = C P = C P ′′, ∠P ′C B =
∠PC B, and ∠P ′′C A = ∠PC A. Setting γ = ∠BC A, we then have ∠P ′C P ′′ =
2γ . Moreover, 2γ < 180◦, since γ < 90◦ by assumption. Consequently, the line
segment P ′ P ′′ intersects the sides BC and AC of �ABC at some points M and
N , respectively, and the perimeter of �M N P is equal to P ′ P ′′. In a similar way,
if X is any point on BC and Y is any point on AC , the perimeter of �X PY equals
the length of the broken line P ′ XY P ′′, which is greater than or equal to P ′ P ′′. So,
the perimeter of �P XY is greater than or equal to the perimeter of �P M N , and
equality holds precisely when X = M and Y = N .

Thus, we have to find a point P on AB such that the line segment P ′ P ′′ has
minimal length. Notice that this line segment is the base of an isosceles triangle
P ′′ P ′C with constant angle 2γ at C and sides C P ′ = C P ′′ = C P . So, we have to
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Figure 3. (a)

Figure 3. (b)

choose P on AB such that C P ′ = C P is minimal. Obviously, for this to happen
P must be the foot of the altitude through C in �ABC .

Note now that if P is the foot of the altitude of �ABC through C , then M
and N are the feet of the other two altitudes. To prove this, denote by M1 and N1

the feet of the altitudes of �ABC through A and B, respectively (Fig. 3 (b)). Then
∠B M1 P ′ = ∠B M1 P = ∠B AC = ∠C M1 N1, which shows that the point P ′ lies
on the line M1 N1. Similarly, P ′′ lies on the line M1 N1 and therefore M = M1,
N = N1. Hence of all triangles inscribed in �ABC , the one with vertices at the
feet of the altitudes of �ABC has minimal perimeter. ♠

Schwarz’s problem can also be solved in the case that the given triangle is not
acute-angled. Assume, for example, that γ ≥ 90◦. It is not difficult to see that in
this case the triangle M N P with minimal perimeter is such that M = N = C and
P is the foot of the altitude of �ABC through C; that is, in this case �M N P is
degenerate.
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Problem 1.1.4 The quadrilateral in Fig. 4 is given by the coordinates of its ver-
tices. Find the shortest path beginning at the point A = (0, 1) and terminating at
C = (2, 1) that has common points with the sides a, d, b, d, c of the quadrilateral
in this succession.

Figure 4.

Solution. Apply three successive symmetries with respect to lines as shown in
Fig. 5. The image of the point C after the successive application of the three sym-
metries is C ′ = (6, 1). We now want to find the shortest path from A to C ′ that
lies entirely in the union of the quadrilaterals shown in Fig. 5. Clearly this is the
broken line

A = (0, 1) −→ (2, 2) −→ (4, 2) −→ (6, 2) −→ C ′ = (6, 1).

Figure 5.
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Therefore the shortest path in the given quadrilateral having the desired properties
is

A = (0, 1) −→ (2, 2) −→ (2, 0) −→ (2, 2) −→ C = (2, 1). ♠

We are now going to use Heron’s problem to solve a problem from the 25th
International Mathematical Olympiad.

Problem 1.1.5 A soldier has to check for mines a region having the form of an
equilateral triangle. The radius of activity of the mine detector is half the altitude
of the triangle. Assuming that the soldier starts at one of the vertices of the triangle,
find the shortest path he could use to carry out his task.

Solution. Let h be the length of the altitude of the given equilateral �ABC . As-
sume that the soldier’s path starts at the point A. Consider the circles k1 and k2

with centers B and C , respectively, both with radius h/2 (Fig. 6). In order to check
the points B and C , the soldier’s path must have common points with both k1 and
k2. Assume that the total length of the path is t and it has a common point M with
k2 first and then a common point N with k1. Denote by D the common point of k2

and the altitude through C in �ABC and by � the line through D parallel to AB.
Adding the constant h/2 to t and using the triangle inequality, one gets

t + h

2
≥ AM + M N + N B = AM + M P + P N + N B ≥ AP + P B,

where P is the intersection point of M N and �. On the other hand, Heron’s problem
(Problem 1.1.1 above) shows that AP + P B ≥ AD + DB, where equality occurs

Figure 6.
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precisely when P = D. This implies t + h
2 ≥ AD + DB, i.e., t ≥ AD + DE ,

where E is the point of intersection of DB and k1.
The above argument shows that the shortest path of the soldier that starts at A

and has common points first with k2 and then with k1 is the broken line ADE . It
remains to show that moving along this path, the soldier will be able to check the
whole region bounded by �ABC .

Let F , Q, and L be the midpoints of AB, AC , and BC , respectively. Since
DL < h/2, it follows that the disk with center D and radius h/2 contains the
whole �QLC . In other words, from position D the soldier will be able to check
the whole region bounded by �QLC . When the soldier moves along the line
segment AD he will check all points in the region bounded by the quadrilateral
AF DQ; while moving along DE , he will check all points in the region bounded
by F B L D.

Thus, moving along the path ADE , the soldier will be able to check the whole
region bounded by �ABC . So, ADE is one solution of the problem. Another
solution is given by the path symmetric to ADE with respect to the line C D. The
above arguments also show that there are no other solutions starting at A. ♠

So far, we have only used symmetry with respect to a line. In the following
several problems we are going to apply some other geometric transformations.

We pass on to a problem known as Pompeiu’s theorem.

Problem 1.1.6 Let ABC be an equilateral triangle and P a point in its plane.
Prove that there exists a triangle with sides equal to the line segments AP, B P,
and C P. This triangle is degenerate if and only if P lies on the circumcircle
of ABC.

More exactly: For each point P in the plane the inequality

AP + B P ≥ C P

holds true. The equality occurs if and only if P is on the arc ÂB of the circumcircle
of ABC .

Solution. Let, for instance, C P ≥ AP and C P ≥ B P. Consider the 60◦ counter-
clockwise rotation ϕ about A, and let ϕ carry P to P ′.

Then AP = AP ′ and ∠P AP ′ = 60◦, so �AP P ′ is equilateral. Thus P P ′ =
P A. Note also that ϕ carries B to C . Hence the line segment P ′C is the image
of P B under ϕ; therefore C P ′ = B P . Thus �PC P ′ has sides equal to the line
segments AP, B P , and C P . Because of the assumption C P ≥ AP , C P ≥ B P
and since ∠AP P ′ = 60◦, this triangle is degenerate if and only if ∠APC = 60◦ =
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Figure 7.

∠ABC , in which case AP BC is a cyclic quadrilateral. The latter means that the
point P lies on the arc ÂB of the circumcircle of ABC . ♠

The next problem is known as Steiner’s triangle problem.

Problem 1.1.7 Find a point X in the plane of a given triangle ABC such that the
sum

t (X) = AX + B X + C X

is minimal.

Solution. It is easy to see that if X is outside �ABC , then there exists a point X ′
such that t (X ′) < t (X). Indeed, suppose that X is exterior to the triangle. Then one
of the lines AB, BC , C A, say AB, has the property that �ABC and the point X
lie in different half-planes determined by this line (Fig. 8).

Figure 8.
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Consider the reflection X ′ of X in AB. We have AX ′ = AX , B X ′ = B X . Also,
the line segment C X intersects the line AB at some point Y , and XY = X ′Y . Now
the triangle inequality gives

C X ′ < CY + X ′Y = CY + XY = C X,

implying t (X ′) < t (X).
So we may restrict attention to points X in the interior or on the boundary of

�ABC . Let α, β, and γ be the angles of �ABC . Without loss of generality we
will assume that γ ≥ α ≥ β. Then α and β are both acute angles.

Denote by ϕ the rotation through 60◦ counterclockwise about A. For any point
M in the plane let M ′ = ϕ(M). Then AM M ′ is an equilateral triangle. In particu-
lar, �ACC ′ is equilateral.

Consider an arbitrary point X in �ABC . Then AX = X X ′, while ϕ(X) = X ′
and ϕ(C) = C ′ imply C X = C ′ X ′. Consequently, t (X) = B X + X X ′ + X ′C ′,
i.e., t (X) equals the length of the broken line B X X ′C ′.

We now consider three cases.

Case 1. γ < 120◦. Then ∠BCC ′ = γ +60◦ < 180◦. Since α < 90◦, we also have
∠B AC ′ < 180◦, so the line segment BC ′ intersects the side AC at some
point D (Fig. 9 (a)). Denote by X0 the intersection point of BC ′ with the
circumcircle of �ACC ′. Then X0 lies in the interior of the line segment
B D and X ′

0 lies on C ′ X0 since ∠AX0C ′ = ∠ACC ′ = 60◦.

Figure 9. (a)

Moreover, we have

t (X0) = B X0 + X0 X ′
0 + X ′

0C ′ = BC ′,

so t (X0) ≤ t (X) for any point X in �ABC . Equality occurs only of both
X and X ′ lie on BC ′, which is possible only when X = X0.
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Notice that the point X0 constructed above satisfies

∠AX0C = ∠AX0 B = ∠B X0C = 120◦.

It is called Toricelli’s point for �ABC .

Case 2. γ = 120◦. In this case the line segment BC ′ contains C and

t (X) = B X + X X ′ + X ′C ′ = BC ′

precisely when X = C .

Remark. The Cases 1 and 2 also follow by the Pompeiu theorem (Prob-
lem 1.1.6). Indeed, triangle ACC ′ is equilateral and we have t (X) =
AX + B X + C X ≥ C ′ X + B X ≥ C ′ B.

Case 3. γ > 120◦. Then BC ′ has no common points with the side AC (Fig. 9 (b)).
If AX ≥ AC then the triangle inequality gives

t (X) = AX + B X + C X ≥ AC + BC.

If AX < AC then X ′ lies in �ACC ′ and

t (X) = B X + X X ′ + X ′C ′ ≥ AC + BC

since C lies in the rectangle BC ′X ′ X (Fig. 9 (b)). In both cases equality
occurs precisely when X = C .

Figure 9. (b)

In conclusion, if all angles of �ABC are less than 120◦, then t (X) is minimal
when X coincides with Toricelli’s point of �ABC . If one of the angles of �ABC
is not less than 120◦, then t (X) is minimal when X coincides with the vertex of
that angle. ♠

The following problem is a generalization of Steiner’s problem.
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Problem 1.1.8 Suppose that ABC is a nonobtuse triangle, and let m, n, and p be
given positive numbers. Find a point X in the plane of the triangle such that the
sum

s(X) = m AX + n B X + pC X

is minimal.

Solution. Without loss of generality we will assume that m ≥ n ≥ p.

Case 1. m ≥ n + p. Then for any point X in the plane we have
AX + X B ≥ AB and AX + XC ≥ AC . Thus,

s(X) ≥ (n + p)AX + n B X + pC X

= n(AX + X B) + p(AX + XC)

≥ n AB + p AC = s(A).

Moreover, it is clear that equality occurs only if X = A. So, the (unique)
solution in this case is X = A.

Case 2. m < n + p. Then there exists a triangle A0 B0C0 with B0C0 = m, C0 A0 =
n, and A0 B0 = p. Let α0, β0, and γ0 be the angles of �A0 B0C0; then α0 ≥
β0 ≥ γ0. Let ϕ be the superposition of the following two transformations:

(i) the dilation with center A and ratio k = p

n
; (ii) the rotation through

angle α0 counterclockwise about A. For any point X in the plane set
X ′ = ϕ(X) and notice that ∠X AX ′ = α0 = ∠B0 A0C0 (Fig. 10) and

AX ′

AX
= k = p

n
= A0 B0

A0C0
.

Figure 10.
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Thus, �AX ′ X ∼ �A0 B0C0, which in turn implies X X ′
AX = m

n , i.e., m AX =
n X X ′. Also, C ′ X ′ = kC X , which is equivalent to pC X = nC ′ X ′. There-
fore, s(X) = n X X ′ + n B X + n X ′C ′, i.e.,

s(X)

n
= X X ′ + B X + X ′C ′.

So, the problem is to determine X in such a way that the broken line
B X X ′C ′ has minimal length.

We will now consider three subcases.

(a) The line segment BC ′ intersects the side AC (Fig. 10). Let D be the
intersection point, and let K be the locus of the points Y in the plane
such that ∠AY D = γ0 (see Section 1.5, Example 1). Denote by X0

the intersection point of K and the line BC . Since β0 ≤ α0, we
have β0 < 90◦. This and β ≤ 90◦ (by assumption) gives β0 + β <

180◦, so B lies outside the disk determined by K . On the other hand,
∠C ′ D A > ∠C ′C A = γ0, so the point X0 lies in the interior of the
line segment B D. It is now clear that X ′

0 lies on BC ′, and for any
point X in the plane we have

s(X)

n
≥ BC ′ = s(X0)

n
,

where equality occurs only when X = X0. Thus, in this subcase X0

is the unique solution of the problem.

(b) The line segment BC ′ contains the point A. Since A′ = A, we have
s(A)

n = BC ′, so s(X) is minimal precisely when X = A.

Notice that γ0 < 90◦ and γ ≤ 90◦ imply γ + γ0 < 180◦, so BC ′
cannot contain the point C . So the only remaining case to consider is
the following.

(c) The line segment BC ′ has no common points with the side AC , i.e.,
α + α0 > 180◦.

We will show that in this subcase s(X) is minimal when X = A. De-
note by D the intersection point of the line segment BC ′ and the line
AC (Fig. 11), and let X be an arbitrary point in the plane. If X lies in-
side ∠C ′ AD, then C X > AC and AX + B X > AB
imply

s(X) ≥ n AX + n B X + pC X > n AB + p AC = s(A).
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Figure 11.

If X is not in ∠C ′ AD, then the broken line B X X ′C ′ has a common
point with the ray issuing from A and passing through C . Therefore

s(X)

n
= B X + X X ′ + X ′C ′ ≥ B A + AC ′ = s(A)

n
,

where equality occurs only when X = A.

In conclusion, the problem always has exactly one solution. If α + α0 ≥ 180◦,
then s(X) is minimal when X = A, while in the case α + α0 < 180◦, s(X) is
minimal when X = X0. ♠

The analogues of Problems 1.1.7 and 1.1.8 for more than 3 points are no doubt
very interesting. However, in general they are much more difficult. The difficulties
increase substantially when one considers similar problems in space. Here we re-
strict ourselves to the consideration of a special case of the corresponding problem
for 4 points in space.

Problem 1.1.9 Let ABC D be a regular tetrahedron in space. Find the points X
in space such that the sum

s(X) = AX + B X + C X + DX

is a minimum.

Solution. We will use the simple fact that for any point X ′ in a regular tetrahedron
A′ B ′C ′ D′ the sum of the distances from X ′ to the four faces of the tetrahedron
is constant (see below). In order to use this we construct a regular tetrahedron
A′ B ′C ′ D′ having faces parallel to the corresponding faces of ABC D and such that
the point A lies in �B ′C ′ D′, B in �A′C ′ D′, C in �A′ B ′ D′, and D in �A′ B ′C ′.
The construction of such a tetrahedron is easy; just use the dilation ϕ with center
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Figure 12.

O, the center of ABC D, and ratio k = −3. For any point X set X ′ = ϕ(X). Then
A′ B ′C ′ D′ is the desired tetrahedron (Fig. 12).

Given a point X in the tetrahedron A′ B ′C ′ D′, let x , y, z, and t be the distances
from X to the faces of A′ B ′C ′ D′, and let h ′ be the length of its altitude. Then

h ′ · [A′ B ′C ′]
3

= Vol(A′ B ′C ′ D′)

= Vol(X B ′C ′ D′) + Vol(X A′C ′ D′)

+ Vol(X A′ B ′D′) + Vol(X A′ B ′C ′)

= x

3
[B ′C ′ D′] + y

3
[A′C ′ D′] + z

3
[A′ B ′ D′] + t

3
[A′ B ′C ′],

which gives x + y + z + t = h ′.
If X lies outside the tetrahedron A′ B ′C ′ D′, then the tetrahedra X B ′C ′ D′, X A′

C ′ D′, X A′ B ′D′, and X A′ B ′C ′ D′ cover A′ B ′C ′ D′, so the sum of their volumes is
greater than the volume of A′ B ′C ′ D′. So, in this case, x + y + z + t > h ′.

To find the minimum of s(X), notice that we always have x ≤ X A, where
equality holds only when X A is perpendicular to the plane of triangle B ′C ′ D′.
Similarly, y ≤ X B, z ≤ XC , and t ≤ X D. Thus, s(X) ≥ x + y + z + t ≥ h ′.
Moreover, the equality s(X) = h ′ holds if and only if X lies on the perpendiculars
through A, B, C , and D to the corresponding faces of A′ B ′C ′ D′. Clearly the
only point X with this property is X = O. This is the (unique) solution of the
problem. ♠

The last problem in this section is quite different from the problems considered
above.

Problem 1.1.10 Given an angle Opq and a point M in its interior, draw a line
through M that cuts off a triangle of minimal area from the given angle.
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Solution. It turns out that the required line � is such that M is the midpoint of the
line segment AB, where A and B are the intersection points of � with the rays p
and q, respectively. First, we construct such a line.

Let ϕ be the symmetry with respect to the point M . The ray p′ = ϕ(p) is
parallel to p and intersects q at some point B0. Let A0 be the intersection point of
p with the line M B0. It then follows that ϕ(A0) = B0, so M is the midpoint of the
line segment A0 B0.

Next, consider an arbitrary line � different from the line �0 = A0 B0 that inter-
sects the rays p and q at some points A and B, respectively. We will assume that
A0 is between the points O and A; the other case is similar.

Figure 13.

Notice that ϕ(A) = A′, where A′ is the intersection point of the ray p′ and the
line � (Fig. 13). Thus,

[O AB] = [A0 M A] + [O A0 M B] = [B0M A′] + [O A0 M B]

> [B0 B M] + [O A0 M B] = [O A0 B0].

Hence the line �0 = A0 B0 cuts off a triangle of minimal area from the given an-
gle. ♠

EXERCISES

1.1.11 Let M be the midpoint of the line segment AB. Show that

C M ≤ 1

2
(C A + C B),

for each point C . Equality occurs if and only if C lies on the line AB but
outside the open line segment AB.
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1.1.12 Let M and N be the midpoints of the line segments AD and BC , respec-
tively. Show that

M N ≤ 1

2
(AB + C D).

1.1.13 Find the points X lying on the boundary of a square such that the sum of
distances from X to the vertices of the square is a minimum.

1.1.14 Show that of all triangles with a given base and a given area, the isosceles
triangle has a minimal perimeter.

1.1.15 Let A and B be points lying on different sides of a given line �. Find the
points X on � such that the difference AX − B X has maximal absolute
value.

1.1.16 Given an angle X OY and a point P interior to it, find points A and B
on O X and OY , respectively, such that the perimeter of triangle P AB is a
minimum.

1.1.17 Given an angle X OY and two points A and B interior to it, find points C
and D on O X and OY , respectively, such that the length of the broken line
AC DB is a minimum.

1.1.18 Given an angle X OY and a point A on O X , find points M and N on OY
and O X , respectively, such that the sum AM + M N is a minimum.

1.1.19 There are given an angle with vertex A and a point P interior to it. Show
how to construct a line segment BC through P with endpoints on the sides
of the angle and such that

1

B P
+ 1

C P

is a maximum.

1.1.20 Given a convex quadrilateral ABC D, draw a line through C , intersecting
the extensions of the sides AB and AD at points M and K , such that

1

[BC M]
+ 1

[DC K ]

is a minimum.

1.1.21 An angle O XY is given and a point M in its interior. Find points A on O X
and B on OY such that O A = O B and the sum M A + M B is a minimum.
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1.1.22 Let M and N be given points in the interior of a triangle ABC . Find the
shortest path starting at M and terminating at N that has common points
with the sides AB, BC , and AC in this succession.

1.1.23 Let A, B, and C be three different points in the plane. Draw a line � through
C such that the sum of the distances from A and B to � is:

(a) a minimum; (b) a maximum.

1.1.24 Three distinct points A, B, and C are given in the plane. An arbitrary
line � is drawn through C , and a point M� on � is chosen such that the
distance sum AM� + B M� is a minimum. What is the maximum value of
the sum AM� + B M�, and for what lines � is it attained?

1.1.25 Let ABC be a triangle and D, E points on the sides BC and C A such that
DE passes through the incenter of ABC . Let S denote the area of the
triangle C DE and r the inradius of triangle ABC . Prove that S ≥ 2r2.

1.1.26 In the plane of an isosceles triangle ABC with AC = BC ≥ AB find the
points X such that the expression r(X) = AX + B X − C X is a minimum.

1.1.27 Two vertices of an equilateral triangle are at distance 1 away from a point O.
What is the maximum of the distance between O and the third vertex of the
triangle?

1.1.28 Let ABC be a triangle with centroid G. Determine the position of the
point P in the plane of ABC such that

AP · AG + B P · BG + C P · CG

is a minimum, and express this minimum in terms of the side lengths of ABC .

1.1.29 Inscribe a quadrilateral of minimal perimeter in a given rectangle.

1.1.30 Among all quadrilaterals ABC D with AB = 3, C D = 2, and
∠AM B = 120◦, where M is the midpoint of C D, find the one of minimal
perimeter.

1.1.31 Let ABC DE F be a convex hexagon with AB = BC = C D, DE = E F =
F A, and ∠BC D = ∠E F A = 60◦. Let G and H be points interior to the
hexagon such that the angles AG B and DH E are both 120◦. Prove that

AG + G B + G H + DH + H E ≥ C F.
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1.1.32 Find the points X in the plane such that the sum of the distances from X to
the vertices of:

(a) a given convex quadrilateral;

(b) a given centrally symmetric polygon,

is a minimum.

1.1.33 Among all quadrilaterals with diagonals of given lengths and given angle
between them determine the ones of minimum perimeter.

1.1.34 Let ABC D be a parallelogram of area S and M a point interior to it. Prove
that

AM · C M + B M · DM ≥ S.

Determine all cases of equality if ABC D is (a) a square; (b) a rectangle.

1.1.35 Let a, b, c, d be the lengths of the consecutive sides of a quadrilateral of
area S. Prove that

S ≤ 1

2
(ac + bd).

Equality occurs if and only if the quadrilateral is cyclic and its diagonals
are perpendicular.

1.1.36 Let ABC D be a tetrahedron such that AD = BC and AC = B D. Find the
points X in space such that the sum

t (X) = AX + B X + C X + DX

is a minimum.

1.1.37 Let α be a plane in space, O a given point on α, and let O A and O B be two
rays on the same side of α (i.e., in the same half-space with respect to α).
Find a line through O in α such that sum of the angles it makes with O A
and O B is a minimum.

1.1.38 All faces of a tetrahedron ABC D are acute-angled triangles. Let X , Y ,
Z , and T be points in the interiors of the edges AB, BC , C D, and D A,
respectively. Show that:

(a) if ∠D AB +∠BC D 	= ∠ABC +∠C D A, then among the broken lines
XY Z T X there is none of minimum length.

(b) if ∠D AB +∠BC D = ∠ABC +∠C D A, then there are infinitely many
broken lines XY Z T X with a minimum length equal to 2AC sin α

2 ,
where α = ∠B AC + ∠C AD + ∠D AB.
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1.1.39 Two cities A and B are separated by a river that has parallel banks. Design
a road from A to B that goes over a bridge across the river perpendicular to
its banks such that the length of the road is minimal.

1.1.40 Let ABC be an equilateral triangle with side length 1. John and James play
the following game. John chooses a point X on the side AC , then James
chooses a point Y on BC , and finally John chooses a point Z on AB.

(a) Suppose that John’s aim is to obtain a triangle XY Z of largest possible
perimeter, while James’s aim is to get a triangle XY Z of smallest pos-
sible perimeter. What is the largest possible perimeter of triangle XY Z
that John can achieve and with what strategy?

(b) Suppose that John’s aim is to obtain a triangle XY Z of largest possi-
ble area, while James’s aim is to get a triangle XY Z of smallest possi-
ble area. What is the largest area of triangle XY Z that John can achieve
and with what strategy?

1.1.41 Let A0 B0C0 and A1 B1C1 be two acute-angled triangles. Consider all tri-
angles ABC that are similar to triangle A1 B1C1 (so that vertices A1, B1,

C1 correspond to vertices A, B, C , respectively) and circumscribed about
triangle A0 B0C0 (where A0 lies on BC , B0 on C A, and C0 on AB). Of
all such possible triangles, determine the one with maximum area, and con-
struct it.

1.2 Employing Algebraic Inequalities

A large variety of geometric problems on maxima and minima can be solved by
using appropriate algebraic inequalities. Conversely, many algebraic inequalities
can be interpreted geometrically as such problems. A typical example is the well-
known arithmetic mean–geometric mean inequality,

x + y

2
≥ √

xy (x, y ≥ 0),

which is equivalent to the following:

Of all rectangles with a given perimeter the square has maximal area.

In this section we solve several geometric problems on maxima and minima
using classical algebraic inequalities. As one would expect, in using this approach
the solution is normally given by the cases in which equality occurs. That is why
it is quite important to analyze these cases carefully.

We list below some classical algebraic inequalities that are frequently used in
solving geometric extremum problems.
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Arithmetic Mean–Geometric Mean Inequality

For any nonnegative numbers x1, x2, . . . , xn ,

x1 + x2 + · · · + xn

n
≥ n

√
x1x2 · · · xn,

with equality if and only if x1 = x2 = · · · = xn .

Root Mean Square–Arithmetic Mean Inequality

For any real numbers x1, x2, . . . , xn ,√
x2

1 + x2
2 + · · · + x2

n

n
≥ x1 + x2 + · · · = +xn

n
,

with equality if and only if x1 = x2 = · · · = xn .

Cauchy–Schwarz Inequality

For any real numbers x1, x2, . . . , xn and y1, y2, . . . , yn,

(x2
1 + x2

2 + · · · + x2
n )(y2

1 + y2
2 + · · · + y2

n) ≥ (x1 y1 + x2 y2 + · · · + xn yn)
2,

with equality if and only if xi and yi are proportional, i = 1, 2, . . . , n.

Minkowski’s Inequality

For any real numbers x1, x2, . . . , xn , y1, y2, . . . , yn, . . . , z1, z2, . . . , zn,√
x2

1 + y2
1 + · · · + z2

1 +
√

x2
2 + y2

2 + · · · + z2
2 + · · · +

√
x2

n + y2
n + · · · + z2

n

≥
√

(x1+x2 + · · · + xn)2 + (y1+y2 + · · · + yn)2 + · · · + (z1+z2 + · · · + zn)2,

with equality if and only if xi , yi , . . . , zi are proportional, i = 1, 2, . . . , n.
For more information on algebraic inequalities we refer the reader to the books

[9], [14], [19].
We begin with the well known isoperimetric problem for triangle.

Problem 1.2.1 Of all triangles with a given perimeter find the one with maximum
area.
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Solution. Consider an arbitrary triangle with side lengths a, b, c and perimeter
2s = a + b + c. By Heron’s formula, its area F is given by

F = √
s(s − a)(s − b)(s − c) .

Now the arithmetic mean–geometric mean inequality gives

3
√

(s − a)(s − b)(s − c) ≤ (s − a) + (s − b) + (s − c)

3
= s

3
.

Therefore

F ≤
√

s
( s

3

)3 = s2

√
3

9
,

where equality holds if and only if s − a = s − b = s − c, i.e., when a = b = c.
Thus, the area of any triangle with perimeter 2s does not exceed s2

√
3

9 and is

equal to s2
√

3
9 only for an equilateral triangle. ♠

Problem 1.2.2 Of all rectangular boxes without a lid and having a given surface
area find the one with maximum volume.

Solution. Let x , y, and z be the edge lengths of the box (Fig. 14), and let S be its
surface area.

Figure 14.

Then S = xy +2xz +2zy, and the arithmetic mean–geometric mean inequality
gives (

S

3

)3

=
(

xy + 2xz + 2zy

3

)3

≥ 4x2 y2z2.

So, for the volume V = xyz of the box we get V ≤ 1
2

(
S
3

)3/2
. The maximum

volume is obtained when equality holds, i.e., when xy = 2xz = 2zy. The latter

easily implies that the edges of the box with maximum volume are x = y =
√

S
3

and z = 1
2

√
S
3 . ♠

The next problem is a generalization of Problem 1.1.10.
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Problem 1.2.3 Two positive integers p and q are given, and a point M in the
interior of an angle with vertex O. A line through M intersects the sides of the
angle at points A and B. Find the position of the line for which the product O Ap ·
O Bq is a minimum.

Solution. Consider the points K on O A and L on O B such that M K is parallel
to O B and M L is parallel to O A (Fig. 15). Then �K M A ∼ �O B A gives O B =
AB
AM · M K . Similarly, O A = AB

B M · M L . Therefore

O Ap · O Bq = M L p · M K q(
B M
AB

)p · ( AM
AB

)q .

Since M K and M L do not depend on the choice of the line through M , it follows
that O Ap · O Bq is minimal whenever

(
B M
AB

)p · ( AM
AB

)q
is maximal.

Figure 15.

Set x = B M
AB and y = AM

AB . Then x + y = 1 and the arithmetic mean–geometric

mean inequality for x1 = x2 = · · · = x p = x

p
and x p+1 = · · · = x p+q = y

q gives

1

p + q
= x + y

p + q
≥ p+q

√(
x

p

)p ( y

q

)q

.

Thus x p · yq ≤ p pqq

(p+q)p+q and x p yq is maximal when x
p = y

q , i.e., when B M
AM = p

q .
Therefore the line through M must be drawn in such a way that AM : M B = q : p.
Note that there exists a unique line with this property. ♠

It should be mentioned that the above problem is closely related to Problem
1.1.10 and its space analogue (see Problem 1.4.4 below). The former is obtained
from Problem 1.2.3 when p = q = 1, while the latter uses the case p = 1, q = 2.

Problem 1.2.4 Let X, Y , and Z be points on the lines determined by three pairwise
skew (i.e., not lying in a plane) edges of a given cube. Find the position of these
three points such that the perimeter of triangle XY Z is a minimum.



1.2. Employing Algebraic Inequalities 23

Solution. Assume that the given cube ABC D A1 B1C1 D1 has edge of length 1.
Without loss of generality we will assume that X lies on the line determined by
C1 D1, Y on the line AD and Z on the line B B1 (Fig. 16).

Figure 16.

Consider the coordinate system in space with origin A and coordinates axes
AB, AD, and AA1. Then the points X , Y , Z have coordinates X = (x, 1, 1),
Y = (0, y, 0), Z = (1, 0, z), and the perimeter P of �XY Z is given by

P =
√

1 + y2 + z2 +
√

(1 − x)2 + 1 + (1 − z)2 +
√

x2 + (1 − y)2 + 1.

Now the problem is to minimize the expression in the right-hand side when x, y, z
range independently over the interval (−∞,+∞). From its nature, one would
expect this to be done by means of Minkowski’s inequality. Using this inequality
directly gives

P ≥
√

[1 + (1 − x) + x]2 + [y + (1 − y) + 1]2 + [z + (1 − z) + 1]2,

that is, P ≥ √
12. This may lead to the wrong conclusion that the minimum of P

is
√

12. In fact, the above inequality is strict, i.e., equality never occurs. This can
be easily derived from the condition for equality in Minkowski’s inequality (see
the Glossary).

Let us now show how to use Minkowski’s inequality in a different way that
leads to a correct result. We have

P ≥
√

(1 + 1 + 1)2 + (y + 1 − z + x)2 + (z + 2 − x − y)2

=
√

9 + (1 + x + y − z)2 + [2 − (x + y − z)]2.

Next, using the root mean square–arithmetic mean inequality, one gets

(1 + x + y − z)2 + [2 − (x + y − z)]2 ≥ 9

2
,
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and therefore P ≥
√

9 + 9
2 =

√
27
2 . One checks easily that P =

√
27
2 if and only if

x = y = z = 1
2 , showing that the perimeter of �XY Z is minimal precisely when

X , Y , and Z are the midpoints of the corresponding edges of the cube. ♠

As we mentioned earlier in this section, when solving geometric problems on
maxima and minima by means of algebraic inequalities it is rather important to
investigate exactly when equality occurs. Sometimes, however, it is not an easy
task to transform the obtained algebraic information into a geometric answer. Here
is an example in which something similar happens.

Problem 1.2.5 For any point X inside a given triangle ABC denote by x, y, and z
the distances from X to the lines BC, AC, and AB, respectively. Find the position
of X for which the sum x2 + y2 + z2 is a minimum.

Solution. Set BC = a, C A = b, AB = c. Then 2[ABC] = ax + by + cz and the
Cauchy–Schwarz inequality gives

4[ABC]2 = (ax + by + cz)2 ≤ (a2 + b2 + c2)(x2 + y2 + z2).

Hence

x2 + y2 + z2 ≥ 4[ABC]2

a2 + b2 + c2
.

Therefore the sum x2 + y2 + z2 should be minimal for all points X (if any) such
that x

a
= y

b
= z

c
.

What are the points X in a triangle having this property? We leave it as an exercise
to the reader to find out the answer to this question. Let us just mention that for any
triangle there exists only one point X satisfying the above condition. This is called
Lemoine’s point, which is defined as the intersection point of the lines symmetric
to the medians of the triangle with respect to the corresponding angle bisectors.

As for the maximal value of the expression x2 + y2 + z2, it is not difficult to
see that it is achieved when X coincides with the vertex of the smallest angle of
the triangle. Indeed, let a = BC be the smallest side (or one of them) of �ABC .
Then a(x + y + z) ≤ ax + by + cz = 2[ABC], so x + y + z ≤ ha, where ha is the
length of the altitude through A. On the other hand, x2 + y2 + z2 ≤ (x + y + z)2,
and therefore x2 + y2 + z2 ≤ h2

a , with equality only if X = A.

EXERCISES

1.2.6 Show that of all rectangles inscribed in a given circle the square has a max-
imum area.
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1.2.7 A square is cut into several rectangles. Show that the sum of the areas of
the disks determined by the circumscribed circles of these rectangles is not
less than the area of the disk determined by the circumcircle of the given
square.

1.2.8 Prove that of all rectangular parallelepipeds of a given volume the cube has
a minimum surface area.

1.2.9 A rectangle with side lengths 1 and d is cut by two perpendicular lines into
four smaller rectangles. Three of them have areas not less than 1, while the
area of the fourth one is not less than 2. Find the smallest positive number
d for which this is possible.

1.2.10 A square and a triangle have equal areas. Which of them has larger perime-
ter?

1.2.11 Find the length of the shortest line segment dividing a given triangle into
two parts with equal:

(a) areas; (b) perimeters.

1.2.12 Let O be a point in the plane of a quadrilateral ABC D such that

AO2 + B O2 + C O2 + DO2 = 2[ABC D].

Prove that ABC D is a square with center O.

1.2.13 A convex quadrilateral has area 1. Find the maximum of:

(a) its perimeter; (b) the sum of its diagonals.

1.2.14 In a convex quadrilateral of area 32, the sum of the lengths of two opposite
sides and one diagonal is 16. Determine all possible lengths of the other
diagonal.

1.2.15 Of all tetrahedra with a right-angled trihedral angle at one of the vertices
and a given sum of the six edges, find the one of maximal volume.

1.2.16 The volume and the surface area of a parallelepiped are numerically equal
to 216. Prove that the parallelepiped is a cube.

1.2.17 Let α be a given plane in space and A and B two points on different sides
of α. Describe the sphere through A and B that cuts off a disk of minimal
area from α.
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1.2.18 Let l be the length of a broken line in space, and a, b, c the lengths of its
orthogonal projections onto the coordinate planes.

(a) Prove that a + b + c ≤ l
√

6.

(b) Does there exist a closed broken line such that a + b + c = l
√

6?

1.2.19 For any point X in a given triangle ABC denote by x , y, and z the distances
from X to the lines BC , C A, and AB, respectively. Find the position of X
for which:

(a)
a

x
+ b

y
+ c

z
; (b)

1

ax
+ 1

by
+ 1

cz
,

is a minimum. (Here a = BC , b = C A, c = AB.)

1.2.20 Let X be an arbitrary point in the interior of a tetrahedron ABC D and let
d1, d2, d3, and d4 be the distances from X to its faces. What is the position
of X for which the product d1d2d3d4 is a maximum?

1.2.21 Given a point X in the interior of a given triangle, one draws the lines
through X parallel to the sides of the triangle. These lines divide the tri-
angle into six parts, three of which are triangles with areas S1, S2, and S3.
Find the position of X such that the sum S1 + S2 + S3 is a minimum.

1.2.22 Three lines are drawn through an interior point M of a given triangle ABC
such that the first line intersects the sides AB and BC at points C1 and A2,
the second line intersects the sides BC and C A at points A1 and B2, and
the third line intersects the sides C A and AB at points B1 and C2. Find the
least possible value of the sum

1

[A1 A2 M]
+ 1

[B1 B2M]
+ 1

[C1C2 M]
.

1.2.23 Let X be a point in the interior of a triangle ABC and let the lines AX ,
B X , and C X intersect the sides BC , C A, and AB at points A1, B1, and C1,
respectively. Find the position of X for which the area of triangle A1 B1C1

is a maximum.

1.2.24 Let ABC be an equilateral triangle and P a point interior to it. Prove that
the area of the triangle with sides the line segments P A, P B, and PC is not
greater than 1

3 [ABC].

1.2.25 Points C1, A1, B1 are chosen on the sides AB, BC, C A of an equilateral
triangle ABC . Determine the maximum value of the sum of the inradii of
triangles AB1C1, BC1 A1, and C A1 B1.
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1.2.26 The points D and E are chosen on the sides AB and BC of a triangle ABC .
The points K and M divide the line segment DE into three equal parts. The
lines B K and B M intersect the side AC at T and P , respectively. Prove
that T P ≤ AC

3 .

1.2.27 Find the triangles ABC for which the expression

� = a A + bB + cC

a + b + c

has a minimum. Does this expression have a maximum?

1.2.28 In a given sphere, inscribe a cone of maximal volume.

1.2.29 Let P be a point on a given sphere. Three mutually perpendicular rays
from P meet the sphere at A, B, C . Find the maximum area of trian-
gle ABC .

1.2.30 A trihedral angle with vertex O and a positive number a are given. Find
points A, B, and C , one on its edges, such that O A + O B + OC = a and
the volume of the tetrahedron O ABC is a maximum.

1.2.31 Let M be a point lying on the base ABC of a tetrahedron ABC D and let
A1, B1, and C1 be the feet of the perpendiculars drawn from M to the faces
BC D, AC D, and AB D, respectively. Find the position of M for which the
volume of the tetrahedron M A1 B1C1 is a maximum.

1.2.32 Let p, q, and r be given positive integers. A plane α passing through a given
point M in the interior of a given trihedral angle with vertex O intersects its
edges at points A, B, and C . Find the position of α for which the product
O Ap · O Bq · OCr is a minimum.

1.2.33 A container having the shape of a hemisphere with radius R is full of wa-
ter. A rectangualar parallelepiped with sides a and b and height h > R is
immersed in the container. Find the values of a and b for which such an
immersion will expel a maximum volume of water from the container.

1.3 Employing Calculus

Many geometry problems on maxima and minima can be stated as problems for
finding the maxima or the minima of certain functions depending on several vari-
ables. For example, the problem of inscribing a triangle of maximal area in a circle
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Figure 17.

is easily reduced to finding the maximum of the function f (α, β) = sin α sin β

sin(α + β), where α > 0, β > 0, α + β < 180◦ (Fig. 17).
In general the function obtained in modeling the problem is complicated and

difficult to investigate. Sometimes, however, one manages to reduce the problem
to finding the maxima or minima of a function depending on one variable.

In this section we consider several geometric problems on maxima and minima
whose solutions can be reduced to the investigation of relatively simple functions
of one variable.

Before proceeding with the problems we state several facts about functions of
one variable that are used in this section. Existence of extrema of functions of one
variable are frequently derived by means of the well-known extreme value theorem:

Extreme Value Theorem. If f (t) is a continuous function on a finite closed in-
terval I = [a, b], then f has an (absolute) maximum and an (absolute) minimum
in I .

It is worth mentioning that f can achieve its maximal (minimal) value at more
than one point. To find these points one normally uses one of the following two
theorems.

Monotonicity Theorem. Let f (t) be a continuous function on an interval I and
let f be differentiable in the interior of I .

(a) If f (t) is increasing in I , then f ′(t) ≥ 0 for all t in the interior of I .

(b) If f ′(t) ≥ 0 for all t in the interior of I , then f is increasing in I . Moreover,
if f ′(t) > 0 for all but finitely many t in the interior of I , then f is strictly
increasing in I .

The assumption that I is an interval is essential for the validity of (b). Similarly,
the inequality f ′(t) ≤ 0 characterizes decreasing functions on intervals.

As a consequence of the above theorem one gets the following.
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Fermat’s Theorem. Let f (t) be a differentiable function on an interval I . If f has
a local maximum or minimum at some point t0 in the interior of I , then f ′(t0) = 0.

In particular, if f is continuous on an interval [a, b], differentiable in (a, b),
and the equation f (t) = 0 has no solution in (a, b), then f achieves its (absolute)
maximal and minimal values at the ends of the interval and nowhere else.

Intermediate Value Theorem. If f (t) is continuous in the finite closed interval
[a, b] and f (a) · f (b) < 0, then there exists at least one t ∈ (a, b) such that
f (t) = 0.

We start with an example in which a quadratic function is used.

Problem 1.3.1 Two ships travel along given directions with constant speeds. At
9 a.m. the distance between them is 20 miles, at 9:35 the distance is 15 miles, while
at 9:55 the distances is 13 miles. Find the time when the distance between the ships
is a minimum.

Solution. Assume that one of the ships travels along a line g, while the second
travels along a line h. First, assume that g and h intersect at some point O (Fig. 18).
Denote by α the angle between the two directions of motion and by A and B the
positions of the ships at 9 a.m. Set u1 = O A, and u2 = O B if ∠B O A = α, and
u1 = −O A if ∠B O A = 180◦ − α. Let v1 and v2 be the speeds of the two ships.

Figure 18.

Then using the law of cosines we get that the distance � between the ships at
time t is given by

�2 = (u1 + v1t)2 + (u2 + v2t)2 − 2(u1 + v1t)(u2 + v2t) cos α.

Thus, �2 is a quadratic function of t , i.e., it can be written as �2 = at2 + 2bt + c
for some real constants a, b, and c (which can be explicitly determined by means
of u1, u2, v1, and v2).
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In the case that g and h are parallel lines, it is also easy to see that �2 is a
quadratic function of t ; we leave this as an exercise to the reader.

Thus, �2 = at2 + 2bt + c for some constants a, b, and c. Assume that our
unit of time is 5 minutes. Then the assumptions in the problem give the following
system of equations for a, b, and c:

400 = c,

225 = 49a + 14b + c,

169 = 121a + 22b + c.

The unique solution of this system is a = 1, b = −16, c = 400, and we have that

�2 = t2 − 32t + 400 = (t − 16)2 + 144.

Hence � ≥ 12 and � = 12 when t = 16. Thus the distance between the two ships
is a minimum at 10:20 a.m. ♠

The following problem gives a mathematical explanation of the law of Snell–
Fermat, well known in physics, concerning the motion of light in an inhomoge-
neous medium.

Problem 1.3.2 A line � is given in the plane and two points A and B on different
sides of the line. A particle moves with constant speed v1 in the half-plane con-
taining A and with constant speed v2 in the half-plane containing B. Find the path
from A to B that is traversed in minimal time by the particle.

Solution. Consider a coordinate system Oxy in the plane such that the axis Ox
coincides with � and O A is perpendicular to �.

Then in coordinates, A = (0, a) and B = (d,−b). Without loss of generality
we will assume that a > 0, b > 0, and d > 0 (Fig. 19). Given a point X on � with
coordinates (x, 0), we have AX = √

a2 + x2 and B X = √
b2 + (d − x)2. The

time t that the particle requires to traverse the broken line AX B is

t (x) = AX

v1
+ B X

v2
= 1

v1

√
a2 + x2 + 1

v2

√
b2 + (d − x)2.

Using a simple geometric argument, it is enough to investigate the function t (x)

for 0 ≤ x ≤ d (for x outside this interval t (x) cannot have a minimum). We have

t ′(x) = x

v1

√
a2 + x2

− d − x

v2

√
b2 + (d − x)2

.
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Figure 19.

It follows from
x√

a2 + x2
= 1√

a2

x2 + 1

that the function x√
a2+x2

is strictly increasing in the interval [0, d]. Similarly,

− d−x√
b2+(d−x)2

is strictly increasing in the same interval, so t ′(x) is also strictly in-

creasing in [0, d]. Since t ′(0) < 0 and t ′(d) > 0, the intermediate value theorem
shows that there is a (unique) x0 ∈ (0, d) with t ′(x0) = 0. It is now clear that
t ′(x) < 0 for x ∈ [0, x0) and t ′(x) > 0 for x ∈ (x0, d], so by the monotonicity the-
orem, t (x) is strictly decreasing in [0, x0] and strictly increasing in [x0, d]. Thus,
t (x) has a minimum at x0. Notice that for the point X0 = (x0, 0) the condition
t ′(x0) = 0 can be written as

sin α

v1
= x0

v1

√
a2 + x2

0

= d − x0

v2

√
b2 + (d − x0)2

= sin β

v2
,

where α is the angle between AX and Oy, while β is the angle between B X and
Ox .

Hence there exists a unique point X0 on � such that the path AX0 B is traversed
for a minimal time by the particle, and this point is characterized by the equation
sin α
v1

= sin β
v2

. ♠

The latter equality is called the law of Snell–Fermat for the diffraction of a light
beam when it leaves a homogeneous medium and enters another one. This law has
its fundamentals in the principle that a light beam always travels along a path that
takes a minimal amount of time to traverse.

Problem 1.3.3 Two externally tangent circles are inscribed in a given angle Opq.
Find points A and D on the ray p and B and C on the ray q such that AB and
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C D are parallel, the quadrilateral ABC D contains the two circles, and the line
segment AD has minimal length.

Solution. Let r and R, r < R, be the radii of the circles and O2 and O1 their
centers (Fig. 20). We may assume that AB is tangent to the circle with radius R
and DC tangent to the circle with radius r . Let P and Q be the tangent points of
the two circles with AD, where P is between A and Q. Set x = DQ. We will now
find AD as a function of x . Since O1 O2 = R + r , from the right-angled trapezoid
P O1O2 Q one gets P Q = 2

√
Rr . On the other hand,

∠P AO1 = 1

2
∠P AB = 1

2
(180◦ − ∠Q DC) = 90◦ − ∠Q DO2 = ∠QO2 D,

Figure 20.

so �AO1 P ∼ �O2 DQ. Consequently, R
P A = x

r , i.e., P A = Rr
x . This implies

AD = f (x) + 2
√

Rr with f (x) = x + Rr
x .

Now we have to find the minimum of f (x) over the interval 0 < x < x0 = QO.
Notice that �P O1 O ∼ �QO2 O implies x0 = 2r

R−r

√
Rr .

We have f ′(x) = 1 − Rr
x2 , and therefore f (x) is strictly decreasing for x ∈

(0,
√

Rr) and strictly increasing for x ∈ (
√

Rr ,∞). Also notice that x0 ≤ √
Rr is

equivalent to 3r ≤ R, which in turn is equivalent to α = ∠AO B ≥ 60◦.

Case 1. 3r ≤ R (i.e., α ≥ 60◦). Then x0 ≤ √
Rr , so f (x) is strictly decreasing in

(0, x0), i.e., f (x) has no minimum in the interval (0, x0). In other words,
when 3r ≤ R the problem has no solution.
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Case 2. 3r > R (i.e., α < 60◦). Then
√

Rr < x0 and clearly on the interval
(0, x0), f (x) has a minimum at x = √

Rr . Hence the minimum length
of AD is 4

√
Rr . The construction of the trapezoid ABC D can be done

by first finding the point D on QO such that Q D = √
Rr . After that the

construction of the points A, B, and C is straightforward. ♠

Problem 1.3.4 A corridor having the shape of a letter � is a units wide in one of
its wings and b units wide in the other. Find the length of the longest stick that can
move from one of the wings to the other. (It is assumed that the thickness of the
stick is negligible and during the motion the stick stays horizontal.)

Solution. Consider an arbitrary angle α between 0◦ and 90◦, and let AB be a line
segment in the corner of the corridor that is tangent to the vertex O of the inside
right angle of the corridor and makes angle α with one of its walls (see Fig. 21).
Then

f (α) = AB = AO + O B = a

cos α
+ b

sin α
.

Figure 21.

A stick of length � could be moved from one wing of the corridor to the other if
� ≤ f (α) for all α ∈ (0, 90◦).

This is a necessary and sufficient condition, so the maximal length � of the stick
will be the minimum of the function f (α) over (0, 90◦) if it exists.

We have

f ′(α) = a sin α

cos2 α
− b cos α

sin2 α
= a cos α

sin2 α

(
tan3 α − b

a

)
.

Since tan3 α increases strictly from 0 to ∞ when α runs from 0◦ to 90◦, there exists
a unique α0 ∈ (0, 90◦) such that tan3 α0 = b

a . Then f ′(α0) = 0, and moreover,
f ′(α) < 0 for α ∈ (0, α0) and f ′(α) > 0 for α ∈ (α0, 90◦). Thus, f (x) has a
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minimum at α0. It follows from tan α0 = 3

√
b
a that

cos2 α0 = 1

1 + tan2 α0
= 1

1 + 3

√
b2

a2

= a2/3

a2/3 + b2/3
,

sin2 α0 = 1 − cos2 α0 = b2/3

a2/3 + b2/3
.

So

f (α0) = a

cos α0
+ b

sin α0
= (

a2/3 + b2/3)3/2
.

Hence the maximal length of a stick that can be moved from one wing of the

corridor to the other is � = (
a2/3 + b2/3

)3/2
. ♠

Problem 1.3.5 The length of the edge of a cube ABC D A1 B1C1 D1 is 1. A point
M is chosen on the extension of the edge AD such that D is between A and M and

AM = 2
√

2
5 . Let E be the midpoint of A1 B1 and F the midpoint of DD1. What is

the maximum possible value of the ratio M P
P Q , where P is a point on AE, while Q

is a point on C F?

Solution. If L is the midpoint of AA1, then clearly B L FC is a rectangle (Fig. 22).

Figure 22.

For the intersection point N of AE and B L we have �AN L ∼ �AA1 E , which
gives AN = 1√

5
. Consider arbitrary points P and Q on the line segments AE

and C F , respectively. Let Q1 be the point on B L such that QQ1 ‖ BC , and
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let x = AP − AN and y = N Q1. We then have P Q2
1 = x2 + y2, P Q2 =

P Q2
1 + QQ2

1 = 1 + x2 + y2, and M P2 = AM2 + AP2 = 8
5 +

(
1√
5

+ x
)2

.

Therefore
M P2

P Q2
=

9
5 + 2x√

5
+ x2

1 + x2 + y2
≤

9
5 + 2x√

5
+ x2

1 + x2
,

where equality holds if and only if y = 0, that is, when QN ‖ BC . Clearly the
latter determines the position of Q.

Since AN = 1√
5

and AE =
√

5
2 , for x = AP − AN we have x ∈ � =[

− 1√
5
, 3

2
√

5

]
. It remains to find the maximum of

f (x) =
9
5 + 2x√

5
+ x2

1 + x2
= 1 + 2

5
· 2 + √

5 x

1 + x2

when x ∈ �. For the function g(x) = 2+√
5 x

1+x2 we have

g′(x) =
√

5 − 4x − √
5 x2

(1 + x2)2
,

So g′(1/
√

5) = 0, g(x) is strictly increasing on the interval
[
− 1√

5
, 1√

5

]
, and strictly

decreasing on
[

1√
5
, 3

2
√

5

]
. Thus g(x) has a maximum g(1/

√
5) = 5/2 at x =

1/
√

5. Therefore the maximum value of M P
P Q is

√
2. It is attained when N Q ‖ BC

and AP = 2AN = 2/
√

5. ♠

We have already had the opportunity to remark that not every extreme value
geometric problem has a solution (see, e.g., Case 1 in Problem 1.3.4). Here we
consider another problem of this kind.

Problem 1.3.6 The length of the edge of the cube ABC D A1 B1C1 D1 is 1. Two
points M and N move along the line segments AB and A1 D1, respectively, in
such a way that at any time t (0 ≤ t < ∞) we have B M = | sin t| and D1N =
| sin(

√
2t)|. Show that M N has no minimum.

Solution. Clearly M N ≥ M A1 ≥ AA1 = 1. If M N = 1 for some t , then
M = A and N = A1, which is equivalent to | sin t| = 1 and | sin(

√
2t)| = 1.

Consequently t = π
2 + kπ and

√
2t = π

2 + nπ for some integers k and n, which
implies

√
2 = 2n+1

2k+1 , a contradiction since
√

2 is irrational. That is why M N > 1
for any t .
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We will now show that M N can be made arbitrarily close to 1. For any integer
k set tk = π

2 + kπ . Then | sin tk | = 1, so at any time tk the point M is at A. To
show that N can be arbitrarily close to A1 at times tk , it is enough to show that
| sin(

√
2tk)| can be arbitrarily close to 1 for appropriate choices of k.

We are now going to use Kronecker’s theorem: If α is an irrational number,
then the set of numbers of the form mα + n, where m is a positive integer, while n
is an arbitrary integer, is dense in the set of all real numbers. The latter means that
every nonempty open interval (regardless of how small it is) contains a number of
the form mα + n.

Since
√

2 is irrational, we can use Kronecker’s theorem with α = √
2. Then for

x = 1−√
2

2 , and any δ > 0 there exist integers k ≥ 1 and nk such that k
√

2 − nk ∈
(x − δ, x + δ). That is, for εk = √

2 k +
√

2
2 − 1

2 − nk we have |εk | < δ. Since√
2
(
k + 1

2

) = 1
2 + nk + εk , we have

∣∣ sin(
√

2 tk)
∣∣ =

∣∣∣∣sin π
√

2

(
k + 1

2

)∣∣∣∣ =
∣∣∣sin

(π

2
+ nkπ + εkπ

)∣∣∣ = | cos(πεk)|.

It remains to note that | cos(δπ)| tends to 1 as δ tends to 0.
Hence M N can be made arbitrarily close to 1. ♠

EXERCISES

1.3.7 A convex quadrilateral of area S is given. Consider a parallelogram with
sides parallel to the diagonals of the quadrilateral and vertices lying on its
sides. Determine the maximum value of the area of such a parallelogram.

1.3.8 A point A lies between two parallel lines at distances a and b from them.
Find points B and C , one on each of the lines, such that ∠B AC = α, where
0 < α < 90◦ is a given angle and the area of triangle ABC is a maximum.

1.3.9 Of all triangles inside a regular hexagon one side of which is parallel to a
side of the hexagon, find those with maximal area.

1.3.10 For any triangle T denote by S(T ) its area and by d(T ) the minimal length
of the diagonal of a rectangle inscribed in T . For which triangles T is the
ratio d2(T )

S(T )
a maximum?

1.3.11 A long sheet of paper having the shape of a rectangle ABC D is folded
along the line E F , where E is a point on the side AD and F a point on the
side C D, in such a way that D is mapped to a point D′ on AB (Fig. 23).
What is the minimum possible area of triangle E F D?
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Figure 23.

1.3.12 Of all quadrilaterals inscribed in a given half-disk find the one of maximum
area.

1.3.13 A convex quadrilateral of area greater than 3
√

3
4 lies in a unit disk. Show

that the center of the disk lies inside the quadrilateral.

1.3.14 Find a point M on the circumcircle of a right-angled triangle ABC (∠C =
90◦) for which the sum M A + M B + MC is a maximum.

1.3.15 For any n-gon M inscribed in a unit circle k, denote by s(M) the sum of the
squares of its sides.

(a) Show that if n = 3, then the maximum value of s(M) is 9 and it is
attained precisely when M is an equilateral triangle.

(b) Show that if n > 3, then s(M) < 9, and for any ε > 0 there exists an
n-gon M inscribed in k with 9 − ε < s(M) < 9.

1.3.16 A regular n-gon with side a is given. One constructs a circle with center
at one of the vertices of the polygon and radius less than a. Then one
constructs a second circle with center at one of the neighboring vertices
externally tangent to the first circle. One continues this process until circles
are constructed with centers at all vertices of the polygon. Find the radius
of the first circle for which the part of the polygon outside the n circles has
a maximum area.

1.3.17 The vertices of an (n + 1)-gon lie on the sides of a regular n-gon and divide
its perimeter into parts of equal length. How should one construct the (n +
1)-gon so that its area is:

(a) a maximum; (b) a minimum?

1.3.18 Two points A and B lie on a given circle. Find a point C on the circle such
that the sum:

(a) AC + BC; (b) AC2 + BC2; (c) AC3 + BC3

is a maximum.
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1.3.19 A line � is given in the plane and two points A and B on the same side of
the line. Find the points X in the plane for which the sum

t (X) = AX + B X + d(X, �)

is a minimum. Here d(X, �) denotes the distance from X to �.

1.3.20 Four towns are the vertices of a square. Find a system of highways joining
these towns such that its total length is a minimum.

1.3.21 Of all intersections of a right circular cone with planes through its vertex,
find the ones of maximum area.

1.3.22 Point P lies in a given plane α, while point Q is outside α. Find a point X
in α for which the ratio d(X) = P Q+P X

Q X is a maximum.

1.3.23 Given a cube ABC D A1 B1C1 D1, find the points M on the edge AB such
that:

(a) the angle B1MC1 is a maximum;

(b) the angle A1 MC1 is a minimum.

1.3.24 A right circular cone of volume V1 and surface area S1 and a circular cylin-
der of volume V2 and surface area S2 are circumscribed about the same
sphere. Prove that:

(a) 3V1 ≥ 4V2;

(b) 4S1 ≥ (3 + 2
√

2)S2.

1.3.25 Two balls are given in space with no common points. Find the position of
a light source on the line connecting the centers of the balls such that the
lighted part of the boundary spheres has a maximal total area.

1.4 The Method of Partial Variation

The method of partial variation uses the simple observation that if a function of
several variables has a maximum (or a minimum) with respect to all variables, then
it also has a maximum (or a minimum) with respect to any subset of variables.
More precisely, assume that the function f (x1, x2, . . . , xn) has a maximum (or a
minimum) when x1 = a1, x2 = a2, . . ., xn = an . Then for any k, 1 ≤ k < n, the
function

g(xk+1, xk+2, . . . , xn) = f (a1, a2, . . . , ak, xk+1, xk+2, . . . , xn)



1.4. The Method of Partial Variation 39

has a maximum (resp. a minimum) at xk+1 = ak+1, xk+2 = ak+2, . . ., xn = an . This
explanation may look a bit abstract, so let us try to explain the method of partial
variation by using several examples. For more detailed discussion concerning this
method and various possible applications, we refer the reader to the beautiful book
of G. Polya [18].

In fact, we have already used (though implicitly) the method of partial variation
in the solutions of some of the problems in the previous sections. For example,
when solving Schwarz’s triangle problem (see Problem 1.1.3 and Fig. 3) to inscribe
a triangle M N P of minimum perimeter in a given acute triangle ABC , we did the
following. We fixed a point P on AB and then found points MP on BC and NP on
AC such that �MP NP P has a minimal perimeter. Then we found the point P on
AB for which the perimeter of triangle MP NP P is the smallest possible.

The method of partial variation can be successfully used when one knows in
advance that the problem on maximum or minimum being considered has a so-
lution. In fact, even when one does not know the existence of a solution, it is
sometimes possible, using partial variation, to get some hints and even to describe
precisely what the extremal object might be. For example, consider the problem
to find the n-gons of maximal area among all n-gons inscribed in a given circle
(this and other similar problems are considered in more detail in Section 2.1 be-
low). Assume that there exists such an n-gon A1 A2 . . . An . Fix for a moment the
points A1, A2, . . . , An−1. Then the point An must coincide with the midpoint A′

n

of the arc
�

An−1 A1 (Fig. 24). Indeed, if An 	= A′
n , then [A1 An−1 An] < [A1 An−1 A′

n]
and therefore the area of the polygon A1 A2 . . . An−1 An is less than the area of the
polygon A1 A2 . . . An−1 A′

n , a contradiction to our assumption.

Figure 24.

Thus, using one particular partial variation we showed that A1 An = An−1 An .
In the same way one shows that any two successive sides of the polygon must have
equal lengths, so the polygon must be regular. At this point we should warn the
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reader that the above argument does not provide a complete solution of the prob-
lem, since we have not established the existence of an inscribed n-gon of maximal
area. In many cases the existence of a solution of an extreme value geometric prob-
lem is easily derived from the extreme value theorem. However, the use of tools of
this kind goes beyond the scope of this book.

In the solutions of the problems considered below we will use partial varia-
tions without assuming in advance that the respective extremal objects exist. The
construction of the latter will be done in the course of the solution.

Problem 1.4.1 A line � is given in the plane and two circles k1 and k2 on the same
side of the line. Find the shortest path from k1 to k2 that has a common point with
�.

Solution. The problem is to find points M on k1, N on k2, and P on � such that
t = M P + P N is a minimum. Fix for a moment a point M on k1 and a point
N on k2 (Fig. 25). Then, according to Problem 1.1.1, t is a minimum when P
coincides with the intersection point of � and the line segment M N ′, where N ′ is
the point symmetric to N through �. In this case t = M N ′. Now the problem
reduces to finding the shortest line segment M N ′, where M is on k1, while N ′ is
on the symmetric image k ′

2 of k2 through �. If O1 and O ′
2 are the centers of k1

and k ′
2, then clearly the shortest such line segment is M0 N ′

0, where M0 and N ′
0

are the intersection points of the line segment O1 O ′
2 with the circles k1 and k ′

2,
respectively.

Figure 25.
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Let P0 be the intersection point of � with M0 N ′
0 and let N0 be the reflection of

N ′
0 in �. Then the path M0 P0 N0 is the solution of the problem. ♠

Problem 1.4.2 Let M be a given polygon in the plane. Show that of all triangles
inscribed in M there exists one of:

(a) maximum area,

(b) maximum perimeter,

with vertices among the vertices of M.

Solution.

(a) Consider an arbitrary �ABC inscribed in M , i.e., the points A, B, and C lie
on the sides of M .

We have to show that there exist vertices A′, B ′, and C ′ of M such that
[ABC] ≤ [A′ B ′C ′]. Fix the points A and B for a moment and let C lie on
the side C1C2 of M (Fig. 26). Then at least one of the distances from C1 and
C2 to the line AB is not less than the distance from C to AB. Denoting the
respective vertex by C ′ we have [ABC ′] ≥ [ABC]. In a similar way, fixing
the points A and C ′, one finds a vertex B ′ of M such that [AB ′C ′] ≥ [ABC ′].
Finally, fixing B ′ and C ′, one finds a vertex A′ of M with [A′ B ′C ′] ≥ [AB ′C ′].
It then follows that [A′ B ′C ′] ≥ [ABC].

Figure 26.

Since there are only finitely many triangles with vertices among the vertices of
M , there is such a triangle T of maximal area. It now follows from the above
argument that any triangle inscribed in M has area not larger than the area of
T .

(b) We will proceed as in (a). To do this we need the following fact.
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Lemma. Let A, B, C, and D be four different points in the plane such that C and
D lie on the same side of the line AB. Then there exists a point X on C D for which
the sum AX + X B is a maximum and any such point coincides either with C or
with D.

Proof of the Lemma. Let � be the line through C and D.

Case 1. � intersects the line segment AB. Let for example D be closer to AB than
C . Now we seek a point X on the line segment C D such that the broken
line AX B has maximal length. Clearly the unique solution to this problem
is X = C (Fig. 27).

Figure 27.

Case 2. � has no common points with the line segment AB. Let B ′ be the reflection
of B in the line C D. Then AX + X B = AX + X B ′ for any point X on
C D, so we can apply Case 1 to the points A, B ′, C, D.

This proves the lemma.
Now using the lemma one solves part (b) of the problem by applying the same

arguments as those in part (a). ♠

As we have just seen, in the solution of the above problem the task of finding a
triangle inscribed in M and having maximal area (or perimeter) was reduced to the
investigation of finitely many cases. We will now consider the particular case that
M is a regular n-gon.

Problem 1.4.3 Let M be a regular n-gon of area S. Find the maximum area of a
triangle inscribed in M.

Solution. According to Problem 1.4.2 above, it is enough to consider only trian-
gles ABC with vertices among the vertices of M .

Assume that the open arcs (i.e., without their endpoints)
�

AB ,
�

BC, and
�

C A
contain p, q, and r vertices of M , respectively. Then p + q + r = n − 3. Assume
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Figure 28.

that the area of triangle ABC is a maximum. We will now show that |p − q| ≤ 1,
|p − r | ≤ 1, and |q − r | ≤ 1. Suppose this is not the case, e.g., q + 1 < r .
Then (see Fig. 28) if C1 is the vertex of M next to C that is closer to A, we get
[ABC1] > [ABC], a contradiction.

Therefore, setting k = [
n−3

3

]
, we have p = k + ε1, q = k + ε2, and r = k + ε3,

where each of the numbers ε1, ε2, and ε3 is 0 or 1, and ε1 + ε2 + ε3 is the remainder
of the division of n by 3. It is also clear that for such p, q, and r the area of
triangle ABC is maximal. We leave it as an exercise to the reader to check that the
maximum possible area of �ABC is

[ABC] = S

n sin(2π/n)

(
sin

2(p + 1)π

n
+ sin

2(q + 1)π

n
+ sin

2(r + 1)π

n

)
.

This formula takes a simpler form in each of the three possible cases: n = 3k,
n = 3k + 1, n = 3k + 2. ♠

The next problem is a space analogue of Problem 1.1.10 as well as a special
case of Problem 1.2.32. The solution considered here makes use of Problem 1.2.3
(that is, the planar version of Problem 1.2.32).

Problem 1.4.4 Given a trihedral angle and a point M in its interior, find a plane
passing through M that cuts off a tetrahedron of minimum volume from the trihe-
dral angle.

Solution. Let Opqr be the given trihedral angle. Looking at Problem 1.1.10 for
analogy, one would assume that the required plane intersects the trihedral angle
along a triangle with centroid at M . We will first show that a plane α0 with this
property exists. First construct a point P such that

−→
O P = 3

−−→
O M . Denote by C0

the intersection point of the ray r with the plane through P parallel to the plane
Opq. Let C ′

0 be the intersection point of the line C0M and the plane Opq. Clearly,
C0M : MC ′

0 = 2 : 1. Finally, construct points A0 and B0 on p and q, respectively,
such that C ′

0 is the midpoint of AB (cf. the solution of Problem 1.1.10). It follows
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from the construction that M is the centroid of �A0 B0C0, so the plane α0 of this
triangle has the required property.

We will now show that α0 cuts off a tetrahedron of minimum volume from the
given trihedral angle. To do this we will use Problem 1.2.3.

Let C be an arbitrary point on r different from O. Denote by C ′ the intersection
point of the line C M with the plane Opq. Fix C and consider an arbitrary plane α

through M and C that intersects the rays p and q. Let g be the line of intersection
of the planes α and Opq, and let A and B be the intersection points of g with
p and q, respectively. Then C ′ lies on g, and (having fixed C) the volume of
O ABC will be minimal when the area of triangle O AB is a minimum. According
to Problem 1.1.10, the latter occurs when the line g is such that C ′ is the midpoint
of AB.

The above argument shows that it is enough to consider only planes α through
M such that if C is the intersection point of α and r , and C ′ the intersection point
of the line C M and the plane Opq, then CC ′ is a median in the triangle cut out by
α from the trihedral angle.

Let r ′ be the ray along which the plane through r and M intersects the angle
Opq (Fig. 29). Denote by ϕ the angle between p and q, and by ψ the angle be-
tween p and r ′. If C ′ denotes the midpoint of AB, we have

O A · O B = 2
[O AB]

sin ψ
= 4

[O AC ′]
sin ϕ

= 2 sin ψ

sin ϕ
O A · OC ′.

Thus, O B = 2 sinψ
sin ϕ

OC ′. Similarly, O A = 2 sin(ϕ−ψ)
sin ϕ

OC ′, so

O A · O B = 4 sin ψ sin(ϕ − ψ)

sin2 ϕ
OC ′2.

The volume of O ABC is proportional to the product O A · O B · OC , and the
identity above shows that it is proportional to OC · OC ′2. The problem now is to
find the lines CC ′ through M such that C is on r , C ′ is on r ′, and OC · OC ′2 is a
minimum. It follows from Problem 1.2.3 that there exists exactly one line with this
property and it is such that C M : C ′M = 2 : 1.

Combining this with the previous arguments shows that there exists a unique
plane α that cuts off a tetrahedron of minimum volume from the given trihedral
angle and this plane intersects the trihedral angle along a triangle with centroid at
M . ♠

We are now going to solve a classical problem using partial variation several
times.
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Figure 29.

Problem 1.4.5 Show that of all tetrahedra with a given volume V the regular one
has a minimum surface area.

Solution. Fix for a moment an arbitrary �ABC . Consider the set of points D in
space such that Vol(ABC D) = V , i.e., the distance h from D to the plane of ABC
is h = 3V

[ABC] . Let D be such a point, D′ its orthogonal projection on the plane
of �ABC , and x , y, and z the distances from D′ to the lines BC , AC , and AB,
respectively (Fig. 30).

Figure 30.

For the surface area S of ABC D we have

S = [ABC] + 1

2

(
a
√

h2 + x2 + b
√

h2 + y2 + c
√

h2 + z2
)

= [ABC] + 1

2

(√
(ah)2 + (ax)2 +

√
(bh)2 + (by)2 +

√
(ch)2 + (cz)2

)
.
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Using the fact that ax + by + cz ≥ 2[ABC] (equality holds only if D′ is inside
�ABC) and Minkowski’s inequality (see the Glossary), one gets

S ≥ [ABC] + 1

2

√
(ah + bh + ch)2 + 4[ABC]2,

where equality holds when D′ is inside �ABC and x = y = z, i.e., if and only if
D′ is the incenter of �ABC .

Using the above, in what follows we will consider only tetrahedra ABC D for
which the point D′ coincides with the incenter of �ABC . Fix a number S0 >

0 and assume that [ABC] = S0. Then S = S0 +
√

h2s2 + S2
0 , where s is the

semiperimeter of �ABC and h = 3V
S0

. It follows from Problem 1.2.1 that s2 ≥
3
√

3 S0, where equality holds only for an equilateral triangle ABC . Thus

S ≥ S0 +
√

h23
√

3 S0 + S2
0 = S0 +

√
27

√
3

V 2

S0
+ S2

0,

where equality holds if and only if �ABC is equilateral.
The above arguments show that it is enough to consider only right triangle

pyramids ABC D with volume V . Given such a pyramid, denote by α the angle
between a side face and the base of the pyramid. We are now going to find the
value of α for which the surface area S is a minimum. Since S = 3V

r , where r
is the inradius of the pyramid, it is enough to find when r is a maximum. Setting
a = AB, we have r = a

√
3

6 tan α
2 . On the other hand, 3V = hS0 = ha2

√
3

4 , and

h = a
√

3

6
tan α = a

√
3

6

2 tan(α/2)

1 − tan2(α/2)

implies 3V = a2 tan(α/2)

4(1−tan2(α/2))
. Therefore a2 = 12V (1−tan2(α/2))

tan(α/2)
. Consequently,

r3 = a3

24
√

3
tan3 α

2
= V

2
√

3
tan2 α

2

(
1 − tan2 α

2

)
≤ V

8
√

3
,

where equality holds if and only if tan2 α
2 = 1

2 . The latter is equivalent to cos α =
1−tan2 α

2
1+tan2 α

2
= 1

3 , which in turn holds precisely when the altitude to the base in any side

face of the tetrahedron has length a
√

3
2 . The latter means that all side edges of the

tetrahedron have length a, i.e., that ABC D is a regular tetrahedron.
Hence, for every tetrahedron with volume V and surface area S we have

S = 3V

r
≥ 3V

3

√
V

8
√

3

= 6 6
√

3 V 2/3,

and equality holds if and only if it is a regular tetrahedron. ♠
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EXERCISES

1.4.6 A circle k lies in the interior of a given acute angle Opq. Of all triangles
M P Q, where M lies on k, P on the ray p, and Q on the ray q, find the one
with minimal perimeter.

1.4.7 In a given circle k inscribe:

(a) a triangle; (b) a quadrilateral; (c) a pentagon; (d) a hexagon

of maximal area.

1.4.8 Let ABC DE F be a centrally symmetric hexagon. Find points P, Q, R on
its sides such that the area of triangle P Q R is a maximum.

1.4.9 Let ABC be an equilateral triangle of side length 4. The points D, E , F lie
on the sides BC, C A, AB, respectively, and

AE = B F = C D = 1.

The triangle Q RS is formed by drawing the line segments AD, B E , and C F .
For a variable point P in or on this triangle, consider the product of its dis-
tances to the three sides of ABC .

(a) Prove that this product is a minimum when P coincides with Q, R,
or S.

(b) Determine the minimum value of this product.

1.4.10 Given three points in the plane, construct a line such that the sum of their
distances to the line is a minimum.

1.4.11 Of all pentagons ABC DE inscribed in a circle with radius 1 and such that
AC ⊥ B D describe the ones of minimum area.

1.4.12 Let n and p be integers such that 3 ≤ p < n. Find the maximum possible
area of a p-gon inscribed in a regular n-gon of area S.

1.4.13 Show that of all nondegenerate triangles ABC inscribed in a given circle
there is none for which the sum AB3 + BC3 + C A3 is a maximum. More
precisely, the sum considered is a maximum if and only if two of the points
A, B, C coincide and the third is their diametrically opposite point.

1.4.14 Let M be a convex polyhedron. Show that of all triangles contained in M
there is one of:

(a) maximum area; (b) maximum perimeter

with vertices among the vertices of M .
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1.4.15 Let M be a convex polyhedron. Show that of all tetrahedra contained in M
and having maximal possible volume there is one whose vertices are among
the vertices of M .

1.4.16 Inscribe a triangle of:

(a) maximum area; (b) maximum perimeter

in a given cube.

1.4.17 Inscribe a tetrahedron of maximum volume in a given cube.

1.4.18 A double quadrilateral prism is by definition the union of two quadrilateral
prisms ABC D A1 B1C1 D1 and A2 B2C2 D2 ABC D that have a common face
ABC D (the base of one of the prisms and the top of the other) and no other
common points. Show that of all double quadrilateral prisms of a given
volume the cube has a minimum surface area.

1.4.19 Show that of all tetrahedra inscribed in a given sphere the regular one has
maximum volume.

1.4.20 Let ABC D be a regular tetrahedron. Of all triangles L M N , where L lies
on the edge AC , M in triangle AB D, and N in triangle BC D, find the one
with minimal perimeter.

1.5 The Tangency Principle

This section is devoted to a method for solving geometric extremum problems
using level curves (surfaces) of functions defined in the plane (space). The solution
of the following problem gives an explanation of what this method is all about.

Problem 1.5.1 Let � be a given line in the plane and A and B two points on the
same side of the line. Find a point M on � such that the angle AM B is a maximum.

Solution. It is well known that if ϕ is a given angle, the locus of the points M in
the plane such that ∠AM B = ϕ is the union of two arcs with endpoints A and B
that are symmetric with respect to the line AB (Fig. 31).

Drawing these arcs for different values of ϕ, one gets a family of arcs covering
the whole plane except the points on the line AB. Every point on the given line
� belongs to an arc from this family (Fig. 32), and the problem now is to find the
arc having a common point with � that corresponds to the largest possible value
of ϕ.
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Figure 33.

First, consider the case that � intersects the line AB. Let C be the point of
intersection, and let �1 and �2 be the two rays on � determined by C . Consider
the arc γ1 from the family described above that is tangent to �1, and let M1 be the
tangent point of γ1 to �1.

Clearly γ1 is an arc on the smallest circle through A and B that has a common
point with �1. Thus, for any point M on �1 different from M1 we have ∠AM B <

∠AM1 B. Similarly, the ray �2 is tangent to some arc γ2 at some point M2 and
∠AM B < ∠AM2 B for any point M on �2 different from M2. Now the solution
of the problem is given by either M1 or M2 (or by both) depending on which of
the angles ∠AC M1 and ∠AC M2 is acute. Notice that the points M1 and M2 are
determined by the equalities C M1 = C M2 = √

C A · C B.
If � ‖ AB then there is only one arc from the family described above that is

tangent to �. Hence in that case the solution is given by the intersection point M of
� and the perpendicular bisector of the line segment AB (Fig. 33). ♠
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What were the most important points in the above solution? First, we inves-
tigated the behavior of angle AM B not just for points M on � but also for points
outside �. More precisely, we regarded angle AM B as a function f (M) = ∠AM B
of the variable point M in the plane. The second important point was the way we
looked at the behavior of the function f (M). This was done by means of the arcs
on which the values of f (M) were the same. These curves can be defined for any
function f (M) depending on a point M in the plane (or part of it), and they are
called level curves of f (M). More precisely, if λ is any real number, the level
curve of f (M) corresponding to λ is the set Lλ of all points M in the domain of
f (M) such that f (M) = λ, i.e., Lλ = {M : f (M) = λ}.

Various extreme geometric problems in the plane can be stated in the following
way: Find the maximum (minimum) value of a function f (M) in the plane on a
given plane curve L . For example, in the solution of Problem 1.5.1 we showed that
the maximum value of the function f (M) = ∠AM B on the line � is attained at
the points where � is tangent to a level curve of f (M). More generally we have the
following:

Tangency Principle. The maximum (minimum) value of a given function f (M) in
the plane on a given curve L is attained at points where L is tangent to a level
curve of f (M).

The reasons for the validity of this principle are as follows. Assume that f (M)

achieves its maximum value on L at some point P ∈ L , and let f (P) = c. Then
the curve L has no common points with the set {M : f (M) > c}, so it is entirely
contained in the set {M : f (M) ≤ c}. Thus, L cannot intersect the level curve
Lc = {M : f (M) = c} at P , i.e., L must be tangent to Lc at P .

As we saw in the solution of the Problem 1.5.1, knowing the level curves of
the function f (M) = ∠AM B allowed us to easily find its extrema on the line �.
Below we give various examples of functions depending on a point in the plane and
describe their level curves. For the latter in any particular problem one essentially
has to find the locus of points having a given property.

Example 1 Given two points A and B in the plane, let f (M) = ∠AM B. For any
ϕ, 0 < ϕ < 180◦, the level curve Lϕ of f (M) is the union of two symmetric (with
respect to the line AB) arcs of circles through A and B (Fig. 34).

Example 2 Let O be a fixed point in the plane and let f (M) = O M . Then for
any r > 0 the level curve Lr is a circle with center O and radius r (Fig. 35). If we
consider points in space, then Lr is a sphere with center O and radius r .
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Figure 34.

Figure 35.

Example 3 Let A and B be two fixed points in the plane and let f (M) = M A2 +
M B2. Then for r > 1

2 AB2, the level curve Lr is a circle with center at the midpoint
O of the line segment AB (Fig. 36).

Figure 36.

Example 4 Let A and B be two fixed points in the plane and let f (M) = M A2 −
M B2. Then the level curves of f (M) are lines perpendicular to the line AB
(Fig. 37).
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Figure 37.

The last two examples are special cases of the following more general result.
Let λ1, λ2, . . . , λn be real numbers, and let A1, A2, . . . , An be given points in the
plane. Consider the function

f (M) = λ1 M A2
1 + λ2 M A2

2 + · · · + λn M A2
n

and denote by Lµ the level curve of f (M) corresponding to the real number µ.

Theorem.

(a) If λ1 + · · · + λn 	= 0, then Lµ is a circle, a point, or the empty set.

(b) If λ1 + · · · + λn = 0, then Lµ is a line, the whole plane, or the empty set.

Proof. Consider an arbitrary rectangular coordinate system Oxy in the plane, and
let M = (x, y) and Ai = (xi , yi) for each i = 1, . . . , n. Then M ∈ Lµ if and only
if

(1) λ1[(x−x1)
2 + (y−y1)

2] + · · · + λn[(x−xn)
2 + (y−yn)

2] = µ.

Set

λ = λ1 + · · · + λn, a = λ1x1 + · · · + λnxn, b = λ1y1 + · · · + λn yn,

c = λ1(x2
1 + y2

1) + · · · + λn(x2
n + y2

n) − µ.

Transforming the left-hand side of (1), one gets

(2) λx2 + λy2 − 2ax − 2by + c = 0.

If λ 	= 0, then (2) is equivalent to

(
x − a

λ

)2 +
(

y − b

λ

)2

= a2 + b2 − λc

λ2
.
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This equation defines:

(i) a circle with center O = ( a
λ
, b

λ
) if a2 + b2 − λc > 0;

(ii) the point O = ( a
λ
, b

λ
) if a2 + b2 − λc = 0;

(iii) the empty set if a2 + b2 − λc < 0.

If λ = 0, then clearly (2) defines a line if a2 + b2 > 0, the whole plane if
a = b = c = 0, and the empty set if a = b = 0 and c 	= 0. ♠

One can prove in the same way a space analogue of the above theorem. Note
that in the case (a) the level surface Lµ is a sphere, a point, or the empty set,
whereas in the case (b) it is a plane, the whole space, or the empty set.

When λ1 = λ2 = · · · = λn = 1, the above theorem gives the following:

Leibniz’s Formula. Let G be the centroid of a set of points {A1, A2, . . . , An} in
the plane (space). Then for any point M in the plane (space) we have

M A2
1 + M A2

2 + · · · + M A2
n = n · · · MG2 + G A2

1 + G A2
2 + · · · + G A2

n .

Recall that the centroid of a set of points {A1, A2, . . . , An} is the unique point G

for which
−−→
G A1 + −−→

G A2 + · · · + −−→
G An = −→

0 .

Example 5 Let G be the centroid of a set of points {A1, A2, . . . , An} in the plane
(space) and let µ be a given number. The level curve (surface) Lµ of the function

f (M) = M A2
1 + M A2

2 + · · · + M A2
n

is a circle (sphere) with center G, the point G, or the empty set.

Example 6 Let �1 and �2 be two intersecting lines in the plane, and let d(M, �i )

denote the distance from the point M to the line �i (i = 1, 2). Consider the function
f (M) = d(M, �1) + d(M, �2). The level curve Lc of f (M) for c > 0 is the
boundary of a rectangle whose diagonals lie on �1 and �2 (Fig. 38).

Figure 38.
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The level curve Lc is easily determined using the fact that the sum of distances
from an arbitrary point on the base of an isosceles triangle to the other two sides of
the triangle is constant.

Example 7 Now we consider two important curves in the plane: the ellipse and
the hyperbola. Let A and B be given points in the plane.

Consider the functions f (M) = M A + M B and g(M) = |M A − M B|.
The level curves of f (M) are called ellipses, while these of g(M) are called

hyperbolas. The points A and B are called the foci of these curves (Fig. 39 and
Fig. 40).

Figure 39.

Figure 40.

Given an ellipse and a hyperbola, the line AB and its perpendicular bisector are
their lines of symmetry. If one chooses these two lines for coordinates axes, then
the ellipse and the hyperbola have the following Cartesian equations:

x2

a2
+ y2

b2
= 1

and
x2

a2
− y2

b2
= 1.

Many interesting problems concerning ellipses or hyperbolas are related to the fol-
lowing main property of the tangent lines to these curves.
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Focal Property. Let M be an arbitrary point on an ellipse (hyperbola) with foci
A and B. Then the segments M A and M B make equal angles with the tangent line
to the ellipse (hyperbola) at the point M.

Consider the hyperbola h given by the equation above. The lines �1 : y = b
a x

and �2 : y = − b
a x are called asymptotes of h (Fig. 41).

Figure 41.

It can be shown that the tangent lines to h cut off triangles of constant area
from the corresponding angle between �1 and �2. This implies that the set of lines
that cut off triangles of a given area from a given angle coincides with the set of
tangent lines to one branch of a hyperbola with asymptotes the lines determined by
the arms of the angle. Let us also mention that the tangent point of a tangent line
to h coincides with the midpoint of the segment that the tangent line cuts from the
angle between the asymptotes.

In what follows we consider several extreme value geometric problems and
solve them using the tangency principle. The first of these problems is simple but
rather instructive.

Problem 1.5.2 Find a point M on a given line � such that the distance from M to
a given point O is minimal.

Solution. We have to find the minimum value of the function f (M) = O M for
points M on �. The level curves of f (M) are circles with center O (Fig. 42).

Figure 42.
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Consider the level curve that is tangent to �. Clearly the point of tangency M0

gives the solution of the problem. This is actually the foot of the perpendicular
from O to �. ♠
Remark. One can deal in the same way with the more general problem of finding
a point M on a given curve L that is closest to a given point O. In this case the
solution is among the points M0 ∈ L such that O M0 is perpendicular to the tangent
line to L at M0 (we then say that O M0 is perpendicular to the curve L), if it exists
(Fig. 43).

Figure 43.

More generally, if L has “corner points,” one has to require that the correspond-
ing level curve be just “touching” L at M0. In general, the point M0 is not unique;
the reader should be able to construct examples when this happens. Another good
exercise to the reader is to consider the cases in which L is a triangle, a circle, or
an ellipse.

Problem 1.5.3 Find the points M on the circumcircle of a triangle ABC such that
the sum f (M) = M A2 + M B2 + MC2 is:

(a) a minimum; (b) a maximum.

Solution. It was shown in Example 5 that for any λ > 0 the level curve Lλ of
f (M) is a circle with center at the centroid G of �ABC . Let O be the circumcenter
of �ABC . If �ABC is not equilateral, then O 	= G, so the line OG is well-
defined (this is the so-called Euler’s line for �ABC) and it has two intersection
points M1 and M2 with the circumcircle of �ABC . Thus M1 and M2 are the points
where a level curve of f (M) is tangent to the circumcircle of �ABC . Assume that
G lies between O and M1 (Fig. 44).

The tangency principle stated above now shows that f (M) has a minimum at
M = M1 and a maximum at M = M2.

If ABC is an equilateral triangle, then G = O and the circumcircle itself is a
level curve of f (M), i.e., f (M) is constant on it.
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Figure 44.

In general the maximum and the minimum of f (M) are easily calculated using
the Leibniz formula. We leave as an exercise to the reader to show that

f (M1) = 1

3
(a2 + b2 + c2) + 3

R −
√

R2 − a2 + b2 + c2

9

2

,

f (M2) = 1

3
(a2 + b2 + c2) + 3

R +
√

R2 − a2 + b2 + c2

9

2

,

where a, b, c are the side lengths of �ABC and R is its circumradius. Note that the
presence of a square root in these expressions yields the inequality a2 + b2 + c2 ≤
9R2. ♠
Problem 1.5.4 Find the points M in the interior or on the boundary of a trapezoid
ABC D (AB ‖ C D) such that the sum of the distances from M to the sides of the
trapezoid is:

(a) a minimum, (b) a maximum.

Solution. Denote by �1 and �2 the lines AD and BC , respectively, and by O their
intersection point (Fig. 45).

Since the sum of the distances from M to AB and C D is constant, we have to
find the minimum and the maximum of the function f (M) = d(M, �1)+d(M, �2)

for M running over the interior and the boundary of the trapezoid. Example 6
shows that the level curves of f (M) are line segments perpendicular to the angle
bisector b of angle AO B. Thus, f (M) is a minimum (maximum) at the point
M1 (resp. M2) in the trapezoid for which the distance from M1 (resp. M2) to the
bisector b is a minimum (resp. maximum). Assume for example that AD ≤ BC .
Then clearly M1 = D and M2 = B. ♠



58 Chapter 1. Methods for Finding Geometric Extrema

Figure 45.

In the next problem we will be seeking the extreme values of a function that
depends on a variable line (instead of a point) in the plane.

Problem 1.5.5 Let Opq be a given angle and L a given curve in its interior. Con-
struct a line tangent to L (i.e., just touching L) that cuts off a triangle of minimal
(maximal) area from the given angle.

Solution. For any line � that intersects both sides of the angle let f (�) be the area
of the triangle that � cuts off from it. We have to find the minimum (maximum)
of f (�) over the set of all tangent lines � to L . Following the tangency principle,
we need to find the “level curves” of f (�), i.e., the set of those lines � for which
f (�) is a given constant. It is known (cf. Example 7) that the lines that cut off a
triangle of a given area h from the angle Opq are tangent to one of the branches of
a hyperbola with asymptotes the lines determined by p and q (Fig. 46).

Figure 46.

Using the tangency principle, we conclude that the tangent �0 to L that cuts
off a triangle of minimum (maximum) area from Opq must be tangent to L at a
point M0 at which L is tangent to a hyperbola with asymptotes the lines determined
by p and q (Fig. 47). It follows from the properties of a hyperbola that M0 is the
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midpoint of the line segment that the tangent line to the hyperbola at M0 cuts from
Opq. Thus the line �0 must have the same property. ♠

Figure 47.

Let us mention that the above argument does not guarantee the existence of a
line cutting off a triangle of maximal (or minimal) area. It shows only that if such
a line exists, then it must be tangent to L at a point that is the midpoint of the line
segment along which the line intersects the angle. To shed a bit more light on this,
let us consider two special cases.

1. Assume that L is a single point, i.e., L = {M}. Then clearly the problem
about a maximum has no solution, since there are lines through M that cut
off triangles of arbitrarily large area from the angle (Fig. 48).

Figure 48.

Thus, in this case only the problem about the minimum makes sense. There
is one line �0 through M that intersects the angle along a line segment with
midpoint M , so according to the general conclusion in Problem 1.5.5, �0 cuts
off a triangle of a minimum area from Opq (see Problem 1.1.10 for another
proof of this fact).

2. Let k be a circle tangent to the arms p and q of the given angle at some
points A and B (Fig. 49). Denote by L the smaller of the two arcs of k with
endpoints A and B. Then the problem about a minimum has no solution,
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since the tangents to L drawn from points close to O will cut off triangles of
arbitrarily small areas. (One could also say that the minimal area achievable
is 0, which one gets from the lines p and q tangent to L at A and B; then
the “triangles” obtained are degenerate.) The problem for maximal area has
a solution, and the solution is the tangent line �0 to L that is perpendicular to
the bisector of the angle Opq.

Figure 49.

Similarly, if L is the larger arc of k with endpoints A and B, then only the
problem about a minimal area has a solution, and this is again the line l0

tangent to L and perpendicular to the bisector of Opq (Fig. 50).

Figure 50.

Finally, let us mention that the above arguments work also in the case that
k is replaced by an arbitrary closed convex curve (without corner points)
inscribed in angle Opq.

EXERCISES

1.5.6 Let A and B be fixed points in the plane. Describe the level curves of the
functions:

(a) f (M) = min{M A, M B}; (b) f (M) = M A

M B
.

1.5.7 Among all triangles with given length � of one side and given area S, deter-
mine the ones for which the product of the three altitudes is a maximum.
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1.5.8 Of all triangles ABC with given lengths of the altitude through A and the
median through B find the ones for which angle C AB is maximal.

1.5.9 The points A and B lie on the same side of a given line �. Find a point C
on � such that the distance between the feet of the altitudes through A and
B in triangle ABC is minimal.

1.5.10 The points A and B lie outside a given circle k. Find the points M on k such
that angle AM B is:

(a) minimal; (b) maximal.

1.5.11 Let A be a point inside a circle with center O. Find the points M on the
circle such that angle O M A is maximal.

1.5.12 Find the points M on the surface of a given cube such that the angle with
vertex M subtended by one of the diagonals of the cube is minimal.

1.5.13 A line l and two points A and B are given in the plane. Find the points M
on l such that AM2 + B M2 is a minimum.

1.5.14 The points A and B lie on a given circle k. Find the points M on k such
that:

(a) the area of triangle AB M is maximal;

(b) the sum of squares of the sides of triangle AB M is maximal;

(c) the perimeter of triangle AB M is maximal.

1.5.15 Let A1, A2, . . . , An be given points in the plane and M a set of points in the
plane. Find the points X in M for which the sum X A2

1 + X A2
2 + · · · + X A2

n

is a minimum. Consider the cases in which M is a line segment, a line, or a
circle.

1.5.16 State and solve the space version of the above problem. Consider the cases
in which M is a line, a plane, or a sphere.

1.5.17 Find the points M on the incircle of a triangle ABC such that the sum
M A2 + M B2 + MC2 is:

(a) a minimum; (b) a maximum.

1.5.18 Find the points M on the circumcircle of a triangle ABC such that the sum
M A2 + M B2 − 3 MC2 is:

(a) a minimum; (b) a maximum.
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Consider the cases in which triangle ABC is an isosceles right triangle with
∠AC B = 90◦ and in which triangle ABC is equilateral.

1.5.19 Let AB be a line segment parallel to a given line �. Find the maximum and
the minimum of the ratio AM : B M as M runs over the line �.

1.5.20 Let M be a set of points in the interior of an angle Opq. Find the points
X in M such that the sum of distances from X to the sides of the angle is
a minimum. Consider the cases in which M is a point, a line segment, a
polygon, or a circle.

1.5.21 Let L be a given curve in the interior of an angle Opq. A tangent line � to
L intersects the ray p at a point C and the ray q at a point D. How should
the line � be chosen such that:

(a) OC + O D − C D is a maximum;

(b) OC + O D + C D is a minimum?

Consider the cases in which L is a point, a line segment, a polygon, or a
circle.

1.5.22 Of all triangles with given length of a side and a given perimeter, find the
one of maximum area.

1.5.23 Let G be the centroid of a triangle ABC . Determine the maximum value of
the sum sin ∠C AG + sin ∠C BG.



Chapter 2

Selected Types of Geometric
Extremum Problems

2.1 Isoperimetric Problems

This section is devoted to an important class of extreme value geometric problems
that have attracted mathematicians’ attention for a very long time. These are the
so-called isoperimetric problems, which, as the name suggests, deal with finding
the figure of maximal area among all figures of a given kind and a given perimeter.
The best-known example of such a problem is the classical isoperimetric problem,
where of all plane regions (bounded by a simple closed curve) with a given perime-
ter one wants to find the one of maximal area. Its solution is given by the so-called
isoperimetric theorem, which we state in three equivalent ways.

Isoperimetric Theorem.

(i) Of all plane regions with a given perimeter the disk has a maximal area.

(ii) Of all plane regions of a given area the disk has a minimal perimeter.

(iii) Let S be the area and P the perimeter of a plane region. Then 4π S ≤ P2,
where equality holds only when the region is a disk.

Here is the space analogue of this theorem:

Isoperimetric Theorem in space.

(i) Of all solids with a given surface area the ball has a maximum volume.

(ii) Of all solids with a given volume the ball has a minimum surface area.
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(iii) Let V be the volume and S the surface area of a solid. Then 36πV 2 ≤ S3,
where equality holds only when the solid is a ball.

We are not going to discuss here the long story related to the discovery and the
proof of the isoperimetric theorem. The reader can find great deal of information
on this topic for example in the books [4], [6], [10], [18], and [19]. Let us just
mention that even though the isoperimetric theorem has been known for a very
long time, its first rigorous proof was given much later by H. A. Schwarz.

It is of course natural to ask why the isoperimetric theorem had to wait thou-
sands of years to become a rigorous mathematical fact. Most likely one of the
main reasons is that for sufficiently rigorous and clear definitions of notions like
“perimeter” and “area” one needs essential use of differential and integral calculus,
which was developed by Newton and Leibniz in the seventeenth century.

Our goal in this section is to prove the isoperimetric theorem for polygons in
the plane.

Isoperimetric Theorem for polygons.

(i) Of all n-gons with a given perimeter the regular n-gon has a maximum area.

(ii) Of all n-gons with a given area the regular n-gon has a minimum perimeter.

(iii) The area S and the perimeter P of any n-gon satisfy the inequality

4nS tan
π

n
≤ P2,

where equality holds only when the n-gon is regular.

We will derive the proof of this theorem from a sequence of problems that
are interesting in their own right. The first of these problems is the isoperimetric
problem for circumscribed polygons.

Problem 2.1.1 Let n ≥ 3 be a given integer. Show that of all n-gons circumscribed
about a given circle the regular n-gon has minimum area.

Solution. The solution presented here is taken from the book [20] of L. Fejes Tóth.
Consider an arbitrary n-gon M circumscribed about a given circle k, and let M

be a regular n-gon circumscribed about k (Fig. 51).
Denote by K the disk determined by the circumcircle of M and let s1, . . . , sn

be the (equal) areas of the sectors cut off from K by the sides of M . Let si j be the
area of the common parts of the segments of K cut off by the i th and j th sides of
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Figure 51.

M . Denote by [M], [M], and [K ] the areas of M , M , and K , respectively. Then
for the area [M ∩ K ] of the common part M ∩ K of M and K we have

[M ∩ K ] = [K ] − (s1 + s2 + · · · + sn) + (s12 + s23 + · · · + sn−1n + sn1),

since the total area of all parts of K lying outside M is (s1 + s2 +· · ·+ sn)− (s12 +
s23 + · · · + sn−1n + sn1). Therefore

[M] ≥ [M ∩ K ] ≥ [K ] − (s1 + s2 + · · · + sn) = [M],

where equality holds when no vertex of M lies in the interior of K . The latter is
possible only when M is a regular n-gon, which solves the problem. ♠

Before continuing, let us introduce some notation. Let M be an arbitrary convex
n-gon in the plane. Given a unit circle k0 (i.e., a circle with radius 1) there exists a
unique n-gon m circumscribed about k0 such that the sides of m are parallel to the
sides of M . This is easily seen by applying a parallel translation to each side of M
until it touches the circle k0 (Fig. 52).

Figure 52.

Denote by S and P the area and perimeter of M , and by r the radius of the
largest disk contained in M . The area of m will be denoted by s. Our next task is
to prove an inequality discovered by the Swiss mathematician S. Lhuilier (1750–
1840).
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Lhuilier’s Inequality. For every convex polygon M we have P2 ≥ 4Ss, where
equality holds if and only if M is circumscribed about a circle.

This will be derived from the following stronger inequality.

Tóth’s Inequality. For every convex polygon M we have

Pr − S − sr2 ≥ 0,

where equality holds if and only if M is circumscribed about a circle.

To prove the latter we will investigate the polygons Mα obtained from M by
shifting its sides α units (0 ≤ α ≤ r) inside the polygon keeping them parallel
to their initial positions. For small α’s the vertices of the polygon Mα lie on the
bisectors of the corresponding angles of M (Fig. 53). Moreover, the lengths of the
sides of Mα decrease when α increases, and for certain values of α some of these
lengths become 0, i.e., the number of sides of the polygon Mα for such α decreases.
Such values of α will be called critical.

Figure 53.

The polygons Mα corresponding to critical values of α (these are given by bold
lines in Fig. 53) divide the family of all polygons Mα into a (finite) set of subfami-
lies, so that the polygons in each subfamily have the same number of sides.

Moreover, we have the following lemma.

Lemma 1 The expression Pr − S − sr2 is constant for the polygons Mα in each
subfamily.

Proof. Suppose that Mα1 and Mα2 are polygons from the same subfamily, and let
δ = α1 − α2 > 0 (Fig. 54).

Then the interval (α2, α1) contains no critical values of α. In what follows we
denote by Si , Pi , etc., the area, perimeter, etc., of the polygon Mαi . The polygon
Mα2 comprises the following: the polygon Mα1 ; rectangles whose bases coincide
with the sides of Mα1 and height δ; several (as many as the number of sides of Mα2)
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Figure 54.

additional parts, which taken together form a polygon circumscribed about a circle
with radius δ and similar to mα2 . Hence

S2 = S1 + P1 δ + s1 δ2, P2 = P1 + 2s1δ, r2 = r1 + δ, s2 = s1.

Now a direct calculation shows that P2r2 − S2 − s2r2
2 = P1r1 − S1 − s1r2

1 . This
proves the lemma. ♠

The next lemma shows that when α moves across a critical value, then the
expression Pr − S − sr2 decreases. We continue to use the notation from the proof
of Lemma 1.

Lemma 2 Let α0 be a critical value of α and let α2 < α0 < α1. Then

P2r2 − S2 − s2r2
2 > P1r1 − S1 − s1r2

1 .

Proof. Without loss of generality we may assume that α0 is the only critical value
of α in the interval (α2, α1) (explain why!). Then by Lemma 1 it is enough to
prove the required inequality when α1 = α0 and α2 is arbitrarily close to α1. Let
ε be an arbitrary positive number. Choosing α2 sufficiently close to α1 we have
0 < P2 − P1 < ε, 0 < S2 − S1 < ε, and 0 < r2 − r1 < ε. On the other hand,
the fact that the number of sides of Mα1 is less than that of Mα2 (Fig. 55) implies
that s′ = s1 − s2 > 0. Moreover, s′ does not depend on the particular choice of α2

provided (α2, α1) does not contain critical values of α.
Consequently,

(P1r1 − S1 − s1r2
1 ) − (P2r2 − S2 − s2r2

2 )

= (P1 − P2)r1 + P2(r1 − r2) − (S1 − S2) − (s1 − s2)r
2
1 + s2(r

2
2 − r2

1 ).

Now the above inequalities yield

(P1r1 − S1 − s1r2
1 ) − (P2r2 − S2 − s2r2

2 ) < ε − s′r2
1 + ε(s1 − s′)(2r1 + ε)
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Figure 55.

for any ε > 0. The right-hand side of the above inequality is a quadratic function
of ε that has both a negative and a positive root. Thus we can choose ε > 0 such
that the value of this function is negative and we get (P1r1 − S1 − s1r2

1 ) − (P2r2 −
S2 − s2r2

2 ) < 0, which proves the lemma. ♠

Using Lemmas 1 and 2, it is now easy to prove Tóth’s inequality. Indeed,
assume that Pr − S − sr2 < 0. According to Lemma 1, the corresponding expres-
sion is the same for all α ∈ [0, α′), where α′ is the first critical value of α. Then by
Lemma 2, this expression gets smaller when α jumps across the critical value α′, so
it continues to be negative, etc. Thus, Pr − S − sr2 < 0 holds for all polygons Mα

for any α ∈ [0, r]. However, this expression is zero when α = r , a contradiction.
Hence we always have Pr − S − sr2 ≥ 0.

Tóth’s inequality can be written in the form P2 − 4sS ≥ (P − 2sr)2, from
which Lhuilier’s inequality follows immediately.

It should be stressed that Lhuilier’s and Tóth’s inequalities are true for con-
vex polygons only. That is why in general their application is combined with the
following fact.

Problem 2.1.2 Show that for every polygon M there exists a convex polygon M ′
with the same perimeter whose area is not less than the area of M.

Solution. Let M0 be the convex hull of M , i.e., M0 is the smallest convex polygon
containing M . Then the perimeter of M0 is not larger than the perimeter of M .
Applying a suitable dilation to M0, one gets a polygon M ′ similar to M0 and having
the same perimeter as M . The area of M ′ is not less than the area of M since M0

contains M . ♠
Remark. The statement in Problem 2.1.2 is true for any (bounded) region M in the
plane. In many cases in dealing with isoperimetric problems this fact shows that
the solution should be sought among the convex regions of the kind considered.

Proof of the Isoperimetric Theorem for n-gons. We will prove part (iii). Let M
be an arbitrary n-gon. According to Problem 2.1.2, it is enough to consider the
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case of M convex. Then Lhuilier’s inequality gives P2 ≥ 4Ss. Since the area of a
regular n-gon circumscribed about a unit circle is equal to n tan π

n , Problem 2.1.1
shows that s ≥ n tan π

n . Combining this with Lhuilier’s inequality gives

P2 ≥ 4Ss ≥ 4Sn tan
π

n
,

which proves the theorem. ♠

Next, we consider two interesting applications of the isoperimetric theorem and
Lhuilier’s inequality.

Problem 2.1.3 Show that among all convex n-gons with given lengths of the sides
the cyclic one has maximal area.

Solution. Here we present an elegant solution of the problem given by Jacob
Steiner.

We shall use without proof the fact that given an n-gon there is a unique (up to
congruence) cyclic n-gon with the same sides.

Figure 56.

Let M be an arbitrary convex polygon whose sides have the given lengths, and
let M ′ be a cyclic polygon with the same side lengths. Let K be the disk determined
by its circumcircle. On each side of M we construct externally the sector cut off
from K by the respective side of M ′ (Fig. 56). Together with M these sectors form
a region M ′′ whose perimeter equals the perimeter of K . Now the isoperimetric
theorem implies that the area of K is not less than the area of M ′′. Subtracting
from these two regions the sectors from K described above, we get that the area of
M ′ is not less than that of M . ♠

Problem 2.1.4 The area of a disk is larger than the area of any polygon with the
same perimeter.
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Solution. According to Problem 2.1.2, it is enough to deal with convex polygons
only. Let K and S be the areas of a disk and a (convex) polygon with the same
perimeter P . Then

P2

4K
= π.

On the other hand, Lhuilier’s inequality gives

P2

4S
≥ s,

where s is the area of a polygon circumscribed about a unit circle whose sides are
parallel to the sides of M . Since the area of a unit disk is π , we have s > π , and
now the above two inequalities imply P2

4S > P2

4K . Hence K > S, which solves the
problem. ♠

EXERCISES

2.1.5 Show that if two triangles have the same base and equal perimeters, the
one with a smaller (in absolute value) difference between the lengths of the
other two sides has a larger area.

2.1.6 Show that of all triangles with the same base and perimeter, the isosceles
triangle has maximal area.

2.1.7 Show that of all parallelograms with a given perimeter, the square has max-
imal area.

2.1.8 Show that of all parallelograms with a given perimeter and a given length
of one of diagonals, the rhombus has maximal area.

2.1.9 Of all quadrilaterals of area 1, find the ones for which the sum of the three
shortest sides is minimal.

2.1.10 Let n ≥ 3 be an integer and a1, . . . , an−1 positive numbers. Of all n-gons
A1 A2 . . . An with Ai Ai+1 = ai for all i = 1, . . . , n − 1, find the ones of
maximal area.

2.1.11 Let s be the length of the side of a regular n-gon inscribed in a given circle
k. Show that for any nonregular n-gon M inscribed in k there exists another
n-gon inscribed in k whose area is larger than that of M and that has more
sides of length s than M .

2.1.12 Show that of all n-gons inscribed in a given circle the regular n-gon has a
maximum area and perimeter.
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2.1.13 Four congruent nonintersecting circles are centered at the vertices of a square.
Construct a quadrilateral of maximum perimeter whose vertices lie on these
circles.

2.1.14 Let M be a point in the interior of a convex n-gon A1 A2 . . . An . Show that
at least one of the angles

∠M A1 A2,∠M A2 A3, . . . ,∠M An−1 An,∠M An A1

does not exceed π(n − 2)/(2n).

2.1.15 In a unit circle, three triangles of area 1 are drawn. Show that at least two
of them have an interior point in common.

2.1.16 Show that for any nonregular n-gon there exists another n-gon with the
same perimeter and of larger area whose sides have equal lengths.

2.1.17 The two ends of a rope are tied to the end of a stick. What shape should
the rope take so that the device obtained in this way surrounds a region of
maximal area on the ground?

2.1.18 Given a positive integer n, find a curve of a given length that cuts off a
region of maximal area from an angle of measure 180◦

n .

2.1.19 Of all regular pyramids with n-sided bases and of a given surface area, find
the ones with maximum volume.

2.1.20 Of all parallelepipeds with a given sum of the edges, find the ones with
maximum volume.

2.1.21 Let a, b, c be positive numbers. Of all tetrahedra ABC D with AB = a,
C D = b, and M K = c, where M and K are the midpoints of the edges AB
and C D, find the ones of maximum:

(a) surface area; (b) volume.

2.1.22 Of all skew (i.e., nonplanar) quadrilaterals ABC D in space with a given
perimeter and a given side AB, find the ones for which the tetrahedron
ABC D has a maximum volume.

2.1.23 Of all skew quadrilaterals ABC D in space with a given perimeter, find the
ones for which the volume of the tetrahedron ABC D is a maximum.
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2.2 Extremal Points in Triangle and Tetrahedron

In every triangle (tetrahedron) there are various points defined by means of some
special geometric properties. This is the way one defines the centroid, the incenter,
the circumcenter, Lemoine’s point, etc. It turns out that many of these points may
also be characterized as the points where certain naturally defined functions in
the plane or in space achieve their maxima or minima. This section is devoted to
problems establishing extremal properties of the remarkable points in triangle and
tetrahedron.

Note that we have already considered problems of this kind.
For example, assume that all angles of triangle ABC are less than 120◦. Recall

that Toricelli’s point of ABC is the (unique) point T with ∠AT B = ∠BT C =
∠CT A = 120◦. According to Problem 1.1.7, the minimum of the sum AX +
B X + C X for points X in the plane is attained at the point T .

Here is another example. For any triangle ABC , the minimum of the sum
AX2 + B X2 + C X2 for points X in the plane (space) is attained at the centroid G
of ABC . This follows from Leibniz’s equality

AX2 + B X2 + C X2 = 3X G2 + AG2 + BG2 + CG2.

Another extreme property of the centroid is given in Problem 1.2.23. For any point
X in a triangle ABC , denote by A1, B1, and C1 the intersection points of the lines
AX , B X , and C X with BC, C A, and AB, respectively. Then triangle A1 B1C1 has
maximum area when X coincides with the centroid G of ABC .

The last two properties of the centroid have analogues for a tetrahedron.
Finally, let us mention that if x , y, and z are the distances from an arbitrary point

X in a given triangle ABC to its sides, then the sum x2 + y2 + z2 is a minimum
when X coincides with Lemoine’s point of ABC (cf. Problem 1.2.5).

The next problem gives another extreme property of Lemoine’s point.

Problem 2.2.1 In a given triangle ABC inscribe a triangle such that the sum of
the squares of its sides is minimal.

Solution. Denote by L Lemoine’s point of triangle ABC , and let M , N , and P
be the orthogonal projections of L on the sides BC , AC , and AB, respectively
(Fig. 57).

We are going to show that M N P (and only it) is the desired triangle.
Let us first show that L is the centroid of �M N P . Denote by G the centroid

of �M N P and by x1, y1, and z1 the distances from G to the sides BC , AC , and
AB, respectively. Then, according to Problem 1.2.5, for x = L M , y = L N , and
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Figure 57.

z = L P we have x2 + y2 + z2 ≤ x2
1 + y2

1 + z2
1 with equality only when G = L .

On the other hand, Leibniz’s formula for �M N P gives

x2 + y2 + z2 = 3LG2 + GM2 + GN2 + G P2

≥ 3LG2 + x2
1 + y2

1 + z2
1 ≥ x2 + y2 + z2.

This gives L = G, i.e., L is the centroid of �M N P .
Next, consider an arbitrary triangle M1 N1 P1 inscribed in triangle ABC , and let

G be its centroid. Denote by M2, N2, and P2 the orthogonal projections of G on
the sides BC , C A, and AB, respectively. Then the median formula gives

M1 N2
1 + N1 P2

1 + P1 M2
1 = 3(GM2

1 + GN2
1 + G P2

1 )

≥ 3(GM2
2 + GN2

2 + G P2
2 )

≥ 3(x2 + y2 + z2) = M N2 + N P2 + P M2,

where equality holds only when M1 = M2, N1 = N2, P1 = P2, and G = L , i.e.,
when M1 = M , N1 = N , and P1 = P . ♠

A similar property of Lemoine’s point for a tetrahedron is stated in
Problem 2.2.13.

Problem 2.2.2 Find the points X inside an acute triangle ABC such that the tri-
angle with vertices the orthogonal projections of X on the sides of triangle ABC
has maximal area.

Solution. Let X be an arbitrary point in �ABC , and let M , N , and P be the
orthogonal projections of X on BC , C A, and AB, respectively (Fig. 58). Set S =
[ABC], σ = [M N P], and let R and O be the circumradius and the circumcenter
of �ABC .
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Figure 58.

We will show that σ is maximal when X = O. To do this we will first prove
the following Euler’s formula (cf. [8]):

σ =
(

1 − d2

R2

)
S

4
,

where d = O X .
To start the proof of this formula, write σ = 1

2 M N · N P sin ∠M N P . Denote
by α, β, γ the angles of �ABC . The quadrilateral AP X N is inscribed in a circle
with diameter AX , so the law of sines gives P N = AX sin α. Similarly, from the
cyclic quadrilateral C N X M one finds that M N = C X sin γ . Thus,

σ = 1

2
AX · C X sin α sin γ sin ∠M N P.

Let Y be the intersection point of the ray AX with the circumcircle k of �ABC .
We claim that ∠M N P = ∠XCY . Indeed, from the quadrilateral AP X N one gets
∠X N P = ∠X AP . On the other hand, ∠X AP = ∠Y AB = ∠Y C B. It now
follows from the quadrilateral C N X M that ∠X N M = ∠XC M , so

∠M N P = ∠M N X + ∠X N P = ∠XC M + ∠Y C B = ∠XCY.

Next, notice that ∠XY C = ∠AY C = ∠ABC = β. Combining this with the
above and with the law of sines for �XY C , we get

C X

XY
= sin β

sin ∠XCY
= sin β

sin ∠M N P
.

Thus C X sin ∠M N P = XY sin β and one obtains

σ = 1

2
AX · XY sin α sin β sin γ.
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Let X1 X2 be the diameter in k containing the point X . Assume that O is between
X1 and X . Then X1 X2 = R + d and X2 X = R − d. Since the chords AY and
X1 X2 intersect at X , we have

AX · XY = X1 X · X X2 = (R + d)(R − d) = R2 − d2

and the identity above gives

σ = R2 − d2

2
sin α sin β sin γ.

On the other hand,

S = ab

2
sin γ = 1

2
(2R sin α)(2R sin β) sin γ = 2R2 sin α sin β sin γ.

Hence

σ = R2 − d2

2
· S

2R2
=
(

1 − d2

R2

)
S

4
,

and Euler’s formula is proved.
It is clear that σ is maximal when d = 0, i.e., when X = O. ♠

Let us note that using an argument similar to the one in the solution of Prob-
lem 2.2.2, one can show that for any point X in the plane we have

σ = ±
(

1 − d2

R2

)
S

4
,

where the sign + corresponds to the case that X is inside the circumcircle of
�ABC and the sign − to the case that X is outside the circumcircle. When X
is on the circumcircle we have σ = 0, i.e., the points M , N , and P lie on a line.
The latter fact is known as Simson’s theorem. Further, Euler’s formula shows that
for any σ0 > 0 the locus of the points X in the plane for which σ = σ0 is

(i) a circle with center O and radius R
√

1 + 4σ0
S if 4σ0 > S;

(ii) the union of two concentric circles with center O and radii R
√

1 + 4σ0
S and

R
√

1 − 4σ0
S if 4σ0 ≤ S.

The next two problems are taken from the article [11] of G. Lawden.
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Problem 2.2.3 Let ABC be a given triangle, and let A′ be a point in the plane
different from A, B, and C. Let L and M be the feet of the perpendiculars drawn
from A to the lines A′ B and A′C, respectively. Find the position of A′ such that the
length of L M is maximal.

Solution. We will show that the length of L M is maximal when A′ coincides with
the center of the excircle (external circle) for �ABC inscribed in ∠B AC .

Figure 59.

First, notice that for any choice of A′ the point M lies on the circle k1 with
diameter AC , while L lies on the circle k2 with diameter AB (Fig. 59). Then
obviously L M is maximal when the segment L M contains the centers E and F of
k1 and k2. In this case we have

L M = AF + F E + E A = a + b + c

2
= s.

Moreover, it follows from ∠M EC = ∠AE F = γ that ∠MC E = ∠C M E =
90◦ − γ

2 , which in turn implies that MC is the bisector of the complementary angle
to ∠AC B. The line L B has a similar property. Therefore A′ is the center of the
excircle for �ABC inscribed in ∠B AC . ♠
Problem 2.2.4 For any point P in the plane different from the vertices A, B, and
C of a given triangle ABC, set x = AP, y = B P, z = C P, α1 = ∠B PC,
β1 = ∠APC, and γ1 = ∠AP B. Find the position of P such that the sum

q(P) = x sin α1 + y sin β1 + z sin γ1

is maximal.
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Solution. Denote by k the circumcircle of �B PC and by A′ the intersection point
of k and the line AP such that A′ and P are on different sides of the line BC
(Fig. 60). Let L and M be the feet of the perpendiculars drawn from A to the lines
A′ B and A′C . We will show that q(P) = L M .

Figure 60.

Notice that ∠PC B = ∠P A′ B = ∠AM L and ∠P BC = ∠P A′C = ∠AL M .
Hence �P BC ∼ �AL M , and therefore a

z = L M
AM . On the other hand, ∠BC A′ =

∠B P A′ = 180◦−∠AP B = 180◦−γ1. Thus, ∠AC M = 180◦−γ −(180◦−γ1) =
γ1 − γ , and so AM = b sin(γ1 − γ ). This implies

z = a AM

L M
= ab sin(γ1 − γ )

L M
.

Similarly, x = bc sin(α1−α)
L M and y = ac sin(β1−β)

L M .
Next, Ptolemy’s theorem for AL A′ M gives

AA′ · L M = AM · A′ L + A′ M · AL ,

while the law of sines for A′ BC yields A′ B = a sin γ1
sin α1

and A′C = a sin β1
sin α1

. Since
AA′ is a diameter of the circumcircle of AL A′ M , we have

L M

sin α1
= L M

sin ∠M AL
= AA′.

Also notice that

A′ L = A′ B + B L = a sin γ1

sin α1
+ c cos(β1 − β)
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and

A′ M = A′C + C M = a sin β1

sin α1
+ b sin(γ1 − γ ).

Now the identity above implies

L M2

sin α1
= AA′ · L M = b sin(γ1 − γ )

[
c cos(β1 − β) + a sin γ1

sin α1

]
+ c sin β1

[
b cos(γ1 − γ ) + a sin β1

sin α1

]
.

Therefore

L M2 = bc [sin(γ1 − γ ) cos(β1 − β) + sin(β1 − β) cos(γ1 − γ )]

+ ac sin β1 sin(β1 − β) + ab sin γ1 sin(γ1 − γ )

= bc sin α1 sin(α1 − α) + ac sin β1 sin(β1 − β)

+ ab sin γ1 sin(γ1 − γ ).

On the other hand, bc sin(α1 − α) = x L M , ac sin(β1 − β) = y L M , and
ab sin(γ1 − γ ) = z L M . Using these in the above equality for L M2, one gets

L M = x sin α1 + y sin β1 + z sin γ1 = q(P).

It now follows from Problem 2.2.3 that the sum q(P) is maximal when A′ is
the center of the corresponding excircle. In this case we have γ1 = 90◦ + γ

2 ,
∠B AP = α

2 , and therefore ∠AB P = β
2 . Thus P is the incenter of �ABC . ♠

EXERCISES

2.2.5 Given a point X in the interior of an acute triangle ABC , denote by A1,
B1, and C1 the intersection points of the lines AX , B X , and C X with the
corresponding sides of the triangle. Show that the perimeter of triangle
A1 B1C1 is minimal when X is the orthocenter of triangle ABC .

2.2.6 Given a point X in the interior of an acute triangle ABC , one draws the lines
through X parallel to the sides of the triangle. These lines intersect the sides
of the triangle at the points M ∈ AC, N ∈ BC(M N ||AB), P ∈ AB, Q ∈
AC(P Q||BC), and R ∈ BC, S ∈ AB(RS||AC). Find the position of X
such that the sum

M X · N X + P X · Q X + R X · S X

is a maximum.
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2.2.7 Find the position of a point M inside an acute triangle ABC such that the
sum:

(a) AM · BC + B M · AC + C M · AB;

(b) AM · B M · AB + B M · C M · BC + C M · AM · C A

is a minimum.

2.2.8 Given a triangle ABC , find the points M in the plane such that the sum

AB · MC2 + BC · M A2 + C A · M B2

is a minimum.

2.2.9 Let M be a point in the interior of a triangle ABC and let A′, B ′, and C ′ be
the feet of the perpendiculars drawn from M to the lines BC, C A, and AB,
respectively. Find the position of M such that

M A′ · M B ′ · MC ′

M A · M B · MC
is maximal.

2.2.10 For any point X in the interior of a triangle ABC set m(X) = min{AX, B X ,
C X}. Find the position of X such that m(X) is a maximum.

2.2.11 Triangle M N P is circumscribed about a given triangle ABC in such a way
that the points A, B, and C lie on N P , P M , and M N , respectively, and
∠P AB = ∠M BC = ∠NC A = ϕ. Find the values of ϕ such that the area
of triangle M N P is a maximum.

2.2.12 Find a point X in the interior of a regular tetrahedron such that the tetrahe-
dron with vertices the orthogonal projections of X on its faces has maximum
volume.

2.2.13 For any point X in the interior of a given tetrahedron ABC D denote by
X1, X2, X3, and X4 the orthogonal projections of X on the planes BC D,
AC D, AB D, and ABC , respectively, and by x1, x2, x3, and x4 the distances
from X to these planes. Set S1 = [BC D], S2 = [AC D], S3 = [AB D],
S4 = [ABC].

(a) Prove that there exists a unique point X such that
x1

S1
= x2

S2
= x3

S3
= x4

S4
.

Denote this point by L and call it Lemoine’s point for the tetrahedron
ABC D.
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(b) Show that the sum x2
1 + x2

2 + x2
3 + x2

4 is minimal precisely when X
coincides with L .

(c) Show that L is the centroid of the tetrahedron L1L2L3L4.

2.2.14 Inscribe a tetrahedron in a given tetrahedron such that the sum of squares of
its edges is a minimum.

2.2.15 Find the position of a point inside a regular tetrahedron such that the sum
of distances from it to the six edges of the tetrahedron is a minimum.

2.3 Malfatti’s Problems

In 1803 the Italian mathematician Gianfrancesco Malfatti posed the following prob-
lem [13]: Given a right triangular prism of any sort of material, such as marble,
how shall three circular cylinders of the same height as the prism and of the great-
est possible volume be related to one another in the prism and leave over the least
possible amount of material? This is equivalent to the plane problem of cutting
three circles from a given triangle so that the sum of their areas is maximized.

As noted in [7], Malfatti, and many others who considered the problem, as-
sumed that the solution would be the three circles that are tangent to each other,
while each circle is tangent to two sides of the triangle (Fig. 61).

Figure 61.

These circles have become known as the Malfatti circles, and we refer the reader
to [12] and [21] for some historical remarks on the derivation of their radii. In 1929,
Lob and Richmond [12] noted that the Malfatti circles are not always the solution of
the Malfatti problem. For example, in an equilateral triangle the in circle together
with two little circles squeezed into the angles, contain a greater area than Malfatti’s
three circles. Moreover, Goldberg [7] proved in 1967 that the Malfatti circles never
give a solution of the Malfatti problem. To the best of the authors’ knowledge, the
Malfatti problem was first solved by V. Zalgaller and G. Loss [23] in 1991.

They proved that for a triangle ABC with ∠A ≤ ∠B ≤ ∠C the solution of the
Malfatti problem is given by the circles k1, k2, k3, where k1 is the incircle, k2 is
inscribed in ∠A and externally tangent to k1, while k3 is either the circle inscribed
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Figure 62.

in ∠B and externally tangent to k1 or the circle inscribed in ∠A and externally
tangent to k2, depending on whether sin A

2 ≥ tan B
2 or sin A

2 ≤ tan B
2 (Fig. 62).

The proof of Zalgaller and Loss is very long (more than 25 pages) and we are
not going to present it here. Instead, we shall consider the Malfatti problem for two
circles in a square or a triangle, and we shall give a simple solution of the original
Malfatti problem for an equilateral triangle.

We start with the Malfatti problem for two circles in a square.

Problem 2.3.1 Cut two nonintersecting circles from a given square so that the sum
of their areas is maximal.

Solution. Assume that the side length of the square is 1, and consider two arbi-
trary nonintersecting circles inside of it (Fig. 63(a)). It is not difficult to see (the
reader is advised to do this rigorously) that by moving the circles inside the square
without intersecting them, they can be inscribed in opposite corners of the square
(Fig. 63(b)).

Then one can increase the radius of one of them (which increases their total
area) until they touch (Fig. 63(c)). Thus, it is enough to consider the case in which
the two circles are situated as in Fig. 64.

If their radii are r1 and r2, then
√

2 r1 + r1 + r2 + √
2 r2 = √

2, so

r1 + r2 = 2 − √
2.

Moreover, the fact that both circles lie entirely in the square implies

0 ≤ r1, r2 ≤ 1

2
.
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Figure 64.

Now the problem is to find the maximum value of the expression r2
1 + r2

2 under
the conditions above. Assume for convenience that r1 ≤ r2. Then there exists
x with r1 = 2−√

2
2 − x and r2 = 2−√

2
2 + x , where 0 ≤ x ≤

√
2−1
2 . Therefore

r2
1 + r2

2 = (2−√
2)2

2 + 2x2 is a maximum when x =
√

2−1
2 . In this case r1 = 3

2 − √
2

and r2 = 1
2 . Thus, the solution of the problem is given by the incircle of the square

and one of the circles inscribed in a corner of the square that is tangent to the
incircle (Fig. 65). ♠

Figure 65.

We are now going to solve the more difficult Malfatti problem for two circles
in a triangle.

Problem 2.3.2 Cut two nonintersecting circles from a triangle such that the sum
of their areas is maximal.

Solution. Let k1 and k2 be two nonintersecting circles of radii r1 and r2 and centers
O1 and O2 in triangle ABC . We may assume that each of them is tangent to at least
two sides of the triangle. More specifically, assume that k1 is tangent to AB and
AC , while k2 is tangent to AB and BC . Then O1 and O2 lie on the bisectors of
angles A and B, respectively (Fig. 66). We may also assume that the two circles
are tangent to each other; otherwise, enlarging one of them would clearly enlarge
their total area.

Suppose now that neither k1 nor k2 coincides with the incircle k of �ABC . We
shall show that then there exists a circle k ′ of radius r ′ without common interior
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Figure 66.

points with k such that the sum of the areas of k and k ′ is greater than the sum of
the areas of k1 and k2.

Assume for convenience that ∠A ≤ ∠B. Without loss of generality we may
assume that r1 ≤ r2. Indeed, if r1 > r2, denote by k ′

1 the circle of radius r ′
1 = r2

that is tangent to AB and BC , and by k ′
2 the circle of radius r ′

2 = r1 that is tangent
to AC and AB. Then r ′

1 ≤ r ′
2 and the total area of k ′

1 and k ′
2 is the same as

that of k1 and k2. Moreover, ∠A ≤ ∠B implies O ′
2 M ≥ O2 N (Fig. 67). Hence

O ′
1O ′

2 ≥ O1 O2 ≥ r1 + r2 = r ′
1 + r ′

2, i.e., k ′
1 and k ′

2 have no common interior points.

Figure 67.

So, we shall assume from now on that ∠A ≤ ∠B and r1 ≤ r2. Set ε = r −r2 >

0, where r is the inradius of �ABC . If r1 ≤ ε, then r1+r2 ≤ r . Hence r2
1 +r2

2 < r2,
which means that the total area of k1 and k2 is less than the area of k. Now consider
the case r1 > ε. Set r ′ = r1 − ε and let k ′ be the circle of radius r ′ inscribed in ∠A
(Fig. 68). Then

r2 + (r ′)2 = (r2 + ε)2 + (r1 − ε)2

= r2
1 + r2

2 + 2ε(r2 − r1) + 2ε2 > r2
1 + r2

2 ,

and it remains to show that k and k ′ have no common interior points. To do this we
first note that

O O2 = ε

sin B
2

≤ ε

sin A
2

= O1O ′.

Hence the triangle inequality implies that

O O ′ = O O1 + O1 O ′ ≥ O O1 + O2O ≥ O1O2.
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Figure 68.

Thus, O O ′ ≥ O1O2 ≥ r1 + r2 = r + r ′ and therefore k and k ′ have no common
interior points.

The above arguments show that two nonintersecting circles in �ABC have
maximal combined area precisely when one of them is the incircle of �ABC ,
while the other one is inscribed in the smallest angle of the triangle and is tangent
to the incircle. ♠

Next, we consider two problems that in a sense are inverse to Problems 2.3.1
and 2.3.2.

Problem 2.3.3 Find the side length of the smallest square containing two nonin-
tersecting circles of given radii a and b.

Solution. Assume that a ≥ b. Consider two nonintersecting circles k1 and k2 of
radii a and b, respectively, lying in a square S of side length x . Then the center O1

(resp. O2) of k1 (resp. k2) lies in the square whose sides are at distances a (resp. b)
from the corresponding sides of S (Fig. 69). Then O1O2 ≤ AB = √

2(x − a − b).
On the other hand, O1 O2 ≥ a + b, since k1 and k2 do not intersect, and we get√

2(x − a − b) ≥ a + b. Hence

x ≥ (a + b)

(
1 + 1√

2

)
.

It is clear also that x ≥ 2a, since the circle k1 lies inside the square S.

If (a + b)
(

1 + 1√
2

)
≥ 2a, then the required smallest square has side of length

d = (a + b)
(

1 + 1√
2

)
. This follows from the inequalities above and the fact that

in this case the two circles of radii a and b centered at A and B (see Fig. 69) are
nonintersecting and lie in S.

Similarly, if (a + b)
(

1 + 1√
2

)
< 2a, then the required smallest square has side

of length d = 2a.
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Figure 69.

Hence the solution of the problem is given by the square of side length

d =
(a + b)

(
1 + 1√

2

)
if b(

√
2 + 1)2 ≥ a ≥ b,

2a if a ≥ b(
√

2 + 1)2. ♠

Using the same reasoning as above one can solve the analogous problem for an
equilateral triangle.

Problem 2.3.4 Show that the side length of the smallest equilateral triangle con-
taning two nonintersecting circles of given radii a and b, a ≥ b, is given by

d =


√
3 (a + b) + 2

√
ab if b ≤ a ≤ 3b,

2
√

3 a if a ≥ 3b.

Now we shall use Problem 2.3.4 to solve the original Malfatti problem for an equi-
lateral triangle.

Problem 2.3.5 Prove that the solution of the Malfatti problem for an equilateral
triangle is given by the incircle and two circles inscribed in its angles and tangent
to the incircle.

Solution. We may assume that the side length of the triangle is 1. Suppose that it
contains three nonintersecting circles of radii a ≥ b ≥ c. Since the three circles
from the statement of the problem have radii 1

2
√

3
, 1

6
√

3
, and 1

6
√

3
, we have to prove

the following inequality:

(1) a2 + b2 + c2 ≤ 11

108
.

To do this we shall consider two cases.



86 Chapter 2. Selected Types of Geometric Extremum Problems

Case 1 Let a ≥ 3b. Since a ≤ 1
2
√

3
, it follows that

a2 + b2 + c2 ≤ a2 + 2b2 ≤ a2 + 2a2

9
≤ 11

108
.

The equality occurs if and only if

a = 1

2
√

3
, b = c = 1

6
√

3
.

Case 2 Let b ≤ a ≤ 3b. Then it follows from Problem 2.3.4 that

√
3 (a + b) + 2

√
ab ≤ 1.

Set a = 3x2b, where x > 0. Then the above inequalities are equivalent to

1√
3

≤ x ≤ 1, b ≤ 1√
3(3x2 + 2x + 1)

.

Hence

a2 + b2 + c2 ≤ a2 + 2b2 = (9x4 + 2) b2 ≤ 9x4 + 2

3(3x2 + 2x + 1)2
,

and it is enough to prove that

9x4 + 2

(3x2 + 2x + 1)2
≤ 11

36

if 1√
3

≤ x ≤ 1. The above inequality is equivalent to

(225 x3 + 93 x2 − 17 x − 61)(x − 1) ≤ 0,

which is satisfied since x − 1 ≤ 0 and

225 x3 + 93 x2 − 17 x − 61 = 51x(x2 − 1/3) + 174 x3 + 93 x2 − 61

≥ 174

3
√

3
+ 93

3
− 61 = 174 − 90

√
3

3
√

3
> 0.

In this case the equality in (1) is attained if and only if x = 1, b = c =
1√

3(3x2+2x+1)
, giving again that a = 1

2
√

3
and b = c = 1

6
√

3
. ♠
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EXERCISES

2.3.6 Find the radii of the Malfatti circles for an equilateral triangle and show
that they do not provide a solution to the Malfatti problem. Do the same for
other types of triangles.

2.3.7 Cut two nonintersecting circles of radii r1 and r2 from a given square so
that:

(a) r1r2 is a maximum; (b) r3
1 + r3

2 is a maximum.

2.3.8 Cut two nonintersecting circles from a given triangle such that the product
of their areas is a maximum.

2.3.9 Cut two nonintersecting circles from a given rectangle such that:

(a) the sum of their areas; (b) the product of their areas,

is a maximum.

2.3.10 Find the side length of the smallest square containing two nonintersecting
circles of radii

√
2 and 2.

2.3.11 Find the side length of the smallest square containing three nonintersecting
circles of radii 1,

√
2, and 2.

2.3.12 Find the side length of the smallest equilateral triangle containing three
nonintersecting circles of radii 2, 3, and 4.

2.3.13 Solve the Malfatti problem for three circles in a square.

2.3.14 Find the side length of the smallest square containing 5 nonintersecting unit
circles.

2.3.15 Cut two nonintersecting balls from a given cube such that:

(a) the sum of their volumes; (b) the sum of their surface areas

is a maximum.

2.3.16 Find the edge length of the smallest cube containing two nonintersecting
balls of given radii a and b.

2.3.17 Find the edge length of the smallest cube containing 9 nonintersecting unit
balls.
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2.4 Extremal Combinatorial Geometry Problems

The problems in the previous sections dealt with maxima and minima of geometric
quantities like perimeter, area, volume, length of a segment, and measure of an
angle. In this section we consider problems of a rather different nature. Namely, in
most of them we will be concerned with the maximal or minimal number of points
or figures in the plane (solids in space) having certain geometric properties.

Problem 2.4.1 In a regular 2n-gon the midpoints of all its sides and diagonals are
marked. What is the maximum number of marked points that lie on a circle?

Solution. Let A1, A2, . . . , A2n be the successive vertices of a regular 2n-gon M ,
and let O be its center. For each i = 1, 2, . . . , n the midpoints of the diagonals
(or sides) of M with length A1 Ai+1 lie on a circle ki with center O. Clearly ki

contains at most 2n points. Moreover, k1 contains exactly 2n points, while kn =
{O} (Fig. 70).

Figure 70.

Let us now show that every circle with center different from O contains fewer
than 2n marked points. Indeed, if k is such a circle, then for any i = 1, 2, . . . , n−1
it has at most 2 common marked points with ki . Thus k contains at most 1 + 2(n −
1) = 2n − 1 marked points.

Hence the maximum number of marked points on a circle is 2n. ♠
Problem 2.4.2 Given a coordinate system in the plane and an integer n ≥ 4, find
the maximum number of integer points (i.e., points with integer coordinates) that
can be covered by a square of side length n.

Solution. Consider an arbitrary square K with side length n and let M be the
smallest convex polygon containing the integer points in K . Then the area [M] of
M does not exceed n2, and its perimeter does not exceed 4n. Using Pick’s formula
(see the Glossary), we have [M] = m

2 + k − 1, where k is the number of integer
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points in the interior of M , while m is the number of integer points on the boundary
of M . Hence m

2 + k − 1 ≤ n2. Since the distance between any two distinct integer
points is at least 1, the perimeter of M is at least m. Hence m ≤ 4n and we get

m + k =
(m

2
+ k − 1

)
+ m

2
+ 1 ≤ n2 + 2n + 1 = (n + 1)2.

Thus, the number m + k of the integer points in K does not exceed (n + 1)2.
On the other hand, it is clear that there exists a square with side n covering

(n + 1)2 integer points. ♠

Problem 2.4.3 A city has the form of a square with side of length 5 km. Its streets
divide it into suburbs all of which are squares with sides of length 200 m. What is
the maximum area of a region in the city bounded by a closed curve of length 10 km
that consists entirely of streets or parts of streets of the city?

Solution. Let C be an arbitrary closed curve consisting of streets or parts of streets,
and let � be the smallest rectangle containing C . Clearly the sides of � are streets
or parts of streets of the city and the perimeter of � is not larger than the length of
C .

Moreover, the area bounded by C is not larger than the area of �. Thus, it is
enough to consider only closed curves C of rectangular shape (Fig. 71).

Figure 71.

Now consider a rectangle � with perimeter 10 km whose boundary consists of
streets or parts of streets. Denote by x the length of the smaller side of � (in km).
Then the length of the other side is 5 − x , and 0 ≤ x ≤ 5

2 . Moreover, k = 5x
is an integer with 0 ≤ k ≤ 12. Thus, [�] = x(5 − x) is maximal when x = 5

2 .
Moreover, the function x(5 − x) is increasing for x ∈ [0, 5/2], so for x = k

5 (with
k = 1, 2, . . . , 12) the maximum value of [�] is achieved when x = 12

5 . Hence
the required closed curve must have the shape of a rectangle with sides 12

5 km and
13
5 km. ♠
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Given a convex polygon M consider all homothetic images of M smaller than
M . Denote by n(M) the minimum number of such polygons that can cover M . As
we will see in the next problem, the number n(M) is the same for all polygons M
that are not parallelograms. This remarkable fact is known as the Gohberg–Markus
theorem. More details concerning this type of “covering problems” can be found
in the book [3] of Boltyanskii and Gohberg.

Problem 2.4.4 Let M be a convex nondegenerate (i.e., not lying on a line) polygon
in the plane.

(a) If M is a parallelogram, then n(M) = 4.

(b) If M is not a parallelogram, then n(M) = 3.

Solution.

(a) Let M be a parallelogram ABC D. It is easy to see that M can be covered by 4
smaller parallelograms homothetic to M (Fig. 72(a)).

On the other hand, for any parallelogram M1 homothetic to M and smaller than
M , if M1 contains the point A, then M1 cannot contain any other vertex of M
(Fig. 72(b)). This shows that M cannot be covered by fewer than 4 parallelo-
grams homothetic to M and smaller than M . Hence n(M) = 4.

(b) Let M be an arbitrary nondegenerate convex polygon in the plane that is not a
paralellogram. It is clear that n(M) ≥ 3. Next, we need the following lemma.

Lemma. There exists a triangle N containing M such that the line of every side
of N contains a side of M.

Proof of the Lemma. If M is a triangle, take N = M . Assume that M is not a
triangle; then there exist two sides of M that are not parallel and have no common
points. Extending these two sides until they intersect (Fig. 73(a)), one gets another
convex polygon M1 whose number of sides is less than that of M .

Continuing this process, after several steps one gets a parallelogram or a triangle
M ′ containing M whose sides contain sides of M . If M ′ is triangle, set N = M ′.
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Assume that M ′ is a parallelogram ABC D. Since M is not a parallelogram, at
least one of the vertices of M ′ is not a vertex of M . Suppose for example that A is
not a vertex of M . Denote by P the point from M on the side AD that is closest to
A and by Q the point from M on the side AB that is closest to A (Fig. 73(b)). Then
the pentagon Q BC D P contains M . Moreover, the triangle N formed by the lines
P Q, BC , and C D also contains M and has the required property. This proves the
lemma. ♠

Using the lemma, consider a triangle ABC containing M and such that the sides
A1 A2, B1 B2, and C1C2 of M lie on BC , AC , and AB, respectively (Fig. 74).

Figure 74.

Choose an arbitrary point O in the interior of M and arbitrary points X , Y , and
Z in the interiors of the segments A1 A2, B1 B2, and C1C2, respectively (Fig. 74).
Then the segments O X , OY , and O Z cut M into three polygons M1, M2, and M3.
Assume for example that M1 is the polygon contained in the quadrilateral AZ OY .

The choice of O, Y , and Z now shows that if 0 < k < 1 and k is sufficiently
close to 1, then the homothety ϕ1 with center A and ratio k is such that ϕ1(M)

contains AZ OY and therefore M1. In the same way one derives that there exist
homotheties ϕ2 and ϕ3 with coefficients less than 1 such that ϕ2(M) contains M2,
while ϕ3(M) contains M3. Thus, M is contained in the union of ϕ1(M), ϕ2(M),
and ϕ3(M), so n(M) ≤ 3. This proves that n(M) = 3. ♠

To conclude this section we consider a space problem.
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Problem 2.4.5 A cube is cut into several parts all of them tetrahedra. What is the
minimum possible number of tetrahedra obtained in this way?

Solution. Let ABC D A′ B ′C ′ D′ be a cube (Fig. 75). It is easy to see that it can be
cut into 5 tetrahedra: ABC B ′, AC DD′, A′ B ′D′ A, B ′C ′ D′C , and AC D′ B ′.

Figure 75.

We are now going to show that 5 is the desired number. Let a = AB. Assume
that the cube is cut into several tetrahedra. Clearly the base ABC D must contain
faces of at least two different tetrahedra T1 and T2. If the areas of these two faces
are S1 and S2, then S1 + S2 ≤ a2 and the altitudes to these faces in T1 and T2 are
not longer than a. Hence

Vol(T1) + Vol(T2) ≤ a2 · a

3
= a3

3
.

In a similar way one shows that the upper base A′ B ′C ′ D′ contains the faces of two
different tetrahedra T3 and T4 with Vol(T3)+Vol(T4) ≤ a3

3 . Moreover, it is clear that
T1 and T2 cannot coincide with T3 or T4, since any two faces of a tetrahedron have a
common edge. The tetrahedra T1, T2, T3, and T4 cannot cover the whole cube since

Vol(T1) + Vol(T2) + Vol(T3) + Vol(T4) ≤ 2
a3

3
< a3,

So, there must be at least one more tetrahedron obtained by the cutting of the cube.
Hence if a cube is cut into tetrahedra, their number is at least 5. ♠

EXERCISES

Cuttings

2.4.6 What is the maximum number of triangles into which a given triangle ABC
can be cut so that the number of segments meeting at any vertex of the net
obtained in this way is the same and all vertices except A, B, and C lie in
the interior of ABC .
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2.4.7 Find the minimum number of planes required to cut a given cube into at
least 300 pieces.

2.4.8 What is the minimum width of an infinite horizontal strip of the plane from
which an arbitrary triangle of area 1 can be cut off.

MaxMin and MinMax

2.4.9 Let n ≥ 3 be a given integer. For any points A1, A2, . . . , An in the plane no
three of which lie on a line, denote by α the smallest of the angles Ai A j Ak

for different i , j , and k. Find the largest possible value of α.

2.4.10 Let A1, A2, A3, A4 be arbitrary points on the boundary or in the interior of
a given rectangle with sides of lengths 3 and 4. Prove that

max( min
1≤i 	= j≤4

Ai A j ) = 25

8
.

2.4.11 Consider n arbitrary segments of length 1 in the plane, intersecting at one
point. Show that the length of at least one side of the 2n-gon with vertices
the ends of the segments is not less than the side length of a regular 2n-gon
inscribed in a circle with diameter 1.

Angles

2.4.12 What is the maximal possible number of acute angles of a convex polygon?

2.4.13 Find the largest possible number of rays in space issuing from a point such
that the angle between any two of them is:

(a) greater than 90◦; (b) greater than or equal to 90◦.

2.4.14 Find the largest possible number of points

(a) in the plane; (b) in space,

such that no triangle with vertices at these points has an obtuse angle.

Distribution of points

2.4.15 What is the largest number of points that can be distributed in a unit disk
such that the distance between any two of them is greater than 1?

2.4.16 What is the least number of points that can be distributed in a convex n-gon
such that every triangle with vertices at the vertices of the n-gon contains at
least one of these points?
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2.4.17 Find a rectangle T of minimum possible area such that for any position of
T in the plane it contains a point with integer coordinates in its interior or
on its boundary.



Chapter 3

Miscellaneous

3.1 Triangle Inequality

Problem 3.1.1 Let X and Y be points on the sides AC and BC of an equilateral
triangle ABC. Find the minimum and the maximum of the sum of orthogonal
projections of the segment XY on the sides of ABC.

Problem 3.1.2 Find the least possible real number k for which the following state-
ment is true: in every triangle one can find two sides of lengths a and b such that
1 ≤ a

b < k.

Problem 3.1.3 Find the greatest real number k such that for any triple of positive
numbers a, b, c such that kabc > a3 + b3 + c3, there exists a triangle with side
lengths a, b, c.

Problem 3.1.4 Let a, b, c be positive numbers such that

abc ≤ 1

4
and

1

a2
+ 1

b2
+ 1

c2
< 9.

Prove that there exists a triangle with side lengths a, b, and c.

Problem 3.1.5 Consider the inequality

a3 + b3 + c3 < k(a + b + c)(ab + bc + ca),

where a, b, c are the side lengths of a triangle and k is a real number.

(a) Prove the inequality when k = 1.

(b) Find the least value of k such that the inequality holds true for any triangle.
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Problem 3.1.6 Let a, b, c be positive real numbers. Prove that they are side lengths
of a triangle if and only if

a2 pq + b2qr + c2rp < 0

for any real numbers p, q, r such that p + q + r = 0, pqr 	= 0.

Problem 3.1.7 Let x, y, z be real numbers. Prove that the following conditions
are equivalent:

(i) x, y, z > 0 and 1
x + 1

y + 1
z ≤ 1.

(ii) a2x + b2 y + c2z > d2 for every quadrilateral with side lengths a, b, c, d.

3.2 Selected Geometric Inequalities

Problem 3.2.1 Let s, R, and r be the semiperimeter, the circumradius, and the
inradius of a triangle with side lengths a, b, and c. Prove that:

(i) (a + b − c)(b + c − a)(c + a − b) ≤ abc;

(ii) R ≥ 2r (Euler’s inequality);

(iii) |s2 − 2R2 − 10Rr + r2| ≤ 2(R − 2r)
√

R(R − 2r) (fundamental inequality);

(iv) 24Rr − 12r2 ≤ a2 + b2 + c2 ≤ 8R2 + 4r2;

(v) 6
√

3r ≤ a + b + c ≤ 4R + (6
√

3 − 8)r.

Problem 3.2.2 Let M and N be points on the sides AC and BC of a triangle ABC
and let L be a point on the segment M N. Prove that

3
√

S ≥ 3
√

S1 + 3
√

S2,

where S = [ABC], S1 = [AM L], and S2 = [B N L].

Problem 3.2.3 Let M be an interior point of a triangle ABC and A′, B ′, C ′ its
orthogonal projections on the lines BC, C A, AB, respectively. Prove that

(i) M A + M B + MC ≥ 2(M A′ + M B ′ + MC ′) (Erdős–Mordell inequality).

(ii) 1
M A + 1

M B + 1
MC ≤ 1

2

(
1

M A′ + 1
M B ′ + 1

MC ′
)
.
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Problem 3.2.4 Let ABC be a triangle inscribed in a circle of radius R, and let M
be a point in the interior of ABC. Prove that

M A

BC2
+ M B

C A2
+ MC

AB2
≥ 1

R
.

Problem 3.2.5 Let ABC DE F be a convex hexagon such that AB is parallel to
DE, BC is parallel to E F, and C D is parallel to AF. Let RA, RC , RE denote
the circumradii of triangles F AB, BC D, DE F respectively, and let P denote the
perimeter of the hexagon. Prove that

RA + RC + RE ≥ P

2
.

Problem 3.2.6 Let A, B, C, and D be arbitrary points in the plane. Prove that

AB.C D + AD.BC ≥ AC.B D

(Ptolemy’s inequality).

Problem 3.2.7 Let ABC DE F be a convex hexagon such that AB = BC,

C D = DE, E F = F A. Prove that

BC

B E
+ DE

D A
+ F A

FC
≥ 3

2
.

When does equality occur?

Problem 3.2.8 Let O be a point inside a convex quadrilateral ABC D of area S
and K , L , M, N interior points of the sides AB, BC, C D, D A, respectively, such
that O K B L and O M DN are parallelograms. Prove that

√
S ≥ √

S1 +√
S2,

where S1 and S2 are the areas of O N AK and OLC M, respectively.

Problem 3.2.9 A point O and a polygon F (not necessarily convex) are given in
the plane. Let P denote the perimeter of F, D the sum of the distances from O to
the vertices of F, and H the sum of the distances from O to the lines containing the
sides of F. Prove that D2 − H 2 ≥ P2

4 .

Problem 3.2.10 Let A1, A2, . . . , A2n, n ≥ 2, be arbitrary points in the plane. De-
note by Bk, 1 ≤ k ≤ 2n, the midpoint of the segment Ak Ak+1 (A2n+1 = A1). Prove
that

n∑
k=1

(Ak Ak+1 + An+k An+k+1)
2 ≥ 4 tan2 π

2n

n∑
k=1

Bk B2
k+n.
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Problem 3.2.11 Let C1, C2, C3, . . . , Cn, n ≥ 3, be unit circles in the plane, with
centers O1, O2, O3, . . . , On, respectively. If no line meets more than two of the
circles, prove that ∑

1≤i< j≤n

1

Oi O j
≤ (n − 1)π

4
.

3.3 MaxMin and MinMax

Problem 3.3.1 Given a trapezoid of area 1, find the least possible length of its
longest diagonal.

Problem 3.3.2 In triangle ABC, ∠C = 90◦,∠A = 30◦, and BC = 1. Find
the minimum of the length of the longest side of a triangle inscribed in ABC
(that is, one such that each side of ABC contains a different vertex of the
triangle).

Problem 3.3.3 For which acute-angled triangle is the ratio of the shortest side to
the inradius maximal?

Problem 3.3.4 For any five points in the plane, denote by λ the ratio of the greatest
distance to the smallest distance between two of them.

(a) Prove that λ ≥ 2 sin 54◦.

(b) Determine when equality holds.

Problem 3.3.5 Let C be a unit circle and n a fixed positive integer. For any set A
of n points P1, P2, . . . , Pn on C define

D(A) = max
d

(min
i

δ(Pi , d)),

where δ(P, l)) denotes the distance from point P to line l and the maximum is
taken over all diameters d of circle C. Let Fn be the family of all n-element subsets
A ⊂ C and let

Dn = min
A∈Fn

D(A).

Calculate Dn and describe all sets A ∈ Fn with D(A) = Dn.
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3.4 Area and Perimeter

Problem 3.4.1 Let the points P and Q on AB, and R on AC, divide the perimeter
of triangle ABC into three equal parts. Prove that the area of triangle P Q R is
greater than 2

9 the area of triangle ABC.

Problem 3.4.2 In triangle ABC, angle A is twice angle B, angle C is obtuse, and
the three sides have integer lengths. Determine the minimum possible perimeter of
the triangle.

Problem 3.4.3 Prove that the area of a triangle with vertices on the sides of a
parallelogram is not greater than one-half the area of the parallelogram.

Problem 3.4.4 A parallelogram of area S lies inside a triangle of area T . Prove
that T ≥ 2S.

Problem 3.4.5 Let P Q RS be a convex quadrilateral inside a triangle ABC. Prove
that the area of one of triangles P Q R, P QS, P RS, and Q RS is not greater than
1
4 the area of triangle ABC.

Problem 3.4.6 Find a centrally symmetric polygon of maximal area contained in
a given triangle.

Problem 3.4.7 Two equilateral triangles are inscribed in a circle with radius r.
Let K be the area of the set consisting of all points interior to both triangles. Find
the minimum of K .

Problem 3.4.8 Find the maximum possible value of the inradius of a triangle with
vertices on the boundary or in the interior of a unit square.

Problem 3.4.9 Given a positive integer n cut n rectangles from an acute triangle
ABC such that all of them have a side parallel to AB and their total area is a
maximum.

Problem 3.4.10 The octagon P1 P2 P3 P4 P5 P6 P7 P8 is inscribed in a circle, with
the vertices around the circumference in the given order. Given that the polygon
P1 P3 P5 P7 is a square of area 5, and the polygon P2 P4 P6 P8 is a rectangle of area
4, find the maximum possible area of the octagon.

Problem 3.4.11 Given a trapezoid ABC D (AB||C D) and a point K on AB, find
the point M on C D such that the area of the common part of triangles AB M and
C DK is maximized.
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Problem 3.4.12 Let ABC be a triangle. Prove that there is a line l (in the plane
of triangle ABC) such that the intersection of the interior of triangle ABC and
the interior of its reflection A′ B ′C ′ in l has area more than 2/3 the area of triangle
ABC.

Problem 3.4.13 To clip a convex n-gon means to choose a pair of consecutive
sides AB, BC and to replace them by the segments AM, M N, and NC, where M
is the midpoint of AB and N is the midpoint of BC. In other words, one cuts the
triangle M B N to obtain a convex (n + 1)-gon. A regular hexagon P6 of area 1 is
clipped to obtain a heptagon P7. Then P7 is clipped (in one of the seven possible
ways) to obtain an octagon P8, and so on. Prove that no matter how the clippings
are done, the area of Pn is greater than 1/3, for all n > 6.

Problem 3.4.14 Prove that any convex pentagon whose vertices have integer co-
ordinates must have area greater than or equal to 5

2 .

Problem 3.4.15 Each side of a convex polygon has integral length and the perime-
ter is odd. Prove that the area of the polygon is at least

√
3

4 .

Problem 3.4.16 Let the area and the perimeter of a cyclic quadrilateral C be AC

and PC , respectively. If the area and the perimeter of the quadrilateral that is
tangent to the circumcircle of C at the vertices of C are AT and PT , respectively,
prove that

AC

AT
≥
(

PC

PT

)2

.

Problem 3.4.17 Two concentric circles have radii r and R respectively, where
R > r. A convex quadrilateral ABC D is inscribed in the smaller circle and the
extensions of AB, BC, C D, and D A intersect the larger circle at C1, D1, A1, and
B1, respectively. Prove that:

(a) The perimeter of A1 B1C1 D1 is not less than R
r , the perimeter of ABC D.

(b) The area of A1 B1C1 D1 is not less than
(

R
r

)2
, the area of ABC D.

Problem 3.4.18 An infinite square grid is colored in the chessboard pattern. For
any pair of positive integers m, n consider a right-angled triangle whose vertices
are grid points and whose legs, of length m and n, go along the lines of the grid.
Let Sb be the total area of the black part of the triangle and Sw the total area of its
white part. Define the function f (m, n) = |Sb − Sw|.
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(a) Calculate f (m, n) for all numbers m, n that have the same parity.

(b) Prove that f (m, n) ≤ 1
2 max(m, n).

(c) Show that f (m, n) is not bounded from above.

3.5 Polygons in a Square

Problem 3.5.1 A triangle of area 1
2 lies in a unit square. Prove that at least two of

its vertices are vertices of the square.

Problem 3.5.2 A quadrilateral is inscribed in a unit square. Prove that at least
one of its sides has length not less than

√
2

2 .

Problem 3.5.3 Find the minimum and the maximum of the area of an equilateral
triangle inscribed in a unit square.

Problem 3.5.4 A convex polygon of area greater than 1
2 lies in a unit square. Prove

that the polygon contains a line segment of length 1
2 that is parallel to a side of the

square.

Problem 3.5.5 A convex n-gon lies in a unit square. Show that three of its vertices
form a triangle of area less than:

(a) 8
n2 ;

(b) 8
n2 sin 2π

n .

Problem 3.5.6 In a unit square a finite number of line segments parallel to its sides
are drawn. The line segments may intersect one another and their total length is
18. Prove that at least one of the regions into which the square is divided by the
line segments has area not less than 0.01.

3.6 Broken Lines

Problem 3.6.1 A broken line of length l is drawn in a unit square so that any line
parallel to a side of the square intersects it at most once. Prove that:

(a) l < 2;

(b) for any l ∈ (0, 2), there is a broken line of length l with the given property.
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Problem 3.6.2 Two broken lines are given such that the distance between any two
vertices of one broken line is at most 1, but the distance between any two vertices of
different broken lines is more than 1√

2
. Prove that the broken lines have no common

point.

Problem 3.6.3 An ant crosses a circular disk of radius r and it advances in a
straight line, but sometimes it stops. Whenever it stops, it turns 60◦, each time in
the opposite direction. (If the last time it turned 60◦ clockwise, this time it turns
60◦ counterclockwise.) Find the maximum length of the ant’s path.

Problem 3.6.4 A non-self-intersecting broken line of length 1000 is drawn in a
unit square. Prove that there exists a line parallel to a side of the square and
intersecting the broken line at least 500 times.

Problem 3.6.5 Consider n2 arbitrary points in a unit square. Show that there
exists a broken line with vertices at these points whose length is not greater than
2n.

Problem 3.6.6 A country with the shape of a square of side length 1000 km has
51 towns. Its government has an amount of money to construct highways of total
length 11000 km. Is that amount of money enough to construct a system of high-
ways connecting all towns of the country?

Problem 3.6.7 A broken line of length l is drawn in a unit square so that any point
of the square is at distance less than d from a point of the broken line. Prove that
l ≥ 1

2d − πd
2 .

3.7 Distribution of Points

Problem 3.7.1 Let S be a set of finitely many points on the sides of a unit square.
Prove that there is a vertex of the square such that the arithmetic mean of the
squares of the distances from it to all points of S is not less than 3

4 .

Problem 3.7.2 Prove that among any 101 points in a unit square there are at least
five lying in a circle of radius 1

7 .

Problem 3.7.3 Prove that among any 112 points in a unit square there are two at
distance less than 1

8 .

Problem 3.7.4 Eight points are given in the interior or on the boundary of a unit
cube such that any two of them are at least distance 1 apart. Prove that these points
coincide with the vertices of the cube.
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Problem 3.7.5 In a square of side length 100 there are given n nonintersecting
unit disks such that any line segment of length 10 has a common point with at least
one of them. Prove that n ≥ 400.

Problem 3.7.6 Given n points inside a unit square, prove that:

(a) the area of at least one triangle with vertices at the given points or the vertices
of the square is not greater than 1

2(n+1)
;

(b) the area of at least one triangle with vertices at the given n points (n ≥ 3) is
less than 1

n−2 .

Problem 3.7.7 Let Pi(xi , yi), 1 ≤ i ≤ 6, be points in the plane such that xi =
0,±1, or ±2 and yi = 0,±1, or ±2. Moreover, no three of these six points are
collinear. Prove that there exists a triangle Pi Pj Pk , 1 ≤ i < j < k ≤ 6, that has
area not greater than 2.

Problem 3.7.8 Let S be a set of 1980 points in the plane. Every two points of S
are at least distance 1 apart. Prove that S contains a subset T of 248 points, every
two at least distance

√
3 apart.

Problem 3.7.9 In an annulus determined by two concentric circles of radii 1 and√
2, respectively, there are given n points such that the distance between any two

of them is not less than 1. Find the largest n for which this is possible.

Problem 3.7.10 Ten gangsters are standing on a flat surface, and the distances be-
tween them are all distinct. At twelve o’clock, when the church bells start chiming,
each of them shoots at the one among the other nine gangsters who is the nearest
and kills him or her. At least how many gangsters will be killed?

Problem 3.7.11 In a plane a set of n points (n ≥ 3) is given. Each pair of points
is connected by a segment. Let d be the length of the longest of these segments. We
define a diameter of the set to be any connecting segment of length d. Prove that
the number of diameters of the given set is at most n.

Problem 3.7.12 Given n > 4 points in the plane such that no three are collinear,
prove that there are at least

(n−3
2

)
convex quadrilaterals whose vertices are four of

the given points.
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3.8 Coverings

Problem 3.8.1 The lengths of all sides and both diagonals of a quadrilateral are
less than 1. Prove that it may be covered by a circle of radius 1√

3
.

Problem 3.8.2 Let ABC D be a parallelogram with side lengths AB = a, AD =
1 and with ∠B AD = α. If triangle AB D is acute, prove that the four circles
of radius 1 with centers A, B, C, D cover the parallelogram if and only if a ≤
cos α + √

3 sin α.

Problem 3.8.3 An equilateral triangle of side length 1 is covered by six congruent
circles of radius r. Prove that r ≥ 1

4(
√

3 − 1).

Problem 3.8.4 Find the side length of the largest equilateral triangle that can be
covered by three equilateral triangles of side lengths 1.

Problem 3.8.5 Find the radius of the largest disk that can be covered by:

(a) three unit disks;

(b) three disks with radii R1, R2, and R3.

Problem 3.8.6 Find the minimum number of unit disks that can cover a disk of
radius 2.

Problem 3.8.7 Is it possible to cover a square of side length 5
4 by means of three

unit squares?

Problem 3.8.8 Show that one can cover a unit square by means of any finite col-
lection of squares of total area 4.



Chapter 4

Hints and Solutions to the
Exercises

4.1 Employing Geometric Transformations

1.1.11 Let C ′ be the symmetric point of C with respect to M (Fig. 76).

Figure 76.

Then C ′ A = C B, and the triangle inequality gives

C M = 1

2
CC ′ ≤ 1

2
(C A + C ′ A) = 1

2
(C A + C B).

1.1.12 Let C ′ be the point such that ADCC ′ is a parallelogram and C ′′ the mid-
point of C ′ B (Fig. 77). Then C ′′N = 1

2C ′C = 1
2 AD and C ′′N ‖ CC ′ ‖ AD. Hence

AC ′′ N M is a parallelogram, implying M N = AC ′′. Now it follows from Prob-
lem 1.1.11 that

M N = AC ′′ ≤ 1

2
(AB + AC ′) = 1

2
(AB + C D).
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Figure 77.

1.1.13 Let a be the side length of the given square ABC D, and let X be an arbitrary
point on its boundary, say on the side C D (Fig. 78). Then s(X) = X A + X B +
XC + X D = X A + X B + C D. Heron’s problem (Problem 1.1.1) implies that
AX + B X is minimal when ∠AX D = ∠B XC , i.e., when X is the midpoint of
C D.

Figure 78.

In this case s(X) = (
√

5 + 1)a. The minimum value of s(X) is obtained also
when X is the midpoint of AB, BC , or AD.

1.1.14 Hint. One may assume that two of the vertices of the triangles considered
are fixed, while the third vertex lies on a fixed line parallel to the line determined
by the first two vertices. Then one can use the argument from the solution of
Problem 1.1.1.

1.1.15 Let B ′ be the reflection of B in �. If B ′ = A, then AX − B X = 0 for any
point X on �. Assume that B ′ 	= A and that the line AB ′ intersects � at some point
X0 (Fig. 79). Then the triangle inequality implies |AX − B X | = |AX − X B ′| ≤
AB ′ for every point X on �, where equality holds only when X = X0. Hence in
this case the solution is given by the point X0.

We leave as in exersice to the reader to show that if B ′ 	= A and AB ′ ‖ �, then
|AX − B X | has no maximum.
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Figure 79.

1.1.16 Let P ′ and P ′′ be the reflections of P in the lines O X and OY , respec-
tively. If ∠X OY < 90◦, then ∠P ′O P ′′ = 2∠X OY < 180◦ and therefore the line
segment P ′ P ′′ intersects O X at point A0 and OY at point B0 (Fig. 80).

Given points A on O X and B on OY , the perimeter of triangle P AB is equal
to the length of the broken line P ′ AB P ′′. Hence A0 and B0 are the desired points
since in this case the perimeter of triangle P A0 B0 is equal to the length of the line
segment P ′ P ′′.

If ∠X OY ≥ 90◦, then P ′ P ′′ does not intersect the sides O X and OY of the
angle, and the required points A and B coinside with O (Fig. 81).

1.1.17 Let A′ be the reflection of the point A in the line O X and B ′ the reflection
of B in OY (Fig. 82).

For any points C on O X and D on OY the length of the broken line AC DB
coincides with the length of the broken line A′C DB ′. It is clear now that if A′ B ′
has no common points with the rays O X and OY , the required broken line is
shortest when C = D = O. If A′ B ′ intersects O X at some point C0, and OY at
some point D0, then the required broken line is AC0 D0 B.
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Figure 82.

1.1.18 Let ∠X OY < 45◦. Reflect the ray O X in OY , and let N ′ be the image
of N under this reflection. Then AM + M N = AM + M N ′ ≥ AN ′ by the triangle
inequality. Denote by A1 the foot of the perpendicular from A to O X ′. Then
AN ′ ≥ AA1, which implies

AM + M N ≥ AA1.

Hence the minimum of AM + M N is attained only if M is the intersection point
of OY and AA1, and N is the reflection of A1 in OY .

If ∠X OY ≥ 45◦ then the minimum of AM + M N is attained only if M and N
coincide with O.

1.1.19 Draw PC ′ parallel to AB and C ′ P ′ parallel to BC as in Fig. 83.

Figure 83.

Since �AC ′ P ′ is similar to �AC P and �PC ′ P ′ is similar to �AB P , we have

C ′ P ′

C P
= AP ′

AP
and

C ′ P ′

B P
= P ′ P

AP
.
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Adding up these equalities yields

C ′ P ′

B P
+ C ′ P ′

C P
= P ′ P + AP ′

AP
= 1.

Therefore
1

B P
+ 1

C P
= 1

C ′ P ′ .

Maximizing the expression on the left is then equivalent to minimizing C ′ P ′. But
C ′ does not depend on the choice of BC , so the latter reduces to finding a point P ′
on AP at minimum distance from C ′. Clearly, this point is the foot of the perpen-
dicular from C ′ to AP . Since C ′ P ′ is parallel to BC by construction, the maximum
of 1/B P + 1/C P is assumed only if BC is perpendicular to AP .

1.1.20 We shall prove that the desired line is parallel to B D. Indeed, denote by
M0 and K0 the intersection points of this line with the lines AB and AD (Fig. 84).
Then we have to prove that

1

[B MC]
+ 1

[DC K ]
>

1

[B M0C]
+ 1

[DC K0]
,

which is equivalent to

(1)
1

[B MC]
− 1

[B M0C]
>

1

[DC K0]
− 1

[DC K ]
.

We may assume that M ∈ B M0. Then K0 ∈ DK and (1) is equivalent to

(2)
[MC M0]

[B MC][B M0C]
>

[KC K0]

[DC K0][DC K ]
.

Figure 84.
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Taking into account that ∠MC M0 = ∠KC K0, we see that (2) can be written
as

(3)
MC

[B MC]
· C M0

[B M0C]
>

KC

[DC K ]
· C K0

[DC K0]
.

On the other hand,
C M0

[B M0C]
= C K0

[DC K0]

since M0 K0||B D and (3) is equivalent to

MC

[B MC]
>

KC

[DC K ]
.

The latter inequality holds true since obviously the distance from B to M K is
shorter than the distance from D to M K .

1.1.21 Let α be the measure of the given angle, and let M ′ be the image of M under
rotation through α counterclockwise about O (Fig. 85). If A and B are points
on O X and OY , respectively, and O A = O B, then �O AM ∼= �O B M ′, so
AM = B M ′. Hence M A + M B = M B + B M ′ ≥ M M ′. Thus M A + M B is a
minimum when B coincides with the intersection point of M M ′ and OY .

Figure 85.

1.1.22 Let M ′ be the reflection of M in the line AB, let M ′′ and A′ be the reflec-
tions of M ′ and A, respectively, in the line BC , and let N ′ be the reflection of N
in the line AC . We want to find points X , Y , and Z on AB, BC , and C A, re-
spectively, such that the sum t = M X + XY + Y Z + Z N is a minimum. Let
X ′ be the reflection of X in the line BC . Then t coincides with the length of the
broken line M ′′ X ′Y Z N ′ connecting M ′′ with N ′. Next, one has to consider sev-
eral possible cases concerning which of the segments B A′, BC , and AC intersect
M ′′N ′. For example, if M ′′ N ′ intersects B A′ at some point X ′

0, BC at Y0, and AC
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Figure 86.

at Z0 (Fig. 86), then the required minimal path will be M X0Y0 Z0 N , where X0 is
the reflection of X ′

0 in BC .
If M ′′ N ′ intersects B A′ at X ′

0 and has no common point with BC and AC , we
set Y0 = Z0 = C and choose X0 as above, etc.

1.1.23 Hints.

(a) Show that the minimum of the sum considered is attained when � coincides
with one of the lines AC and BC .

(b) Show that the required maximum is equal to max{AB, AB ′} and it is attained
when � is perpendicular to AB or AB ′, where B ′ is the reflection of B in C .

1.1.24 By the minimum choice of M�, the inequality AM� + B M� ≤
AC + BC holds true. Therefore the maximum value of AM� + B M� does not ex-
ceed AC + BC . We prove that this maximum value is in fact equal to AC + BC .
It suffices to construct a line � through C such that M� = C . We distinguish several
cases.

If C is on the line segment AB, then C = M� for each line � through C . If C lies
on the line AB but not on the line segment AB, then it follows from Heron’s prob-
lem that C = M� only for the line � through C that is perpendicular to AB. (This
is because if M is a point on � different from C , then C A < M A and C B < M B.)

Finally, suppose C is not on the line AB. Then the exterior bisector of an-
gle ABC is the only line � such that C = M�. This follows easily from Heron’s
problem.

1.1.25 Draw the line through the incenter I of �ABC and perpendicular to C I .
Let this line meet BC and C A at D′ and E ′, respectively (Fig. 87).

Then I is the midpoint of the segment E ′ D′, and it follows from Problem 1.1.10
that [C DE] ≥ [C D′E ′]. So, it suffices to show that the area S′ of �C D′E ′ is at
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Figure 87.

least 2r2. We have S′ = 1
2C I · D′E ′ = C I · D′I . From the right triangle D′ I C ,

we get C I = r/ sin(C/2) and D′ I = r/ cos(C/2). Hence

S′ = r2

sin C
2 cos C

2

= 2r2

sin C
≥ 2r2.

The equality occurs only if ∠C = 90◦ and DE ⊥ C I .

1.1.26 It is enough to consider only the points X lying in the half-plane δ deter-
mined by the line AB that does not contain the point C . Indeed, if Y is a point in
the other half-plane, let X be the reflection of Y in the line AB (Fig. 88). Denote
by X0 the intersection point of the lines C X and AB.

Figure 88.

Then C X = C X0 + X0 X = C X0 + X0Y ≥ CY . Since AY = AX and
BY = B X it follows that r(X) < r(Y ). Apart from this, the required point X
must lie in the angle AC B. Indeed, if X is situated as in Fig. 88, then ∠X AB ≥
180◦ − ∠B AC ≥ 90◦, implying X B > AB. On the other hand, XC − X A < AC ,
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and we get that

r(A) = AB − AC < X B − (XC − X A) = r(X) .

Thus, it is enough to consider points X lying in the common part of δ and the angle
AC B.

Figure 89.

Let ϕ be the rotation through 60◦ clockwise about A. Set C ′ = ϕ(C) and
X ′ = ϕ(X) (Fig. 89). Then �AX X ′ is equilateral and AX = X X ′. Moreover,
XC = X ′C ′. Hence r(X) = X ′ X + B X − C ′ X ′.

On the other hand, C ′ B + B X + X X ′ ≥ C ′ X ′, which gives r(X) ≥ −C ′ B;
equality holds precisely when the points X ′, X , B, and C ′ lie on a line in this
succession. Since α = ∠B AC ≥ 60◦, there are two possible cases.

Case 1. α = 60◦. Then C ′ = B and it follows immediately that every point X on

the arc
�

AB of the circumcircle of �ABC gives a solution.

Case 2. α > 60◦ (Fig. 89). Then C ′ 	= B and if the points X and X ′ lie on the line
BC ′, then ∠AX B = 120◦.

On the other hand, since �BCC ′ is isosceles and ∠BCC ′ = 60◦−(180◦−
2α) = 2α − 120◦, we have ∠C BC ′ = 1

2 (180◦ − ∠BCC ′) = 150◦ − α.
Hence ∠AB X = 180◦ − ∠ABC − ∠C BC ′ = 30◦ and ∠B AX = 30◦.
This shows that in this case the point X is determined uniquely.

1.1.27 It follows from Pompeiu’s theorem (Problem 1.1.6) that the maximum of
the distance from O to the third vertex of the equilateral triangle is equal to 2.

1.1.28 Let a, b, c denote the sides of the triangle facing the vertices A, B, C ,
respectively. We will show that the desired minimum value of the expression
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AP · AG + B P · BG + C P · CG is attained when P is the centroid G, and that
the minimum value is

AG2 + BG2 + CG2

= 1

9

[
(2b2 + 2c2 − a2) + (2c2 + 2a2 − b2) + (2a2 + 2b2 − c2)

]
= 1

3
(a2 + b2 + c2).

The problem can be solved using the same arguments as in Case 2 of the solution of
Problem 1.1.8. Here A0 B0C0 is the triangle with sides AG, BG, CG, and we leave
the details to the reader. Instead, we shall present an elegant solution using the dot
product, suggested by M. Klamkin. For any point X in the plane set

−→
G X = X.

Then

AP · AG + B P · BG + C P · CG

= |A − P||A| + |B − P||B| + |C − P||C|
≥ |(A − P) · A| + |(B − P) · B| + |(C − P) · C|
≥ |(A − P) · A + (B − P) · B + (C − P) · C|
= |A|2 + |B|2 + |C|2 (since A + B + C = 0)

= 1

3
(a2 + b2 + c2),

where the last step uses the identity above. Suppose that equality holds. Then

|A − P||A| = |(A − P) · A|,
|B − P||B| = |(B − P) · B|,
|C − P||C| = |(C − P) · C|.

These conditions mean that P lies on each of the lines G A, G B, GC , i.e., P = G.

1.1.29 Apply three symmetries with respect to lines to rectangle ABC D, as shown
in Fig. 90.

Fix an arbitrary point M on the side AB, and consider the point M ′ on A′′ B ′′′
such that A′′ M ′ = AM . Then M M ′ = 2AC . Then show that if N , P , and Q
are arbitrary points on the sides BC , C D, and D A, respectively, the perimeter of
M N P Q coincides with the length of a broken line connecting M and M ′. The lat-
ter is minimal when M N ‖ AC ‖ P Q and N P ‖ B D ‖ QM . Every parallelogram
with these properties inscribed in ABC D (there are infinitely many of them) has a
minimal perimeter.
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Figure 90.

1.1.30 Let C ′ and D′ be the reflections of C and D in the lines B M and AM ,
respectively (Fig. 91).

Figure 91.

Then �C ′M D′ is equilateral, because C ′ M = D′M = 1
2C D and

∠C ′M D′ = 180◦ − 2∠C M B − 2∠DM A = 60◦. Hence

AD + 1

2
C D + C B = AD′ + D′C ′ + C ′ B ≥ AB.

It follows that AD + C B ≥ AB − 1
2C D = 2. Thus AB + BC + C D + D A ≥ 7,

with equality if and only if C ′ and D′ lie on AB. In the latter case, ∠ADM =
∠AD′M = 120◦, ∠BC M = ∠BC ′M = 120◦, and ∠AM D = 60◦ − ∠C M B =
∠C B M . Hence triangles AM D and M BC are similar, implying that
AD · BC = (C D/2)2 = 1. On the other hand AD + BC = 2, and we conclude
that AD = BC = 1. Therefore the quadrilateral ABC D of minimum perimeter is
an isosceles trapezoid with sides AB = 3, BC = AD = 1, and C D = 2 (Fig. 92).

Figure 92.
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1.1.31 The hypothesis implies that BC D and E F A are equilateral triangles. Hence
B E is an axis of symmetry of AB DE (Fig. 93).

Figure 93.

Let the reflections of BC D and E F A in the line B E be BC ′ A and E F ′ D,
respectively. Since ∠BG A = 180◦ − ∠AC ′ B, the point G lies on the circumcircle
of equilateral triangle ABC ′. By Pompeiu’s theorem (Problem 1.1.6), AG+G B =
C ′G. Likewise, DH + H E = H F ′. It follows that

C F = C ′ F ′ ≤ C ′G + G H + H F ′ = AG + G B + G H + DH + H E,

with equality if and only if G and H both lie on C ′ F ′.

1.1.32

(a) Let ABC D be a convex quadrilateral. It follows from the triangle inequality
that X A+X B +XC +X D ≥ AC +B D, with equality only when X coincides
with the intersection point of the diagonals AC and B D.

(b) Let O be the center of symmetry of the given polygon A1 A2 . . . An . For any
point X in the plane, let X ′ be the reflection of X in O. Then for any i =
1, 2, . . . , n we have Ai X+Ai X ′ ≥ 2Ai O (Problem 1.1.11). Hence for t (X) =∑n

i=1 Ai X , it follows that t (X) = t (X ′) and t (X) = 1
2 (t (X)+ t (X ′)) ≥ t (O),

where equality holds only for X = O.

1.1.33 Consider any quadrilateral ABC D whose diagonals AC and B D have given
lengths a and b, respectively, and form an angle α. Construct the parallelograms
AB DM and BC K D (Fig. 94).



4.1. Employing Geometric Transformations 117

Figure 94.

Then the quadrilateral AC K M is a parallelogram. Indeed, AM ‖ B D and
B D ‖ C K imply AM ‖ C K ; in addition, AM = B D = C K . This parallelogram
is completely determined by its sides AC = M K = a, AM = C K = b, and
∠C AM = α.

Note now that since DM = AB and DK = BC, the perimeter of ABC D is
equal to the sum D A + DC + DK + DM , that is, to the sum of distances from
the point D to the vertices of the parallelogram AC K M .

It follows from Problem 1.1.32 (a) that the perimeter of ABC D is minimal
when D is the intersection point of the diagonals AK and C M of AC K M . Trac-
ing backward the construction from above, we conclude that in the latter case the
original quadrilateral ABC D is a parallelogram with diagonals of lengths a and b
forming the given angle α.

1.1.34 Note first that [AB M] + [C DM] = 1
2 [ABC D] = 1

2 S. Construct the point Q
outside ABC D such that AQ = C M and B Q = DM (Fig. 95).

Figure 95.

Then �AB Q ∼= �C DM , so [AQ B M] = [AB M] + [C DM] = 1
2 S. On the

other hand, [AQ B M] = [AM Q] + [B M Q]. Since AM · AQ ≥ 2[AM Q] and
B M · B Q ≥ 2[B M Q], we obtain

AM · C M + B M · DM = AM · AQ + B M · B Q

≥ 2([AM Q] + [B M Q]) = 2[AQ B M] = S.
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To deal with the equality case, suppose that ABC D is a rectangle with AB = a,
BC = b. Set a coordinate system Axy with origin A, Ax axis the ray AB, and
Ay axis the ray AD (Fig. 96). Let M = M(x, y) be a point for which the equal-
ity AM · C M + B M · DM = S = ab occurs. Then ∠M AQ = ∠M B Q = 90◦
and since ∠B AQ = ∠MC Q, we get ∠M AB = ∠MC B. On the other hand,
tan ∠M AB = y

x , tan ∠MC B = a−x
b−y and therefore y(b − y) = x(a − x).

If a 	= b then the point M ranges through two pieces of a hyperbola (see Fig. 96
for the case a > b).

Figure 96.

If a = b, i.e., ABC D is a square, then y(a − y) = x(a − x), which gives x = y
or x + y = a. Hence in this case M ranges over the diagonals AC and B D of this
square (Fig. 97).

Figure 97.

1.1.35 If ABC D is the given quadrilateral, consider the quadrilateral AB1C D,
where B1 is the reflection of B in the perpendicular bisector of diagonal AC .
Clearly, ABC D and AB1C D have the same areas, and the sides of AB1C D are
b, a, c, d, in this order. Hence S = [B1C D] + [D AB1] ≤ 1

2(ac + bd). Equal-
ity occurs if and only if ∠D AB1 = ∠B1C D = 90◦. This condition means that
AB1C D is a cyclic quadrilateral with two opposite right angles. Equivalently,
ABC D is also cyclic (having the same circumcircle), and its diagonals are perpen-
dicular.
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1.1.36 Let M and N be the midpoints of AB and C D. Since �AB D ∼= �B AC
we get M D = MC , which implies M N ⊥ C D (Fig. 98). In a similar way one gets
M N ⊥ AB.

Figure 98.

Let ϕ be the rotation in space through 180◦ about the line M N . Then ϕ(A) = B,
ϕ(B) = A, ϕ(C) = D, and ϕ(D) = C .

Let X be an arbitrary point in space that is not on M N . Set X ′ = ϕ(X) and let
Y be the midpoint of the segment X X ′. Then Y lies on the line M N and t (X ′) =
t (X). Since P X+P X ′ > 2PY for any point P (Problem 1.1.11), we have 2t (X) =
t (X) + t (X ′) > 2t (Y ). This shows that it is enough to consider only points X on
the line M N .

Let ψ be the rotation about the line M N that maps A and B to points A′ and
B ′ on the plane C DM such that the quadrilateral A′ B ′C D is convex. Then for any
X on the line M N we have t (X) = A′ X + B ′ X + C X + DX , and Problem 1.1.32
(a) implies that t (X) is a minimum when X coincides with the intersection point
O of the diagonals A′C and B ′ D. The point O is characterized by the condition
∠AO B = ∠C O D.

1.1.37 Hint. Let B ′ be the reflection of B in the plane α. Show that the required
line is the intersection line of α and the plane O AB ′.

1.1.38

(a) The statement follows easily from Problem 1.1.2 (Fig. 99).

(b) Let α, β, γ , and δ be the sums of the face angles of the tetrahedron ABC D
at the vertices A, B, C , and D, respectively. Then the given condition implies
α + γ = 360◦ = β + δ. We may assume that α ≤ 180◦ and β ≤ 180◦. In
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Figure 99.

the plane of �ABC construct �BC D′ ∼= �BC D, �AB D′′ ∼= �AB D, and
�AD′′C ′ ∼= �ADC (Fig. 100).

Figure 100.

It is now easy to see that the quadrilateral C ′ D′′D′C is a parallelogram lying
entirely in the hexagon AC ′ D′′ B D′C . Moreover, it follows from �C ′C A that
CC ′ = 2AC sin α

2 . For any point X on AB lying in the parallelogram C ′ D′′ D′C ,
the line through X that is parallel to CC ′ intersects the lines BC , C D′, AD′′, and
C ′ D′′ at points Y , Z ′, T ′, and Z ′′, respectively. Now construct points Z on C D
and T on AD such that C Z = C Z ′ and AT = AT ′. Then the length of the broken
line XY Z T X is Z ′ Z ′′ = CC ′. We leave it to the reader to show that the length of
any such broken line is not less than CC ′ and is equal to CC ′ when X lies in the
parallelogram C ′ D′′D′C and the points Y , Z , and T are obtained from X in the
way described above.
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1.1.39 Let A and B be the two cities and let �1 and �2 be the (parallel) banks of the
river, where �1 is between A and �2 (Fig. 101).

Figure 101.

Construct the line � ‖ �1 such that �1 and �2 are symmetric with respect to
�, the reflection A′ of A in �, and the reflection A′′ of A′ in �2. Next, let N0

be the intersection point of �2 and B A′′, and let M0 be the point on �1 such that
M0 N0 ⊥ �1. Let M ∈ �1 and N ∈ �2 be arbitrary points such that M N ⊥ �1. Then
AM = A′ N = A′′ N and therefore

AM + M N + N B = A′′ N + N B + M0 N0 ≥ A′′ B + M0 N0,

where equality holds when N = N0. Clearly the latter implies M = M0. Thus, the
road AM0 N0 B has the shortest possible length.

1.1.40

(a) First, we will show that the best strategy for James is to choose Y = B or
Y = C . For any point X on AC consider its reflection X ′ in AB and the
reflection X ′′ of X ′ in BC (Fig. 102).

Clearly (see Problem 1.1.1), if X and Y are already chosen, John has to choose
Z as the intersection point of AB and X ′Y . For such a choice of Z we have

XY + Y Z + Z X = XY + Y X ′ = XY + Y X ′′.

Since Y lies on BC , the latter sum will be a maximum when Y = B or Y = C ,
depending on the position of the segment X X ′′.

Next, if James chooses Y = B, then John will choose Z = B, and the perime-
ter of �XY Z will be 2X B. In case James takes Y = C , John will put Z at the
intersection point of X ′C and AB (Fig. 103), and then the perimeter of �XY Z
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will be XC + X ′C = XC + XC ′. Let D be the midpoint of AC . Clearly John
has to choose X on the segment DC . We leave to the reader to show that there
exists a point E on DC such that 2B E = C E + C ′ E and that John has to
choose X = E .

(b) For any choice of X on AC , James has to choose Y on BC such that XY ‖ AB
(Fig. 104).

Figure 104.

Then for any Z on AB we have [XY Z ] = 1
2 XY (h − x) = x(h−x)

2 , where

h =
√

3
2 is the length of the altitude in �ABC and x is the distance from C to

XY . The quadratic function x(h − x) of x has a maximum at x = h
2 , i.e., when

X is the midpoint of AC . Then [XY Z ] =
√

3
16 . This is the maximum area that

John can achieve, and his strategy is to put X at the midpoint of AC .

1.1.41 Through A0, B0, C0, draw lines parallel to B1C1, C1 A1, A1 B1, respectively.
These form the sides BC, C A, AB of a �ABC similar to �A1 B1C1. Now suppose
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each of the lines drawn is rotated about A0, B0, C0, respectively, by the same
amount. Then they meet at the same angles as before, always forming triangles
similar to �A1 B1C1. The triangle of maximum area among them is the one whose
sides have maximal length.

To find it, recall that the locus of points B such that ∠A0 BC0 has a given mea-
sure β is an arc of a circle with chord A0C0. This suggests that we construct the
circumcircles of �A0C0 B,�B0 A0C , and �B0C0 A (Fig. 105).

Figure 105.

Denote their centers by Ob, Oc, and Oa , respectively. It is easy to prove that
these circumcircles have a point O in common.

We show next that �Oa Ob Oc ∼ �ABC . Indeed,

∠C = 1

2

�

A0 O B0 and ∠Oa Oc Ob = 1

2

�

A0 O + 1

2

�

O B0,

because Oc Oa and Oc Ob bisect arcs
�

B0O and
�

A0 O , respectively. So
∠C = ∠Oa Oc Ob. Similarly, ∠A = ∠Oc Oa Ob, ∠B = ∠Oa Ob Oc. Therefore
�Oa Ob Oc ∼ �ABC ∼ �A1 B1C1.

Finally, we show that the largest triangle ABC through the points A0, B0, C0 is
the one whose sides are parallel to those of triangle Oa Ob Oc.

To prove this, note that the perpendiculars from Ob and Oc bisect the chords
B A0 and C A0 at M1 and M2, and so M1 M2 = 1

2 BC. The line segment M1 M2 is
the orthogonal projection of Ob Oc on BC and is largest when BC ‖ Ob Oc. Since
�Oa Ob Oc ∼ �ABC , all three sides of the maximal triangle are parallel to those
of �Oa Ob Oc.

Thus, to construct the maximal triangle, first construct any triangle through
A0, B0, C0 similar to �A1 B1C1. Then construct the centers Oa , Ob, Oc of the
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circumcircles of �A0C0 B,�B0 A0C , and �B0C0 A. Finally, construct lines through
A0, B0, C0 parallel to Ob Oc, Oc Oa, Oa Ob, respectively. They form the sides
BC, C A, AB of the desired maximal triangle.

4.2 Employing Algebraic Inequalities

1.2.6 Let R be the radius of the circle, and let a and b be the lengths of the sides of
a rectangle inscribed in it. Then a2 + b2 = 4R2 and the statement follows from the
inequality ab ≤ a2+b2

2 .

1.2.7 It follows from the previous problem that for every rectangle � inscribed
in a circle K we have π

2 [�] ≤ [K ], where [�] is the area of � and [K ] that
of the disk determined by K . Assume that the square P is cut into rectangles
�1,�2, . . . ,�n . Then for the area of the disk K determined by the circumcircle of
P we have

[K ] = π

2
[P] = π

2
([�1] + [�2] + · · · + [�n]) ≤ [K1] + [K2] + · · · + [Kn],

where Ki is the circumcircle of �i , 1 ≤ i ≤ n.

1.2.8 Let a, b, and c be the lengths of the edges of a rectangular parallelepiped
with a given volume V . Then abc = V , and the arithmetic mean–geometric mean
inequality gives

S

6
= ab + bc + ca

3
≥ 3
√

(abc)2 = V 2/3,

where S is the surface area of the parallelepiped. This shows that the minimum of
S is attained when a = b = c.

1.2.9 Let S1, S2, S3, and S4 be the areas of the rectangles, where S1, S2, S3 ≥ 1 and
S4 ≥ 2 (Fig. 106). Then S1S4 = S2S3 and S2 + S3 ≥ 2

√
S2S3 = 2

√
S1S4 ≥ 2

√
2.

Figure 106.
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Hence S1 + S2 + S3 + S4 ≥ 3 + 2
√

2, i.e., d ≥ 3 + 2
√

2. It is shown in Fig. 106
how to cut a rectangle with side lengths 1 and 3 + 2

√
2 in the required way.

1.2.10 Let a and ha be the lengths of a side and the corresponding altitude in the
given triangle. Then its perimeter is larger than a + 2ha . Let c be the length of the
side of the square. Then aha

2 = c2 and a + 2ha ≥ 2
√

2aha = 4c. So, the perimeter
of the triangle is larger than the perimeter of the square.

1.2.11

(a) First we will find the shortest segment that cuts off a triangle of area S from an
angle of measure α. Consider an arbitrary line that cuts off a triangle of area S
from the given angle.

Figure 107.

Let x and y be the lengths of the segments cut off from the sides of the angle
and let m be the length of the third side of the triangle obtained (Fig. 107).
The law of cosines gives m2 = x2 + y2 − 2xy cos α. Using the inequality
x2 + y2 ≥ 2xy, it follows that m2 ≥ 2xy (1 − cos α). Since 2S = xy sin α,
one gets m2 ≥ 4S (1−cos α)

sin α
= 4S tan α

2 . Hence the shortest segment with the
required property has length m = √

4S tan α
2 .

One concludes that the solution of the problem is given by a segment of length
2
√

S tan α
2 , where S is the area of the triangle and α is the measure of its

smallest angle.

(b) Let s be the semiperimeter of the given triangle. Using the same notation as in
(a) we have x + y = s and m2 = x2 + y2 − 2xy cos α. Then

m2 = (x + y)2 − 2xy(1 + cos α) ≥ (x + y)2 − (x + y)2

2
(1 + cos α)

= (x + y)2(1 − cos α)

2
=
(
(x + y) sin

α

2

)2 =
(

s sin
α

2

)2
,

i.e., m ≥ s sin α
2 . Hence in this case the solution of the problem is given by a

segment of length s sin α
2 , where s is the semiperimeter of the triangle and α is

the smallest angle.



126 Chapter 4. Hints and Solutions to the Exercises

1.2.12 We have

2[AO B] ≤ AO · B O ≤ AO2 + B O2

2
,

with equality if and only if ∠AO B = 90◦ and AO = B O. Likewise,

2[B OC] ≤ B O2 + C O2

2
,

2[C O D] ≤ C O2 + DO2

2
,

2[DO A] ≤ DO2 + AO2

2
.

Adding up these inequalities yields

2
(

[AO B] + [B OC] + [C O D] + [DO A]
)

≤ AO2 + B O2 + C O2 + DO2,

with equality if and only if ∠AO B = ∠B OC = ∠C O D = ∠DO A = 90◦ and
AO = B O = C O = DO. On the other hand, for any quadrilateral ABC D
(convex or not) and any point O we have

2[ABC D] ≤ 2
(

[AO B] + [B OC] + [C O D] + [DO A]
)
.

It readily follows that ABC D is a square with center O.

1.2.13

(a) Let ABC D be a convex quadrilateral of area 1. Then

1 = [AB D] + [BC D] ≤ 1

2
(AB · AD + BC · C D),

1 = [ABC] + [AC D] ≤ 1

2
(AB · BC + AD · C D).

Adding up gives
(AB + C D)(AD + BC) ≥ 4,

and now the arithmetic mean–geometric mean inequality implies

AB + C D + AD + BC ≥ 2
√

(AB + C D)(AD + BC) ≥ 4.

Hence the minimum of the perimeter of ABC D is 4, and it is attained only if
ABC D is a square.
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(b) The area of ABC D is given by

1 = [ABC D] = 1

2
AC · B D sin ϕ,

where ϕ is the angle between the diagonals AC and B D. Hence AC · B D ≥ 2,
and it follows from the arithmetic mean–geometric mean inequality that

AC + B D ≥ 2
√

AC · B D ≥ 2
√

2,

with equality only if AC ⊥ B D and AC = B D.

1.2.14 Let ABC D be a quadrilateral with area 32 and AB + B D + DC = 16. Its
area can be expressed as

[ABC D] = 1

2
AB · B D sin ∠AB D + 1

2
DC · B D sin ∠C DB.

Using the fact that the sine of an angle does not exceed 1, and also the arithmetic
mean–geometric mean inequality, we obtain

32 = [ABC D] ≤ 1

2
AB · B D + 1

2
DC · B D = 1

2
B D(AB + C D)

≤ 1

2

(
B D + AB + C D

2

)2

= 32.

Therefore the conditions of the problem statement are met only if all inequalities
above are equalities, that is,

∠AB D = ∠C DB = 90◦ and B D = AB + C D = 8.

It is straightforward (Fig. 108) that in the latter case there is only one possible value
for the diagonal AC , namely

AC =
√

B D2 + (AB + C D)2 = 8
√

2.

Figure 108.
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1.2.15 Let a, b, and c be the lengths of the edges of the right trihedral angle of a
terahedron. The sum of its six edges is

s = a + b + c +
√

a2 + b2 +
√

b2 + c2 +
√

c2 + a2.

It follows from the inequality
√

x2+y2

2 ≥ x+y
2 that s ≥ (1 + √

2)(a + b + c). Now
the arithmetic mean–geometric mean inequality gives

s ≥ 3(1 + √
2)

3
√

abc = 3(1 + √
2)

3
√

6V ,

where V is the volume of the tetrahedron. Thus, the required tetrahedron is the one
with a = b = c = s

3(1+√
2)

.

1.2.16 Suppose first that the parallelepiped is rectangular with edge lengths x, y,

z. Then, by the arithmetic mean–geometric mean inequality,

2(xy + yz + zx) ≥ 6(216)2/3 = 216.

So the surface area is at least 216, with equality if and only if x = y = z, i.e.,
the parallelepiped is a cube. Now consider a nonrectangular parallelepiped whose
“top” face is not directly above its “bottom” face. Then moving the top face above
the bottom one leaves the volume fixed and decreases the surface area. Repeating
this for each pair of opposite faces yields a rectangular parallelepiped with strictly
smaller surface area and the same volume 216. By the previous part, this rectan-
gular parallelepiped has surface area at least 216, so the original parallelepiped has
surface area greater than 216. Thus if a parallelepiped has volume 216 and surface
area 216, it must be a cube.

1.2.17 Let M be the intersection point of the segment AB with the plane α and let
a = AM , b = B M . Consider a sphere through A and B and denote by x and y the
lengths of the parts into which M divides the diameter of the disk that the sphere
cuts off from α. Then xy = ab and x + y ≥ 2

√
xy = 2

√
ab. Thus the disk is of

minimum area only if x = y = √
ab.

1.2.18 Let the i th side of the broken line have projections of lengths xi , yi , zi onto
the axes Ox , Oy, Oz, respectively. Similarly, let the respective projections of this
side onto the planes Oyz, Ozx , Oxy have lengths ai , bi , ci . Denote by li the length
of the i th side itself. Then

a2
i = y2

i + z2
i , b2

i = z2
i + x2

i , c2
i = x2

i + y2
i ,

l2
i = x2

i + y2
i + z2

i = 1

2
(a2

i + b2
i + c2

i ).
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Then, by the arithmetic mean–quadratic mean inequality,

ai + bi + ci ≤ 3

√
a2

i + b2
i + c2

i

3
= 3

√
2l2

i

3
= li

√
6.

Adding up all such inequalities gives a + b + c ≤ l
√

6. This inequality becomes
equality for, say, the line segment (which is an open broken line) with endpoints
(0, 0, 0) and (1, 1, 1).

(b) There exists a closed broken line with the given property. An example is the
line joining the points

(0, 0, 0), (1, 1, 1), (2, 2, 0), (3, 1,−1), (2, 0,−2), (1,−1,−1), (0, 0, 0)

in this order.

1.2.19 We have ax + by + cz = 2[ABC]. Then the Cauchy–Schwarz inequality
implies that

(ax + by + cz)

(
a

x
+ b

y
+ c

z

)
≥ (a + b + c)2.

Hence
a

x
+ b

y
+ c

z
≥ (a + b + c)2

2[ABC]

with equality only if x = y = z. Thus the desired point X is the incenter of
�ABC .

(b) The Cauchy–Schwarz inequality gives

(ax + by + cz)

(
1

ax
+ 1

by
+ 1

cz

)
≥ 9.

Hence
1

ax
+ 1

by
+ 1

cz
≥ 9

2[ABC]

with equality only if ax = by = cz. Show that the only point X with this property
is the centroid of �ABC .

1.2.20 Denote by h1, h2, h3, h4 the lengths of the altitudes of the tetrahedron ABC D.
Then

d1

h1
+ d2

h2
+ d3

h3
+ d4

h4
= Vol(ABC X)

Vol(ABC D)
+ · · · + Vol(D AB X)

Vol(ABC D
= 1

and the arithmetic mean–geometric mean inequality gives

1 = d1

h1
+ d2

h2
+ d3

h3
+ d4

h4
≥ 4 4

√
d1d2d3d4

h1h2h3h4
.
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Hence d1d2d3d4 ≤ h1h2h3h4
256 , where equality occurs only if di = hi

4 , 1 ≤ i ≤ 4. This
shows that the product d1d2d3d4 is a maximum only if X is the centroid of ABC D.

1.2.21 Using the fact that the triangles under consideration are similar to triangle
ABC , one easily obtains that

[ABC] = (
√

S1 +√
S2 +√

S3)
2.

Now the arithmetic mean–geometric mean inequality gives

S1 + S2 + S3 ≥ 1

3
(
√

S1 +√
S2 +√

S3)
2 = [ABC]

3
,

where equality is attained only if S1 = S2 = S3 = [ABC]
9 . This implies easily that

the sum S1 + S2 + S3 is a minimum only if X is the centroid of ABC .

1.2.22 Set [A1 A2 M] = S1, [B1 B2M] = S2, [C1C2M] = S3, [A1C2 M] = T1, [B1 A2 M] = T2,
[C1 B2M] = T3 (Fig. 109).

Figure 109.

Then S1S2S3 = T1T2T3. The arithmetic mean–geometric mean inequality, used
twice, gives

1

S1
+ 1

S2
+ 1

S3
≥ 3

3
√

S1S2S3
= 3

6
√

S1S2S3T1T2T3

≥ 18

S1 + S2 + S3 + T1 + T2 + T3
≥ 18

[ABC]
.

Hence the least value of the given sum is equal to 18/[ABC]. This minimum value
is attained only if S1 = S2 = S3 = T1 = T2 = T3 = [ABC]/6, i.e., if M is the cen-
troid of �ABC and the three lines contain the medians of the triangle (Fig. 110).
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Figure 110.

1.2.23 Set λ = AC1
C1 B , µ = B A1

A1C , and ν = C B1
B1 A . According to Ceva’s theorem

(cf. Glossary), λµν = 1. On the other hand,

[AB1C1]

[ABC]
= AC1

AB
· AB1

AC
= λ

(λ + 1)(ν + 1)
,

[B A1C1]

[ABC]
= B A1

BC
· BC1

B A
= µ

(µ + 1)(λ + 1)
,

[C B1 A1]

[ABC]
= C B1

C A
· C A1

C B
= ν

(ν + 1)(µ + 1)
.

Hence

[A1 B1C1]

[ABC]
= 1 − λ

(λ + 1)(µ + 1)
− µ

(µ + 1)(λ + 1)
− ν

(ν + 1)(µ + 1)

= 1 + λµν

(λ + 1)(µ + 1)(ν + 1)
= 2

(λ + 1)(µ + 1)(ν + 1)
.

Multiplying the inequalities 1 + λ ≥ 2
√

λ, 1 + µ ≥ 2
√

µ, and 1 + ν ≥ 2
√

ν gives
(1+λ)(1+µ)(1+ν) ≥ 8. Thus [A1 B1C1] ≤ 1

4 [ABC], where equality holds when
λ = µ = ν = 1, i.e., when X is the centroid of the triangle.

Hence the area of �A1 B1C1 is a maximum if X is the centroid of �ABC .

1.2.24 Draw the lines through P and parallel to the sides of �ABC as shown in
Fig. 111.
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Figure 111.

Then P A = B2C2, P B = C2 A2, and PC = A2 B2. Hence we have to prove

that [A2 B2C2] ≤ 1

3
[ABC]. To do this note that

[A2 B2C2] = [A2 B2 P] + [B2C2 P] + [C2 A2 P]

= 1

2
([A2C B1 P] + [B2 AC1 P] + [C2 B A1 P])

= 1

2
([ABC] − [A1 A2 P] − [B1 B2 P] − [C1C2 P]).

Hence Problem 1.2.21 implies that [A2 B2C2] ≤ 1
3 [ABC].

1.2.25 Denote the inradii in question by ra, rb, rc. Then

ra = 2[AB1C1]

AB1 + AC1 + B1C1
=

√
3

2
· AB1 · AC1

AB1 + AC1 + B1C1
.

The law of cosines for �AB1C1 gives

B1C1 =
√

AB2
1 + AC2

1 − AB1 · AC1 ≥ √
AB1 · AC1.

Then

ra ≤
√

3

2
· AB1 · AC1

2
√

AB1 · AC1 + √
AB1 · AC1

=
√

3

6

√
AB1 · AC1 ≤ 1

4
√

3
· (AB1 + AC1).
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By symmetry, analogous inequalities hold true for rb and rc. Now adding up leads
to

ra + rb + rc ≤ 1

4
√

3
(AB1 + AC1 + BC1 + B A1 + C A1 + C B1)

= 1

4
√

3
(AB + BC + C A).

Clearly, equality occurs only if A1, B1, C1 are the midpoints of the respective sides.

1.2.26 For brevity, let [DB K ] = [K B M] = [M B E] = S (Fig. 112). Then

[ABT ]

S
= AB · BT

DB · B K
,

[T B P]

S
= T B · B P

K B · B M
,

[P BC]

S
= P B · BC

M B · B E
.

It follows by the arithmetic mean–geometric mean inequality that

[ABC]

S
= [ABT ] + [T B P] + [P BC]

S

≥ 3 3

√
AB · BT

DB · B K
· T B · B P

K B · B M
· P B · BC

M B · B E

= 3

(
T B · B P

K B · B M

)2/3 ( AB · BC

DB · B E

)1/3

= 3

(
[T B P]

S

)2/3 ( [ABC]

[DB E]

)1/3

.

Since [DB E] = 3S, the inequality obtained above can be rewritten as [ABC] ≥
3[T B P], implying the desired AC ≥ 3T P .

Figure 112.

1.2.27 Assume without loss of generality that A ≥ B ≥ C . Then a ≥ b ≥ c and
the Chebyshev inequality (cf. Glossary) gives

� = a A + bB + cC

a + b + c
≥ (a + b + c)(A + B + C)

3(a + b + c)
= 1

3
(A + B + C) = π

3
.
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Hence the minimum of � is π/3, and it is attained only if the triangle is equilateral.
We shall show that � does not have a maximum if only nondegenerate triangles

are considered. To make sure, note first that the triangle inequality gives

a + b + c > 2a, a + b + c > 2b, a + b + c > 2c.

This implies

� = a A + bB + cC

a + b + c
<

A + B + C

2
= π

2
.

We now show that π/2 is a sharp upper bound for �. Consider an isosceles triangle
ABC such that AC = BC = 1 and ∠B AC = ∠ABC = x , where 0 < x < π/2.
Then AB = 2 cos x and we get

�(x) = x + (π − 2x) cos x

1 + cos x
.

Hence �(x) can be made arbitrarily close to π/2, since limx→0 �(x) = π/2.

1.2.28 Let R be the radius of the sphere and h the length of the altitude of the
cone. Then the volume V of the cone is given by V = πh2(2R−h)

3 . By the arithmetic
mean–geometric mean inequality,

V = 4π

3
· h

2
· h

2
(2R − h) ≤ 4π

3

(
2R

3

)3

,

with equality only if h/2 = 2R − h, i.e., h = 4R
3 .

1.2.29 Let O be the center of the given sphere and R its radius. Set P A = a,
P B = b, and PC = c. Since the orthogonal projections of O on the plane (P AB)

and on the line PC coincide with the midpoints of the segments AB and PC
respectively, we get that

(1) a2 + b2 + c2 = 4R2.

Let P H be the altitude of the right triangle AP B. Then C H is the altitude of
triangle AC B. Hence

(2) [ABC] = AB.C H

2
= AB

√
PC2 + P H 2

2
= 1

2

√
a2b2 + b2c2 + c2a2.

Now the inequality 3(a2b2 + b2c2 + c2a2) ≤ (a2 + b2 + c2)2 together with (1) and
(2) implies that [ABC] ≤ 2R2√

3
, i.e., the maximum area of triangle ABC is equal to

2R2√
3

. It is attained if and only if P A = P B = PC = 2R√
3
.
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1.2.30 It is easy to prove that the ratio of the volumes of two tetrahedra with a
common trihedral angle is equal to the ratio of the products of the lengths of their
edges forming this trihedral angle. Hence the tetrahedron O ABC has a maximum
volume when the product O A · O B · OC is a maximum. Since O A + O B +
OC = a, it follows from the arithmetic mean–geometric mean inequality that
O A · O B · OC ≤ (

a
3

)3
, where equality holds when O A = O B = OC = a

3 . This
is the case when the volume of the tetrahedron is a maximum.

1.2.31 Fix a point M0 on the face ABC and let A0, B0, and C0 be the feet of
the perpendiculars from M0 to the planes BC D, AC D, and AB D, respectively.
Let V0 and V be the volumes of the tetrahedra M0 A0 B0C0 and M A1 B1C1, and let
x = M A1, y = M B1, and z = MC1. Since the trihedral angles at the vertices M0

and M of these tetrahedra are congruent, it follows that

V

V0
= xyz

M0 A0 · M0 B0 · M0C0
.

Thus, M must be chosen such that xyz is a maximum. Let SA, SB, and SC be
the areas of triangles BC D, AC D, and AB D, respectively, and let h A, h B , and
hC be the lengths of the corresponding altitudes in the tetrahedron ABC D. Then
x SA + ySB + zSC = 3V , and the arithmetic mean–geometric mean inequality gives

xyz = 1

SASB SC
(x SA)(ySB)(zSC)

≤ 1

SASB SC

(
x SA + ySB + zSC

3

)3

= V 3

SASB SC
.

Equality holds when x SA = ySB = zSC = V . Since h A SA = h B SB = hC SC =
3V , the latter is equivalent to

(1)
x

h A
= y

h B
= z

hC
= 1

3
.

It remains to describe the points M in �ABC for which (1) holds. Let A′, B ′, and
C ′ be the points where the lines AM , B M , and C M intersect the sides BC , AC ,
and AB, respectively. Then

x

h A
= M A′

AA′ ,
y

h B
= M B ′

B B ′ ,
z

hC
= MC ′

CC ′ ,

and (1) is equivalent to M A′
AA′ = M B ′

B B ′ = MC ′
CC ′ = 1

3 . The latter holds only when M is
the centroid of �ABC .
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1.2.32 Draw a plane through M parallel to the plane O AB and let C1 be the inter-
section point of this plane and OC . Denote by z the ratio of the distance from M to
the plane O AB and the distance from C to O AB. Then OC1

OC = z, i.e., OC = OC1
z .

Using similar notation, one gets O A = O A1
x and O B = O B1

y . Therefore

O Ap · O Bq · OCr = O Ap
1 · O Bq

1 · OCr
1

x p yq zr
.

Since the segments O A1, O B1, and OC1 do not depend on the plane through M ,
the right-hand side of the above equality is a minimum when the product x p yq zr is
a maximum. Notice that x + y + z = 1, so the arithmetic mean–geometric mean
inequality gives

(
x

p

)p ( y

q

)q ( z

r

)r

≤
 p

(
x
p

)
+ q

(
y
q

)
+ r

(
z
r

)
p + q + r

p+q+r

= 1

(p + q + r)p+q+r
.

Equality holds when x = p
p+q+r , y = q

p+q+r , and z = r
p+q+r . This means that

the plane α should be drawn in such a way that the barycentric coordinates of M

in �ABC are
(

p
p+q+r ,

q
p+q+r ,

r
p+q+r

)
. The latter means that M is the intersection

point of the lines AA2, B B2, and CC2, where A2, B2, and C2 divide the sides BC ,
C A, and AB into ratios r : q, p : r , and q : p, respectively.

1.2.33 Let x be the altitude of the part of the parallelepiped that is in the water.
Then the volume of the water expelled is V = abx . The plane of the base of the
parallelepiped cuts the container along a disk with radius r = √

R2 − x2, circum-
scribed about a rectangle with sides a and b. Thus, a2 + b2 = 4r2 = 4(R2 − x2),
so x = 1

2

√
4R2 − a2 − b2. Hence V = ab

2

√
4R2 − a2 − b2. It then follows by the

arithmetic mean–geometric mean inequality that

4V 2 = a2b2(4R2 − a2 − b2) ≤
(

a2 + b2 + 4R2 − a2 − b2

3

)3

=
(

4

3
R2

)3

,

where equality holds when a = b = 2R
√

3
3 . This is the case when a maximum

amount of water will be expelled from the container.

4.3 Employing Calculus

1.3.7 Let ABC D be the given quadrilateral, whose diagonals meet at O. For an
arbitrary parallelogram E FG H satisfying the conditions of the problem statement,
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set AE = x AB , where 0 < x < 1. Then E H = x B D and E F = (1 − x)AC . It is
also clear that sin ∠F E H = sin α, where α is the angle between the diagonals AC
and B D. Hence

[E FG H ] = E H · E F sin α = x(1 − x)AC.B D sin α,

and because [ABC D] = 1
2 AC · B D sin α, we obtain [E FG H ] = 2x(1 − x)S.

The maximum value of the quadratic function x(1 − x) in the interval (0, 1)

is 1/4, and it is attained at x = 1/2. Therefore the maximum value of the area
of the parallelogram E FG H is S/2, and it is attained when its vertices are the
midpoints of the sides of the given quadrilateral.

1.3.8 Let g and h be the given lines, and let � be the line through A perpendicular
to g (Fig. 113).

Figure 113.

Let ∠B AC = α, where B is a point on g and C a point on h. Then B and C lie
on the same side of �. Denote by ϕ the angle between B A and �. Then the angle
between C A and � is 180◦ − α − ϕ, which implies AB = a

cos ϕ
, C A = − b

cos(α+ϕ)
,

and therefore

[ABC] = − ab sin α

2 cos ϕ · cos(α + ϕ)
= − ab sin α

cos α + cos(α + 2ϕ)
.

It is now clear that [ABC] is a maximum when α + 2ϕ = 180◦, i.e., when ϕ =
90◦ − α

2 . In this case [ABC] = ab · cot α
2 .

1.3.9 One observes immediately that the vertices of the required triangle must lie
on the sides of the hexagon. Let AB be parallel to a side P Q of the hexagon. We
may assume that P Q is the side of the hexagon closest to AB with this property.
Then clearly C must lie on the opposite side M N of the hexagon (Fig. 114).

Set a = P Q, and let 2h be the distance from P Q to M N . Then h = a
√

3
2 .

Denote by x the distance between AB and P Q. Then 0 ≤ x ≤ h and the distance
y from C to AB is y = 2h − x . On the other hand, using similar triangles, it
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Figure 114.

follows that AB = a(x+h)
h . Hence [ABC] = a(x+h)(2h−x)

2h . The quadratic function
f (x) = (x + h)(2h − x) has a maximum when x = h

2 . Thus [ABC] ≤ 9ah
8 , where

equality holds when x = h
2 . The position of C on M N can be arbitrary.

1.3.10 Let T be a triangle ABC with side lengths a, b, and c and E FG H a rectan-
gle inscribed in T , where E and F lie on AB, G on BC , and H on AC (Fig. 115).
Set x = C H , u = H G, v = H E , dc = EG. Using appropriate pairs of similar
triangles, one gets u

c = x
b and v

hc
= b−x

b , where hc is the length of the altitude of
�ABC through C . Then

d2
c = u2 + v2 =

(cx

b

)2 +
(

hc(b − x)

b

)2

.

Figure 115.

The right-hand side of the above identity is a quadratic function of x that has

a minimum value d2
c = c2h2

c
c2+h2

c
= 4S2(T )

c2+h2
c

. Similarly, if two vertices of the rectangle

lie on BC or C A, we get that the respective minimum value for d2
a equals 4S2(T )

a2+h2
a

and for d2
b equals 4S2(T )

b2+h2
b

. If a ≤ b, it follows from a2 + h2
a = a2 + b2 sin2 γ and

b2 + h2
b = b2 + a2 sin2 γ that a2 + h2

a ≥ b2 + h2
b.
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Suppose now that a ≤ b ≤ c. Then d2(T ) = d2
c = 4S2(T )

c2+h2
c

and we get that

d2(T )

S(T )
= 2chc

c2 + h2
c

= 2

x + 1
x

,

where x = hc
c . Since

(1)
hc

c
= b sin A

c
≤ c sin 60◦

c
=

√
3

2
< 1

and the function f (x) = x + 1
x is decreasing for x ∈ (0, 1), we conclude that

d2(T )

S(T )
≤ 2

f (
√

3/2)
= 4

√
3

7
.

Equality holds precisely when hc
c =

√
3

2 . Now (1) implies that c = b and A = 60◦,
i.e., ABC is an equilateral triangle.

1.3.11 Let a = AD, α = ∠DF E , and S = [E F D] (Fig. 23). Then S =
1
2 [DE D′F] = 1

4 E F · DD′. Since ∠AE D′ = 2α, setting x = DE , we have
E D′ = x , and so E A = x cos 2α. This implies a = x + x cos 2α and x = a

1+cos 2α
.

Then E F = x
sin α

= a
sin α(1+cos 2α)

, DD′ = a
cos α

, and therefore

S = a2

2
· 1

sin 2α (1 + cos 2α)
= a2

8 sin α cos3 α
.

Hence we have to find the maximum of the function f (α) = sin α cos3 α for α ∈
(0◦, 90◦). Since

f ′(α) = cos4 α − 3 sin2 α cos2 α = cos2 α(1 − 4 sin2 α),

it is easy to see that the maximum of f (α) is attained for α = 30◦ and is equal to
f (30◦) = 3

√
3

16 . Thus the minimum of S is equal to 2
√

3a2

9 .

1.3.12 Let M N be the diameter of the half-disk and let ABC D be an arbitrary
quadrilateral inscribed in the half-disk. We leave it to the reader to observe that it
is enough to consider the case A = M and B = N (Fig. 116).

For a fixed point C it is clear that [AC D] is a maximum when D is the midpoint

of the arc
�

AC . So we may assume that ∠AO D = ∠C O D = α, 0◦ < α < 90◦.
Then [ABC D] = R2

2 (2 sin α + sin 2α), and it is easy to see that the maximum of

[ABC D] is 3R2
√

3
4 . It is attained only when α = 60◦, i.e., when C and D divide the

semicircle into three equal parts.
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Figure 116.

1.3.13 Suppose that the center O of the disk lies outside the quadrilateral. Then
there is a diameter of the disk such that the quadrilateral lies inside one of the half-
disks determined by that diameter. Hence it follows from Problem 1.3.12 that the
area of the quadrilateral is less than or equal to 3

√
3

4 , a contradiction.

1.3.14 Let M be a point on the circumcircle k of �ABC and set t (M) = AM +
B M + C M . If M lies on one of the arcs

�

AC and
�

BC , then for the reflection M ′
of M in the line AB we get t (M ′) > t (M) since AM = AM ′, B M = B M ′, and
C M ≤ C M ′. That is why it is enough to consider only points M on k such that
MC intersects AB (Fig. 117).

Figure 117.

Set ϕ = ∠MC B. It follows from the law of sines that B M = c sin ϕ, AM =
c sin(90◦ −ϕ) = c cos ϕ, and C M = c sin(α +ϕ) = c sin α cos ϕ +c cos α sin ϕ =
a cos ϕ + b sin ϕ. Hence t (M) = (a + c) cos ϕ + (b + c) sin ϕ. We leave it to the
reader to check that the function of ϕ ∈ [0, 90◦] obtained in this way achieves a
maximum when tan ϕ = b+c

a+c and in that case t (M) = √
(a + c)2 + (b + c)2.

Remark. The problem can also be solved using the Cauchy–Schwarz inequality.
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1.3.15

(a) Let AB be an arbitrary chord in k. We are going to find all points C on k such
that AC2 + BC2 is a maximum. We may assume that C lies on the larger of the

arcs
�

AB; then ∠AC B = α is constant and 0 ≤ α ≤ 90◦. Setting ϕ = ∠B AC ,
we have ∠ABC = 180◦ − α − ϕ and by the law of sines we get

AC2 + BC2 = 4[sin2 ϕ + sin2(α + ϕ)] = 2[2 − cos 2ϕ − cos 2(α + ϕ)]

= 2[2 − 2 cos(α + 2ϕ) · cos α] ≤ 4(1 + cos α),

where equality holds if and only if α+2ϕ = 180◦, i.e., when C is the midpoint

of the arc
�

AB .

It remains to find the maximum of s(M) when M is an isosceles triangle with
an acute angle α at its top vertex. In this case

s(M) = 4
(

2 cos2 α

2
+ sin2 α

)
= 4(1+cos α+sin2 α) = 4(2+cos α−cos2 α).

The quadratic function 2 + t − t2 achieves its maximum 9
4 when t = 1

2 . Hence
s(M) ≤ 9, where equality holds when cos α = 1

2 , i.e., when α = 60◦ and M
is an equilateral triangle.

(b) Let n > 3 and let M be an n-gon A1 A2 . . . An inscribed in k. There is an
angle of M that is at least 90◦, e.g., assume that ∠An−1 An A1 ≥ 90◦. Then
A1 A2

n + An−1 A2
n ≤ A1 A2

n−1, so for the (n − 1)-gon M ′ = A1 . . . An−1 we
get s(M) ≤ s(M ′). Similarly (if n − 1 > 3), one constructs an (n − 2)-gon
M ′′ inscribed in k with s(M ′) ≤ s(M ′′), etc. One ends up with a triangle
N inscribed in k such that s(M) ≤ s(N). From part (a), s(N) ≤ 9 with
equality only when N is equilateral. In the latter case we have s(M) < s(N),
so s(M) < 9.

Next, assume that n ≥ 4. We will show that for any ε > 0 there exists an n-gon
M inscribed in k such that s(M) > 9−ε. Let A1 A2 A3 be an equilateral triangle

inscribed in k. Choose arbitrary points A4, A5, . . . , An on the arc
�

A3 A1 such
that A1 A2 . . . An is a convex n-gon (inscribed in k) and A1 A2

n > A1 A2
3 − ε.

Then

s(M) = A1 A2
2 + A2 A2

3 +
n−1∑
i=3

Ai A2
i+1 + An A2

1

> 9 − (A1 A2
3 − A1 A2

n) > 9 − ε,

and statement (b) is proved.
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1.3.16 One has to consider two cases.

Case 1. Let n = 2m. Then the last circle is tangent to the first. Moreover, if x is
the radius of the first circle, then we will have m circles of radius x and m
of radius a − x . It is now easy to see that if S is the area of the n-gon and
S1 the area of the part of the n-gon outside the circles, then

S1 = S − 2(m − 1)π [x2 + (a − x)2].

The maximum of this function when x ∈ (0, a) is attained at x = a
2 .

Case 2. Let n = 2m+1. If x > a
2 , then the first and the last circles intersect. Thus,

if we replace every circle with radius x (resp. a −x) by a concentric circle
with radius a − x (resp. x), then for the new set of circles the area S1 will
be larger. Hence we may assume that 0 ≤ x ≤ a

2 . Then

S1 = S − (2m − 1)π

2(2m + 1)
[(m + 1)x2 + m(a − x)2],

and the maximum of this function is attained at x = ma
2m+1 .

1.3.17 Hint. There exists a side B1 B2 of the (n + 1)-gon that lies entirely on a side
A1 A2 of the n-gon. Let b = B1 B2 and a = A1 A2. Show that b = n

n+1 a. Then for
x = A1 B1 we have 0 ≤ x ≤ a

n+1 and the area S of the (n + 1)-gon is given by

S(x) = sin ϕ

2

n∑
i=1

(
i − 1

n + 1
a + x

)(
n − i + 1

n + 1
a − x

)
,

where ϕ = ∠A1 A2 A3. Thus S(x) is a quadratic function of x . Show that S(x) is
minimal when x = 0 or x = a

n+1 , and S(x) is maximal when x = a
2(n+1)

.

1.3.18 We may assume that the given circle k has radius 1 and C belongs to the

larger arc
�

AB of k. Then ∠AC B = α is a constant and 0 ≤ α ≤ 90◦. Set
ϕ = ∠B AC . Then the law of sines gives AC = 2 sin ϕ, BC = 2 sin(α + ϕ).

(a) We have

AC + BC = 2(sin ϕ + sin(α + ϕ)) = 4 sin
α + 2ϕ

2
cos

α

2
≤ 4 cos

α

2
.

Hence the maximum of AC + BC is attained when α + 2ϕ = 180◦, i.e., when

C is the midpoint of the arc
�

AB .
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(b) It follows from the solution of Problem 1.3.15 (a) that the maximum of AC2 +
BC2 is attained when C is the midpoint of the arc

�

AB.

(c) We have

AC3 + BC3 = 8[sin3 ϕ + sin3(α + ϕ)]

= 8[sin ϕ + sin(α + ϕ)]

× [sin2 ϕ − sin ϕ · sin(α + ϕ) + sin2(α + ϕ)]

= 8 cos
α

2
sin
(
ϕ + α

2

)
× [2 − cos α + cos(2ϕ + α) − 2 cos(2ϕ + α) cos α].

Set t = sin
(

α
2 + ϕ

)
. Then 0 ≤ t ≤ 1 and

cos(α + 2ϕ) = 1 − 2 sin2
(α

2
+ ϕ

)
= 1 − 2t2.

Therefore

AC3 + BC3 = 8 cos
α

2
t[2 − cos α + (1 − 2 cos α)(1 − 2t2)]

= 8 cos
α

2
[3(1 − cos α)t − 2(1 − 2 cos α)t3]

= 8 cos
α

2
· g(t).

For the function g(t) we have g′(t) = 3(1 − cos α) − 6(1 − 2 cos α)t2.

Case 1. 0 ≤ α ≤ 60◦. Then 1 ≥ cos α ≥ 1
2 and g′(t) > 0 for all t , which

means that g(t) is an increasing function of t . Since t ≤ 1, it follows
that AC3 + BC3 is a maximum when t = 1, i.e., when α

2 + ϕ = 90◦.

In this case C is the midpoint of the arc
�

AB and AC3 + BC3 =
8 cos α

2 (1 + cos α).

Case 2. 60◦ < α ≤ 90◦. Then 0 ≤ cos α < 1
2 and 1 − 2 cos α > 0. In this

case g′(t) = 0 when t2 = 1−cos α
2(1−2 cosα)

.

(a) 1
3 ≤ cos α < 1

2 . Then 1−cos α
2(1−2 cosα)

≥ 1, which means that g′(t) > 0
for t ∈ [0, 1). Thus g(t) is again a strictly increasing function
in [0, 1] and achieves its maximum at t = 1, i.e., when C is the

midpoint of the arc
�

AB.
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(b) 0 ≤ cos α < 1
3 . Now we have 0 < 1−cos α

2(1−2 cosα)
< 1, so

t0 =
√

1 − cos α

2(1 − 2 cos α)
∈ (0, 1).

Clearly g′(t0) = 0 and g(t0) is the maximal value of g(t) for
t ∈ [0, 1]. We have

g(t0) =
√

1 − cos α

2(1 − 2 cos α)
[3(1 − cos α) − (1 − cos α)]

=
√

2(1 − cos α)3/2

√
1 − 2 cos α

= 4 sin3 α
2√

1 − 2 cos α
,

so in this case the maximum of AC3 + BC3 is equal to

32 sin3 α
2 cos α

2√
1 − 2 cos α

= 8 sin α(1 − cos α)√
1 − 2 cos α

,

and it is attained when

sin
(α

2
+ ϕ

)
= t0 =

√
1 − cos α

2(1 − 2 cos α)
∈ (0, 1).

Notice that t0 = sin α
2√

1−2 cosα
> sin α

2 , so t0 = sin β for some β with
α
2 < β < 90◦. The value of ϕ for which AC3 + BC3 achieves a
maximum is now given by α

2 + ϕ = β or α
2 + ϕ = 180◦ − β, i.e.,

when ϕ = β − α
2 or ϕ = 180◦ − β − α

2 .

1.3.19 It is easy to see that it is enough to consider only points X lying in the half-
plane determined by � that contains A and B. Let the distance from A to � be a
and let that from B to � be b. We may assume that a ≤ b. Consider the coordinate
system Oxy in the plane such that the x-axis coincides with � and the positive y-
axis contains A. Then A has coordinates (0, a) and B has coordinates (d, b). We
may assume that d ≥ 0. Notice that if X is a point in the upper half-plane such
that the line �′ passing through X and parallel to � intersects the ray issuing from
A and passing through B, then t (A) < t (X). That is why it is enough to consider
the case that the distance from �′ to � does not exceed a, i.e., the case that X has
coordinates (x, y) with 0 ≤ y ≤ a.

Fix y ∈ [0, a] and denote by �′ the horizontal line in the upper half-plane whose
distance to � is y. If B ′

y is the reflection of B in �′, it follows from Problem 1.1.1 that
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Figure 118.

for X ∈ �′ the sum AX + X B is minimal when X coincides with the intersection
point X y of �′ and AB ′

y (Fig. 118).
Thus, for X ∈ �′ the sum t (X) is minimal when X = X y and t (X y) = y +

AB ′
y . Since the coordinates of B ′

y are (d, 2y − b), it follows that t (X y) = y +√
d2 + (a + b − 2y)2. It remains to find the minimum of the function f (y) =

y +√
d2 + (a + b − 2y)2 on [0, a]. We have

f ′(y) = 1 − 2(a + b − 2y)√
d2 + (a + b − 2y)2

= d2 − 3(a + b − 2y)2√
d2 + (a + b − 2y)2 · [

√
d2 + (a + b − 2y)2 + 2(a + b − 2y)]

,

and f ′(y) = 0 only if y = y0 = 1
2

(
a + b − d√

3

)
. Depending on the position of

y0, there are three possible cases.

Case 1. a + b ≤ d√
3
. Then y0 ≤ 0, so f ′(y) > 0 for all y ∈ (0, a] and f (y) is

strictly increasing on this interval. Thus f (y) is minimal for y = 0. In
this case t (X) is minimal when X coincides with the point X0 ∈ � for
which the segments AX0 and B X0 make equal angles with �.

Case 2. d√
3

≤ b − a. Then y0 ≥ a, so f ′(y) < 0 for y ∈ [0, a) and f (y) is
strictly decreasing on this interval. Thus its minimal value is f (a). In
other words, t (X) is minimal when X = A.

Case 3. b −a < d√
3

< a +b. Then y0 ∈ (0, a), so f (y) has a minimum at y = y0.

Thus, t (X) is minimal when X =
(

d
2 −

√
3

2 (b − a), a+b
2 − d

2
√

3

)
. It is not

difficult to check that in this case ∠AX B = 120◦.
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It should be mentioned that the condition d√
3

≤ b−a means that the angle between
AB and � is not less than 30◦.

1.3.20 Let the four towns be A, B, C, D. Consider an arbitrary system of highways
joining them. Then there are paths from A to C and from B to D. We may assume
that these paths lie inside the square ABC D, since otherwise one could clearly
shorten the total length of the system, keeping the towns joined.

Following the path from A to C , denote by M and N the first and the last
intersection points of this path with the path from B to D (Fig. 119).

We can shorten the total length of the given system of highways by replacing it
with the system consisting of the five line segments

AM, DM, M N, B N, C N .

Draw the parallels through M and N to AD and BC . Then choose on these paral-
lels points M ′ and N ′, respectively, that are equidistant from the sides AB and C D
(Fig. 120). It follows from Heron’s problem (Problem 1.1.1) that

AM + DM ≥ AM ′ + DM ′ and B N + C N ≥ B N ′ + C N ′.

It is also clear that M N ≥ M ′N ′, because M ′ N ′ is the distance between the paral-
lels considered above. Adding these inequalities gives

AM + DM + M N + B N + C N ≥ AM ′ + DM ′ + M ′ N ′ + B N ′ + C N ′.

Thus we have reduced our problem to the following:

Let E and F be the midpoints of the sides AD and BC of the square ABC D.
Find points M and N on the line segment E F such that AM + DM +
M N + B N + C N is a minimum.
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Figure 121.

Denote the side length of ABC D by a, and let E M = x , F N = y, where 0 ≤ x ≤
a, 0 ≤ y ≤ a − x (Fig. 121).

Then

AM = M D =
√

x2 + a2

4
, M N = a − x − y, B N = C N =

√
y2 + a2

4
.

Hence we have to determine the minimum of the function

F(x, y) = 2

√
x2 + a2

4
+ a − x − y + 2

√
y2 + a2

4

for 0 ≤ x ≤ a, 0 ≤ y ≤ a − x . Consider the function f (x) = 2
√

x2 + a2

4 − x . Its
derivative

f ′(x) = 2x√
x2 + a2

4 − 1
= 2√

1 + a2

4x2

− 1

is strictly increasing in (0,+∞), and f ′(x) = 0 for x = a/(2
√

3). It follows that
the minimum value of f (x) in the interval [0, a] is attained at x = a/(2

√
3) and is

equal to a
√

3/2.
Since F(x, y) = f (x)+ f (y)+a, one easily infers from here that the minimum

of the function F(x, y) is attained at x = a/(2
√

3), y = a/(2
√

3). This minimum
is equal to a(1+√

3). Hence the solution of our problem is given (up to symmetry)
by the system of highways shown in Figure 122.

Remark. After reducing the problem to finding the minimum of AM + DM +
M N + N B + NC (Fig. 120) we may proceed in a shorter way. Let P and Q be the
points outside ABC D such that AD P and BC Q are equilateral triangles. Then
by Pompeiu’s theorem (Problem 1.1.6) it follows that AM + DM ≥ P M and
B N + C N ≥ QN . Hence

AM + DM + M N + N B + NC ≥ P M + M N + N Q ≥ P Q.
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Figure 122.

Thus the desired minimum is equal to P Q and it is attained for the system of
highways shown in Fig. 122.

1.3.21 Let a plane through the vertex C of the cone intersect the circle of its base at
points A and B. Let R be the radius of the base, AC = BC = �, and set AB = 2x ,
0 < x ≤ R. Then [ABC] = x

√
�2 − x2 = √

x2(�2 − x2), and we have to find
the maximum of the quadratic function f (t) = t (�2 − t) on the interval (0, R2]. If
�2 ≤ 2R2 then the maximum of f (t) is attained at t = �2

2 and is equal to �4

4 . In this

case AB = �
√

2, [ABC] = �2

2 , and we note that ∠AC B = 90◦. If �2 ≥ 2R2 then
the maximum of f (t) is attained at t = R2 and is equal to R2(�2 − R2). In this
case AB = 2R (i.e., AB is a diameter of the base) and [ABC] = R

√
�2 − R2.

1.3.22 For any point X in α set x = P X and ϕ = ∠X P Q. Then

d(X) = x + P Q√
x2 + P Q2 − 2x P Q cos ϕ

,

and for a fixed x this is a maximum when cos ϕ is a maximum. This happens
when P Q ⊥ α (then ϕ = 90◦ for any X ∈ α), or when X lies on the orthogonal
projection of the ray r issuing from P and passing through Q onto α (Fig. 123).

Figure 123.

In what follows we consider only such points X . Let ϕ0 be the angle between
the ray r and α and let a = P Q. It is not difficult to check that the function
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f (x) = (x+a)2

x2+a2−2ax cos ϕ0
achieves its maximum precisely when x = a. Thus, d(X)

is a maximum when P X = P Q.

1.3.23

(a) Let the edge of the cube be of length 1, B M = x , 0 ≤ x ≤ 1, and ∠B1MC1 =
ϕ (Fig. 124). Then

B1M =
√

1 + x2, C1 M =
√

B1M2 + B1C2
1 =

√
2 + x2

(since ∠C1 B1M = 90◦) and we obtain

cos ϕ = B1M

C1M
=
√

1 + x2

2 + x2
.

Hence cos ϕ ≥ 1/
√

2, because (1 + x2)/(2 + x2) ≥ 1/2, with equality only if
x = 0. Thus the angle ∠B1MC1 is a maximum if M coincides with B, and in
this case ∠B1MC1 = 45◦.

(b) Let AM = x , 0 ≤ x ≤ 1, and ∠A1 MC1 = ϕ. Then A1 M = √
1 + x2, C1 M =√

2 + (1 − x)2, A1C1 = √
2 (Fig. 124).

Figure 124.

The law of cosines for �A1 MC1 gives

cos ϕ = A1 M2 + C1M2 − A1C2
1

2A1 M · C1M
= x2 − x + 1√

x2 + 1
√

x2 − 2x + 3
.

Since x2 − x + 1 > 0 for all x , it suffices to find the minimum of the function

f (x) = (x2 − x + 1)2

(x2 + 1)(x2 − 2x + 3)
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on the interval [0, 1]. We have

f ′(x) = 2(x2 − x + 1)(x3 + 3x − 2)

(x2 + 1)2(x2 − 2x + 3)2
,

and therefore the sign of f ′(x) is determined by the sign of the function
g(x) = x3 + 3x − 2 on [0, 1]. Since g(x) is strictly increasing (g′(x) = 3x2 +
3 > 0) and also g(0) = −2, g(1) = 2, it follows from the intermediate value
theorem that the equation x3 + 3x − 2 = 0 has a unique solution x0 ∈ (0, 1).
Hence the function f (x) is decreasing on the interval (0, x0) and increasing
on the interval (x0, 1). On the other hand, f (0) = 1/3 > 1/4 = f (1). So
the maximum of f (x) on [0, 1] is attained at x = 0 and is equal to 1/3. Thus
∠A1 MC1 is a minimum when M coincides with A and in this case cos ϕ = 1√

3
.

Remark. The arguments above show that the minimum of the function f (x)

on [0, 1] is attained at x0. Hence ∠A1 MC1 is a maximum for the point M0 on AB

such that AM0 = x0. Note that x0 = 3
√√

2 + 1 − 3
√√

2 − 1.

1.3.24 Denote by r, x , and a the radius of the sphere, the altitude of the cone, and
the radius of its base, respectively. Then xa = r(a + √

a2 + x2) and we get

(1) a2 = r2x

x − 2r
, x > 2r.

It is clear that the base of the cylinder has radius r and its altitude is 2r .

(a) It follows from (1) that

V1 = πa2x

3
= πr2x2

3(x − 2r)
.

Since V2 = 2πr3, we obtain

V1

V2
= x2

6r(x − 2r)
= t2

6(t − 2)
,

where t = x/r > 2. Set f (t) = t2/(t − 2). Then f ′(t) = t (t−4)
(t−2)2 , which shows

that the function f (t) is decreasing on the interval (2, 4) and increasing on the
interval (4,+∞). Hence f (t) has a minimum at t = 4 and this minimum is
equal to 8. Thus V1/V2 ≥ 4/3.

(b) We have

S1 = πrx(x − r)

x − 2r
and S2 = 4πr2.

Hence
4S1

S2
= t (t − 1)

t − 2
= f (t),
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where t = x/r > 2. Since

f ′(t) = t2 − 4t + 2

(t − 2)2
,

the function f (t) decreases on the interval (2, 2 + √
2) and increases on the

interval (2 + √
2,+∞). Hence f (t) has a minimum at t = 2 + √

2, and this
minimum equals 3 + 2

√
2. Thus 4 S1

S2
≥ 3 + 2

√
2.

1.3.25 Answer. If O1 and O2 are the centers of the spheres and R1 and R2 their radii,
then the distance between the light source and O1 must be x = R1

√
R1

R1
√

R1+R2
√

R2
O1 O2.

4.4 The Method of Partial Variation

1.4.6 Fix an arbitrary point M on k. Let M ′ and M ′′ be the reflections of M in p
and q, respectively (Fig. 125).

Figure 125.

We want to find points P on p and Q on q such that �M P Q has a minimal
perimeter. It follows from Problem 1.1.16 that the solution is given by the in-
tersection points P and Q of M ′M ′′ with p and q, respectively. In this case the
perimeter of �M P Q is M ′ M ′′, and moreover M ′ M ′′ is the base of an isosceles
triangle M ′M ′′ O with a constant angle at the vertex O. Thus, M ′ M ′′ is minimal
when the side O M ′ = O M ′′ = O M is minimal, i.e., when M is the intersection
point of k and the segment O O1, where O1 is the center of k.

1.4.7

(a) Let ABC be a triangle inscribed in k, and C ′ the midpoint of the larger arc
�

AB . Since the distance from C ′ to the line AB is not less than the distance
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from C to AB, it follows that [ABC] ≤ [ABC ′]. Set 2γ = ∠AC ′ B, 0 <

γ ≤ 45◦. Then the law of sines gives AB = 2R sin 2γ , where R is the radius
of k. The altitude through C ′ of �ABC ′ is equal to AB cot γ

2 and therefore
[ABC ′] = 4R2 sin γ cos3 γ . Consider the function f (γ ) = sin γ cos3 γ .Then
f ′(γ ) = cos2 γ (1 − 4 sin2 γ ), and it follows that the maximum of f (γ ) on the
interval (0, 45◦] is attained at γ = 30◦, i.e., when triangle ABC ′ is equilateral.

Thus, of all triangles inscribed in k the equilateral triangles have maximum
area.

(b) Let ABC D be a quadrilateral inscribed in k. Denote by α the angle between
AC and B D. Then

[ABC D] = AC.B D. sin α

2
≤ AC.B D

2
≤ 2R2.

Hence the maximum of [ABC D] is 2R2 and it is attained if and only if ABC D
is a square.

(c) It is enough to consider only pentagons ABC DE inscribed in the given circle
and containing its center O. Set ∠AO B = α1, ∠B OC = α2, . . . , ∠E O A =
α5. Fix the points A, B, C , and D. Then [ADE] is a maximum when E is the

midpoint of the arc
�

AD (Fig. 126).

Figure 126.

Hence it is enough to consider only pentagons for which α4 = α5 = β. Simi-
larly, we may assume that α1 = α2 = α.

We then have [ABC DE] = [A′ B ′C ′ D′E ′], where (Fig. 127) ∠A′ O B ′ =
∠A′ O E ′ = α and ∠B ′OC ′ = ∠D′O E ′ = β, which implies that E ′ and
D′ are symmetric to the points B ′ and C ′, respectively, with respect to the line
O A′. Fix for a moment A′, C ′, and D′. The areas of triangles A′ B ′C ′ and

A′ D′E ′ are maximal when B ′ is the midpoint of
�

A′C ′ and E ′ is the midpoint

of
�

A′ D′, i.e., when α = β.
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Figure 127.

Thus, it is enough to consider pentagons ABC DE such that four of the central
angles determined by their sides have the same measure α (then 180◦ ≤ 4α ≤
360◦, i.e., 45◦ ≤ α ≤ 90◦). Then for the area S(α) of such a pentagon we have

S(α) = R2

2
[4 sin α + sin(360◦ − 4α)] = R2

2
[4 sin α − sin 4α].

Hence

S′(α) = 2R2[cos α − cos 4α] = 4R2 sin
5α

2
sin

3α

2
.

Since sin 3α
2 > 0 for all α ∈ [45◦, 90◦], it follows that S′(α) > 0 for 45◦ ≤

α < 72◦ and S′(α) < 0 for 72◦ < α ≤ 90◦. Thus, S(α) is a maximum when
α = 72◦, in which case the pentagon is regular.

(d) Hint. As in (c), show that it is enough to consider only hexagons whose sides
determine central angles α, α, α, α, β, β. The maximum area is achieved when
the hexagon is regular.

1.4.8 It follows from Problem 1.4.2 that the area of �P Q R is a maximum when
P, Q, and R are vertices of the hexagon. Suppose that at least two of them are
consecutive vertices. Then �P Q R is contained in a quadrilateral formed by four
consecutive vertices of the hexagon, and has area less than half the area of the
hexagon. On the other hand, by symmetry, it is easy to see that

[AC E] = [B DF] = 1

2
[ABC DE F].

Hence the traingle P Q R of maximum area is either AC E or B DF .

1.4.9

(a) For any point P inside �ABC , denote its distances from BC, C A, AB by p1, p2, p3,
respectively. Note that
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4
√

3 = [ABC] = [P BC] + [PC A] + [P AB]

= p1

2
BC + p2

2
C A + p3

2
AB

= 2(p1 + p2 + p3).

Hence p1 + p2 + p3 = 2
√

3. Let Q, R, S be labeled as in Fig. 128.

Figure 128.

Construct the hexagon R R′ QQ ′SS′ with QQ ′ and RS′ parallel to B A, R R′
and SQ ′ parallel to AC , and SS′ and Q R′ parallel to BC . It is easy to see that
this hexagon is situated symmetrically within �ABC . It follows that

q1q2q3 = q ′
1q ′

2q ′
3 = r1r2r3 = r ′

1r ′
2r ′

3 = s1s2s3 = s′
1s′

2s′
3.

For any point P inside QQ ′ R R′SS′, draw the line through it parallel to BC ,
cutting the perimeter of the hexagon at P ′ and P ′′, one of which may be P it-
self.

Then p′
1 = p1 and p′

2 + p′
3 = p2 + p3. Moreover,

|p′
2 − p′

3| ≥ |p2 − p3|.
Hence

0 ≤ (p′
2 − p′

3)
2 − (p2 − p3)

2

= (p′
2 + p′

3)
2 − 4p′

2 p′
3 − (p2 + p3)

2 + 4p2 p3

= 4(p2 p3 − p′
2 p′

3).

Thus the product of the three distances does not increase if we replace P by P ′.
Now P ′ may already be a vertex of the hexagon. If not, it lies between two ver-
tices, and the same argument shows that the product decreases if we replace P ′
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by a vertex. Restricting ourselves now to �Q RS, we see that the product is a
minimum if P coincides with one of Q, R, and S.

(b) Note that triangles ASE , AC D, and C Q D are similar. Hence AS · AD =
AE · AC = 4 and DQ · AD = C D · AE = 1. By the law of cosines for
�AC D we get that AD = √

13 and therefore AS : SQ : Q D = 4 : 8 : 1.
Now the altitude of �ABC is 2

√
3. Hence

s1 = 18
√

3

13
, s2 = r3 = 2

√
3

13
, s3 = 2

√
3 − s1 − s2 = 6

√
3

13
.

Thus

s1s2s3 = 648
√

3

2197
.

By (a), this is the minimum value of the desired product.

1.4.10 Answer. If A, B, and C are the given points, then the required line is the one
passing along the largest side of �ABC .

1.4.11 Fix the points A and D and let α = �

AD < 180◦. Since AC ⊥ B D, the
center O of the circle lies in the quadrilateral ABC D (Fig. 129).

Figure 129.

Moreover,
�

AD + �

BC = 180◦, so [AO D] = [B OC] = sin α
2 , which is constant

(when α is fixed). Clearly [AO B] ≤ 1
2 , with equality when ∠AO B = 90◦. The

same applies to [C O D]. Hence we may assume that ∠AO B = ∠C O D = 90◦.

Moreover, [ADE] is a maximum when E is the midpoint of
�

AD.
Thus, it is enough to consider only pentagons ABC DE for which ∠AO B =

∠C O D = 90◦ and E is the midpoint of
�

AD. Then

[ABC DE] = 1 + sin α

2
+ sin

α

2
.
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It is easy to see that the maximum of this function of α is attained when α = 120◦.
Hence [ABC DE] is a maximum when ∠AO B = ∠C O D = 90◦ and ∠B OC =
∠DO E = ∠E O A = 60◦.

1.4.12 Hint. Follow the solutions of Problems 1.4.2 and 1.4.3.

Answer.

S

n sin 360◦
n

[
(p − r) sin

k360◦

n
+ r sin

(k + 1)360◦

n

]
,

where n = pk + r , 0 ≤ r < p.

1.4.13 Let ABC be an arbitrary triangle inscribed in the given circle k with center
O. We may assume that BC is the smallest side of the triangle. Then 2α =
∠B OC ≤ 120◦, i.e., 0 ≤ α ≤ 60◦. It now follows from Case 1 in the solution of
Problem 1.3.18 that when B and C are fixed, the sum AB3 + AC3 is a maximum

when A is the midpoint of the larger arc
�

BC.
In what follows we consider only isosceles triangles ABC (AB = AC) for

which α = ∠B AC ≤ 60◦. Then

AB3 + BC3 + AC3 = 8R3
(

sin3 α + 2 cos3 α

2

)
.

We need to investigate the function f (α) = sin3 α + 2 cos3 α
2 for 0 ≤ α ≤ 60◦. We

have

f ′(α) = 3 sin2 α · cos α − 6 cos2 α

2
· 1

2
sin

α

2

= 3

(
sin2 α · cos α − 1

2
cos

α

2
· sin α

)
= 3 sin α

(
2 sin

α

2
· cos

α

2
· cos α − 1

2
cos

α

2

)
= 3

2
sin α · cos

α

2

(
4 sin

α

2
cos α − 1

)
= 3

2
sin α · cos

α

2

[
4 sin

α

2
− 8 sin3 α

2
− 1

]
.

When α runs over the interval [0, 60◦], sin α
2 runs over [0, 1

2 ]. So, in order to
investigate the sign of f ′(α), it is enough to determine the sign of g(t) = 4t −
8t3 − 1 for t ∈ [0, 1

2 ]. One way to do this is to factorize g(t) (this is not difficult
since g(1/2) = 0). Here instead we deal with g′(t). We have

g′(t) = 4 − 24t2 = 4(1 − 6t2),
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so g(t) is strcitly increasing on [0, 1√
6
] and strictly decreasing in [ 1√

6
, 1

2 ]. Since

g(0) = −1 < 0 and g(1/2) = 0 (Fig. 130), there exists a unique t0 ∈ (0, 1√
6
) with

g(t0) = 0.

Figure 130.

Thus there exists a unique α0 ∈ (0, 60◦) such that sin α0
2 = t0. Then f ′(α) < 0

for α ∈ [0, α0) and f ′(α) > 0 for α ∈ (α0, 60◦] (Fig. 131).

Figure 131.

It is now clear that f (α0) is the minimum value of f (α), while its maximum
is achieved either for α = 0 or for α = 60◦. Since f (0) = 2 and f (60◦) = 9

√
3

8 ,
we have f (0) > f (60◦). That is, the maximum of f (α) is achieved when α = 0.
This is equivalent to B = C . In this case (assuming A is diametrically opposite to
B = C) we have AB3 + BC3 + AC3 = 16R3. For every nondegenerate triangle
ABC this sum is strictly less than 16R3. However, the continuity of f (α) shows
that it can be made arbitrarily close to 16R3.

1.4.14 Hint. Use the same argument as in the solution of Problem 1.4.2.

1.4.15 Hint. Use the argument from the solution of Problem 1.4.2.
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1.4.16

(a) Let ABC D A1 B1C1 D1 be the given cube and let a = AB. We conclude
from Problem 1.4.14 that it suffices to consider only the triangles with vertices
among the vertices of the cube. Let M N P be such a triangle. The possible
distances between vertices of the cube are a, a

√
2, and a

√
3. It is easy to see

that the possible triples (up to ordering) of lengths of the sides of �M N P are
{a, a, a

√
2}, {a, a

√
2, a

√
3}, and {a√

2, a
√

2, a
√

2}. It is now easy to check
that [M N P] is a maximum in the third case.

(b) Use Problem 1.4.14. The answer is the same as that in part (a).

1.4.17 Use Problem 1.4.15. Answer. A tetrahedron in the cube has a maximum
volume precisely when two of its edges are skew diagonals of parallel faces of the
cube.

1.4.18 Let ABC D A1 B1C1 D1 be an arbitrary prism of volume V . Construct points
A′

1 and B ′
1 on the line A1 B1 such that A′

1 A ⊥ AB and B ′
1 B ⊥ AB. Similarly,

construct points C ′
1 and D′

1 on the line C1 D1 such that C ′
1C ⊥ C D and D′

1 D ⊥ C D
(Fig. 132).

Figure 132.

The volume of the new prism ABC D A′
1 B ′

1C ′
1 D′

1 is again V . As one can im-
mediately see, the surface area of the new prism is not larger than the surface area
of the initial prism. Using one more construction of this type, we get a right prism
with base ABC D having the same volume V and surface area not larger than the
surface area of the initial prism.

Next, consider an arbitrary double quadrilateral prism consisting of an “upper”
prism ABC D A1 B1C1 D1 and a “lower” prism A2 B2C2 D2 ABC D. Using the above
argument, we may assume that both prisms are right, i.e., that the double prism is
simply an ordinary right quadrilateral prism of volume V . Using again an argu-
ment similar to the above, one observes that it is enough to consider the case of a
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rectangular parallelepiped of volume V . Let a, b, and c be the lengths of the sides
of the parallelepiped. Then V = abc, while for the surface area S we have

S = 2(ab + bc + ca) ≥ 6 3
√

(ab)(bc)(ca) = 6V 2/3,

where equality holds if and only if a = b = c, i.e., when the parallelepiped is a
cube.

1.4.19 Fix three points A, B, and C on the sphere. Clearly the volume of ABC D is
a maximum when the distance from D to the plane ABC is a maximum, i.e., when
the orthogonal projection H of D on this plane coincides with the circumcenter of
�ABC . Moreover, the segment DH must contain the center O of the sphere. In
what follows we consider only tetrahedra ABC D with these properties.

Let R be the radius of the sphere. Fix D and the plane α of the base ABC of the
tetrahedron. Then the intersection of α with the sphere is a circle in which �ABC
is inscribed. Since the volume of ABC D is a maximum when the area of ABC
is a maximum, it follows from Problem 1.4.7 that we may assume that �ABC is
equilateral.

The above arguments show that it is enough to consider only regular triangular
pyramids inscribed in the sphere. In this case (Fig. 133) let d = O H and let r be
the circumradius of �ABC .

Figure 133.

Then r = √
R2 − d2 and [ABC] = 3

√
3

4 r2. For the volume V of ABC D we
have

V = 1

3
(R + d)[ABC] =

√
3

4
(R + d)(R + d)(R − d)



160 Chapter 4. Hints and Solutions to the Exercises

=
√

3

8
(R + d)(R + d)(2R − 2d)

≤
√

3

8

[
(R + d) + (R + d) + (2R − 2d)

3

]3

= 8
√

3

27
R3,

where equality holds only when R + d = 2R − 2d, i.e., when R = 3d. This is
equivalent to ABC D being a regular tetrahedron, i.e., all its edges have the same
length.

1.4.20 Let L be a fixed point on AC . We are going to show that there exist unique
points ML in �AB D and NL in �BC D such that the perimeter of �L ML NL is
minimal among the triangles L M N with M in triangle AB D and N in triangle
BC D.

Let L ′ and L ′′ be the reflections of L in the planes AB D and BC D, respec-
tively. Denote by M0 and N0 the centers of the equilateral triangles AB D and
BC D (Fig. 134).

Figure 134.

For any points M in �AB D and N in �BC D we have L M = L ′M and L N =
L ′′N , which gives that the perimeter of �L M N equals the length of the broken
line L ′M N L ′′. We claim that the segment L ′L ′′ intersects �AB D and �BC D.
Since the orthogonal projection of C in the plane AB D coincides with M0, the
orthogonal projection L1 of L in this plane lies on the segment AM0. Similarly,
the orthogonal projection L2 of L in BC D lies on the segment C N0. Let Q be
the midpoint of B D. The points L , L1, L ′, L2, and L ′′ lie in the plane AQC ,
and ∠AQC < 90◦. In this plane L ′ is the reflection of L in the line AQ, while
L ′′ is the reflection of L in the line C Q, so ∠L ′QL ′′ = 2∠AQC < 180◦. This
shows that the segment L ′L ′′ intersects AQ and C Q at some points ML and NL ,
respectively (Fig. 135). It is now clear that �L ML NL has a minimum perimeter
among the triangles L M N , and this perimeter is equal to L ′L ′′. The latter is the
length of the base of the isosceles triangle L ′L ′′Q with L ′Q = L ′′Q = L Q and
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Figure 135.

∠L ′QL ′′ = 2∠AQC . Thus L ′L ′′ is minimal when L Q is shortest, i.e., when L is
the midpoint of AC . In this case ML = M0 and NL = N0.

4.5 The Tangency Principle

1.5.6

(a) Let AB = 2d. Consider the half-planes determined by the perpendicular bi-
sector of the line segment AB. We have f (M) = M A for M in the half-plane
containing A, and f (M) = M B in the other half-plane. Hence the level curve
of f (M) corresponding to a number r > 0 is the union of two circles when
r ≤ d, and the union of two arcs of circles when r > d (Fig. 136).

Figure 136.

(b) We may assume without loss of generality that AB = 1. Introduce an orthog-
onal coordinate system in the plane with origin at B and such that the point A
has coordinates (1, 0). For a given positive number c denote by Lc the level
curve of the function f (M) = M A

M B . Let M = (x, y) be a point on Lc. Then
M A2 = c2 M B2 and we get (x − 1)2 + y2 = c2(x2 + y2). If c = 1, then Lc is
the line x = 1

2 , i.e., the perpendicular bisector of the segment AB (Fig. 137).
If c 	= 1, then the identity above can be written as
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(
x − 1

1 − c2

)2

+ y2 = c2

(1 − c2)2
.

Hence for c 	= 1 the level curve Lc is the circle with center the point
(

1
1−c2 , 0

)
and radius c

|1−c2| (Fig. 137).

Figure 137.

The circle Lc, c 	= 1, is known as the circle of Apollonius for the points A and
B, corresponding to the ratio c.

1.5.7 Let A, B be two fixed points such that AB = �, and let C vary along the
line m parallel to AB at distance 2S/� from AB. The product of the altitudes
of �ABC is 8S3 divided by the product of the three side lengths. Hence it suffices
to minimize AC ·BC , which is equivalent to maximizing sin C , because AC ·BC =
(2S)/ sin C . Let D be the intersection of the line m and the perpendicular bisector
of AB. If ∠ADB is not acute, then clearly the optimal triangles are the ones with
vertices C on m and with right angles at C .

Suppose that ∠ADB is acute. Then it follows from Problem 1.5.1 that the
optimal triangle is �AB D.

1.5.8 Construct two parallel lines such that the distance between them is the length
of the given altitude through the vertex A. Let B and B1 be points on these lines
such that B B1 equals twice the length of the median through B. Let D be the
midpoint of B B1 (Fig. 138).

Figure 138.
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Now the problem is to find a point A on �2 such that ∠B AD is a maximum,
which reduces to Problem 1.5.1.

1.5.9 Let C be a point on � and let P and Q be the feet of the altitudes in �ABC
through A and B. Then the points A, B, P, Q lie on a circle k with diameter AB.
There are two cases to consider.

Case 1. Let k have a common point with �. Then each common point of k and � is
a solution of the problem, since in this case P Q = 0.

Case 2. Let k and � have no common points. Clearly either P or Q lies on a side
of �ABC . Let P lie on BC (Fig. 139). Then ∠Q B P = 90◦ − ∠AC B,
and the length of the chord P Q is a minimum when ∠AC B is maximal,
since P Q = AB sin ∠Q B P = AB cos ∠AC B. Now it remains to use
Problem 1.5.1.

Figure 139.

1.5.10 Hint. Use the same argument as in the solution of Problem 1.5.1.

1.5.11 According to Problem 1.5.1 one has to construct a circle through O and A
that is tangent to the given circle. There are two such circles, and their tangent
points give the solutions of the problem (Fig. 140).

Figure 140.

1.5.12 Answer. The required points are the vertices of the cube that do not belong
to the given diagonal.
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1.5.13 The level curves of the function f (M) = AM2+B M2 are concentric circles
centered at the midpoint O of the segment AB (cf. Example 3 in Section 1.5).
Hence the tangency principle implies that the minimum of f (M) on l is attained at
the orthogonal projection M0 of O on l (Fig. 141).

Figure 141.

1.5.14

(a) Consider the function f (M) = [AB M] (Fig. 142).

Figure 142.

The level curves of f (M) are lines parallel to AB. It follows from the tangency

principle that the required point is the midpoint M0 of the larger arc
�

AB .

(b) Use the fact that the level curves of the function f (M) = M A2 + M B2 are
concentric circles whose common center coincides with the midpoint of the
segment AB (cf. Example 3 in Section 1.5).

(c) Use the fact that the level curves of the function f (M) = M A + M B are
ellipses with foci A and B (cf. Example 7, Section 1.5).

1.5.15 The level curves of the function f (X) = X A2
1 + · · · + X A2

n are circles
centered at the centroid G of the set of points {A1, . . . , An} (cf. Example 5, Sec-
tion 1.5). It follows from the tangency principle that X ∈ M has to be chosen in
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such a way that G X is minimal. One is now left to deal with the problem described
in the remark after Problem 1.5.2.

1.5.16 The solution is similar to the solution of the previous problem.

1.5.17 See the solution of Problem 1.5.3.

1.5.18 Let �ABC be isosceles and right-angled with ∠C = 90◦. Introduce a
coordinate system with origin C and coordinate axes C A and C B (Fig. 143).

Figure 143.

Let A = (a, 0), B = (0, a). The level curve Lr of the function f (M) =
M A2+2M B2−3MC2 is the line x+2y = 3a2−r

2a (see the Theorem, after Example 4
in Section 1.5). Let A1 be the midpoint of BC . Then the line AA1 is the level curve
of f (M) corresponding to r = a2. It follows from the tangency principle that the
points M1 and M2 where f (M) achieves its minimum and maximum, respectively,
are tangent points of the circumcircle of �ABC with lines parallel to AA1. Clearly
M1 and M2 are the intersection points of the circumcircle with the line through its
center O and perpendicular to AA1 (Fig. 143).

In the case of an equilateral triangle ABC use the same argument as above.

1.5.19 According to the tangency principle the maximum (minimum) of the func-
tion f (M) = AM

B M is attained at points where a level curve Lc of f (M) is tangent
to the line l. So, we may assume that c 	= 1. Set AB = m and let d be the distance
between the parallel lines AB and l. From the solution of Problem 1.5.6 (b) we
know that for any c > 0, c 	= 1, the level curve Lc of f (M) is a circle with center
on the line AB and radius mc

|1−c2| . Such a circle is tangent to the line l if its radius is

equal to d, i.e., when |1 − c2| = m
d c. Solving this equation for c, we conclude that

the maximum and the minimum of f (M) on l are given respectively by

1

2

(
m

d
+
√(m

d

)2 + 4

)
and

1

2

(
−m

d
+
√(m

d

)2 + 4

)
.
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1.5.20 The level curves of the function

f (X) = d(X, �1) + d(X, �2),

where X is a point in the interior of the angle, are line segments perpendicular to
the bisector of the angle (see Example 6, Section 1.5). Thus the required points X
can be found in the following way: Move a line through the vertex O keeping it
perpendicular to the angle bisector until it meets a point (points) of M . The point(s)
obtained in this way give the solution (Fig. 144).

Figure 144.

Notice that if M is a polygon, then there is always a solution of the problem
that is a vertex of M (Figs. 145, 146).

In the case of a circle, the solution is given by the tangent point of a tangent line
to the circle perpendicular to the angle bisector (Fig. 147).

Figure 147.

1.5.21 Hint. Show that the level curves of the functions

f (�) = OC + O D − C D, g(�) = OC + O D + C D,
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depending on a variable line �, consist of the tangent lines to the larger and the
smaller arcs, respectively, of the circles inscribed in the angle (Figs. 148, 149).
Then use the tangency principle.

1.5.22 Let AB M be one of the given triangles, where AB is the given side. Then
M A + M B = 2p − AB, and as we know from Example 7, Section 1.5, the locus
of the points M with this property is an ellipse with foci A and B (Fig. 150).

Figure 150.

The level curves of the function f (M) = [AB M] are lines parallel to the axis
AB of the ellipse. Now the tangency principle implies that the solution of the
problem is given by the isosceles triangle having the required properties.

1.5.23 The required maximum is equal to 2/
√

3. We first prove that

(1) sin ∠C AG + sin ∠C BG ≤ 2√
3

if the circumcircle of triangle ACG is tangent to the line AB, and then handle the
case of an arbitrary triangle ABC . So, let the circumcircle of �ACG be tangent to
AB. We use the standard notation for the elements of �ABC . By the power-of-a-
point theorem and the well-known median formula (see Glossary) we have

c2

4
= M A2 = MG · MC = 1

3
m2

c = 1

12
(2a2 + 2b2 − c2),



168 Chapter 4. Hints and Solutions to the Exercises

yielding a2 + b2 = 2c2. Using the median formula again gives ma =
√

3
2 b, mb =

√
3

2 a. Then

sin ∠C AG + sin ∠C BG = 2[ACG]

AC · AG
+ 2[BCG]

BC · BG

= [ABC]

bma
+ [ABC]

amb
= (a2 + b2) sin γ√

3ab
.

The law of cosines, combined with a2 + b2 = 2c2, implies a2 + b2 = 4ab cos γ .
Therefore sin ∠C AG + sin ∠C BG = 2√

3
sin 2γ ≤ 2√

3
, and (1) follows.

Now suppose that �ABC is arbitrary, and let M be the midpoint of AB. There
are two circles passing through C and G that are tangent to the line AB. Let the
corresponding points of tangency be A1 and B1, lying on the rays M A→ and M B→,
respectively (Fig. 151).

Figure 151.

Since M A2
1 = MG · MC = M B2

1 by the power-of-a-point theorem and CG :
GM = 2 : 1, G is the centroid of �A1 B1C as well. Moreover, A and B are exterior
to the two circles unless A = A1 and B = B1. It is straightforward now that
∠C AG ≤ ∠C A1G, ∠C BG ≤ ∠C B1G. Thus, assuming ∠C A1G and ∠C B1G
acute we conclude by the special case already settled that

sin ∠C AG + sin ∠C BG ≤ sin ∠C A1G + sin ∠C B1G ≤ 2√
3
.

Thus we are left with the proof of (1) in the case that one of ∠C A1G and ∠C B1G
is right or obtuse.

Let, for instance, ∠C A1G ≥ 90◦; then ∠C B1G is acute. Denote by a1, b1, c1

the side lengths of �A1 B1C and let γ1 = ∠A1C B1. We obtain from �C A1G that
CG2 > C A2

1 + A1G2, that is,

1

9
(2a2

1 + 2b2
1 − c2

1) > b2
1 + 1

9
(2b2

1 + 2c2
1 − a2

1).
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We have a2
1 + b2

1 = 2c2
1, and the above inequality takes the form a2

1 > 7b2
1. Now

set x = b2
1/a2

1 . The argument in the proof of the special case also gives

sin ∠C B1G = 2[B1CG]

B1C · B1G
= b1 sin γ1

a1

√
3

= b1

a1

√
3

√
1 −

(
a2

1 + b2
1

4a1b1

)2

= 1

4
√

3

√
14x − x2 − 1 = f (x).

Since x < 1/7, it follows that f (x) < f (1/7) = 1/7. Therefore

sin ∠C AG + sin ∠C BG < 1 + sin ∠C B1G < 1 + 1

7
<

2√
3
.

4.6 Isoperimetric Problems

2.1.5 The solution follows from Heron’s formula for the area S of a triangle with
sides a, b, c, which can be written as

F2 = s(s − c)[c2 − (a − b)2],

where s is the semiperimeter of the triangle.

2.1.6 This follows immediately from the previous problem.

2.1.7 The area of a parallelogram with sides a and b and angle α between them is
given by S = ab sin α. Hence S ≤ ab ≤ (

a+b
2

)2
, where equality holds if a = b

and α = 90◦, i.e., when the parallelogram is a square.

2.1.8 Hint. Use Problem 2.1.6.

2.1.9 It is easily seen that we may consider only convex quadrilaterals of area 1.
Let ABC D be such a quadrilateral and AB its longest side. Denote by D′ and C ′
the reflections of D and C in the line AB (Fig. 152).

Figure 152.
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Then the area of the hexagon AD′C ′ BC D is equal to 2, and by the isoperimetric
theorem for hexagons it follows that

BC + C D + D A = 1

2
(AD′ + D′C ′ + C ′ B + BC + C D + D A) ≥ 2

4
√

3.

Hence the minimum of the sum BC + C D + D A is attained only for trapezoids
ABC D such that BC = C D = D A = 2

3
4
√

3 and AB = 4
3

4
√

3.

2.1.10 Hint. Use the idea of the solution of the previous problem and Problem 2.1.3.

2.1.11 Denote by a1, a2, . . . , an the successive sides of M , so that a1 is the shortest
and ap (for some p > 1) the longest. We now construct a new n-gon M ′ as follows.
We leave the sides ap, ap+1, . . . , an unchanged. Then starting at the “free” end of
ap we construct consecutively chords of lengths a1, ap−1, . . . , a2 (Figs. 153, 154).

The resulting n-gon M ′ has the same sides and the same area as M , and its
shortest and longest sides are next to each other. Moreover, we have a1 ≤ s ≤ ap ,
where each equality holds only when M is a regular n-gon. Thus, we may assume
that a1 < s < an . Consider the arc L determined by the chords a1 and ap. Using
the notation from Fig. 155, where C ′ and D are points on L such that AC ′ = BC

and B D = s, we have that D is on the arc
�

C ′C .

Figure 155.

Therefore the distance from D to AB is greater than the distance from C to AB,
i.e., [ABC] < [AB D].

Let M ′′ be the n-gon obtained from M ′ by replacing the vertex C by D. Then
M ′′ has the desired property.
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2.1.12 To solve the problem one has to repeat the construction used in the solution
of the previous problem at most n − 1 times.

2.1.13 Let ABC D be a quadrilateral with vertices on the given four circles and let
O be the center of the square. Suppose that the quadrilateral ABC D is not convex,
say ∠ABC > 180◦. Then the point B and the center Ob of the circle containing
B lie on different sides of the line AC . Denote by B ′ the intersection point of the
perpendicular to AC through B with the circle with center Ob. Then AB ′ > AB,
C B ′ > C B, and therefore the perimeter of AB ′C D is not less than the perimeter
of ABC D. Hence we may assume that ABC D is a convex quadrilateral.

Let k be the circle with center O such that the given four circles are internally
tangent to it. Denote by A1, B1, C1, and D1 the intersection points of k with the
rays O A, O B, OC , and O D, respectively. Since quadrilateral ABC D is con-
vex and lies in A1 B1C1 D1, it follows that its perimeter is not larger than that of
A1 B1C1 D1. On the other hand, it follows from Problem 2.1.12 that the perimeter
of A1 B1C1 D1 is not larger than the perimeter of a square inscribed in k. Hence
the desired quadrilateral has vertices at the tangent points of k with the given four
circles (Fig. 156).

Figure 156.

2.1.14 Set M Ak = xk , Ak Ak+1 = ak and ∠M Ak Ak+1 = αk for k = 1, 2, . . . , n
(An+1 = A1). Let S be the area of A1 A2 . . . An . Then

2S =
n∑

k=1

ak xk sin αk .

By the law of cosines for �M Ak Ak+1 we get

x2
k+1 = x2

k + a2
k − 2xkak cos αk.

Summing up these equalities for k = 1, 2, . . . , n gives
n∑

k=1

a2
k = 2

n∑
k=1

ak xk cos αk .
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On the other hand, the root mean square–arithmetic mean inequality together with
the isoperimetric theorem for n-gons gives

n∑
k=1

a2
k ≥ 1

n

(
n∑

k=1

ak

)2

≥ 4S tan
π

n
.

Hence
n∑

k=1

ak xk cos αk ≥
n∑

k=1

ak xk tan
π

n
sin αk,

which can be written as

n∑
k=1

ak xk
cos

(
αk + π

n

)
cos π

n

≥ 0.

Suppose that αk > π(n−2)
2n for k = 1, 2, . . . , n. Then 3π

2 > αk + π
n > π

2 and
therefore cos

(
αk + π

n

)
< 0 for k = 1, 2, . . . , n. Thus

n∑
k=1

ak xk
cos

(
αk + π

n

)
cos π

n

< 0,

a contradiction. Hence for at least one k we have that αk ≤ π(n−2)
2n .

2.1.15 Assume the contrary. Then the total area of the given three triangles is equal
to 3. Consider the ends of the radii through the vertices of these triangles (Fig. 157).

Figure 157.

They form a polygon with at most 9 vertices. By Problem 2.1.12 it follows that
its area is not larger than the area of a regular 9-gon inscribed in the unit circle.
Hence the total area of the three triangles is less than the area of a regular 12-gon
inscribed in the unit circle, which is just 3, a contradiction.
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Note that the solution also follows by the fact that if a triangle of area 1 lies in
a unit circle with center O, then O lies in its interior or on its boundary. We leave
this as an exercise to the reader.

2.1.16 Hint. First show that it is enough to consider convex n-gons. Then, using
appropriate symmetries, show that the shortest and longest sides of the n-gon can
be assumed next to each other. One can then use the method from the solution of
Problem 2.1.11.

2.1.17 Consider the position of the rope for which it forms an arc of a circle, while
the stick is the corresponding chord in the circle (Fig. 158).

Add to the sector of the disk bounded by the rope and the stick the remain-
ing sector of the disk (the one marked in Fig. 159). It now follows from the
isoperimetric theorem that in this position the rope and the stick bound a region
of maximum possible area (Fig. 158).

2.1.18 Consider an arbitrary figure cut off from the given angle. Using 2n − 1 con-
secutive symmetries with respect to lines, one gets a region in the plane bounded
by a closed curve of length 2n� (Fig. 160).

Figure 160.

The isoperimetric theorem now yields that the initial curve must be an arc of a
circle with center at the vertex of the angle.

2.1.19 Let α be the angle between the planes of the base and a lateral face. It is
easy to see that V = S3/2

3
√

n tan
(

180◦
n

) f (α), where f (α) =
√

cos α(1−cos α)
1+cos α

. Set t = cos α.

We have to find the maximum of the function g(t) =
√

t (1−t)
1+t for t ∈ (0, 1). Since
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g′(t) = 1−3t
2(1+t2)

√
t (1−t)

, it is easy to observe that g(t) achieves its maximum on

the interval (0, 1) at t = 1
3 , i.e., the maximum value of f (α) is achieved when

cos α = 1
3 . The maximal volume is equal to

√
2

12 · S3/2√
n tan

(
180◦

n

) .

2.1.20 Of all parallelograms with sides of given lengths, the rectangle has largest
area. It is also clear that of all parallelepipeds with edges of given lengths the
right rectangular parallelepiped has maximal volume. Then the arithmetic mean–
geometric mean inequality implies V 3 = (abc)3 ≤ (

a+b+c
3

)3
, where equality holds

when a = b = c. Hence the cube has maximum volume among the parallelepipeds
with a given sum of the edges.

2.1.21

(a) Clearly [ABC] ≤ 1
2 AB · C M , [AB D] ≤ 1

2 AB · DM , [C D A] ≤ 1
2C D · AK ,

[C DB] ≤ 1
2C D · B K . Hence

S = [ABC] + [AB D] + [C D A] + [C DB]

≤ 1

2
AB (C M + DM) + 1

2
C D (AK + B K ).

Since M K is a median in �AK B and �C M D, one gets

4M K 2 = 2(AK 2 + B K 2) − AB2 = 2(C M2 + DM2) − C D2.

This implies

AK 2 + B K 2 = 4c2 + a2

2
, C M2 + DM2 = 4c2 + b2

2
.

Now the root mean square–arithmetic mean inequality gives

C M + DM

2
≤
√

C M2 + DM2

2
= 1

2

√
4c2 + b2,

AK + B K

2
≤
√

AK 2 + B K 2

2
= 1

2

√
4c2 + a2.

Using these yields S ≤ 1
2(a

√
4c2 + b2+b

√
4c2 + a2). Equality holds if AB ⊥

M K , C D ⊥ M K , and AB ⊥ C D, in which case S is a maximum.
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(b) For the volume V of ABC D we have V ≤ 1
3 [AB K ] · C D. On the other hand,

[AB K ] ≤ 1
2 AB · M K . These inequalities imply V ≤ abc

6 , where equality
holds when AB ⊥ C D, AB ⊥ M K , and C D ⊥ M K . In this case the volume
V of ABC D is a maximum.

2.1.22 Let α be the plane through B that is perpendicular to AB. The projection of
�AC D onto α is �B E F (Fig. 161).

Figure 161.

Then the volume V of the tetrahedron ABC D is equal to 1
3 AB · [B E F]. This

follows from the fact that the volumes of tetrahedra ABC D and AB E F are equal
to the volume of the tetrahedron ABC F . Hence V is a maximum when the area of
�B E F is a maximum. Since of all triangles with a given perimeter the equilateral
triangle has a maximum area (Problem 1.2.1), it is enough to find out when the
perimeter of �B E F is a maximum. To do so, “unfold” the planes F DC E and
C E B onto the plane AB F D (Fig. 162).

Figure 162.

Then the perimeter of �B E F equals B B1. The latter is a maximum when the
segments AD, C D, and C B1 form the same angle γ with the side AB such that

cos γ = AB

AD + DC + C B
.
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In this case the perimeter of �B E F is a constant and therefore it has a maximum
area when B E = B F = E F . Hence the tetrahedron ABC D has a maximum
volume when AD = C D = C B, and these three edges make equal angles with
AB.

2.1.23 It follows from the previous problem that when AB = h is fixed, the maxi-
mum volume of the tetrahedron ABC D is equal to

V = p

9
√

3
h(p − h),

where p is the perimeter of the quadrilateral ABC D. Since h(p−h) ≤
(

h+p−h
2

)2 =
p2

4 , it follows that V ≤ p3

36
√

3
, where equality holds when h = p

2 . In this case the
skew quadrilateral ABC D has sides of equal lengths and equal angles between any
two adjoining sides. Denoting these angles by γ , we have by Problem 2.1.22 that
cos γ = 1

3 .

4.7 Extremal Points in Triangle and Tetrahedron

2.2.5 The statement follows immediately from Problem 1.1.3.

2.2.6 Let A0, B0, and C0 be the feet of the perpendiculars from X to BC, C A, and
AB, respectively. Then

M X · N X = X B0

sin A
· X A0

sin B
= 2[X A0 B0]

sin A sin B sin C
.

Similarly

P X · Q X = 2[X B0C0]

sin A sin B sin C
and

R X · S X = 2[XC0 A0]

sin A sin B sin C
.

Hence

M X · N X + P X · Q X + R X · S X = 2[A0 B0C0]

sin A sin B sin C
.

Now using Problem 2.2.2 we conclude that the given sum is a maximum when X
is the circumcenter of �ABC .

2.2.7

(a) Let AA1 and M M1 be the altitudes of triangles ABC and M BC , respectively.
Then
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[AM B]+ [AMC] = [ABC]− [B MC] = (AA1 − M M1)BC

2
≤ AM · BC

2
with equality only if AM ⊥ BC . Similarly,

[AM B] + [B MC] ≤ B M · AC

2
and

[B MC] + [AMC] ≤ C M · AB

2
.

Adding the above inequalities gives

AM · BC + B M · AC + C M · AB ≥ 4[ABC].

Thus, the minimum of the given sum is 4[ABC], and it is attained only if M
is the orthocenter of �ABC .

(b) Let E and F be points such that BC M E and BC AF are both parallelograms
(Fig. 163). Then E M AF is also a parallelogram.

Figure 163.

Hence

AF = E M = BC, E F = AM, E B = C M, B F = AC.

Applying Ptolemy’s inequality (Problem 3.2.6) to quadrilaterals AB E F and
AE B M , we have

AB · AM + BC · C M = AB · E F + AF · B E ≥ AE · B F = AE · AC,

B M · AE + AM · C M = B M · AE + AM · B E ≥ AB · E M = AB · BC.

Therefore

M A · M B · AB + M B · MC · BC + MC · M A · C A

= M B(M A · AB + MC · BC) + MC · M A · C A

≥ M B · AE · AC + MC · M A · C A

= AC(M B · AE + MC · M A) ≥ AC · AB · BC.
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Equality holds if and only if both AB E F and AE B M are cyclic, which im-
plies that AF E M is cyclic. Since AF E M is a parallelogram it follows that
AM ⊥ E M , i.e., AM ⊥ BC . Since AE B M is cyclic, ∠AB E = ∠AM E ,
which implies B E ⊥ AB, i.e., C M ⊥ AB. Thus M is the orthocenter of
�ABC .

Remark. The inequality

M A · M B · AB + M B · MC · BC + MC · M A · C A ≥ AB · BC · C A

can be proved also by using complex numbers. Indeed, let M be the origin of the
complex plane and let the complex coordinates of A, B, C be u, v,w, respectively.
Then the given inequality can be written as

|uv(u − v)| + |vw(v − w)| + |wu(w − u)| ≥ |(u − v)(v − w)(w − u)|.
But it is easily checked that

uv(u − v) + vw(v − w) + wu(w − u) = −(u − v)(v − w)(w − u),

and the inequality above follows by the triangle inequality.

2.2.8 Set AB = c, BC = a, C A = b. Then

0 ≤ (a
−−→
M A + b

−−→
M B + c

−−→
MC)2 = a2 M A2 + b2 M B2 + c2 MC2+

+ 2ab(
−−→
M A,

−−→
M B) + 2bc(

−−→
M B,

−−→
MC) + 2ca(

−−→
MC,

−−→
M A).

From the law of cosines it follows that

2(
−−→
M A,

−−→
M B) = M A2 + M B2 − c2,

2(
−−→
M B,

−−→
MC) = M B2 + MC2 − a2,

2(
−−→
MC,

−−→
M A) = MC2 + M A2 − b2.

Plugging these in the above inequality gives

(a2 + ab + ac)M A2 + (b2 + ba + bc)M B2 + (c2 + ca + cb)MC2

−abc2 − bca2 − cab2 ≥ 0,

which is equivalent to

aM A2 + bM B2 + cMC2 ≥ abc.
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Equality occurs if and only if

(1) a
−−→
M A + b

−−→
M B + c

−−→
MC = 0.

So, we have to find the points M satisfying (1). Note that the lines AM and BC are
not parallel, since otherwise the vectors

−−→
M A and b

−−→
M B + c

−−→
MC are not collinear.

Denote by A1 the intersection point of AM and BC . Then

0 = a
−−→
M A + b(

−−→
M A1 + −−→

A1 B) + c(
−−→
M A1 + −−→

A1C)

= (a
−−→
M A + (b + c)

−−→
M A1) + (b

−−→
A1 B + c

−−→
A1C).

The first vector on the right-hand side is collinear to
−−→
AM , whereas the second one

is collinear to
−→
BC . Hence each of them is 0. This implies

A1 B

A1C
= c

b
= AB

AC
,

i.e., AA1 is the angle bisector of ∠B AC .
Applying the same reasoning to B M and C M , we conclude that the only point

M satisfying (1) is the incenter of triangle ABC .

Remark. Using the same reasoning as above one can solve the following more
general problem: Given a triangle ABC and real numbers p, q, r such that p +
q + r > 0, find the points M in the plane such that

pM A2 + q M B2 + r MC2

is a minimum.
Note that the desired minimum is equal to qra2+prb2+pqc2

p+q+r and it is attained at
the point M such that

−−→
AM = q

p + q + r
−→
AB + r

p + q + r
−→
AC .

2.2.9 Let α, β, γ be the angles A, B, C , respectively. Set α1 = ∠M AB and α2 =
∠M AC . We have

M B ′ · MC ′

M A2
= sin α1 sin α2.

Observe that

sin α1 sin α2 = 1

2
(cos(α1 − α2) − cos(α1 + α2)) ≤ 1

2
(1 − cos α) = sin2 α

2
.
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Hence
M B ′ · MC ′

M A2
≤ sin2 α

2
.

Likewise,

M A′ · MC ′

M B2
≤ sin2 β

2
and

M B ′ · M A′

MC2
≤ sin2 γ

2
.

Therefore
M A′ · M B ′ · MC ′

M A · M B · MC
≤ sin

α

2
sin

β

2
sin

γ

2
with equality if and only if M is the incenter of triangle ABC .

2.2.10 One has to consider two cases.

Case 1. All angles of �ABC are less than or equal to 90◦. We will show that
m(X) is maximal when X coincides with the circumcenter O of �ABC .
Let O1, O2, and O3 be the midpoints of the sides BC , AC , and AB,
respectively. For any point X 	= O in the quadrilateral AO3 O O2 we have
m(X) = AX < AO = R = m(O) (Fig. 164).

Figure 164.

In the same way we see that m(X) < m(O) when X 	= O lies in the
quadrilateral B O1O O3 or C O2 O O1.

Case 2. Triangle ABC has an obtuse angle. Assume, for example, that γ > 90◦.
We may also assume that α ≤ β. Denote by D and E the midpoints
of the sides BC and C A, and by F and G the intersection points of the
perpendicular bisectors of the sides BC and C A with AB (Fig. 165).

Then AG = GC = x and B F = C F = y. Since x = b
2 cos α

, y = a
2 cos β

,
the law of sines for �ABC gives

x

y
= b cos β

a cos α
= sin β

sin α
· cos β

cos α
= sin 2β

sin 2α
≥ 1,
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Figure 165.

where equality holds only when α = β. Next, α + β < 90◦ < γ implies
∠AC F = γ − β > α, so in �AFC we have AF > FC = y.

Let H be the foot of the altitude through C . If X is in �AHC , then
it lies either inside the circle with diameter CG (the circumcircle of the
quadrilateral C EG H ) or inside the circle with diameter AG. In both cases
m(X) ≤ x = AG = CG, where equality holds when X = G. Similarly,
if X lies in �BC H we have m(X) ≤ y with equality only when X = F .

Hence, if α < β, then x > y, and m(X) is a maximum precisely when
X = G. If α = β, m(X) attains its maximum when X = G or X = F .

Figure 166.

2.2.11 We use the notation in Fig. 166. We have ∠BC M = 180◦ − ϕ − γ , so
∠B MC = γ . Similarly, ∠C N A = α and ∠AP B = β. This means that the point
M lies on an arc of a circle k1 (the locus of the points X such that ∠B XC = γ ),
N on an arc of a circle k2, and P on an arc of a circle k3. It is easy to see that
k1, k2, and k3 intersect at point J ; this is the so-called Brokard’s point for �ABC .
Since all triangles M N P satisfying the assumptions of the problem are similar to
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�C AB, the one for which M P is a maximum will have maximal area. It is clear
that M P is a maximum when M P ⊥ J B.

Construct M P ⊥ B J such that M ∈ k1 and P ∈ k3. Let N be the intersection
point of the line MC with k2; then A lies on the segment N P and �M N P has the
desired properties. The value of the angle ϕ in this case will be denoted by ϕ0, and
ω = 90◦ − ϕ0 is called Brokard’s angle for �ABC .

We will now show that tan ϕ0 = cot α+cot β+cot γ . First, notice that ∠J AB =
∠J BC = ∠JC A = ω. Denote by Q the intersection point of the line C J and k3

(Fig. 166). Then

∠Q B A = ∠Q J A = ∠AC J + ∠J AC = ω + (α − ω) = α.

In particular, B Q ‖ AC .
In a similar way one obtains ∠Q AB = β. Let Q ′ and B ′ be the projections of

Q and B, respectively, on the line AC . Then QQ ′ = B B ′ and

tan ϕ0 = cot ω = C Q ′

QQ ′ = C B ′

B B ′ + AB ′

B B ′ + AQ ′

QQ ′ = cot γ + cot α + cot β.

This equality determines the angle ϕ0 uniquely.

Remark. There is another Brokard’s point J ′, which is determined by ∠J ′ AC =
∠J ′C B = ∠J ′ B A.

2.2.12 We will use the notation from Problem 2.2.13. In the present case S1 =
S2 = S3 = S4 = S. Notice that

x1 + x2 + x3 + x4 = h,

where h is the length of the altitude in ABC D.
Let O be the center of ABC D and O1, O2, O3, and O4 the centers of the

corresponding faces of the tetrahedron. Then

Vol(O O1 O2O3) = Vol(O O2 O3 O4)

= Vol(O O1 O3 O4) = Vol(O O1 O2 O4) = 1

4
V,

where V = Vol(O1 O2 O3O4). For any point X in ABC D we have

Vol(X X1 X2 X3)
1
4 V

= Vol(X X1 X2 X3)

Vol(O O1 O2 O3)
= x1x2x3

r · r · r
,

where r = h
4 = O O1 = O O2 = O O3 = O O4. Hence

Vol(X X1 X2 X3) = 16V

h3
x1x2x3.
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One obtains similar expressions for Vol(X X2 X3 X4), Vol(X X1 X3 X4), and
Vol(X X1 X2 X4). Summing these, it follows that

Vol(X1 X2 X3 X4) = 16V

h3
[x1x2x3 + x2x3x4 + x1x3x4 + x1x2x4].

Set a = x1 + x2 and b = x3 + x4. Then a + b = h, and therefore

Vol(X1 X2 X3 X4)

= 16V

h3
[x1x2b + ax3x4] ≤ 16V

h3

[(
x1 + x2

2

)2

b + a

(
x3 + x4

2

)2
]

= 16V

h3
· a2b + ab2

4
= 4V

h2
ab ≤ 4V

h2

(
a + b

2

)2

= V .

Equality holds when x1 = x2, x3 = x4, and a = b, i.e., when X = O. Thus the
required point X is the center of ABC D.

2.2.13

(a) Let X lie on C D and x3
S3

= x4
S4

. Then

Vol(AB DX)

Vol(ABC X)
= x3S3

x4S4
= S2

3

S2
4

.

Let u and v be the distances from D and C , respectively, to the plane AB X .
Then D X

XC = u
v

(Fig. 167).

Figure 167.

On the other hand,

S2
3

S2
4

= VAB D X

VABC X
= u · [AB X ]

v · [AB X ]
= u

v
,



184 Chapter 4. Hints and Solutions to the Exercises

so D X
XC = S2

3

S2
4
. Clearly there exists a unique point M on C D with DM

MC = S2
3

S2
4
.

It follows from the above arguments that if X lies in the plane AB M , then
x3
S3

= x4
S4

, and conversely, if the latter is true, then X lies in the plane AB M . In
the same way one constructs points N ∈ AD and P ∈ B D such that the set of
points X with x1

S1
= x4

S4
coincides with the plane BC N , while the set of points

X with x2
S2

= x4
S4

coincides with the plane AC P . It is now easy to see that the
planes AB M , BC N , and AC P have a common point X , and it satisfies

x1

S1
= x2

S2
= x3

S3
= x4

S4
.

Conversely, if the latter equalities hold, then X coincides with the intersection
point of the planes AB M , BC N , and AC P .

(b) Hint. Use the Cauchy–Schwarz inequality as in the solution of Problem 1.2.5.

(c) Let L1, L2, L3, and L4 be the orthogonal projections of L onto the correspond-
ing faces of the tetrahedron and let X be the centroid of L1L2L3L4. Then
Leibniz’s formula gives

L L2
1 + L L2

2 + L L2
3 + L L2

4

= 4L X2 + X L2
1 + X L2

2 + X L2
3 + X L2

4

≥ x2
1 + x2

2 + x2
3 + x2

4 ≥ L L2
1 + L L2

2 + L L2
3 + L L2

4,

which shows that X = L .

2.2.14 Let X1, X2, X3, and X4 be arbitrary points on the faces BC D, AC D, AB D,
and ABC , respectively, of the given tetrahedron ABC D. Denote by t the sum
of squares of the edges of tetrahedron X1 X2 X3 X4, and by X the centroid of this
tetrahedron. It follows from Leibniz’s formula for �X1 X2 X3 that

X X2
1 + X X2

2 + X X2
3 = 3X ′

4 X2 + X ′
4 X2

1 + X ′
4 X2

2 + X ′
4 X2

3,

where X ′
4 is the centroid of �X1 X2 X3. Since X X ′

4 = 1
3 X X4 and

X ′
4 X2

1 + X ′
4 X2

2 + X ′
4 X2

3 = 1

3
(X1 X2

2 + X2 X2
3 + X3 X2

1),

the first equality gives

3(X X2
1 + X X2

2 + X X2
3) = X X2

4 + X1 X2
2 + X2 X2

3 + X3 X2
1.
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One gets similar equalities for each of the triangles X2 X3 X4, X1 X3 X4, and X1 X2 X4.
Summing these yields

t = 4(X X2
1 + X X2

2 + X X2
3 + X X2

4).

Since X Xi ≥ xi , 1 ≤ i ≤ 4, the above together with Problem 2.2.13 implies

t ≥ 4(x2
1 + x2

2 + x2
3 + x2

4 ) ≥ 4(L L2
1 + L L2

2 + L L2
3 + L L2

4),

where L is Lemoine’s point of ABC D. Equality holds only when X = L .

2.2.15 We may assume that the edge length of the regular tetrahedron ABC D is 1.
Then its vertices are four of the vertices of a cube of edge length 1

2

√
2; the edges

of the tetrahedron are the diagonals of six faces of the cube (Fig. 168).

Figure 168.

The distance from a point X inside ABC D to the diagonal of a face is not less
than the distance from X to the face. Hence the desired minimum is equal to 3

√
2

2 .
It is easy to see that it is attained only if X is the center of ABC D.

4.8 Malfatti’s Problems

2.3.6 It is easy to observe that the Malfatti circles of an equilateral triangle of side
length 1 have equal radii r1 = r2 = r3 =

√
3−1
4 .

The sum of their areas is 3π
8 (2 − √

3). The incircle and the two small circles
tangent to it and to two sides of the triangle (Fig. 169) have radii 1

2
√

3
, 1

6
√

3
, and

1
6
√

3
, respectively. So, the sum of their areas is equal to 11π

108 , and one checks that
11π
108 > 3π

8 (2 − √
3).

2.3.7 As in Problem 2.3.1, one derives that it is enough to consider the case that
the radii r1 and r2 of the two circles satisfy the conditions r1 + r2 = 2 − √

2 and
0 ≤ r1, r2 ≤ 1

2 .
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Figure 169.

(a) The arithmetic mean–geometric mean inequality implies

r1r2 ≤
(

r1 + r2

2

)2

≤
(

1 − 1√
2

)2

,

i.e., r1r2 is a maximum when r1 = r2 = 2−√
2

2 .

(b) We have

r3
1 + r3

2 = r1 + r2

2
[3(r2

1 + r2
2 ) − (r1 + r2)

2].

Since r1 + r2 = 2 − √
2, it follows that r3

1 + r3
2 is a maximum when r2

1 + r2
2 is

a maximum, and the solution follows from Problem 2.3.1.

2.3.8 Hint. Reduce the problem to the case that the two circles are tangent and are
inscribed in two angles of the triangle (Fig. 170).

Figure 170.

Then use the arithmetic mean–geometric mean inequality.

2.3.9 Denote by a and b, a ≤ b, the side lengths of the given rectangle. If b ≥ 2a,
then one can put two circles of radius a

2 in the rectangle and the sum of their areas
is a maximum (Fig. 171).

The interesting case is a ≤ b < 2a. As in Problem 2.3.1, one derives that it
is enough to consider a pair of circles tangent to each other and inscribed in two
opposite corners of the rectangle (Fig. 172).
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Figure 171.

Figure 172.

Let r1 and r2 be their radii. Then it is easy to show that r1 +r2 = a +b−√
2ab,

and as in Problem 2.3.1 one finds that the sum of the areas of the two circles is a
maximum when r1 = a

2 and r2 = a
2 + b − √

2ab (Fig. 173).

Figure 173.

2.3.10 It follows from Problem 2.3.3 that the required square has side length 3 +
2
√

2.

2.3.11 Hint. Show that a square of side length 3 + 2
√

2 contains three noninter-
secting circles of radii 1,

√
2, and 2. Then the previous problem implies that such

a square gives the solution to the problem.

2.3.12 Answer. 11
√

3. Hint. Use Problem 2.3.4.

2.3.13 Hint. The solution is given by the incircle of the square and two circles
inscribed in its angles and tangent to the incircle (Fig. 174).

To prove this proceed as in the solution of Problem 2.3.5 using Problem 2.3.3.

2.3.14 Assume that 5 nonintersecting unit circles are contained in a square of side
a. Then a ≥ 2 and the centers of the circles are contained in a square of side
a − 2 (Fig. 175). Divide the latter square into 4 smaller squares of side a−2

2 using
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Figure 174.

two perpendicular lines through its center. Then at least two of the 5 centers lie in
the same small square. If O1 and O2 are these centers, then O1 O2 ≤ a−2

2

√
2. On

the other hand, O1 O2 ≥ 2, since the unit circles have no common interior points.
Hence a−2

2

√
2 ≥ O1 O2 ≥ 2, which gives a ≥ 2 + 2

√
2.

On the other hand, it is easy to see (Fig. 176) that a square of side length 2+2
√

2
contains 5 nonintersecting unit circles.

The answer is 2 + 2
√

2.

2.3.15 Hint. It is enough to consider the case that the two balls are inscribed in two
opposite trihedral angles of the cube and are tangent to each other.

2.3.16. Hint. Use the argument from the solution of Problem 2.3.3.

2.3.17 Hint. Use the argument from the solution of Problem 2.3.14.

4.9 Extremal Combinatorial Geometry Problems

2.4.6 Assume that �ABC is cut into n triangles satisfying the conditions of the
problem (Fig. 177). Denote by v the number of all vertices in the net obtained in
this way (including A, B, and C), and by k the number of segments issuing from
one vertex. The sum of all angles in triangles from the net with vertices at a given
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point X is 360◦ (if X = A, B, or C , we also include the exterior angles in the sum;
the sum of the three exterior angles is 3 · 360◦ − 180◦ = 900◦). Thus, the sum of
all angles in triangles of the net is v ·360· −900◦. On the other hand, the same sum
is equal to n · 180◦, so n · 180◦ = v · 360· − 900◦, which implies 2v = n + 5.

Figure 177.

The total number of segments in the net is kv
2 , while the number of regions into

which these segments divide the plane (counting the exterior of �ABC as well) is
n + 1. Thus, 3(n + 1) = kv , i.e., n = kv

3 − 1. This and 2v = n + 5 imply

n = k

6
(n + 5) − 1 = nk

6
+ 5k

6
− 1,

i.e., n = 5k−6
6−k . It is now easy to see that the only possible values for k are 2, 3, 4,

and 5, and the corresponding values for n are 1, 3, 7, and 19. Thus n ≤ 19. The
case n = 19 is possible, as shown in Fig. 178.

Figure 178.

2.4.7 Using induction on n, it is not difficult to show that n lines divide the plane
into not more than p(n) = n(n+1)

2 + 1 parts, where exactly p(n) parts are obtained
when any two lines intersect and no three lines intersect at one point. Next, using
induction again, one shows that n planes divide the space into not more than q(n) =
n3+5n+6

6 parts, and one gets exactly q(n) parts when any two of the planes intersect,
no three of them have a common line, and no four of the planes have a common
point. Since q(12) = 299 < 300 < 378 = q(13), in order to cut the space into at
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least 300 parts, one needs 13 planes. It is now easy to see that the same number of
planes are necessary to cut a cube into at least 300 parts.

2.4.8 Let ABC be an equilateral triangle of area 1. For the lengths a and h of its
side and altitude we have a = 2

4√3
and h = 4

√
3. Assume that triangle ABC is

contained in a horizontal strip with width d. Let �1 and �2 be the boundary lines of
the strip. We may assume that B ∈ �1 and C ∈ �2 (Fig. 179).

Figure 179.

Let ϕ and ψ be the angles between BC and �1 and AC and �2, respectively.
Then ϕ = 60◦ + ψ ≥ 60◦, so d = CC ′ = a sin ϕ ≥ a sin 60◦ = h, where equality
holds precisely when d = h and A ∈ �2. In other words, the minimal width of a
strip containing triangle ABC is 4

√
3.

Next, assume that T is an arbitrary triangle of area 1. We will show that T is
contained in a horizontal strip of width 4

√
3. Assume the contrary. Then the length

of each altitude of T is greater than 4
√

3, so the length of each side of T is less than
2

4√3
. Let α be the smallest angle of T . Then α ≤ 60◦ and

[T ] = bc

2
sin α <

(
2

4
√

3

)2

· 1

4
= 1√

3
< 1,

a contradiction.

2.4.9 Let A1, A2, . . . , An be n arbitrary points in the plane no three of which lie on
a line. We will show that α ≤ 180◦

n . There exist two points, say A1 	= A2, such
that all the other points lie in one of the half-planes determined by the line A1 A2.
Choose a point A3 of the given ones such that ∠A1 A2 A3 is a maximum; then all
the other points are contained in this angle. Moreover, ∠A1 A2 A3 ≥ α(n−2), since
the angle between any two successive rays A2 Ai is not less than α (Fig. 180).

Then we choose a point A4 such that ∠A2 A3 A4 is a maximum, etc. Clearly
we have ∠A2 A3 A4 ≥ α(n − 2), ∠A3 A4 A5 ≥ α(n − 2), etc. Since the num-
ber of the given points is n, there exists a minimal number m ≤ n such that
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Figure 180.

Am+1 ∈ {A1, A2, . . . , Am−1} (clearly Am+1 	= Am ), that is, ∠Am−1 Am A is a max-
imum for A = Ai for some 1 ≤ i ≤ m − 1. If i 	= 1, then A1 lies in the angle
Am−1 Am Ai , a contradiction.

Thus, i = 1 and any of the angles of the convex polygon A1 A2 . . . Am is not
less than α(n − 2). Hence 180◦(m − 2) ≥ mα(n − 2). This implies

α ≤ 180◦(m − 2)

m(n − 2)
= 180◦

n − 2

(
1 − 2

m

)
≤ 180◦

n − 2

(
1 − 2

n

)
= 180◦

n
.

It is easy to see that if A1, A2, . . . , An are the vertices of a regular n-gon, then
α = 180◦

n (Fig. 181). Hence the largest possible value of α is 180◦
n .

Figure 181.

2.4.10 Hint. Let ABC D be the given rectangle, where AB = 4 and BC = 3.
First show that it is enough to consider the case A1 = A, A2 ∈ AB, A3 = C ,
A4 ∈ C D (Fig. 182). Then show that the desired maximum is achieved precisely
when A1 A2 A3 A4 is a rhombus. In this case A1 A2 = 25

8 .

2.4.11 Let O be the intersection point of the segments. There exists a side AB of
the 2n-gon such that ∠AO B ≥ 180◦

n and AO + O B ≥ 1 (Fig. 183). Set x = AO
and y = O B. Then x + y ≥ 1 and the law of cosines for �AO B gives

AB2 = x2 + y2 − 2xy cos α = (x + y)2 − 2xy(1 + cos α)
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≥ (x + y)2 − (x + y)2

2
(1 + cos α) = (x + y)2 · 1 − cos α

2

≥ 1 − cos 180◦
n

2
= sin2 90◦

n
.

Thus, AB ≥ sin 90◦
n , and the latter is exactly the side length of a regular 2n-gon

inscribed in a circle with diameter 1.

Figure 182.

Figure 183.

2.4.12 If a convex n-gon (with n ≥ 4) has at least 4 acute angles, then their exterior
angles will be obtuse, so their sum will be greater than 360◦. However, the sum of
all exterior angles α1, α2, . . . , αn (Fig. 184) of the n-gon is n ·180◦ −(n−2)180◦ =
360◦, a contradiction.

Figure 184.
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2.4.13

(a) Let p1, p2, . . . , pn be rays in space issuing from a point O, and assume that
the angle between any two rays pi and p j is obtuse. For each i let Ai be the

point on pi with O Ai = 1. Then
−−→
O Ai · −−→

O A j < 0 for all i 	= j . Consider a
coordinate system Oxyz in space such that A1 = (1, 0, 0), A2 = (x2, y2, 0),
and Ak = (xk, yk, zk), 3 ≤ k ≤ n, where y2 > 0 and z3 > 0. Then xi =−−→
O Ai ·−−→O A1 < 0 for i > 1. Moreover, xi x2 + yi y2 = −−→

O Ai ·−−→O A2 < 0 for i > 2,
which, combined with xi < 0, x2 < 0, and y2 > 0, gives yi < 0 for all i > 2.
Finally, xi x3 + yi y3 + zi z3 = −−→

O Ai · −−→
O A3 < 0 implies zi < 0 for i > 3.

Now if n > 4, then for A4 and A5 we have x4x5 > 0, y4y5 > 0, and z4z5 > 0,
which is a contradiction to

−−→
O A4 · −−→

O A5 < 0. Thus we must have n ≤ 4.

That n = 4 is possible is seen by considering the rays issuing from the center
O of a regular tetrahedron and passing through its vertices (Fig. 185).

Figure 185.

(b) Answer. 6.

2.4.14

(a) Answer. 4 points.

(b) Let A1, A2, . . . , An be points in space such that any of the angles Ai A j Ak

does not exceed 90◦. We will show that n ≤ 8. Given two points Ai and
A j , denote by �i j the strip between the planes passing through Ai and A j and
perpendicular to the line Ai A j (Fig. 186). Clearly �i j coincides with the set of
points M in space such that ∠M Ai A j ≤ 90◦ and ∠M A j Ai ≤ 90◦. Let N be
the convex hull of the set {A1, A2, . . . , An}. Then N is a convex polyhedron
and each Ai lies inside or on the boundary of N . Moreover, N is contained in
the intersection of all strips �i j .
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Figure 186.

Given i = 1, . . . , n, denote by Ni the polyhedron obtained from N by the
translation along the vector

−−→
A1 Ai . Let N ′ be the image of N under the dilation

ϕ with center A1 and ratio 2. Since N ⊂ �i j , the polyhedron obtained by a

translation along
−−→
Ai A j has no common interior points with N . Since N j is the

image of Ni under the translation of Ni along
−−→
Ai A j , the previous remark shows

that Ni and N j have no common interior points when i 	= j . Also notice that

Ni ⊂ N ′ for all i . Indeed, if Mi is any point in Ni , then
−−−→
A1 Mi = −−→

A1 M +−−→
A1 Ai

for some point M of N (Fig. 187).

Figure 187.

If M ′ is the midpoint of M Ai (and of A1 Mi ), then M ′ ∈ N and ϕ(M ′) = Mi .
So Mi ∈ N ′ = ϕ(N), and therefore Ni ⊂ N ′ for any i . Consequently,

n · Vol(N) = Vol(N1) + Vol(N2) + · · · + Vol(Nn) ≤ Vol(N ′) = 8Vol(N),

so n ≤ 8. Clearly the vertices A1, A2, . . . , A8 of any cube satisfy the require-
ments of the problem.

2.4.15 Let O be the center of the disk and let A1, A2, . . . , An be points in the disk
such that Ai A j > 1 for i 	= j (Fig. 188).

We may assume that these points are ordered clockwise since no two of them
lie on the same radius. Set αi = ∠Ai O Ai+1, 1 ≤ i ≤ n (An+1 = A1). Then
αi > 60◦ since Ai Ai+1 is the largest side of �Ai O Ai+1. Hence

360◦ = α1 + α2 + · · · + αn > n · 60◦

and therefore n ≤ 5. To prove that the desired number is 5, take five points
A1, A2, A3, A4, A5 that are sufficiently close to the vertices of a regular pentagon
inscribed in a unit circle (Fig. 189).
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Figure 188.

Figure 189.

2.4.16 Let A1 A2 . . . An be an arbitrary convex n-gon. The diagonals through A1

cut it into n − 2 triangles. That is why the desired number of points is not less than
n − 2. A distribution of n − 2 points in a convex n-gon satisfying the requirements
of the problem is shown in Fig. 190.

Figure 190.

2.4.17 Let � be a rectangle with side lengths a and b, a ≤ b, that has the required
property (henceforth we denote this property by (∗)). Then clearly a ≥ 1. In what
follows we consider only rectangles � with a ≥ 1.
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Assume that � does not have property (∗). Then there is a position of � in
the plane for which � does not contain an integer point (i.e., a point with integer
coordinates). Consider a position of � with this property, and extend its sides of
length a (Fig. 191).

Figure 191.

There exists a line with equation y = k or x = k for some integer k that
intersects the strip obtained. The part of the line contained in the strip has length
at least b. Since b ≥ a ≥ 1, this part contains an integer point P . We may assume
that P is the closest integer point to � in the strip. Now shift � in the strip keeping
its sides parallel to their initial positions until one of the sides of � with length b
passes through P (Fig. 192).

Figure 192.

Notice that the side AB may contain some other integer points. However, the
rest of � does not contain an integer point. Consider the integer points S and R
on the coordinate lines through P such that P S = P R = 1. Since AD = a ≥ 1,
R and S lie inside the strip determined by the lines AB and C D. If R lies on the
line AB, then S will be in �, a contradiction. In the same way one observes that
S does not lie on AB. Hence both S and R lie outside �, which gives b = AB <

RS = √
2.

Conversely, let 1 ≤ a ≤ b <
√

2. Then it is easy to see that there is a position
of � for which � does not contain an integer point (Fig. 193).

Thus � has property (∗) if and only if a ≥ 1, b ≥ a, and b ≥ √
2. It is clear

now that the minimum area of � is equal to
√

2.
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Figure 193.

4.10 Triangle Inequality

3.1.1 Assume that the triangle ABC has sides of lengths 1. Set AX = x and
BY = y, where 0 ≤ x, y ≤ 1. Let X1 and X2 be the orthogonal projections of X
on AB and BC , and let Y1 and Y2 be the orthogonal projections of Y on AB and
AC (Fig. 194). Then AX1 = x

2 since ∠AX X1 = 30◦. Analogously, BY1 = y
2 ,

C X2 = 1−x
2 , CY2 = 1−y

2 . Hence

S(X, Y ) = X1Y1 + XY2 + Y X2

= 1 − x + y

2
+
∣∣∣∣1 − x − 1 − y

2

∣∣∣∣+ ∣∣∣∣1 − y − 1 − x

2

∣∣∣∣
= 1 − x + y

2
+
∣∣∣∣12 + x

2
− y

∣∣∣∣+ ∣∣∣∣12 + y

2
− x

∣∣∣∣ .
It is clear that the minimum of S(X, Y ) is equal to 0, and it is attained if and only
if X = Y = C .

Figure 194.



198 Chapter 4. Hints and Solutions to the Exercises

On the other hand, the triangle inequality gives∣∣∣∣12 + x

2
− y

∣∣∣∣ =
∣∣∣∣1 − y

2
+ x − y

2

∣∣∣∣ ≤ 1 − y

2
+ |x − y|

2
.

Analogously ∣∣∣∣12 + y

2
− x

∣∣∣∣ ≤ 1 − x

2
+ |x − y|

2
.

Hence

S(X, Y ) ≤ 1 − x + y

2
+ 1 − x

2
+ 1 − y

2
+ |x − y|

= 2 + |x − y| − (x + y) ≤ 2.

Thus the maximum of S(X, Y ) is equal to 2 and it is attained if and only if X =
A, Y = C or X = C, Y = B.

3.1.2 We first prove that k ≥ 1+√
5

2 . Indeed, let m be an arbitrary real number such

that 1 ≤ m < 1+√
5

2 . Then 1 + m > m2, which shows that there exists a triangle

with side lengths 1, m, m2. Hence k > min
(

m
1 , m2

m , m2

1

)
= m, implying k ≥ 1+√

5
2 .

Conversely, let k ≥ 1+√
5

2 and suppose that the assertion is not true. Then there
exists a triangle with side lengths a ≥ b ≥ c such that a

b ≥ k and b
c ≥ k. We derive

that b ≤ a
k and c ≤ b

k ≤ a
k2 . Hence b + c ≤ a

(
1
k + 1

k2

) ≤ a, a contradiction.

Thus the least possible value of k is equal to 1+√
5

2 .

3.1.3 We have to find the greatest real number k such that for any a, b, c > 0 with
a + b ≤ c, we have kabc ≤ a3 + b3 + c3. First take b = a and c = 2a. Then
2ka3 ≤ 10a3, i.e., k ≤ 5. Conversely, let k = 5. Set c = a + b + x , where x ≥ 0.
Then

a3 + b3 + c3 − 5abc

= 2(a + b)(a − b)2 + (ab + 3a2 + 3b2)x + 3(a + b)x2 + x3 ≥ 0.

3.1.4 We may assume that a ≤ b ≤ c. Then we have to prove that c < a + b.
Suppose the contrary, i.e., c ≥ a + b and set d = 1

4ab . It follows that d2 ≥ c2 ≥
(a + b)2 ≥ 4ab = 1

d , which shows that d ≥ 1. Hence

1

a2
+ 1

b2
+ 1

c2
≥ 1

a2
+ 1

b2
+ 1

d2
= (4(a + b)d)2 − 8d + 1

d2

≥ 8d + 1

d2
= 9 + (d − 1)(8d2 − d − 1)

d2
≥ 9,

a contradiction.
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3.1.5

(a) The given inequality follows from the identity

a3 + b3 + c3 − (a + b + c)(ab + bc + ca)

= a2(a − b − c)+b2(b − c − a)+c2(c − a − b)−3abc

and the triangle inequality.

(b) If a = b = 1, then

k >
2 + c3

(2 + c)(1 + 2c)
= 1 − 5t2 + 2t − 1

2t3 + 5t2 + 2t
= 1 − f (t),

where t = 1
c . Since limt→∞ f (t) = 0, it follows that k ≥ 1. Using (a) we

deduce that the least value of k is equal to 1.

3.1.6 Let ABC be a triangle with AB = c, BC = a, C A = b. Since p + q + r =
0, pqr 	= 0, it follows that two of these numbers, say p and r , have the same sign.
Then pr > 0, and the law of cosines implies that

a2 pq + b2qr + c2rp = a2 pq + b2qr + rp(a2 + b2 − 2ab cos C)

= −a2 p2 − b2r2 − 2abrp cos C

= −(ap − br)2 − 2abrp(1 + cos C) < 0.

Conversely, setting p = b, q = c, r = −(b + c) we get bc(a2 − (b + c)2) < 0,
i.e., a < b + c. Analogously b < c + a, c < a + b, and therefore a, b, c are the
side lengths of a triangle.

3.1.7 To show (i) implies (ii), note that

a2x + b2 y + c2z ≥ (a2x + b2 y + c2z)

(
1

x
+ 1

y
+ 1

z

)
≥ (a + b + c)2 > d2,

where we have used the Cauchy–Schwarz inequality and the triangle inequality.
To show (ii) implies (i), first note that if x ≤ 0, we may take a quadrilateral with

side lengths a = n, b = 1, c = 1, d = n and get y + z > n2(1− x), a contradiction
for large n. Thus, x > 0 and similarly y > 0, z > 0. Now use a quadrilateral with
side lengths 1

x , 1
y ,

1
z and 1

x + 1
y + 1

z − 1
n , where n is large. We then have

x

x2
+ y

y2
+ z

z2
>

(
1

x
+ 1

y
+ 1

z
− 1

n

)2

,
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and taking the limit as n → ∞ we get

1

x
+ 1

y
+ 1

z
≥
(

1

x
+ 1

y
+ 1

z

)2

.

Hence 1
x + 1

y + 1
z ≤ 1.

4.11 Selected Geometric Inequalities

3.2.1

(i) Set x = a + b − c > 0, y = b + c − a > 0, z = c + a − b > 0. Then
a = y+z

2 , b = x+z
2 , c = x+y

2 and we have to prove that (x + y)(y + z)(z+x) ≥
8xyz. This follows by multiplying the inequalities x + y ≥ 2

√
xy, y + z ≥

2
√

yz, z + x ≥ 2
√

zx .

(ii) Let F be the area of the triangle. Then abc = 4RF, F = sr , and F2 =
s(s −a)(s −b)(s − c). Hence the inequality (i) can be written as 8F2

s ≤ 4RF ,
which is equivalent to R ≥ 2r .

There is a nice geometric proof of Euler’s inequality based on the “obvious”
observation that the incircle is the smallest circle having common points with
the three sides of a triangle. Indeed, let A1, B1, and C1 be the midpoints of the
sides of a triangle ABC . Then the circumradius of triangle A1 B1C1 is equal
to R

2 and therefore R
2 ≥ r .

(iii) We have

r2 = (s − a)(s − b)(s − c)

s

= s3 − s2(a + b + c) + s(ab + bc + ca) − abc

s

= −s2 + ab + bc + ca − 4Rr.

Hence σ2 = ab + bc + ca = s2 + r2 + 4Rr. Set σ1 = a + b + c = 2s and
σ3 = abc = 4sr R. Then a direct computation shows that

(a − b)2(b − c)2(c − a)2 = σ 2
1 σ 2

2 − 4σ 3
2 − 4σ 3

1 σ3 + 18σ1σ2σ3 − 27σ 2
3

= −4r2[(s2−2R2−10Rr + r2)2 − 4R(R − 2r)3].

Thus (s2 − 2R2 − 10Rr + r2)2 − 4R(R − 2r)3 ≤ 0, which is equivalent to
|s2 − 2R2 − 10Rr + r2| ≤ 2(R − 2r)

√
R(R − 2r).
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Remark. The inequalities (ii) and (iii) are also sufficient for the existence of
a triangle with semiperimeter s, circumradius R, and inradius r . Moreover,
Blundon [5] has proved that (iii) is the strongest possible inequality of the
form f (R, r) ≤ s2 ≤ F(R, r), where f (R, r) and F(R, r) are homogeneous
real functions, with simultaneous equality only for equilateral triangles. For
the history of the fundamental inequality we refer the reader to [15].

(iv) The inequality R ≥ 2r together with (iii) implies that

(1) 16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2.

Now using the indentity

a2 + b2 + c2 = 4s2 − 2(ab + bc + ca) = 2s2 − 2r2 − 8Rr

one gets
24Rr − 12r2 ≤ a2 + b2 + c2 ≤ 8R2 + 4r2.

(v) The given inequalities follow from (1) since R ≥ 2r implies that 16Rr −
5r2 ≥ 27r2 and (2R + (3

√
3 − 4)r)2 ≥ 4R2 + 4Rr + 3r2.

3.2.2 Set AM
MC = x , C N

N B = y, and M L
L N = z (Fig. 195).

Figure 195.

Then [M LC] = 1
x S1, [N LC] = yS2 and therefore S1 = xyzS2 since [M LC] =

z[N LC]. Hence

[M NC] = [M LC] + [N LC] = z(y + 1)S2

and we get

S = AC

MC
· BC

NC
[M NC] = (1 + x)(1 + y)(1 + z)S2.
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Thus we have to prove the inequality

(1 + x)(1 + y)(1 + z) ≥ (1 + 3
√

xyz)3.

It follows by the arithmetic mean–geometric mean inequality since

(1 + x)(1 + y)(1 + z) = 1 + x + y + z + xy + yz + zx + xyz

≥ 1 + 3 3
√

xyz + 3 3
√

(xyz)2 + xyz

= (1 + 3
√

xyz)3.

3.2.3

(i) Since M, B ′, A, C ′ are cyclic points (Fig. 196) we have B ′C ′ = M A sin A.
The length of the orthogonal projection of the segment B ′C ′ on the line BC is
equal to M B ′ cos(90◦ − C) + MC ′ cos(90◦ − B) = M B ′ sin C + MC ′ sin B.

Hence

M A ≥ M B ′ sin C

sin A
+ MC ′ sin B

sin A
.

Figure 196.

Analogously,

M B ≥ M A′ sin C

sin B
+ MC ′ sin A

sin B
, MC ≥ M A′ sin B

sin C
+ M B ′ sin A

sin C
.

Summing up the above inequalities gives

M A + M B + MC ≥ M A′
(

sin B

sin C
+ sin C

sin B

)
+ M B ′

(
sin A

sin C
+ sin C

sin A

)
+ MC ′

(
sin A

sin B
+ sin B

sin A

)
.

This implies the desired inequality since

sin B

sin C
+ sin C

sin B
≥ 2,

sin A

sin C
+ sin C

sin A
≥ 2,

sin A

sin B
+ sin B

sin A
≥ 2.
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(ii) Denote by A′′, B ′′, C ′′ and A′′′, B ′′′, C ′′′ the points on the rays M A′ , M B ′,
MC ′ and M A, M B, MC such that M A′′ = 1

M A′ , M B ′′ = 1
M B ′ , MC ′′ = 1

MC ′ ,
and M A′′′ = 1

M A , M B ′′′ = 1
M B , MC ′′′ = 1

MC (Fig. 197).

Figure 197.

Then triangles M B ′ A and M B ′′ A′′′ are similar since

M B ′

M A
= M A′′′

M B ′′ .

Hence ∠M A′′′ B ′′ = ∠M B ′ A = 90◦. Analogously ∠M A′′′C ′′ = ∠MC ′ A
= 90◦ and therefore the points B ′′, A′′′, and C ′′ are collinear. Thus A′′′, B ′′′,
C ′′′ are the orthogonal projections of M on the lines B ′′C ′′, A′′C ′′, A′′ B ′′,
respectively. Now applying (i) to triangle A′′ B ′′C ′′ and the point M , we get

1

M A′ + 1

M B ′ + 1

MC ′ = M A′′ + M B ′′ + MC ′′

≥ 2(M A′′′ + M B ′′′ + MC ′′′)

= 2

(
1

M A
+ 1

M B
+ 1

MC

)
.

3.2.4 Let BC = a, AC = b, AB = c. Using the same notation as in the solution
of Problem 3.2.3, we have

(1) M A sin A ≥ M B ′ sin C + MC ′ sin B.

Multiplying by 2R and using the law of sines, (1) becomes

aM A ≥ cM B ′ + bMC ′.
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Likewise, we have bM B ≥ aMC ′ + cM A′ and cMC ≥ bM A′ + aM B ′. Using
these inequalities, we obtain

M A

a2
+ M B

b2
+ MC

c2

≥ M A′
(

b

c3
+ c

b3

)
+ M B ′

( c

a3
+ a

c3

)
+ MC ′

(
a

b3
+ b

a3

)
≥ 2M A′

bc
+ 2M B ′

ca
+ 2MC ′

ab
= 4[ABC]

abc
= 1

R
.

Equality in the first step requires that B ′C ′ be parallel to BC and so on. This occurs
if and only if M is the circumcenter of ABC . Equality in the second step requires
that a = b = c. Thus, equality holds if and only if triangle ABC is equilateral and
M is its center.

3.2.5 Let a, b, c, d, e, and f denote the lengths of the sides AB, BC , C D, DE ,
E F , and F A, respectively. Note that the opposite angles of the hexagon are equal
(∠A = ∠D,∠B = ∠E,∠C = ∠F).

Figure 198.

Draw perpendiculars as follows: AP ⊥ BC, AS ⊥ E F, DQ ⊥ BC, DR ⊥
E F (Fig. 198). Then P Q RS is a rectangle and B F ≥ P S = Q R. Therefore
2B F ≥ P S + Q R, and so

2B F ≥ (a sin B + f sin C) + (c sin C + d sin B).

Similarly,
2DB ≥ (c sin A + d sin B) + (e sin B + f sin A),

2F D ≥ (e sin C + d sin A) + (a sin A + b sin C).

Next, the circumradii of triangles F AB, BC D, and DE F are related to B F, DB,
and F D as follows:

RA = B F

2 sin A
, RC = DB

2 sin C
, RE = F D

2 sin B
.
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We obtain, therefore,

4(RA + RC + RE ) ≥ a

(
sin B

sin A
+ sin A

sin B

)
+ b

(
sin B

sin C
+ sin C

sin B

)
+ · · ·

≥ 2(a + b + · · · ) = 2P,

and so RA + RC + RE ≥ P/2, as required. Equality holds iff ∠A = ∠B = ∠C
and B F ⊥ BC, . . . , that is, iff the hexagon is regular.

3.2.6 First solution. We may assume that all four points are different; otherwise,
the given inequality is obvious. Let B ′, C ′, D′ be the points on the rays AB, AC ,
and AD respectively, such that AB ′ · AB = AC ′ · AC = AD′ · AD = 1. Then
AB
AC = AC ′

AB ′ , which shows that triangles ABC and AB ′C ′ are similar. Hence

B ′C ′ = BC

AB · AC
.

Analogously,

C ′ D′ = C D

AC · AD
and B ′D′ = B D

AB · AD
.

Now the triangle inequality B ′C ′+C ′ D′ ≥ B ′D′ implies that AB ·C D+AD·BC ≥
AC · B D.

Equality is obtained if and only if the quadrilateral ABC D is cyclic.

Second solution. Let a, b, c, d be the complex numbers representing the points
A, B, C, D, respectively. Then the triangle inequality implies that

AC · B D = |a − c| · |b − d| = |(a − c)(b − d)|
= |(a − b)(c − d) + (a − d)(b − c)|
≤ |a − b| · |c − d| + |a − d| · |b − c| = AB · C D + AD · BC.

3.2.7 Let us set AC = a, C E = b, AE = c. Applying Ptolemy’s inequality for
the quadrilateral AC E F , we get

AC · E F + C E · AF ≥ AE · C F.

Since E F = AF , we have F A
FC ≥ c

a+b . Similarly, DE
D A ≥ b

c+a and BC
B E ≥ a

b+c . It
follows that

(1)
BC

B E
+ DE

D A
+ F A

FC
≥ a

b + c
+ b

c + a
+ c

a + b
≥ 3

2
,

where the last inequality is left as an exercise to the reader.
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For equality to occur we need (1) to be an equality and also we need an equality
each time Ptolemy’s inequality was used. The latter happens when the quadri-
laterals AC E F , ABC E , AC DE are cyclic, that is, when ABC DE F is a cyclic
hexagon. Also, for the equality in (1) we need a = b = c.

Hence equality occurs if and only if the hexagon is regular.

3.2.8 If O lies on AC , then ABC D, AK O N , and OLC M are similar, and AC =
AO + OC (Fig. 199). Hence

√
S = √

S1 + √
S2.

Figure 199.

If O does not lie on AC , we may assume that O and D are on the same side of
AC . Denote the points of intersection of a line through O with B A, AD, C D, and
BC by W, X, Y , and Z , respectively (Fig. 200).

Figure 200.

Initially, let W = X = A. Then OW
O X = 1, while O Z

OY > 1. Rotate the line
about O without passing through B, until Y = Z = C . Then OW

O X > 1, while
O Z
OY = 1. Hence in some position during the rotation, we have OW

O X = O Z
OY . Fix the

line there. Let T1, T2, P1, P2, Q1, and Q2 denote the areas of K B L O, N O M D,

W K O, OL Z , O N X , and Y M O, respectively. The desired result is equivalent
to T1 + T2 ≥ 2

√
S1S2. Since triangles W B Z , W K O, and OL Z are similar, we

have
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√
P1 +√

P2 = √
P1 + T1 + P2

(
W O

W Z
+ O Z

W Z

)
= √

P1 + T1 + P2,

which is equivalent to T1 = 2
√

P1 P2. Similarly, T2 = 2
√

Q1 Q2. Since OW
O Z = O X

OY ,
we have

P1

P2
= OW 2

O Z2
= O X2

OY 2
= Q1

Q2
.

Denote the common value of Q1
P1

= Q2
P2

by k. Then

T1 + T2 = 2
√

P1 P2 + 2
√

Q1 Q2 = 2
√

P1 P2(1 + k)

= 2
√

(1 + k)P1(1 + k)P2 = 2
√

(P1 + Q1)(P2 + Q2) ≥ 2
√

S1S2.

3.2.9 We first show that the result holds when F is a “digon,” i.e., a polygon with
only 2 sides. Let O be a point and AB a line segment. Set O A = a, O B =
b, AB = c and let the distance of O from the line AB be h. Treating the figure
AB A as a two-sided polygon, we find that D = a + b, P = 2c (this being the
perimeter of the digon), and H = 2h. The inequality D2 ≥ H 2 + P2/4 now takes
the form (a + b)2 ≥ 4h2 + c2.

To prove this, we draw a line l through O parallel to AB, and let B1 be the image
of B under reflection in l (Fig. 201). Then O A + O B = O A + O B1 ≥ AB1, i.e.,
a + b ≥ √

4h2 + c2, which is precisely the stated inequality. Note that equality
holds iff ∠O AB = ∠O B A, i.e., iff a = b.

Figure 201.

Now let the polygon F be P1 P2 . . . Pn , and let

di = O Pi , pi = Pi Pi+1, hi = distance from O to Pi Pi+1.

(Here Pn+1 is the same as P1.) For each i , using the result proved above,

di + di+1 ≥
√

4h2
i + p2

i .
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Summing these inequalities over i = 1, 2, . . . , n, we obtain

2D ≥
∑

i

√
4h2

i + p2
i ,

or after squaring,

4D2 ≥
(∑

i

√
4h2

i + p2
i ,

)2

.

Now 4H 2 + P2 = 4(
∑

hi)
2 + (

∑
pi )

2, so it suffices to prove that

∑
i

√
4h2

i + p2
i ≥

√√√√4

(∑
i

hi

)2

+
(∑

i

pi

)2

.

Let vi denote the vector with coordinates (2hi , pi ). Then the quantity on the left
side is

∑ |vi | and the quantity on the right side is |∑ vi |, and the inequality follows
by the triangle inequality.

Equality holds if and only if (a) the di ’s are all equal, say di = r for all i , which
means that the Pi ’s lie on the circle C(O, r), and (b) the ratio hi/pi is the same for
all i . Since each side of F is a chord of C , we have h2

i + p2
i /4 = r2 for all i , so the

constancy of hi/pi implies that the hi ’s are all equal, and likewise the pi ’s. Thus
equality holds if and only if F is a regular polygon and O is its circumcenter.

3.2.10 Denote by zk the complex number representing the point Ak , 1 ≤ k ≤ 2n,
and set wk = zn+k − zk, 1 ≤ k ≤ n. Then the triangle inequality gives

n∑
k=1

(Ak Ak+1 + An+k An+k+1)
2 =

n∑
k=1

(|zk − zk+1| + |zn+k − zn+k+1|)2

≥
n∑

k=1

|zk − zk+1 − zn+k + zn+k+1|2 =
n−1∑
k=1

|wk+1 − wk |2 + |wn + w1|2.

On the other hand,

n∑
k=1

Bk B2
k+n =

n∑
k=1

∣∣∣∣ zk + zk+1

2
− zn+k + zn+k+1

2

∣∣∣∣2

= 1

4

n−1∑
k=1

|wk + wk+1|2 + 1

4
|wn − w1|2.



4.11. Selected Geometric Inequalities 209

Hence it is enough to prove the inequality

n−1∑
k=1

|wk+1 − wk |2 + |wn + w1|2

≥ tan2 π

2n

(
n−1∑
k=1

|wk + wk+1|2 + 1

4
|wn − w1|2

)
.

Note that this inequality becomes an identity for n = 2 and we next assume that
n ≥ 3. Set wk = xk + iyk , xk, yk ∈ R, 1 ≤ k ≤ n. Then a simple calculation shows
that the above inequality can be written as

cos
π

n

n∑
k=1

(x2
k + y2

k ) ≥
n−1∑
k=1

(xk xk+1 + yk yk+1) − xnx1 − yn y1,

which is a consequence of the following inequality:

cos
π

n

n∑
k=1

x2
k ≥

n−1∑
k=1

xk xk+1 − xnx1,

where n ≥ 3 and x1, x2, . . . , xn are arbitrary real numbers. This inequality in turn
is a consequence of the identity

(1) cos
π

n

n∑
k=1

x2
k −

n−1∑
k=1

xk xk+1 + xnx1

=
n−2∑
k=1

1

2 sin kπ
n sin (k+1)π

n

(
sin

(k + 1)π

n
xk − sin

kπ

n
xk+1 + sin

π

n
xn

)2

,

which can be proved by comparing the coefficients of x2
k and xk xk+1 in both sides

of (1). For example, the coefficients of x2
n in both sides of (1) coincide because

n−2∑
k=1

sin2 π
n

2 sin kπ
n sin (k+1)π

n

=
n−2∑
k=1

sin π
n

2

(
cot

kπ

n
− cot

(k + 1)π

n

)

= sin π
n

2

(
cot

π

n
− cot

(n − 1)π

n

)
= cos

π

n
.

Remark. Let us discuss the equality case in the given inequality. The above proof
shows that for n = 2 it is attained only for parallelograms. If n ≥ 3 the equality is
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attained if and only if the “opposite” sides of the 2n-gon A1 A2 . . . A2n are parallel
and its main diagonals are subject to the following relations for 2 ≤ k ≤ n − 1:

(2)
−−−−→
Ak An+k = sin kπ

n

sin π
n

−−−−→
A1 An+1 + sin (k−1)π

n

sin π
n

−−−→
An A2n .

In particular, we obtain the following generalization of Problem 3 from Interna-
tional Mathematical Olympiad 2003:

Any convex hexagon A1 A2 A3 A4 A5 A6 for which (A1 A2 + A4 A5)
2 + (A2 A3 +

A5 A6)
2 + (A3 A4 + A6 A1)

2 = 4
3(B1 B2

4 + B2B2
5 + B3B2

6) is obtained from a triangle
by cutting congruent triangles from its “corners” by means of lines parallel to their
opposite sides (Fig. 202).

Figure 202.

3.2.11 We use the following lemma.

Lemma. Let ω be a circle of radius ρ and PR, QS two chords intersecting at X,
so that ∠PXQ = ∠R X S = 2α. Then PQ + RS = 4αρ (see Fig. 203).

Figure 203.
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Proof. Let O be the center of ω and ∠POQ = 2β, ∠ROS = 2γ. Then ∠QSP = β

and ∠RPS = γ , since the angle at the center is twice the angle at the circumference.
Hence ∠RXS = 2α = β + γ and PQ + RS = 2βρ + 2γρ = 4αρ. Surround all
the given circles with a large circle ω of radius ρ. Consider two circles Ci , C j with
centers Oi , O j respectively. From the given condition, Ci and C j do not intersect.
Let 2α be the angle between their two internal common tangents PR, QS (Fig. 204).

Figure 204.

We have Oi O j = 2 csc α, so α ≥ sin α = 2

Oi O j
.

Now, from the lemma, PQ + RS = 4αρ ≥ 8ρ
Oi O j

, so that

1

Oi O j
≤ PQ + RS

8ρ
.

We now wish to consider the sum of all these arc lengths as i, j range over all pairs,
and we claim that any point of ω is covered by such arcs at most (n − 1) times. To
see this, let T be any point of ω and T U a half-line tangent to ω, as in Fig. 205.

Figure 205.

Consider this half-line as it is rotated about T as shown. At some stage it will
intersect a pair of circles for the first time. Relabel these circles C1 and C2. The
half-line can never intersect three circles, so at some further stage intersection with
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one of these circles, say C1, is lost and the half-line will never meet C1 again
during its transit. Continuing in this way and relabeling the circles conveniently,
the maximum number of times the half-line can intersect pairs of circles is (n −1),
namely when it intersects C1 and C2, C2 and C3, . . . , Cn−1 and Cn . Since T was
arbitrary, it follows that the sum of all the arc lengths is less than or equal to 2(n −
1)πρ, and hence ∑

1≤i< j≤n

1

Oi O j
≤ (n − 1)π

4
.

4.12 MaxMin and MinMax

3.3.1 Consider a trapezoid ABC D of area 1 and let C1 and D1 be the orthogonal
projections of C and D on the line AB. Denote by h the height of ABC D. Suppose
that AC1 ≥ B D1, i.e., AC ≥ B D. Since AC1 + B D1 ≥ AB + C D it follows that
AC1 ≥ AB+C D

2 . Hence AC1 ≥ [ABC D]
h = 1

h and we get that

AC2 = AC2
1 + h2 ≥ 1

h2
+ h2 ≥ 2.

This shows that the least possible length of AC is
√

2.

3.3.2 We first find the minimum side length of an equilateral triangle inscribed in
ABC . Let D be a point on BC and put x = B D (Fig. 206 (a)).

Figure 206. (a)

Then take points E, F on C A, AB respectively, such that C E = √
3x/2 and

B F = 1 − x/2. A calculation using the law of cosines shows that

DF2 = DE2 = E F2 = 7

4
x2 − 2x + 1 = 7

4

(
x − 4

7

)2

+ 3

7
.

Hence the triangle DE F is equilateral, and its minimum possible side length is√
3/7.
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We now argue that the minimum possible longest side must occur for some
equilateral triangle. Starting with an arbitrary triangle, first suppose it is not isosce-
les. Then we can slide one of the endpoints of the longest side so as to decrease its
length; we do so until there are two longest sides, say DE and E F (Fig. 206 (b)).

Figure 206. (b)

We now fix D, move E so as to decrease DE , and move F at the same time so
as to decrease E F ; we do so until all three sides become equal in length. (It is fine
if the vertices move onto the extensions of the sides, since the bound above applies
in that case as well.)

Hence the minimum is indeed
√

3/7, as desired.

3.3.3 Let the sides of the triangle have lengths a ≤ b ≤ c; let the angles opposite
them be A, B, C; let the semiperimeter be s = 1

2(a + b + c); and let the inradius
be r . Without loss of generality, assume that the triangle has circumradius R = 1

2 .
Then the law of sines gives a = sin A, b = sin B, c = sin C .

The area of the triangle equals both rs = 1
2r(sin A + sin B + sin C) and

abc/4R = 1
2 sin A sin B sin C . Thus

r = sin A sin B sin C

sin A + sin B + sin C
and

a

r
= sin A + sin B + sin C

sin B sin C
.

Because A = 180◦ − B − C , sin A = sin(B + C) = sin B cos C + sin C cos B and
we also have a

r
= cot B + csc B + cot C + csc C.

Note that the function f (x) = cot x+csc x is decreasing along the interval (0◦, 90◦)
since f ′(x) = − 1+cos x

sin2 x
.

If B > 60◦, then C > B > 60◦ and the triangle with A′ = B ′ = C ′ = 60◦ has
a larger ratio a′/r ′. Therefore we may assume that B ≤ 60◦.

We may further assume that A = B; otherwise, the triangle with angles A′ =
B ′ = 1

2 (A + B) ≤ B and C ′ = C has a larger ratio a′/r ′. Because C < 90◦ we
have 45◦ < A ≤ 60◦. Now

a

r
= sin A + sin B + sin C

sin B sin C
= 2 sin A + sin(2A)

sin A sin(2A)
= 2 csc(2A) + csc A.
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Note that csc x has second derivative csc x(csc2 x + cot2 x), which is strictly posi-
tive when 0◦ < x < 180◦. Thus, both csc x and csc(2x) are strictly convex along
the interval 0◦ < x < 90◦. Therefore, g(A) = 2 csc(2A) + csc A, a convex func-
tion in A, is maximized in the interval 45◦ < A ≤ 60◦ at one of the endpoints.
Because g(45◦) = 2 + √

2 < 2
√

3 = g(60◦), it is maximized when A = 60◦.
Therefore the maximum ratio is 2

√
3, attained with an equilateral triangle.

3.3.4

(a) We first prove a preliminary result for three points A, B, and C , under the
assumption that 108◦ ≤ ∠A ≤ 180◦. Then ∠B + ∠C ≤ 72◦. We may assume
that ∠B ≥ ∠C . Hence ∠C ≤ 36◦ and by the law of sines,

λ = BC

AB
= sin(B + C)

sin C
≥ sin 2C

sin C
= 2 cos C ≥ 2 cos 36◦ = 2 sin 54◦.

Equality holds if and only if ∠A = 108◦ and ∠B = ∠C = 36◦.

Consider now any five points in the plane. It follows from our earlier result
that λ > 2 sin 54◦ if any three of them are collinear. Henceforth, we assume
that this is not the case. Consider the convex hull of the five points. If it is a
triangle or a quadrilateral, then one of the five points P is inside the triangle
determined by three of the other points. If we join P to these three, the triangle
is divided into three smaller triangles. Since the three angles at P sum to 360◦,
one of them is at least 120◦. By our earlier result, λ > 2 sin 54◦. If the convex
hull is a pentagon, then one of its interior angles is at least 108◦ since the five
of them sum to 540◦. Applying our earlier result to the triangle determined by
the vertex of this angle and two vertices of the pentagon adjacent to it, we have
λ ≥ 2 sin 54◦.

(b) From (a), equality can hold only if the convex hull of the five points is a penta-
gon in which the triangle determined by three adjacent vertices is a (108◦, 36◦,
36◦) triangle. This implies that the pentagon is equilateral, as well as equian-
gular, so that it is regular. It is easy to verify that for the regular pentagon, we
do have λ = 2 sin 54◦.

3.3.5 For a point P ∈ C denote by P ′ its antipodal point; for a set A ⊂ C denote
by A′ the antipodal image of A (i.e., A′ = {P ′ : P ∈ A}).

Take a set A = {P1, P2, . . . , Pn} ⊂ Fn . The set A ∪ A′ consists of 2m points,
m ≤ n, that cut the circle into 2m arcs, antipodal in pairs. Denote the set of all
these arcs by A.
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Let d = R R′ be any diameter of C . If R ∈ A ∪ A′, then of course mini

δ(Pi , d) = 0; this trivial situation will be ignored in the sequel. So let us as-
sume that R 	∈ A ∪ A′; then R belongs to exactly one arc α ∈ A. The minimum
mini δ(Pi , d) occurs when Pi is an endpoint of α (or α′) and we get the estimate

(1) min
i

δ(Pi , d) ≤ sin
α

2
;

there should be no ambiguity in denoting the arc and its angular size (length, in
other words) by the same symbol α. Equality holds in (1) if and only if R is the
midpoint of α.

We seek a diameter d for which the left side of (1) is maximized. This is the
case if and only if R is the midpoint of the longest arc in A (there may be more
than one pair of such arcs). Denoting by β (the size of) the longest arc in A, we
infer that D(A) = sin β

2 .
Now we wish to minimize this quantity by a suitable choice of A. From among

all the 2m arcs in A, the longest one has size at least π
m . Hence

(2) D(A) ≥ sin
π

2m
≥ sin

π

2n
.

The first inequality in (2) becomes an equality if and only if all arcs in A are equal,
i.e., when A ∪ A′ is the set of vertices of a regular 2m-gon. The second inequality
in (2) is an equality for m = n, i.e., when A and A′ are disjoint. Hence

Dn = min
A∈Fn

D(A) = sin
π

2n
.

The minimum is attained for every set A of n nonantipodal vertices of a regular
2n-gon inscribed in C .

4.13 Area and Perimeter

3.4.1 Let P be closer to A than to B. Drop the perpendiculars RK and C H onto
AB (Fig. 207). Let AB + BC + C A = 6.

Then P Q = AR + AP = 2 and AC < AB < 3. We have

AP ≤ AP + B Q = AB − P Q < 1.

Now
[P Q R]

[ABC]
= P Q · RK

AB · C H
= P Q

AB
· AR

AC
.
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Figure 207.

We have
P Q

AB
>

2

3
and

AR

AC
>

2 − AP

3
>

1

3
.

It follows that [P Q R]
[ABC] > 2

9 .

3.4.2 Let a, b, c be the lengths of the sides opposite angles A, B, C , respectively.
By the law of sines,

a

b
= sin 2B

sin B
= 2 cos B,

c

b
= sin(π − 3B)

sin B
= sin 3B

sin B

= (2 sin B cos B) cos B + (2 cos2 B − 1) sin B

sin B
= 4 cos2 B − 1.

Hence c
b = (

a
b

)2 − 1, from which

(1) a2 = b(b + c).

Since we are looking for a triangle of smallest perimeter, we may assume that a, b,
and c have no common prime factor; otherwise, a smaller example would exist. In
fact, b and c must be relatively prime, for (1) shows that any common prime factor
of b and c would be a factor of a as well. Since (1) expresses a perfect square a2 as
the product of two relatively prime integers b and b + c, it must be the case that b
and b+c are perfect squares. Thus, for some relatively prime integers m and n, we
have b = m2, b + c = n2, a = mn, and n

m = a
b = 2 cos B. The angle C = π − 3B

is obtuse, so 0 < B < π
6 , which implies

√
3

2 < cos B < 1 and thus

√
3 <

n

m
< 2.
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It is easy to see that this inequality has no integer solution with m = 1, 2, or 3.
Hence m ≥ 4, n ≥ 7, and

a + b + c = mn + n2 ≥ 4 · 7 + 72 = 77.

In fact, the pair (m, n) = (4, 7) generates a triangle with (a, b, c) = (28, 16, 33),
and this triangle meets all the necessary geometric conditions, so 77 is the mini-
mum possible perimeter.

3.4.3 Suppose first that two vertices A and B of a triangle ABC lie on the same
side P Q of the parallelogram (Fig. 208). Then AB ≤ P Q, and since the height
of �ABC through C is not greater than the height of the parallelogram to P Q,
we conclude that the area of �ABC is not greater than one-half the area of the
parallelogram.

Figure 208.

Assume now that the vertices of the triangle lie on different sides of the paral-
lelogram. Then two of them lie on opposite sides. Draw a line through the third
vertex of the triangle that is parallel to these sides. It divides the parallelogram into
two parallelograms and the triangle into two triangles (Fig. 209), and we can apply
the same reasoning as in the first case.

Figure 209.

3.4.4 Suppose first that the parallelogram E FG H is inscribed in triangle ABC so
that E, F ∈ AB, G ∈ BC , and H ∈ C A (Fig. 210).

Set C H : C A = x , where 0 < x < 1. Then it is easy to show that S =
2x(1 − x)T and the arithmetic mean–geometric mean inequality gives 2S ≤ T .
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Figure 210.

In the general case draw parallel lines containing two opposite sides of the
parallelogram. If these two lines intersect only two sides of the triangle, then the
problem can be reduced to the case considered above (Fig. 211).

Otherwise it can be reduced to a configuration like that shown in Fig. 212 and
one applies again the case considered above.

3.4.5 Let the angles at P, Q, R, and S be α, β, γ , and δ, respectively. Since (α +
β) + (γ + δ) = 360◦, we may assume that α + β ≥ 180◦.

Similarly, we may assume that α + δ ≥ 180◦. Complete the parallelogram
P QT S (Fig. 213). Then T must lie inside P Q RS, and hence inside ABC . Now
[P QS] = 1

2 [P QT S] ≤ 1
4 [ABC] by Problem 3.4.4.

Figure 213.

3.4.6 Let M be a polygon with center of symmetry O contained in a triangle ABC .
For any point X in the plane denote by X ′ the symmetric point of X with respect to
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O. Then M is contained in the common part T of triangles ABC and A′ B ′C ′. Note
that O is the center of symmetry of the polygon T . Since AB‖A′ B ′, BC‖B ′C ′,
C A‖C ′ A′ and AB = A′ B ′, BC = B ′C ′, C A = C ′ A′ it follows that at least two
vertices of �A′ B ′C ′ lie outside �ABC . Suppose first that A′ lies in the interior
of �ABC . Then T is a parallelogram, and it follows from Problem 3.4.4 that
[M] ≤ [T ] ≤ 1

2 [ABC]. Let now the points A′, B ′, and C ′ lie outside �ABC .
Then T is a hexagon A1 A2 B1 B2C1C2 as shown in Fig. 214.

Figure 214.

Set AC1
AB = AB2

AC = x , BC2
AB = B A1

BC = y, C A2
C B = C B1

C A = z. Note that C ′
1 lies on the

lines A′ B ′ and BC , i.e., C ′
1 = A2. Similarly, C ′

2 = B1 and therefore C1C2 = B1 A2.
Hence C1C2

AB = B1 A2
AB = z and we get

x + y + z = AC1

AB
+ BC2

AB
+ C1C2

AB
= 1.

On the other hand,

[T ] = [ABC] − [AC1 B2] − [B A1C2] − [C B1 A2] = [ABC](1 − x2 − y2 − z2).

Now the root mean square–arithmetic mean inequality gives

x2 + y2 + z2 ≥ 1

3
(x + y + z)2 = 1

3

and we get [T ] ≤ 2
3 [ABC]. Equality holds if and only if x = y = z = 1

3 , i.e.,
when the points A1 and A2, B1 and B2, C1 and C2 divide the sides BC, C A, and
AB into three equal parts. Thus the solution of the problem is given by the hexagon
A1 A2 B1B2C1C2.
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3.4.7 Denote the triangles by ABC and P Q R, and let D and E be the points of
intersection of AB with P R and AB with P Q, respectively (Fig. 215). Then by
rotational symmetry, the entire figure is symmetric about the line O D, and also the
line O E , where O is the center of the circle. Moreover,

K = [ABC] − 3[P DE].

Figure 215.

So K will be a minimum when �P DE has maximum area. Note that P D =
AD, P E = B E , so that �P DE has the constant perimeter AB = r

√
3. It follows

from Problem 1.2.1 that �P DE has maximum area when P is the midpoint of
arc AB. In this case the sides of �P DE are 1

3 as long as the sides of �ABC , so
[P DE] = 1

9 [ABC]. Hence

K ≥ [ABC]

(
1 − 3

9

)
= 2

3
(r

√
3)2

√
3

4
=

√
3r2

2
.

Remark. In a similar fashion, one can obtain the analogous area inequality for two
regular n-gons inscribed in a circle. K will be minimum when one of the n-gons
can be obtained from the other one by rotation of π

n about the center.

3.4.8 It is clear that if a triangle contains another triangle then the inradius of the
first one is not less than the inradius of the second one. This remark easily leads to
the conclusion that it is enough to consider only triangles ABC like the one shown
in Fig. 216.

Denote by r the inradius of �ABC . Set PC = a, B M = b and let N be the
point on the ray PC such that P N = a + b. Set x = AC = √

1 + a2, y =
BC = √

(1 − a)2 + (1 − b)2, z = AB = √
1 + b2, u = AN = √

1 + (a + b)2,
v = N M = √

1 + (1 − a − b)2. Then u ≥ z ≥ 1 and x ≥ 1, v ≥ 1 and we get
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Figure 216.

(u + v + 1) − (x + y + z) = u2 − x2

u + x
+ v2 − y2

v + y
+ 12 − z2

1 + z

= 2ab + b2

u + x
+ 2ab

v + y
− b2

1 + z
≤ 2ab + b2

1 + z
+ 2ab

v + y
− b2

1 + z

= 2ab

(
1

v + y
+ 1

1 + z

)
≤ 2ab

(
1

2
+ 1

)
= 3ab ≤ (u + v + 1)ab.

Hence
1 − ab

x + y + z
≤ 1

u + v + 1
.

On the other hand,

[ABC] = 1 − a

2
− b

2
− (1 − a)(1 − b)

2
= 1 − ab

2

and therefore

r = 2[ABC]

x + y + z
= 1 − ab

x + y + z
≤ 1

u + v + 1
.

Now using Heron’s problem (Problem 1.1.1) we see that u + v = AN + M N is a
minimum if N is the midpoint of P Q, i.e.,

r ≤ 1

u + v + 1
≤ 1√

5 + 1
=

√
5 − 1

4
.

Thus the maximum value of r is equal to
√

5−1
4 and it is attained only if B = M

and C is the midpoint of P Q.

3.4.9 We show first that the rectangles must be placed one over another as shown
in Fig. 217. Indeed, let r1, r2, . . . , rn be arbitrary nonintersecting rectangles in
�ABC with a side parallel to AB. Consider the lines determined by their up-
per sides and let the one closest to AB intersect AC and BC at points M1 and N1,
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respectively. Then the parts of r1, r2, . . . , rn lying below M1 N1 are contained in
the rectangle A1 B1N1 M1, where A1 and B1 are the orthogonal projections of M1

and N1 on AB. Hence their total area is at most that of A1 B1M1 N1. Note that the
parts r1, r2, . . . , rn lying above M1 N1 are at most n − 1, since A1 B1M1 N1 contains
at least one of them. Proceeding in the same way for triangle M1 N1C , etc., we
conclude that there are n rectangles like that shown in Fig. 217 whose total area
is not less than that of r1, r2, . . . , rn . (If we repeat the construction above k times
where k < n, then we add n − k arbitrary new rectangles constructed in the same
way in triangle Mk NkC .)

Figure 217.

Denote by xk , 1 ≤ k ≤ n, the distance between the parallel lines Mk Nk

and Mk−1 Nk−1 (M0 = A, N0 = B) and by xn+1 the distance from C to Mn Nn

(Fig. 217). Let CC0 be the altitude of �ABC through C and h = CC0. Then

�Mk−1 Ak Mk ∼ �AC0C and we get [Mk−1 Ak Mk] = x2
k

h2 [AC0C]. Likewise

[Nk−1 Bk Nk] = x2
k

h2 [BC0C], [Mn NnC] = x2
n+1
h2 [ABC]. Denote by Sn the combined

area of rectangles Ak Bk Nk Mk , 1 ≤ k ≤ n. Then

Sn = [ABC] − [Mn NnC] −
n∑

k=1

([Mk−1 Ak Mk] + [Nk−1 Bk Nk])

= [ABC]

(
1 − 1

h2

n+1∑
k=1

x2
k

)
.

Taking into account that
∑n+1

k=1 xk = h we get from root mean square–arithmetic
mean inequality that

n+1∑
k=1

x2
k ≥ 1

n + 1

(
n+1∑
k=1

xk

)2

= h2

n + 1
.
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Hence Sn ≤ n
n+1 [ABC], with equality only if x1 = x2 = · · · = xn+1 = h

n+1 . Thus,
the desired rectangles must be cut as in Fig. 217, where the points M1, M2, . . . , Mn

(N1, N2, . . . , Nn) divide AC(BC) into n + 1 equal parts.

3.4.10 We deduce from the area of P1 P3 P5 P7 that the radius of the circle is
√

5/2.
An easy calculation using the Pythagorean theorem then shows that the rectangle
P2 P4 P6 P8 has sides

√
2 and 2

√
2.

By symmetry, the area of the octagon can be expressed as (Fig. 218)

[P2 P4 P6 P8] + 2[P2 P3 P4] + 2[P4 P5 P6].

Figure 218.

Note that [P2 P3 P4] is
√

2 times the distance from P3 to P2 P4, which is maxi-
mized when P3 lies on the midpoint of arc P2 P4; similarly, [P4 P5 P6] is 2

√
2 times

the distance from P5 to P4 P6, which is maximized when P5 lies on the midpoint of
arc P4 P6.

Thus, the area of the octagon is maximized when P3 is the midpoint of arc
P2 P4 and P5 is the midpoint of arc P4 P6. In this case, it is easy to calculate that
[P2 P3 P4] = √

5 − 1 and [P4 P5 P6] = √
5/2 − 1 and so the area of the octagon is

3
√

5.

3.4.11 We shall show that the desired point M is such that DM
MC = AK

K B .
Let P and Q be the intersection points of AM and DK , and B M and C K ,

respectively (Fig. 219). Then

K Q

QC
= K B

MC
= AK

DM
= K P

P D
,

which shows that P Q‖C D‖AB.
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Figure 219.

Now consider an arbitrary point M1 	= M on DC . We may assume that M1

lies between D and M . Set P1 = AM1 ∩ K D, Q1 = B M1 ∩ KC, P2 = AM1 ∩
P Q, Q2 = B M1 ∩ P Q, and O = AM ∩ B M1. Then

[M P K Q] − [M1 P1 K Q1] = [M O Q1 Q] − [M1 P1 P O]

> [M O Q2 Q] − [M1 P2 P O] = 0.

To prove the latter equality we first note that P P2 = QQ2 since

P P2

M M1
= AP

AM
= B Q

B M
= QQ2

M M1
.

Hence

[M O Q2 Q] = [M P Q] − [O P Q2] = [M1 P2 Q2] − [O P Q2] = [M1 P2 P O].

3.4.12 First solution. Let a, b, c denote the lengths of the sides BC, C A, AB,
respectively. We assume without loss of generality that a ≤ b ≤ c.

Choose l to be the angle bisector of ∠A. Let P be the intersection point of
l with BC (Fig. 220). Since AC ≤ AB, the intersection of triangles ABC and
A′ B ′C ′ is the disjoint union of two congruent triangles, APC and APC ′.

Figure 220.
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Considering BC as a base, triangles APC and ABC have equal altitudes, so
their areas are in the same ratio as their bases:

[APC]

[ABC]
= PC

BC
.

Since AP is the angle bisector of ∠A, we have B P/PC = c/b, so

PC

BC
= PC

B P + PC
= b

b + c
.

But 2b ≥ a + b > c by the triangle inequality and we get

[AC ′ PC]

[ABC]
= 2[APC]

[ABC]
= 2b

b + c
>

2

3
.

Second solution. Let the foot of the altitude from C meet AB at D.
First suppose [B DC] > 1

3 [ABC]. In this case we reflect through C D. If B ′
is the image of B, then B B ′C lies in ABC and the area of the overlap is at least
2
3 [ABC].

Now suppose [B DC] ≤ 1
3 [ABC]. In this case we reflect through the bisector

of ∠A. If C ′ is the image of C , then triangle ACC ′ is contained in the overlap, and
[ACC ′] > [ADC] ≥ 2

3 [ABC].

Remark. Let F denote the figure given by the intersection of the interior of trian-
gle ABC and the interior of its reflection in l. Yet another approach to the problem
involves finding the maximum attained for [F]/[ABC] by taking l from the family
of lines perpendicular to AB. By choosing the best alternative between the angle
bisector at C and the optimal line perpendicular to AB, one can ensure

[F]

[ABC]
>

2

1 + √
2

= 2(
√

2 − 1) = 0.828427 . . . ,

and this constant is in fact the best possible.

3.4.13 The key observation is that for any side S of P6, there is some subsegment
of S that is a side of Pn . (This is easily proved by induction on n.) Thus Pn has
a vertex on each side of P6. Since Pn is convex, it contains a hexagon Q with (at
least) one vertex on each side of P6. (The hexagon may be degenerate, since some
of its vertices may coincide.)

Let P6 = A1 A2 A3 A4 A5 A6 and let Q = B1B2 B3B4 B5B6, with Bi on Ai Ai+1

(indices are considered modulo 6).
The side Bi Bi+1 of Q is entirely contained in triangle Ai Ai+1 Ai+2, so Q en-

closes the smaller regular hexagon R (shaded in Fig. 221) whose sides are the cen-
tral thirds of the segments Ai Ai+2, 1 ≤ i ≤ 6. The area of R is 1/3, as can be
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Figure 221.

seen from the fact that its side length is 1/
√

3 times the side length of P6. Thus
[Pn] ≥ [Q] ≥ [R] = 1/3. We obtain strict inequality by observing that Pn is
strictly larger than Q: if n = 6, this is obvious; if n > 6, then Pn cannot equal Q
because Pn has more sides.

Remark. With a little more work, one could improve 1/3 to 1/2. The minimum
area of a hexagon Q with one vertex on each side of P6 is in fact 1/2, attained
when the vertices of Q coincide in pairs at every other vertex of P6. So, the
hexagon Q degenerates into an equilateral triangle. This can be done using the
same arguments as those in the solution of Problem 1.4.2. If the conditions of the
problem were changed so that the cut-points could be anywhere within adjacent
segments instead of just at the midpoints, then the best possible bound would be
1/2.

3.4.14 Note first that the area of any triangle whose vertices have integer coor-
dinates is a number of the form n

2 , where n is a positive integer. To prove this
consider the smallest rectangle containing the triangle and whose vertices have in-
teger coordinates (Fig. 222). Hence the area of any such triangle is at least 1

2 . Thus

Figure 222.
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it is enough to prove that the given pentagon A1 A2 A3 A4 A5 contains a point with
integer coordinates in its interior.

Assume the contrary. It is easy to see that there exist two vertices of the penta-
gon, say Ai (xi , yi ) and A j (x j , y j ), such that xi ≡ x j (mod 2) and yi ≡ y j (mod 2).

Then the midpoint M
(

xi+x j

2 ,
yi+y j

2

)
of the segment Ai A j has integer coordinates

and therefore it lies on the boundary of the pentagon. Hence Ai and A j are con-
secutive vertices and let Ai = A1, A j = A5. Applying the same arguments to the
pentagon A1 A2 A3 A4 M and so on, we obtain infinitely many points with integer
coordinates on the boundary of the pentagon, a contradiction.

3.4.15

Lemma 1 If 0 ≤ x, y ≤ 1, then√
1 − x2 +

√
1 − y2 ≥

√
1 − (x + y − 1)2.

Proof. Squaring and subtracting 2 − x2 − y2 from both sides gives the equivalent
inequality 2

√
(1 − x2)(1 − y2) ≥ −2(1 − x)(1 − y). It is true because the left side

is nonnegative and the right is nonpositive.

Lemma 2 If x1 + · · · xn ≤ n − 1
2 and 0 ≤ xi ≤ 1 for each i , then

n∑
i=1

√
1 − x2

i ≥
√

3

2
.

Proof. We use induction on n. In the case n = 1, the statement is clear. If n > 1,
then either min(x1, x2) ≤ 1

2 or x1 + x2 > 1. In the first case we immediately have

max

(√
1 − x2

1 ,
√

1 − x2
2

)
≥

√
3

2 . In the second case, we can replace x1 and x2 by

the single number x1 + x2 − 1 and use the induction hypothesis together with the
previous lemma.

Let P and Q be vertices of our polygon such that l = P Q is a maximum.
The polygon consists of two paths from P to Q, each of intgral length greater
than or equal to l; these lengths are distinct because the perimeter is odd. Then
the greater of the two lengths, m, is at least l + 1. Position the polygon in the
coordinate plane with P = (0, 0), Q = (l, 0) and the longer path in the upper
half-plane. Because each side of the polygon has integer length, we can divide this
path into segments of length 1. Let the endpoints of these segments, in order, be
P0 = P, P1 = (x1, y1), P2 = (x2, y2), . . . , Pm = Q. There exists some r such that
yr is a maximum. Then either r ≥ xr + 1

2 or (m − r) ≥ (l − xr ) + 1
2 . Assume

the former (otherwise, just reverse the choices of P and Q). We already know that
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y1 ≥ 0, and by the maximal definition of l we must have x1 ≥ 0 as well. Because
the polygon is convex, we must have y1 ≤ y2 ≤ · · · ≤ yr and x1 ≤ x2 ≤ · · · ≤ xr .
Now yi+1 − yi = √

1 − (xi+1 − xi )2, so

yr =
r−1∑
i=0

(yi+1 − yi) =
r−1∑
i=0

√
1 − (xi+1 − xi)2 ≥

√
3

2

by the second lemma. Hence triangle P Pr Q has base P Q with length at least 1
and height yr ≥

√
3

2 , implying that its area is at least
√

3
4 . Because our polygon is

convex, it contains this triangle, and hence the area of the whole polygon is also at
least

√
3

4 .

Figure 223.

3.4.16 Let the outer quadrilateral be E FG H with angles ∠E = 2α1, ∠F = 2α2,

∠G = 2α3, ∠H = 2α4. Let the circumcircle of C have radius r and center
O, and let the sides E F, FG, G H, H E be tangent to C at I, J, K , L (Fig. 223).
In the right triangle E I O, we have I O = r and ∠O E I = α1, so that E I =
r cot α1. After finding similar expressions for I F, F J, . . . , L E , we have that PT =
2r
∑4

i=1 cot αi . Also, [E F O] = 1
2 E F · I O = 1

2 E F · r . Finding [FGO], [G H O],
[H E O] similarly shows that AT = 1

2 PT · r . Note that

I J = 2r sin ∠I O F = 2r sin(90◦ − α2) = 2r cos α2.

Similar expressions hold for J K , K L , L I leading to PC = 2r
∑4

i=1 cos αi . Also
note that ∠I O J = 180◦ − ∠J F I = 180◦ − 2α2 and hence

[I O J ] = 1

2
O I · O J sin ∠I O J = 1

2
r2 sin 2α2 = r2 sin α2 cos α2.
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Adding this to the analogous expressions for [J O K ], [K OL], [L O I ], we find that

AC = r2
4∑

i=1

sin αi cos αi .

Therefore the inequality we wish to prove is equivalent to(
4∑

i=1

cot αi

)(
4∑

i=1

sin αi cos αi

)
≥
(

4∑
i=1

cos αi

)2

,

which is true by the Cauchy–Schwarz inequality.

3.4.17

(a) Let O be the common center of the two circles (Fig. 224). Applying Ptolemy’s
inequality (Problem 3.2.6) to the quadrilaterals O AB1C1, O BC1 D1, OC D1 A1,
and O D A1 B1, we have

R · AC1 ≤ r · B1C1 + R · AB1,

R · B D1 ≤ r · C1 D1 + R · BC1,

R · C A1 ≤ r · D1 A1 + R · C D1,

R · DB1 ≤ r · A1 B1 + R · D A1.

Figure 224.

Addition yields

R · (AB + BC + C D + D A) ≤ r · (A1 B1 + B1C1 + C1 D1 + D1 A1).
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For equality to hold, all four quadrilaterals must be cyclic. Hence

∠O AC1 = ∠O B1C1 = ∠OC1 B1 = ∠O AD

by Thales’ theorem, so that O A bisects ∠B AD. Similarly, O B, OC , and O D
bisect ∠ABC , ∠BC D, and ∠C D A, respectively. Hence O is also the incenter
of ABC D. This is possible only if ABC D is a square. Conversely, if ABC D
is a square, so is A1 B1C1 D1, and the perimeter of the latter is clearly R

r times
that of the former.

(b) Let a = AB, b = BC, c = C D, d = D A, w = A1 D, x = B1 A, y = C1 B,
and z = D1C . By the power-of-a-point theorem (Fig. 224),

x(x + d) = y(y + a) = z(z + b) = w(w + c) = R2 − r2.

Since we have

∠B1 AC1 = 180◦ − ∠D AB = ∠BC D = 180◦ − ∠A1C D1,

we also have

[AB1C1]

[ABC D]
= x(a + y)

ad + bc
and

[A1C D1]

[ABC D]
= z(c + w)

ad + bc
.

Similarly,

[BC1 D1]

[ABC D]
= y(b + z)

ab + cd
and

[A1 B1D]

[ABC D]
= w(d + x)

ab + cd
.

Hence

[A1 B1C1 D1]

[ABC D]
= 1 + x(a + y) + z(c + w)

ad + bc
+ y(b + z) + w(d + x)

ab + cd

= 1 + (R2 − r2)

(
x

y(ad + bc)
+ z

w(ad + bc)

+ y

z(ab + cd)
+ w

x(ab + cd)

)
≥ 1 + 4(R2 − r2)√

(ad + bc)(ab + cd)

by the arithmetic mean–geometric mean inequality. Also,

2
√

(ad + bc)(ab + cd) ≤ (ad + bc) + (ab + cd)

= (a + c)(b + d) ≤ 1

4
(a + b + c + d)2 ≤ 8r2.
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The last step uses the fact that among all quadrilaterals inscribed in a circle,
the square has the greatest perimeter (Problem 2.1.12). We now have

[A1 B1C1 D1]

[ABC D]
≥ 1 + 4(R2 − r2)

4r2
= R2

r2
.

3.4.18

(a) Let ABC be a right-angled triangle whose vertices are grid points and whose
legs go along the lines of the grid with ∠A = 90◦, AB = m, and AC = n. Let
us consider the m × n rectangle ABC D as shown in Fig. 225.

Figure 225.

For an arbitrary polygon P let us denote by Sb(P) the total area of the black
part of P and by Sw(P) the total area of its white part.

When m and n are of the same parity the coloring of the rectangle ABC D
is centrally symmetric about the midpoint of the hypotenuse BC . Hence
Sb(ABC) = Sb(BC D) and Sw(ABC) = Sw(BC D). Therefore

f (m, n) = |Sb(ABC) − Sw(ABC)| = 1

2
|Sb(ABC D) − Sw(ABC D)|.

Hence f (m, n) = 0 for m, n both even and f (m, n) = 1
2 for m, n both odd.

(b) If m, n are both even or both odd the result follows from (a). Suppose now that
m is odd and n is even. Consider a point L on AB such that AL = m − 1 as
shown in Fig. 226.

Figure 226.
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Since m − 1 is even we have f (m − 1, n) = 0, i.e., Sb(ALC) = Sw(ALC).
Therefore

f (m, n) = |Sb(ABC) − Sw(ABC)| = |Sb(L BC) − Sw(L BC)|

≤ [L BC] = n

2
≤ 1

2
max(m, n).

(c) Let us compute f (2k + 1, 2k). As in (b) we will consider a point L on AB
such that AL = 2k. Since f (2k, 2k) = 0 and Sb(ALC) = Sw(ALC), we
have

f (2k + 1, 1k) = |Sb(L BC) − Sw(L BC)|.

Figure 227.

The area of the triangle L BC is k. Suppose without loss of generality that the
diagonal LC is all black (see Fig. 227). Then the white part of L BC consists
of several triangles B L N2k, M2k−1 L2k−1 N2k−1, M1L1N1 each of them similar
to B AC . Their total area is

Sw(L BC) = 1

2

2k

2k + 1

((
2k

2k

)2

+
(

2k − 1

2k

)2

+ · · · +
(

1

2k

)2
)

= 1

4k(2k + 1)
(12 + 22 + · · · + (2k)2) = 4k + 1

12
.

Therefore

Sb(L BC) = k − 1

12
(4k + 1) = 1

12
(8k − 1)

and thus

f (2k + 1, 2k) = 2k − 1

6
.

This function takes arbitrarily large values.
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4.14 Polygons in a Square

3.5.1 Hint. Use the same arguments as in the solution of Problem 3.4.3.

3.5.2 Let ABC D be a unit square and M N P Q a quadrilateral inscribed in it
(Fig. 228).

Figure 228.

Suppose that all its sides have lengths less than
√

2
2 . Then the root mean square–

arithmetic mean inequality implies that

AM + AQ ≤
√

2(AM2 + AQ2) =
√

2M Q2 < 1.

Analogously, M B + M N < 1, C N + C P < 1, and P D + DQ < 1. Adding these
inequalities gives 4 = AB + BC + C D + D A < 4, a contradiction.

3.5.3 The side length of any equilateral triangle inscribed in a unit square is at least
1, since two of its vertices lie on opposite sides of the square. Hence the minimum
of its area is equal to

√
3

4 , and it is attained when one of its sides is parallel to a side
of the square (Fig. 229).

Figure 229.

Let now P Q RS be a unit square and ABC an equilateral triangle such that
A ∈ P S, B ∈ Q R, and C ∈ S R (Fig. 230). We may assume that AP ≥ B Q.
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Figure 230.

Translate �ABC vertically such that B coincides with Q and let A′ and C ′ be
the images of A and C under this translation (Fig. 230). Set α = ∠A′ Q P, β =
∠C ′Q R and let C ′′ be the intersection point of the line QC ′ with S R. Suppose that
α > 15◦. Then β = 30◦ − α < 15◦ and we get

C ′Q = A′ Q = 1

cos α
>

1

cos β
= C ′′Q,

a contradiction. Hence α ≤ 15◦ and we have AB = A′ Q = 1
cos α

≤ 1
cos 15◦ .

This inequality shows that the area of ABC is a maximum when B = Q and
∠AQ P = ∠C Q R = 15◦ (Fig. 231). Note that in this case

[ABC] = AB2
√

3

4
=

√
3

4 cos2 15◦ =
√

3

2(1 + cos 30◦)
= 2

√
3 − 3.

Figure 231.

3.5.4 Draw lines parallel to a side of the square through all vertices of the given
polygon. They divide it into triangles and trapezoids (Fig. 232). Consider the line
segments joining the midpoints of their sides that are not parallel to the drawn
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lines. Suppose that all of them have lengths less than 1
2 . Since the total length of

the heights of all triangles and trapezoids is less than 1, it follows that the area of
the polygon is less than 1

2 , a contradiction.

Figure 232.

3.5.5 We shall show that there exist three consecutive vertices of the n-gon having
the desired property. Denote by a1, a2, . . . , an the side lengths of the n-gon. Let αi

be the angle between its i th and (i + 1)th sides and let Si be the area of the triangle
formed by these sides. Then Si = 1

2ai ai+1 sin αi , 1 ≤ i ≤ n.

(a) Denote by S the least of the numbers S1, S2, . . . , Sn. Then

(2S)n ≤ (2S1)(2S2) · · · (2Sn)

= (a1a2 · · · an)
2 sin α1 sin α2 · · · sin αn ≤ (a1a2 · · · an)

2,

and the arithmetic mean–geometric mean inequality gives

(1) 2S ≤ (a1a2 · · · an)
2
n ≤

(
a1 + a2 + · · · + an

n

)2

.

Denote by pi and qi the lengths of the orthogonal projections of the i th side of
the n-gon on two perpendicular sides of the square. Then ai ≤ pi + qi , 1 ≤
i ≤ n, and we get

a1 + a2 + · · · + an ≤ (p1 + p2 + · · · + pn) + (q1 + q2 + · · · + qn) ≤ 4.

Thus (1) implies S ≤ 8
n2 .

(b) The function sin x is concave along the interval [0, π ] since (sin x)′′ = − sin x <

0. Hence Jensen’s inequality gives

(2)
sin α1 + · · · + sin αn

n
≤ sin

α1 + · · · + αn

n
= sin

2π

n
.
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On the other hand, using the same arguments as in (a) we get

2S ≤ (a1a2 · · · an)
2
n (sin α1 · · · sin αn)

1
n ≤ 16

n2
(sin α1 · · · sin αn)

1
n .

Now the arithmetic mean–geometric mean inequality together with (2) gives

S ≤ 8

n2
(sin α1 · · · sin αn)

1
n ≤ 8

n2

(
sin α1 + · · · + sin αn

n

)
≤ 8

n2
sin

2π

n
.

3.5.6 Let D1, D2, . . . , Dn be the regions into which the square is divided by the
line segments and let A1, A2, . . . , An and P1, P2, . . . , Pn be their respective areas
and perimeters. Then

n∑
i=1

Pi = 4 + 2 · 18 = 40.

Consider an arbitrary region Di . Let Qi be the smallest rectangle circumscribed
around Di (Fig. 233).

Figure 233.

Clearly Pi ≥ 2(si + ti) and Ai ≤ si ti . Hence

n∑
i=1

Pi ≥ 2
n∑

i=1

(si + ti )

and √
Ai ≤ 1

2
(si + ti)

Consequently
n∑

i=1

√
Ai ≤ 1

2

n∑
i=1

(si + ti) ≤ 1

4

n∑
i=1

Pi = 10.



4.15. Broken Lines 237

Now suppose that Ai < 0.01 for i = 1, 2, . . . , n. Then using the above inequality
we get

1 =
n∑

i=1

Ai =
n∑

i=1

√
Ai

√
Ai <

n∑
i=1

0.1
√

Ai ≤ 1,

a contradiction. Thus Ai ≥ 0.01 for some i ∈ {1, 2, . . . , n}.

4.15 Broken Lines

3.6.1

(a) It follows from the condition of the problem that the horizontal (vertical) pro-
jections of the line segments forming the given broken line do not overlap.
Now the solution of the problem follows by the obvious fact that the length of
a line segment does not exceed the sum of the lengths of its projections on two
perpendicular lines.

(b) Let ABC D be a unit square and O its center. Consider the broken line AEC ,
where E is a point on the segment O B (Fig. 234).

Figure 234.

Its length l takes all values from the interval [
√

2, 2) as E runs over O B. On
the other hand, if E runs over the diagonal AC then the length of the line
segment AE takes all values from the interval (0,

√
2).

3.6.2 Assume the contrary. Then some edge A1 A2 of the broken line P1 inter-
sects an edge B1 B2 of the other broken line P2. The points A1 and A2 are not
on B1 B2, because otherwise the distance between two vertices of different bro-
ken lines would be less than 1

2 . A similar statement holds for B1 and B2, so
the quadrilateral A1 B1 A2 B2 is convex. Applying the law of cosines to triangle
A1 B1 A2 and using the constraints of the problem, we get cos ∠A1 B1 A2 ≥ 0, i.e.,
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∠A1 B1 A2 ≤ 90◦. The same is true for the other three angles of A1 B1 A2 B2, and
therefore all of them must be 90◦. It follows now from the Pythagorean theorem
that (A1 A2)

2 = (A1 B1)
2 + (B1 A2)

2 > 1, a contradiction.

3.6.3 Suppose the ant begins its path at P0, stops at P1, P2, . . . , Pn−1, and ends at
Pn (Fig. 235).

Figure 235.

Note that all segments P2i P2i+1 are parallel to each other and that all segments
P2i+1 P2i+2 are parallel to each other. We may then translate all segments so as to
form two segments P0 Q and Q Pn where ∠P0Q Pn = 120◦. Then P0 Pn ≤ 2r , and
the length of the initial path is equal to P0 Q + Q Pn . Set P0 Pn = c, P0 Q = a, and
Q Pn = b. Then the law of cosines gives

(2r)2 ≥ c2 = a2 + b2 + ab = (a + b)2 − ab ≥ (a + b)2 − 1

4
(a + b)2,

so 4r√
3

≥ a + b with equality if and only if a = b. The maximum is therefore
4r√

3
. This maximum can be attained, for example, with the path such that P0 P2 is a

diameter of the circle, and P0 P1 = P1 P2 = 2r√
3

(Fig. 236).

Figure 236.
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3.6.4 Let the broken line be formed by n line segments of lengths l1, l2, . . . , ln ,
respectively. Denote by ai and bi the lengths of the orthogonal projections of the
i th line segment onto two perpendicular sides of the square. Then li ≤ ai + bi ,
1 ≤ i ≤ n, and therefore

1000 = l1 + · · · + ln ≤ (a1 + · · · + an) + (b1 + · · · + bn).

We may assume that a1+· · ·+an ≥ 500. Then there is a point on the respective side
of the square that is covered by the projections of at least 500 line segments of the
broken line. Hence the line through that point and perpendicular to the respective
side of the square intersects the broken line at least 500 times.

3.6.5 Divide the square into n vertical strips such that each of them contains pre-
cisely n of the given n2 points (the boundary points can be assigned to the left or
to the right strip). Then we connect the n points in each strip from up to down and
obtain in this way n broken lines. Consider the two broken lines connecting all n2

points as shown in Fig. 237.

Figure 237.

The union of the line segments connecting the points in consequtive strips is a
pair of broken lines whose horizontal projections have lengths less than or equal to
1. Therefore the length of the horizontal projection of one of these broken lines is
not greater than

1 + (n − 1)(u1 + u2 + · · · + un) = n,

where ui is the width of the i th strip. The length of the vertical projection of this
broken line is obviously not greater than n and therefore its length is not greater
than 2n.

3.6.6 We shall show that the government has enough money to construct a system
of highways connecting all 51 towns. Indeed, we first construct a highway through
one of the towns in the vertical direction from the north to the sought boundary of
the country. Its length is 1000 km. Then we construct 5 horizontal highways from
the west to the east boundary of the country at distances 100 km, 300 km, 500 km,
700 km, and 900 km from its south boundary (Fig. 238).
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Figure 238.

Then from each of the remaining 50 towns we construct the shortest highway
to a horizontal one. The length of any such a highway is not greater than 100 km.
The system of highways constructed in this way connects all towns of the country
and its total length is not greater than 6 · 1000 + 50 · 100 = 11000 km.

3.6.7 Consider the set of points at distance less than d from the points of a given
line segment of length h (Fig. 239). Its area is equal to πd2 + 2hd. Now construct
such figures for all n line segments of the given broken line. Since the intersection
of any two consecutive figures is contained in a disk of radius d, it follows that
the area of the union F of all figures is not greater than 2dl + πd2. The condition
of the problem implies that the set F contains the given unit square and therefore
1 ≤ 2dl + πd2, which is equivalent to the inequality l ≥ 1

2d − πd
2 .

Figure 239.

4.16 Distribution of Points

3.7.1 Let the four vertices of the square be V1, V2, V3, V4, and let S = {P1, P2, . . . ,
Pn}. For a given Pk , we may assume without loss of generality that Pk lies on the
side V1V2 (Fig. 240).
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Figure 240.

Writing x = Pk V1, we have

4∑
i=1

Pk V 2
i = x2 + (1 − x)2 + (1 + x2) + (1 + (1 − x)2) = 4

(
x − 1

2

)2

+ 3 ≥ 3.

Hence
4∑

i=1

n∑
j=1

Pj V
2

i ≥ 3n, or
4∑

i=1

1

n

n∑
j=1

Pj V
2

i

 ≥ 3.

Thus, if we select the Vi for which 1
n

∑n
j=1 Pj V 2

i is maximized, we are guaranteed

it will be at least 3
4 .

3.7.2 Divide the given square into 25 squares of side length 1
5 . Then one of them

contains at least 5 of the given 101 points. These 5 points lie in its circumcircle
which has radius

√
2

10 < 1
7 .

3.7.3 Suppose that the distance between any two of the given 112 points is at least
1
8 . Consider the disks centered at these points and with radius 1

16 .
Any two of these disks do not intersect and all of them lie in the set A of points

shown in Fig. 241. The area of A is equal to 1 + 4 · 1
16 + π

162 . Hence

1 + 4

16
+ π

162
>

112π

162
,

which is equivalent to 320 > 111π . But this is a contradiction since 111π > 333.

3.7.4 Divide the given unit cube into 8 cubes with edges 1
2 . It is clear that each of

them contains exactly one of the given 8 points; otherwise, two of these points are
contained in a cube of edge 1

2 , and the distance between them would be less than

or equal to
√

3
2 < 1, a contradiction.
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Figure 241.

Now suppose that one of the given points, denote it by M , is not a vertex of the
cube. Denote by B the common vertex of the given cube and the cube of edge 1

2
containing M . Then at least one of the orthogonal projections of M on the three
edges through B does not coincide with B; let this edge be AB. Denote by N
the point contained in the cube of edge 1

2 and vertex A and by M1 and N1 the
orthogonal projections of M and N on AB. Let N2 be the orthogonal projection
of N on the line M M1. Set M1 B = d ≤ 1

2 . Then M1 N2
1 + M N2

2 = M N2 ≥ 1
and M N2 ≤ d

√
2. Hence M1 N1 ≥ √

1 − 2d2 and we get d = M1 B ≤ AB −
M1 N1 ≤ 1 − √

1 − 2d2. Therefore d ≤ 1 − √
1 − 2d2, which implies that d ≥ 2

3 ,
a contradiction.

3.7.5 Divide the square into 50 horizontal rectangles of height 2. Suppose that
one of these rectangles contains at most 7 centers of the given disks. Then the
length of the line segment connecting the midpoints of its vertical sides is less than
8 ·10+7 ·2 = 94, a contradiction. Hence each rectangle contains at least 8 centers,
and the total number of disks is at least 8 · 50 = 400.

3.7.6

(a) It is enough to show that the square can be divided into 2(n + 1) triangles with
vertices among the given points P1, P2, . . . , Pn and the vertices of the square.
To do this we first divide the square into 4 triangles by connecting P1 with its
vertices. If P2 lies in the interior of one of these triangles we connect P2 with
its vertices. If P2 lies on a common side of two triangles we connect P2 with
their opposite vertices. Proceeding in the same way for P3, . . . , Pn we finally
divide the square into 2(n + 1) triangles (Fig. 242).

(b) We may assume that no three of the given n points are collinear. Then their
convex hull M is a k-gon, 3 ≤ k ≤ n. If k = n we divide M into n−2 triangles
by means of the diagonals through a fixed vertex. If k < n we use the same
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Figure 242.

procedure as in (a) to divide M into k + 2(n − k − 1) = 2n − k − 2 > n − 2
triangles. Since the area of M is less than 1 it is clear that in both cases at least
one of the obtained triangles has area less than 1

n−2 .

3.7.7 First solution. Suppose no such triangle exists. Divide the 25 lattice points
(x, y), x = 0,±1,±2, y = 0,±1,±2, into three rectangular arrays as shown in
Fig. 243 (left). If three of the points in P = {P1, P2, . . . , P6} are in the same array,
they will determine a triangle with area not greater than 2. Hence each array con-
tains exactly two points in P . By symmetry, each of the arrays in Fig. 243 (right)
must contain exactly two points in P . This is a contradiction since P contains only
6 points.

Figure 243.

Second solution. Suppose no such triangle exists. By the pigeonhole principle,
at least one row contains two points in P . Then its adjacent rows cannot contain
any points in P . Thus the distribution of the points in P among the rows must
be (2, 0, 2, 0, 2). By symmetry, this is also their distribution among the columns.
Thus we may restrict our attention to the points (xi , yi) with xi = 0 or ±2 and
yi = 0 or ±2. At least one of (0,−2) and (0, 2) must be in P , and we may assume
that (0, 2) is. If (0, 0) is also in P , then these two points determine a triangle of
area 2 along with any of the other four points in P . Hence (0, 0) is not in P , and
that puts (0,−2), (−2, 0), and (2, 0) in P . However, the inclusion in P of any of
the remaining four points will create a triangle of area 2. This is a contradiction.
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3.7.8 Take a line l passing through a point P ∈ S and such that the whole set S
lies on one side of l. Let D be the closed half-disk centered at P , of radius

√
3,

and diameter on line l. Divide D into seven congruent sectors of angular size π
7

(Fig. 244).

Figure 244.

We are going to show that each sector contains at most one point of S, other
than P . To prove this, take a coordinate system such that P is the origin and l the
x-axis. Remove from the middle sector of D all points that are within distance 1
from P . What remains, is a “curvilinear quadrilateral,” whose most distant points
are

A

(
− cos

3

7
π, sin

3

7
π

)
, B

(√
3 cos

3

7
π,

√
3 sin

3

7
π

)
,

with

AB2 = (
√

3 + 1)2 cos2 3

7
π + (

√
3 − 1)2 sin2 3

7
π

= 4 − 2
√

3 cos
1

7
π < 4 − 2

√
3 cos

1

6
π = 1.

It follows that there are no more than 8 points of S in D, including the center P .
Delete all these points from S; what remains is a set S′ of at least 1972 points.
The same procedure can now be performed with respect to S′ and we continue this
procedure until there are no points left. At each step we kill 8 points of S (having
covered them by a half-disk of radius

√
3). Thus the number of steps is not less

than 1980
8 , hence not less than 248. The centers of the half-disks constructed in the

successive steps constitute a set of at least 248 points, the mutual distance between
any two of them exceeding

√
3.

3.7.9 Since no two of the given n points lie on a radial direction (otherwise the
distance between them would be less than

√
2 − 1 < 1), we may order them clock-

wise. Consider two consecutive points A and B. Set AO = x, B O = y, AB = z,
and ∠AO B = ϕ, where O is the center of the annulus. Then 1 ≤ x, y ≤ √

2, and
z ≥ 1. By the law of cosines we get
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cos ϕ = x2 + y2 − z2

2xy
≤ x2 + y2 − 1

2xy
.

For a fixed x consider the right-hand side of the above inequality as a function of
y. This function is increasing for 1 ≤ y ≤ √

2 since its first derivative is equal to

y2 − x2 + 1

2xy2
≥ 2 − x2

2xy2
≥ 0.

Hence
x2 + y2 − 1

2xy
≤ x2 + 1

2x
√

2
.

On the other hand it is easy to check that

x2 + 1

2x
√

2
≤ 3

4

for 1 ≤ x ≤ √
2 and we get that cos ϕ ≤ 3

4 . Now the well-known inequality

cos x ≥ 1 − x2

2 implies that cos 2π
9 ≥ 1 − 2π2

81 > 3
4 ≥ cos ϕ, and we conclude that

ϕ > 2π
9 . This shows that n < 9. Thus, the desired largest n is equal to 8, since

the 8 vertices of a regular octagon inscribed in the circle of radius
√

2 satisfy the
condition of the problem.

3.7.10 The problem can be restated using mathematical terminology as follows:
A set S of ten points in the plane is given, with all the mutual distances distinct.

For each point P ∈ S we mark red the point Q ∈ S(Q 	= P) nearest to P. Find
the least possible number of red points

Note that every red point can be assigned (as the closest neighbor) to at most
five points from S. Otherwise, if a point Q were assigned to P1, . . . , P6, then one
of the angles Pi Q Pj would be not greater than 60◦, in contradiction to Pi Pj being
the longest side in the (nonisosceles) triangle Pi Q Pj .

Let AB be the shortest segment with endpoints A, B ∈ S. Clearly, A and B are
both red. We are going to show that there exists at least one more red point. Assume
the contrary, so that for each one of the remaining eight points, its closest neighbor
is either A or B. In view of the previous observation, A must be assigned to four
points, M1, M2, M3, M4, and B must be assigned to the remaining four points,
N1, N2, N3, N4. Choose labeling such that the angles Mi AMi+1 (i = 1, , 2, 3) are
successively adjacent, angles Ni ANi+1 are so too, the points M1, N1 lie on one side
of line AB, and M4, N4 lie on the opposite side. As before, each angle Mi AMi+1

and Ni ANi+1 is greater than 60◦. Therefore each one of ∠M1 AM4 and ∠N1 B N4

is less than 180◦, and hence (∠M1 AB +∠N1 B A)+ (∠M4 AB +∠N4 B A) < 360◦.
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At least one of the two sums in the parentheses, say the first one, is less than
180◦: ∠M AB + ∠N B A < 180◦. Here and in the sequel we write M, N instead of
M1, N1 for brevity.

Since M A < M B and N B < N A, the points A, M lie on one side of the
perpendicular bisector of AB, and the points B, N lie on the other side. Hence, and
because M, N lie on the same side of AB, the points A, B, N, M are consecutive
vertices of a quadrilateral. Since AB is the shortest side of the triangle B N A,
and since M A(< M N) is not the longest side in the triangle AM N , the angles
B N A and AN M are acute. Therefore the internal angle B N M of the quadrilateral
AB N M is less than 180◦. Similarly, its internal angle N M A is less than 180◦.
Thus AB N M is a convex quadrilateral (Fig. 245).

Figure 245.

Choose points U, V, X, Y arbitrarily on the rays M A, N B, AM, B N produced
beyond the quadrilateral. The previous condition ∠M AB+∠N B A < 180◦ implies
the inequalities ∠U AB + ∠ABV > 180◦ and ∠X M N + ∠M NY < 180◦.

Define the angles α = ∠N AB, β = ∠AB M, γ = ∠B M N, δ = ∠M N A.
In triangle N AB we have AB < N B, so that ∠AN B < ∠N AB = α, and thus
∠ABV = ∠N AB + ∠AN B < 2α.

In triangle B M N we have M N > B N , so that ∠M B N > ∠B M N = γ , and
consequently ∠M NY = ∠B M N + ∠M B N > 2γ. Analogously, ∠U AB < 2β

and ∠X M N > 2δ. Hence

2α + 2β > ∠ABV + ∠U AB > 180◦ > ∠M NY + ∠X M N > 2γ + 2δ.

This yields the desired contradiction because α + β = γ + δ (= ∠AZ M , where Z
is the point of intersection of AN and B M).

Thus, indeed, there exists a third red point. The following example shows that
a fourth red point need not exist, so that three is the minimum sought.
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Figure 246.

Example. The two tangent circles in Fig. 246 differ slightly in size.
The acute central angles are greater than 60◦. Six points are just a bit outside

the circles. The length of the vertical segment is equal to the radius of the bigger
circle. Each point has a unique (hence well-defined) closest neighbor, which has to
be marked red.

The only three that will be marked red are the two centers and the point of
tangency. If some of the (irrelevant) distances happen to be equal, one can slightly
perturb the positions of any points without destroying the mentioned properties.

3.7.11 We shall prove the result by induction on n, by means of the following
lemma.

Lemma. If more than two diameters issue from one of the given points, then there
is another point from which only one diameter issues.

Proof. Let A be an endpoint of three (or more) diameters. The other endpoints of
these diameters lie on a circle OA with center A and radius d. Moreover, they all
lie on an arc of radian measure ≤ π

3 , since otherwise the pair farthest apart will be
at a distance > d from each other. Denote the other endpoints of three diameters
from A by B1, B2, B3, where B2 lies between B1 and B3 on this arc. With B2 as
a center, draw a circle OB2 with radius d and denote the intersections of OB2 and
OA by P and Q (Fig. 247). We claim that no point of the given set, except A, lies
on the circle OB2 . For all points of the major arc P Q (except P and Q) are farther
than d away from A, all points on arc P A (including P but not A) are farther than
d away from B1, and all points on arc Q A (including Q but not A) are farther than
d away from B2. It follows that B2 A is the only diameter issuing from B2. Thus,
if k > 2 diameters issue from A, there is at least one point from which only one
diameter issues.

We now proceed by induction on n. For a set of three points, there are obviously
at most three diameters. So the assertion of the problem holds for n = 3. Suppose
it holds for sets of n points with n = 1, 2, . . . , m. We shall show that it then holds
for sets of m + 1 points.
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Figure 247.

Consider a set S of m + 1 points. We distinguish two cases:

(a) At most two diameters issue from each of the m+1 points. Since each diameter
has two endpoints, there are at most 2(m+1)

2 = m +1 diameters, so the assertion
of the problem holds for S.

(b) There is a point A of S from which more than two diameters issue. Then, by
the lemma proved above, there is another point B of S from which only one
diameter issues. Now consider the set S − B of m points remaining when B is
deleted from S. By the induction hypothesis, S − B has at most m diameters.
When B is added to S − B, the resulting set S gains exactly one diameter.
Hence S has at most m + 1 diameters. This completes the proof.

Note that for any n ≥ 3, there exist sets S of n points in the plane with exactly n
diameters. If n is odd, the set S of vertices of a regular n-gon has this property.
(See Fig. 248, where n = 5.)

To get an example that works for all n ≥ 3, consider Fig. 249. In this figure
A, B, C are vertices of an equilateral triangle. The remaining n − 3 points are
chosen on the circular arc BC with center A.

We note incidentally that Fig. 248 and Fig. 249 illustrate the two cases (a) and
(b) occurring in our induction proof.
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3.7.12 First solution. Consider first the case n = 5. We must show that there is at
least

(5−3
2

) = 1 convex quadrilateral. If the convex hull of the five points has four
of them on its boundary, they form a convex quadrilateral. If the boundary of the
convex hull contains only three of the points, say A, B, C , then the other two, D
and E , are inside �ABC . Two of the points A, B, C must lie on the same side of
the line DE . Suppose for definiteness that A and B lie on the same side of DE , as
in Fig. 250. Then AB DE is a convex quadrilateral.

Figure 250.

Consider now the general case n ≥ 5. With each of the
(n

5

)
subsets of five

of the n points, associate one of the convex quadrilaterals whose existence was
demonstrated above. Each quadrilateral is associated with at most n −4 quintuples
of points, since there are n − 4 possibilities for the fifth point. Therefore there are

at least

(n
5

)
n−4 different convex quadrilaterals in the given set of n points. Now,

1

n − 4

(
n
5

)
= n(n − 1)(n − 2)(n − 3)(n − 4)

1 · 2 · 3 · 4 · 5 · (n − 4)

= n(n − 1)(n − 2)

60(n − 4)

(
n − 3

2

)
,

and it is enough to prove that n(n − 1)(n − 2) ≥ 60(n − 4) for n ≥ 5. This can be
seen by forming the difference n(n−1)(n−2)−60(n−4) = n3−3n2−58n+240 =
(n − 5)(n − 6)(n + 8), and observing that it vanishes for n = 5 and n = 6 and is
positive for all greater n.

Second solution. Choose three points A, B, C of the given set S that lie on the
boundary of its convex hull. Then there are

(n−3
2

)
ways in which two additional

points D and E can be selected from S. Once they are chosen, at least two of the
points A, B, C must lie on the same side of the line DE . Suppose for definiteness
that A and B are on the same side of DE (Fig. 250). Then A, B, D, E are the
vertices of a convex quadrilateral. For if not, their convex hull would be a triangle.
One of the points A, B would lie inside this triangle, contradicting the fact that
A, B, C were chosen to be on the boundary of the convex hull of S. Thus we have
found

(n−3
2

)
convex quadrilaterals whose vertices are among the given points.
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4.17 Coverings

3.8.1 Consider the circle of minimum radius R containing the quadrilateral. Then
either two vertices of the quadrilateral lie on it and are diametrically opposite, or
three vertices lie on it and form an acute triangle. In the first case, 2R ≤ 1, so we
certainly have R < 1√

3
. In the second case, let θ be the largest angle of the acute

triangle. Then 60◦ ≤ θ < 90◦ so that sin θ ≥
√

3
2 . By the extended law of sines,

2R sin θ is equal to the side of the triangle opposite θ , which is at most 1. Hence
R ≤ 1√

3
.

3.8.2 Clearly, the unit circles centered at the vertices cover the parallelogram if
and only if the unit circles centered at A, B, D cover �AB D. To see when this
happens, we first prove the following lemma:

Lemma. Let AB D be an acute triangle, and let r be its circumradius. Then the
three circles of radius s centered at A, B, D cover �AB D if and only if s ≥ r.

Proof. Since �AB D is acute, its circumcenter O lies inside the triangle. The
distances O A, O B, O D are equal to r , so if s < r , O does not lie in any of the
three circles of radius s centered at A, B, D. It therefore remains only to prove
that the circles of radius r centered at A, B, D do indeed cover the triangle. To
show this, let L , M , and N be the feet of the perpendiculars from O to the sides
B D, D A, AB, respectively (Fig. 251).

Figure 251.

Then AN < AO and AM < AO. Hence the quadrilateral AM O N lies in-
side the circle through O centered at A. Similarly, the quadrilaterals B L O N and
DL O M lie inside the circles through O centered at B and at D respectively. It
follows that �AB D is contained in the union of the three circles. This completes
the proof of the lemma.
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It is an immediate consequence of the lemma that the unit circles centered at
A, B, D cover �AB D if and only if 1 ≥ r . We shall now show that this condition
is equivalent to a ≤ cos α + √

3 sin α.
Let d denote the length of side B D. By the law of cosines,

(1) d2 = 1 + a2 − 2a cos α.

On the other hand, by the law of sines, d
2r = sin α, and hence d2 = 4r2 sin2 α.

Substituting this into (1), we obtain

4r2 sin2 α = 1 + a2 − 2a cos α.

Therefore r ≤ 1 if and only if

(2) 4 sin2 α ≥ 1 + a2 − 2a cos α.

On the right side of (2), replace the term 1 by cos2 α + sin2 α. Then (2) becomes
equivalent to

3 sin2 α ≥ a2 − 2a cos α + cos2 α = (a − cos α)2,

and it remains to show that a − cos α ≥ 0. To do this, we draw the altitude DQ
from D to AB. Since �AB D is acute, Q is inside the segment AB, so AQ < AB.
But AQ = cos α and AB = a, so cos α < a. This completes the solution.

3.8.3 From the condition, we also know that every point inside or on the triangle
lies inside or on one of the six circles.

Define R = 1
1+√

3
. Orient triangle ABC so that B is directly to the left of C ,

and so that A is above BC (Fig. 252).

Figure 252.

Draw point W on AB such that W A = R, and then draw point X directly
below W such that W X = R. In triangle W X B, W B = 1 − R = √

3R and
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∠BW X = 30◦, implying that X B = R as well. Similarly draw Y on AC such that
Y A = R, and Z directly below Y such that Y Z = ZC = R. In triangle AWY ,
∠A = 60◦ and AW = AY = R, implying that WY = R. This in turn implies that
X Z = R and that W Z = Y X = R

√
2.

Now if the triangle is covered by six congruent circles of radius r , each of the
seven points A, B, C, W, X, Y, Z lies on or inside one of the circles, so some two
of them are in the same circle. Any two of these points are at least R ≤ 2r apart,
so r ≥ 1

4(
√

3 − 1).

3.8.4 Note first that an equilateral triangle of side length 3
2 can be covered by means

of three equilateral triangles of side length 1. These are the triangles cut from its
corners by the lines through its center and parallel to its sides (Fig. 253).

Figure 253.

Now suppose that an equilateral triangle ABC of side length a > 3
2 is covered

by three equilateral triangles T1, T2, and T3 of side lengths 1. Then each of these
triangles contains only one of the vertices A, B, C; let A ∈ T1, B ∈ T2, C ∈ T3.
We may assume that the center O of �ABC belongs to T1. Consider the points
M ∈ AB and N ∈ AC such that AM = AN = 1

3 a. Then B M = C N = 2
3a > 1

and therefore M ∈ T1 and N ∈ T1. Hence the rhombus AM O N is contained in
triangle T1 and we get from Problem 3.4.4 that

a2
√

3

9
= 2[AM O N ] ≤ [T1] =

√
3

4
.

Thus a ≤ 3
2 , a contradiction.

3.8.5

(a) The desired radius R is equal to the circumradius of the equilateral triangle
of side length 2, i.e., R = 2√

3
. Indeed, note first that given an equilateral

triangle of side length 2 the three unit disks with diameters its sides cover its
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circumcircle. On the other hand, if three unit disks cover a circle of radius
greater than 2√

3
then one of them contains an arc from this circle of more than

120◦ and hence a chord of length greater than 2, a contradiction.

(b) Assume that R1 ≤ R2 ≤ R3. Using similar arguments as in (a) one can show
that if 2R1, 2R2, 2R3 are side lengths of an acute triangle, i.e., R2

3 < R2
1 + R2

2,

then its circumradius is the desired one. If R2
3 ≥ R2

1 + R2
2 , the desired radius

is equal to R3.

3.8.6 We shall prove that the desired number is 7.
Note first that a disk D of radius 2 can be covered by 7 unit disks. Indeed, let

O be the center of D and let F be a regular hexagon with vertices on its circum-
ference. Then the 6 unit disks with diameters the sides of F together with the unit
disk with center O cover D (Fig. 254).

Suppose now that 6 unit disks cover a disk D of radius 2. Since each of them
covers no more than 1

6 part of the circumference of D, it follows that these 6 unit
disks form the same configuration as in Fig. 254.

Figure 254.

But then they do not cover the center O of D, a contradiction.

3.8.7 The answer is yes. It is shown in Fig. 255 how one can cover a square of side

length
√√

5+1
2 > 5

4 by means or three unit squares.

3.8.8 We may assume that the side lengths of the given squares are less than 1.
Then we cut from each of them the largest square of side length 1

2n , where n is a
positive integer. Note that given a square of side length a < 1, the integer n is
uniquely determined by the inequalities 1

2n ≤ a < 1
2n−1 . Hence the new squares

have side lengths of the form 1
2n and the sum of their areas is at least 1. Now we

shall show that one can cover a unit square by means of these new squares. To see
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Figure 255.

this we proceed in the following way. We first divide the given square into four
squares with side length 1

2 , and put on them all squares from the new collection
having side length 1

2 . Suppose that the unit square remains uncovered. Then we
divide any of the uncovered squares of side length 1

2 into 4 squares of side length
1
22 and put on them all squares of side length 1

22 from the new collection.

Figure 256.

We may suppose that some of the squares of side length 1
22 remain uncovered

and proceed as above until we use all squares from the new collection (Fig. 256).
Suppose that after the final step the given square remains uncovered. Since we
have used all the squares from the new collection it follows that their total area is
less than 1, a contradiction.



Notation

• In a triangle ABC: a = BC , b = AC , c = AB; α = ∠BC A, β = ∠ABC ,
γ = ∠BC A;

r – radius of the incircle; R – radius of the circumcircle;

O – circumcenter, i.e., the center of the circumcircle of the triangle;

H – orthocenter, i.e., the intersection point of the altitudes in the triangle;

G – centroid, i.e., the intersection point of the medians of the triangle;

ma , mb, mc – the lengths of the medians through A, B, and C , respectively;

ha, hb, hc – the lengths of the altitudes through A, B, and C , respectively;

• s = a+b+c
2 – semiperimeter of �ABC

• [ABC...] – the area of the polygon ABC...

• Vol(P) – volume of the polyhedron P

• −→
AB – the vector determined by the points A and B

• −→
AB · −→

C D = (
−→
AB,

−→
C D) = AB · C D · cos α – dot (inner) product of the

vectors
−→
AB and

−→
C D. Here α is the angle between the two vectors.





Glossary of Terms

• Circle of Apollonius: The locus of a point that moves so that the ratio of its
distances from two given points is constant is a circle (or a line).

• Arithmetic mean–geometric mean inequality:

x1 + x2 + · · · + xn

n
≥ n

√
x1x2 · · · xn

for any nonnegative real numbers x1, . . . , xn . Equality holds if and only if
x1 = x2 = · · · = xn .

• Cauchy–Schwarz inequality: For any real numbers x1, x2, . . . , xn and
y1, y2, . . . , yn,

(x2
1 + x2

2 + · · · + x2
n)(y2

1 + y2
2 + · · · + y2

n) ≥ (x1 y1 + x2 y2 + · · · + xn yn)
2,

with equality if and only if xi and yi are proportional, i = 1, 2, . . . , n.

• Centroid of a triangle: The intersection point of its medians.

More generally, if A1, A2, . . . , An are points in the plane or in space, their
centroid G is the unique point for which

−−→
G A1 + −−→

G A2 + · · · + −−→
G An = −→

0 .

• Centroid of a tetrahedron: The intersection point of its medians, i.e. the
segments connecting its vertices with the centroids of the opposite faces.
(See also the above.)

• Ceva’s theorem: If AD, B E , and C F are concurrent cevians (a cevian is a
segment joining a vertex of a triangle with a point on the opposite side) of a
triangle ABC , then (i) B D · C E · AF = DC · E A · F B. Conversely, if AD,
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B E , and C F are three cevians of a triangle ABC such that (i) holds, then
the three cevians are concurrent.

• Circumcenter: Center of the cir cumscribed circle or sphere.

• Circumcircle: Circumscribed circle.

• Chebyshev’s inequality: For any real numbers x1 ≤ x2 ≤ · · · ≤ xn and
y1 ≤ y2 ≤ · · · ≤ yn,(

1

n

n∑
i=1

xi

) (
1

n

n∑
i=1

yi

)
≤ 1

n

n∑
i=1

xi yi ,

with equality if and only if x1 = x2 = · · · = xn or y1 = y2 = · · · = yn.

• Convex function: A function f (x) defined on an interval I is said to be
convex if

f

(
x + y

2

)
≤ f (x) + f (y)

2

for any x, y ∈ I . If the second derivative f ′′(x) exists and f ′′(x) ≥ 0 for all
x ∈ I , then f is convex on I .

• Convex hull of a set F (in the plane or in space): The smallest convex set
containing F .

• Convex polygon: A polygon in the plane that lies on one side of each line
contaning a side of the polygon.

• Convex polyhedron: A polyhedron in space that lies on one side of each
plane contaning a face of the polyhedron.

• Cyclic polygon: A polygon that can be inscribed in a circle.

• Dilation (homothety) with center O and coefficient k 	= 0 (in the plane or in
space): A transformation that assigns to every point A the point A′ such that−−→
O A′ = k · −→

O A.

• Euler’s formula: If O and I are the circumcenter and the incenter of a trian-
gle with inradius r and circumradius R, then O I 2 = R2 − 2Rr .
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• Euler’s line: The line through the centroid G, the orthocenter H , and the
circumcenter O.

• Incenter: Center of inscribed circle or sphere.

• Incircle: Inscribed circle.

• Jensen’s inequality: If f (x) is a convex function on an interval I , then

f

(
a1 + a2 + · · · + an

n

)
≤ f (a1) + f (a2) + · · · + f (an)

n

for any positive integer n and for any choice of a1, . . . , an ∈ I .

• Heron’s formula: The area F of an arbitrary triangle with sides a, b, and c
and semiperimeter s = a+b+c

2 is

F = √
s(s − a)(s − b)(s − c) .

• Law of Sines:
BC

sin α
= C A

sin β
= AB

sin γ
= 2R

in any triangle ABC with circumradius R and angles α, β, and γ , respec-
tively.

• Law of cosines:

BC2 = AC2 + BC2 − 2AC · BC · cos α

in any triangle ABC .

• Leibniz’s formula: Let G be the centroid of a set of points {A1, A2, . . . , An}
in the plane (space).

Then for any point M in the plane (space) we have

M A2
1 + M A2

2 + · · · + M A2
n = n · MG2 + G A2

1 + G A2
2 + · · · + G A2

n .

• Median formula:

m2
c = 1

4
(2a2 + 2b2 − c2).
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• Minkowski’s inequality: For any real numbers x1, x2, . . . , xn , y1, y2, . . . ,
yn, . . . , z1, z2, . . . , zn,√

x2
1 +y2

1 +· · ·+z2
1+
√

x2
2 + y2

2 + · · · + z2
2 + · · · +

√
x2

n + y2
n + · · · + z2

n ≥√
(x1+x2+· · ·+xn)2+(y1+y2+· · ·+yn)2 + · · · + (z1 + z2 + · · · + zn)2,

with equality if and only if xi , yi , . . . , zi are proportional, i = 1, 2, . . . , n.

• Orthocenter of a triangle: The intersection point of its altitudes.

• Pick’s theorem: Given a non-self-intersecting polygon P in the coordinate
plane whose vertices are at lattice points, let B denote the number of lattice
points on its boundary and let I denote the number of lattice points in its
interior. Then the area of P is given by the formula I + B/2 − 1.

• Pigeonhole principle: If n objects are distributed among k boxes and k < n,
then some box contains at least two objects.

• Power-of-a-point theorem:

(a) If AB and C D are two chords in a circle that intersect at a point P
(which may be inside, on, or outside the circle), then P A · P B = PC ·
P D.

(b) If the point P is outside a circle through points A, B, and T , where PT
is tangent to the circle and P AB a secant, then PT 2 = P A · P B.

• Ptolemy’s theorem: If a quadrilateral ABC D is cyclic, then AB ·C D + BC ·
AD = AC · B D.

• Regular polygon: A convex polygon all of whose angles are equal and all of
whose sides have equal lengths.

• Regular tetrahedron: A tetrahedron all edges of which have equal lengths.

• Rhombus: A parallelogram with sides of equal length.

• Root mean square–arithmetic mean inequality:(
x1 + x2 + · · · + xn

n

)2

≤ x2
1 + x2

2 + · · · + x2
n

n
,
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for any real numbers x1, . . . , xn , where equality holds if and only if x1 =
x2 = · · · = xn .

• Rotation through an angle α (counterclockwise) about a point O in the plane
is the transformation of the plane that assigns to any point A the point A′ such
that O A = O A′, ∠AO A′ = α, and the triangle O AA′ is counterclockwise
oriented.

• Simson’s theorem: For any point P on the circumcircle of a triangle ABC ,
the feet of the perpendiculars from P to the sides of ABC all lie on a line
called the Simson line of P with respect to triangle ABC .

• Trigonometric identities:

sin2 α + cos2 α = 1,

tan α = sin α

cos α
,

cot α = cos α

sin α
,

csc(α) = 1

sin α
;

addition and subtraction formulas:

sin(α ± β) = sin α cos β ± cos α sin β,

cos(α ± β) = cos α cos β ∓ sin α sin β,

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β
;

double-angle formulas:

sin(2α) = 2 sin α cos α,

cos(2α) = 2 cos2 α − 1 = 1 − 2 sin2 α,

tan(2α) = 2 tan α

1 − tan2 α
;

triple-angle formulas:

sin(3α) = 3 sin α − 4 sin3 α,

cos(3α) = 4 cos3 α − 3 cos α,
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tan(3α) = 3 tan α − tan3 α

1 − 3 tan2 α
;

half-angle formulas:

sin α = 2 tan α
2

1 + tan2 α
2

,

cos α = 1 − tan2 α
2

1 + tan2 α
2

,

tan α = 2 tan α
2

1 − tan2 α
2

;

sum-to-product formulas:

sin α + sin β = 2 sin
α + β

2
cos

α − β

2
,

cos α + cos β = 2 cos
α + β

2
cos

α − β

2
,

tan α + tan β = sin(α + β)

cos α cos β
;

difference-to-product formulas:

sin α − sin β = 2 sin
α − β

2
cos

α + β

2
,

cos α − cos β = −2 sin
α − β

2
sin

α + β

2
,

tan α − tan β = sin(α − β)

cos α cos β
;

product-to-sum formulas:

2 sin α cos β = sin(α + β) + sin(α − β),

2 cos α cos β = cos(α + β) + cos(α − β),

2 sin α sin β = − cos(α + β) + cos(α − β).
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