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Introduction

In this article I aim to briefly develop the theory of areal (or ‘barycentric’) co-ordinate methods with a view
to making them accessible to a reader as a means for solving problems in plane geometry. Areal co-ordinate
methods are particularly useful and important for solving problems based upon a triangle, because, unlike
cartesian co-ordinates, they exploit the natural symmetries of the triangle and many of its key points in a
very beautiful and useful way.

Setting up the co-ordinate system

If we are going to solve a problem using areal co-ordinates, the first thing we must do is choose a triangle
ABC, which we call the triangle of reference, and which plays a similar role to the axes in a cartesian
co-ordinate system. Once this triangle is chosen, we can assign to each point P in the plane a unique triple
(x, y, z) fixed such that x + y + z = 1, which we call the areal co-ordinates of P . The way these numbers are
assigned can be thought of in three different ways, all of which are useful in different circumstances. I shall
reserve the proofs that these three conditions are equivalent, along with a proof of the uniqueness of areal
co-ordinate representation, for the appendix. The first definition we shall see is probably the most intuitive
and most useful for working with. It also explains why they are known as ‘areal’ co-ordinates.

1st Definition: A point P internal to the triangle ABC has areal co-ordinates
(

[PBC]
[ABC] ,

[PCA]
[ABC] ,

[PAB]
[ABC]

)
.

If a sign convention is adopted, such that a triangle whose vertices are labelled clockwise has negative area,
this definition applies for all P in the plane.

Figure 1: The ‘areal’ definition of areal co-ordinates
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2nd Definition: If x, y, z are the masses we must place at the vertices A, B,C respectively such that the
resulting system has centre of mass P , then (x, y, z) are the areal co-ordinates of P (hence the alternative
name ‘barycentric’)

3rd Definition: If we take a system of vectors with arbitrary origin (not on the sides of triangle ABC) and
let a,b,c,p be the position vectors of A, B,C, P respectively, then p = xa + yb + zc for some triple (x, y, z)
such that x + y + z = 1. We define this triple as the areal co-ordinates of P .

There are some remarks immediately worth making:

• The vertices A, B,C of the triangle of reference have co-ordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively.

• All the co-ordinates of a point are positive if and only if the point lies within the triangle of reference,
and if any of the co-ordinates are zero, the point lies on one of the sides (or extensions of the sides) of
ABC.

The Equation of a Line

A line is a geometrical object such that any pair of nonparallel lines meet at one and only one point. We
would therefore expect the equation of a line to be linear, such that any pair of simultaneous line equations,
together with the condition x+y+z = 1, can be solved for a unique triple (x, y, z) corresponding to the areal
co-ordinates of the point of intersection of the two lines. Indeed, it follows (using the equation x + y + z = 1
to eliminate any constant terms) that the general equation of a line is of the form

lx + my + nz = 0

where l,m, n are constants and not all zero. Clearly there exists a unique line (up to multiplication by a
constant) containing any two given points P (xp, yp, zp), Q(xq, yq, zq). This line can be written explicitly as

(ypzq − yqzp)x + (zpxq − zqxp)y + (xpyq − xqyp)z = 0

This equation is perhaps more neatly expressed in the determinant form (see Appendix 1):∣∣∣∣∣∣
x xp xq
y yp yq
z zp zq

∣∣∣∣∣∣ = 0

While the above form is useful, it is often quicker to just spot the line automatically. For example try to spot
the equation of the line BC, containing the points B(0,1,0) and C(0,0,1), without using the above equation.

Of particular interest (and simplicity) are Cevian lines, which pass through the vertices of the trian-
gle of reference. We define a Cevian through A as a line whose equation is of the form my = nz.
Clearly any line containing A must have this form, because setting y = z = 0, x = 1 any equation with
a nonzero x coefficient would not vanish. It is easy to see that any point on this line therefore has form
(x, y, z) = (1 − mt − nt, nt,mt) where t is a parameter. In particular, it will intersect the side BC with
equation x = 0 at the point U(0, n

m+n , m
m+n ). Note that from definition 1 (or 3) of areal co-ordinates, this

implies that the ratio BU/UC = [ABU ]/[AUC] = m/n.

Example 1: Ceva’s Theorem

We are now in a position to start using areal co-ordinates to prove useful theorems. In this section we shall
state and prove (one direction of) an important result of Euclidean geometry known as Ceva’s Theorem. The
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author recommends a keen reader only reads the statement of Ceva’s theorem initially and tries to prove it
for themselves using the ideas introduced above, before reading the proof given.

Ceva’s Theorem: Let ABC be a triangle and let L, M, N be points on the sides BC, CA, AB respec-
tively. Then the cevians AL,BM ,CN are concurrent at a point P if and only if

BL

LC
× CM

MA
× AN

NB
= 1

Partial proof: Suppose first that the cevians are concurrent at a point P , and let P have areal co-ordinates
(p, q, r). Then AL has equation qz = ry (following the discussion of Cevian lines above), so L(0, q

q+r ,
r
q+r ),

which implies BL/LC = r/q. Similarly, CM/MA = p/r, AN/NB = q/p. Taking their product we get
BL
LC ×

CM
MA ×

AN
NB = 1, proving one direction of the theorem. I leave the converse to the reader.

The above proof was very typical of many areal co-ordinate proofs. We only had to go through the de-
tails for one of the three cevians, and then could say ‘similarly’ and obtain ratios for the other two by
symmetry. This is one of the great advantages of the areal co-ordinate system in solving problems where
such symmetries do exist (particularly problems symmetric in a triangle ABC: such that relabelling the
triangle vertices would result in the same problem).

Areas and Parallel Lines

One might expect there to be an elegant formula for the area of a triangle in areal co-ordinates, given they are
a system constructed on areas. Indeed, there is. If PQR is an arbitrary triangle with P (xp, yp, zp), Q(xq, yq, zq), R(xr, yr, zr)
then

[PQR]
[ABC]

=

∣∣∣∣∣∣
xp xq xr
yp yq yr
zp zq zr

∣∣∣∣∣∣
An astute reader might notice that this seems like a plausible formula, because if P,Q, R are collinear, it
tells us that the triangle PQR has area zero, by the line formula already mentioned. It should be noted that
the area comes out as negative if the vertices PQR are labelled in the opposite direction to ABC.

It is now fairly obvious what the general equation for a line parallel to a given line passing through two
points (x1, y1, z1), (x2, y2, z2) should be, because the area of the triangle formed by any point on such a line
and these two points must be constant, having a constant base and constant height. Therefore this line has
equation ∣∣∣∣∣∣

x x1 x2

y y1 y2

z z1 z2

∣∣∣∣∣∣ = k = k(x + y + z)

Where k is a real constant.

Exercise: (BMO1 2007/8 Q5) Given a triangle ABC and an arbitrary point P internal to it, let the
line through P parallel to BC meet AC at M , and similarly let the lines through P parallel to CA,AB meet
AB,BC at N ,L respectively. Show that

BL

LC
× CM

MA
× AN

NB
≤ 1

8

To infinity and beyond

Before we start looking at some more definite specific useful tools (like the positions of various interesting
points in the triangle), we round off the general theory with a device that, with practice, greatly simplifies

3



areal manipulations. Until now we have been acting subject to the constraint that x + y + z = 1. In reality,
if we are just intersecting lines with lines or lines with conics, and not trying to calculate any ratios, it is
legitimate to ignore this constraint and to just consider the points (x, y, z) and (kx, ky, kz) as being the same
point for all k 6= 0. This is because areal co-ordinates are a special case of a more general class of co-ordinates
called projective homogeneous co-ordinates1, where here the projective line at infinity is taken to be
the line x + y + z = 0. This system only works if one makes all equations homogeneous (of the same degree
in x, y, z), so, for example, x + y = 1 and x2 + y = z are not homogeneous, whereas x + y − z = 0 and
a2yz +b2zx+c2xy = 0 are homogeneous. We can therefore, once all our line and conic equations are happily
in this form, no longer insist on x + y + z = 1, meaning points like the incentre ( a

a+b+c ,
b

a+b+c ,
c

a+b+c ) can
just be written (a, b, c), a significant advantage for the practical purposes of doing manipulations. However,
if any ratios or areas are to be calculated, it is imperative that the co-ordinates are normalised again to
make x + y + z = 1. This process is easy: just apply the map

(x, y, z) 7→ (
x

x + y + z
,

y

x + y + z
,

z

x + y + z
)

Significant areal points and formulae in the triangle

We have seen that the vertices are given by A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), and the sides by x = 0, y = 0, z = 0.
In the section on the equation of a line we examined the equation of a cevian, and this theory can, together
with other knowledge of the triangle, be used to give areal expressions for familiar points in Euclidean
triangle geometry. We invite the reader to prove some of the facts below as exercises.

• Triangle centroid: G(1, 1, 1). The midpoints of the sides BC, CA, AB are given by (0, 1, 1), (1, 0, 1), (1, 1, 0)
respectively.

• Centre of the inscribed circle: I(a, b, c) (hint: use the angle bisector theorem)

• Centres of escribed circles: Ia(−a, b, c), Ib(a,−b, c), Ic(a, b,−c)

• Symmedian point: K(a2, b2, c2)

• Centre of the circumcircle: O(sin 2A, sin 2B, sin 2C)

• Orthocentre (meet of the altitudes): H(tan A, tan B, tan C)

It should be noted that the rather nasty trigonometric forms of O and H mean that they should be ap-
proached using areals with caution, preferably only if the calculations will be relatively simple.

If the reader is familiar with isogonal and isotomic conjugation, it is interesting to find that the isogonal
conjugate of a point (x, y, z) is (a2/x, b2/y, c2/z) (verify with G, K, I, I and O,H above), and the isotomic
conjugate (1/x, 1/y, 1/z).

Exercise: Let D,E be the feet of the altitudes from A and B respectively, and P,Q the meets of the
angle bisectors AI,BI with BC,CA respectively. Show that D, I, E are collinear if and only if P,O, Q are.

1The author regrets that, in the interests of concision, he is unable to deal with these co-ordinates in this document, but
strongly recommends Christopher Bradley’s The Algebra of Geometry, published by Highperception, as a good modern reference
also with a more detailed account of areals and a plethora of applications of the methods touched on in this document. Even
better, though only for projectives and lacking in the wealth of fascinating modern examples, is E.A.Maxwell’s The methods
of plane projective geometry based on the use of general homogeneous coordinates, recommended to the present author by the
author of the first book.
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Distances and circles

We finally quickly outline some slightly more advanced theory, which is occasionally quite useful in some
problems, We show how to manipulate conics (with an emphasis on circles) in areal co-ordinates, and how to
find the distance between two points in areal co-ordinates. These are placed in the same section because the
formulae look quite similar and the underlying theory is quite closely related. Derivations can be found in [1].

Firstly, the general equation of a conic in areal co-ordinates is, since a conic is a general equation of the
second degree, and areals are a homogeneous system, given by

px2 + qy2 + rz2 + 2dyz + 2ezx + 2fxy = 0

Since multiplication by a nonzero constant gives the same equation, we have five independent degrees of
freedom, and so may choose the coefficients uniquely (up to multiplication by a constant) in such a way as
to ensure five given points lie on such a conic.

In Euclidean geometry, the conic we most often have to work with is the circle. The most important
circle in areal co-ordinates is the circumcircle of the reference triangle, which has the equation (with a, b, c
equal to BC, CA, AB respectively)

a2yz + b2zx + c2xy = 0

In fact, sharing two infinite points2 with the above, a general circle is just a variation on this theme, being
of the form

a2yz + b2zx + c2xy + (x + y + z)(ux + vy + wz) = 0

We can, given three points, solve the above equation for u, v, w substituting in the three desired points to
obtain the equation for the unique circle passing through them.

Now, the areal distance formula looks very similar to the circumcircle equation. If we have a pair of
points P (x1, y1, z1) and Q(x2, y2, z2), which must be normalised, we may define the displacement PQ :
(x2 − x1, y2 − y1, z2 − z1) = (u, v, w), and it is this we shall measure the distance of. So the distance of a
displacement PQ(u, v, w), u + v + w = 0 is given by

PQ2 = −a2vw − b2wu− c2uv

Since u + v + w = 0 this is, despite the negative signs, always positive unless u = v = w = 0.

Appendix 1: The Determinant of a 3× 3 Matrix

Matrix determinants play an important role in areal co-ordinate methods. We define the determinant of a
3 by 3 square matrix A as

|A| =

∣∣∣∣∣∣
ax bx cx
ay by cy
az bz cz

∣∣∣∣∣∣ = ax(bycz − bzcy) + ay(bzcx − bxcz) + az(bxcy − bycx)

This can be thought of as (as the above equation suggests) multiplying each element of the first column by the
determinants of 2x2 matrices formed in the 2nd and 3rd columns and the rows not containing the element of
the first column. Alternatively, if you think of the matrix as wrapping around (so bx is in some sense directly
beneath bz in the above matrix) you can simply take the sum of the products of diagonals running from
top-left to bottom-right and subtract from it the sum of the products of diagonals running from bottom-left
to top-right (so think of the above RHS as (axbycz + aybzcx + azbxcy)− (azbycx + axbzcy + aybxcz)). In any
case, it is worth making sure you are able to quickly evaluate these determinants if you are to be successful
with areal co-ordinates.

2All circles have two (imaginary) points in common on the line at infinity. It follows that if a conic is a circle, its behaviour
at the line at infinity x + y + z = 0 must be the same as that of the circumcircle, hence the equation given.
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Miscellaneous Exercises

Here we attach a selection of problems compiled by Tim Hennock, largely from UK IMO activities in 2007
and 2008. None of them are trivial, and some are quite difficult, with difficulty roughly proportional to
number of asterisks.

1. (Pre-IMO training 2007) *
Let ABC be a triangle. Let D,E, F be the reflections of A, B,C in BC, AC, AB respectively. Show that
D,E, F are collinear if and only if OH = 2R.

2. (Balkan MO 2005) **
Let ABC be an acute-angled triangle whose inscribed circle touches AB and AC at D and E respectively.
Let X and Y be the points of intersection of the bisectors of the angles ∠ACB and ∠ABC with the line
DE and let Z be the midpoint of BC. Prove that the triangle XY Z is equilateral if and only if ∠A = 60◦

3. (NST 2007) **
Triangle ABC has circumcentre O and centroid M . The lines OM and AM are perpendicular. Let AM
meet the circumcircle of ABC again at A′. Lines BA′ and AC intersect at E. Prove that the circumcentre
of triangle ADE lies on the circumcircle of ABC.

4. (IMO 2007) **
In triangle ABC the bisector of ∠BCA intersects the circumcircle again at R, the perpendicular bisector of
BC at P , and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is
L. Prove that the triangles RPK and RQL have the same area.

5. (RMM 2008) ***
Let ABC be an equilateral triangle. P is a variable point internal to the triangle, and its perpendicular
distances to the sides are denoted by a2, b2 and c2 for positive real numbers a, b and c. Find the locus of
points P such that a, b and c can be the side lengths of a non-degenerate triangle.

6. (ISL 2006) ***
Let ABC be a triangle such that ∠C < ∠A < π

2 . Let D be on AC such that BD = BA. The incircle of
ABC touches AB at K and AC at L. Let J be the incentre of triangle BCD. Prove that KL bisects AJ .

7. (NST 2007) ***
The excircle of a triangle ABC touches the side AB and the extensions of the sides BC and CA at points
M,N and P , respectively, and the other excircle touches the side AC and the extensions of the sides AB
and BC at points S, Q and R, respectively. If X is the intersection point of the lines PN and RQ, prove
that the points X, A and Y are collinear.

8. (Sharygin GMO 2008) ***
Let ABC be a triangle and let the excircle opposite A be tangent to the side BC at A1. N is the Nagel
point of ABC, and P is the point on AA1 such that AP = NA1. Prove that P lies on the incircle of ABC.

9. (NST 2007) ****
Let ABC be a triangle with ∠B 6= ∠C. The incircle I of ABC touches the sides BC, CA, AB at the points
D,E, F , respectively. Let AD intersect I at D and P .
Let Q be the intersection of the lines EF and the line passing through P and perpendicular to AD, and let
X, Y be intersections of the line AQ and DE, DF , respectively. Show that the point A is the midpoint of
XY .
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10. (Sharygin GMO 2008) **
Given a triangle ABC. Point A1 is chosen on the ray BA so that the segments BA1 and BC are equal.
Point A2 is chosen on the ray CA so that the segments CA2 and BC are equal. Points B1, B2 and C1, C2

are chosen similarly. Prove that the lines A1A2, B1B2 and C1C2 are parallel.
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