Directions: Work each problem in a separate bluebook. Give reasons for your answers, and make clear which facts you are assuming.

Notation:

- \mathbb{Z} : Integers
- **Q**: Rational Field
- \mathbb{R} : Real Field
- C: Complex Field

 $\operatorname{GL}_n(R)$: Group of invertible $n \times n$ matrices with entries in the ring R

 \mathbb{F}_q : Finite field with q elements

 \mathbb{Z}/n : Ring of integers mod n (can also be regarded as the cyclic group of order n)

1. How many distinct isomorphism types are there for groups of order 2525?

2.(a) Suppose K is a field of characteristic zero which contains the p-th roots of 1, where p is a fixed prime. If L/K is a Galois extension of degree p, explain why $L = K[\alpha]$ where $\alpha^p = a \in K$.

- (b) If p is odd, show that there is no $\beta \in L$ with $\beta^p = \alpha$. (**Hint**: Use norms.)
- (c) Give a counterexample to the assertion in part (b) if p = 2.

3. Suppose that W is an even-dimensional real vector space, $T : W \to W$ a linear transformation with $T^m = I$ (the identity transformation) with m odd. Show that there exists a linear transformation $S: W \to W$ with $S^2 = -I$ and ST = TS.

4. Let A be a principal ideal domain, M a finitely generated free A-module.

- (a) Show that the number of elements in a free basis for M over A is independent of the choice of basis.
- (b) Let $N \subset A^m$ be a submodule. Prove that N is free on n generators for some $n \leq m$.
- (c) Prove that n = m in part (b) if and only if there is an nonzero $a \in A$ with $aA^m \subset N$.

5. Suppose G is a finite group, K a normal subgroup of G, and that (ρ, V) is an irreducible complex representation of G. Consider the restriction (ρ_K, V) of this representation to K. Show that all K-invariant subspaces of V which are irreducible over K have the same dimension and occur with the same multiplicity in V.

Directions: Work each problem in a separate bluebook. Give reasons for your answers, and make clear which facts you are assuming.

Notation:

- \mathbb{Z} : Integers
- **Q**: Rational Field
- \mathbb{R} : Real Field
- \mathbb{C} : Complex Field

 $\operatorname{GL}_n(R)$: Group of $n \times n$ invertible matrices with entries in the ring R

- \mathbb{F}_q : Finite field with q elements
- \mathbb{Z}/n : Ring of integers mod n (can also be regarded as the cyclic group of order n)

1. If G is a group, define subgroups $G^{(n)}$ recursively by $G^{(1)} = [G, G]$ (the commutator subgroup) and $G^{(n+1)} = [G^{(n)}, G^{(n)}]$. The group G is solvable if $G^{(n)} = \{e\}$ for some n.

- (a) If K is a normal subgroup of G such that both K and G/K are solvable, show that G is solvable.
- (b) Show that all groups of order p^n with p prime are solvable.

2. Determine the number of conjugacy classes in the group $\operatorname{GL}_2(\mathbb{F}_q)$ for all finite fields \mathbb{F}_q . (**Hint:** Use linear algebra.)

3.(a) If A is a commutative ring with 1 show that the polynomial ring A[X] contains infinitely many distinct maximal ideals.

(b) Describe all maximal ideals in the ring of formal power series $\mathbb{Z}[[X]]$.

4.(a) If G is a non-abelian group of order p^3 , show that G has a quotient group isomorphic to $(\mathbb{Z}/p) \times (\mathbb{Z}/p)$. What are the number and dimensions of the irreducible complex representations of G?

(b) If the nonabelian group of order p^3 contains an element x of order p^2 show that G has irreducible p-dimensional representations induced from suitable 1-dimensional representations of $\langle x \rangle \cong \mathbb{Z}/p^2$.

5. Let $\mathbb{Q}[\zeta]$ be the field extension of \mathbb{Q} generated by a primitive 11-th root of unity ζ . The integral closure of \mathbb{Z} in $\mathbb{Q}[\zeta]$ is the ring $\mathbb{Z}[\zeta]$. For each of the following primes $p \in \mathbb{Z}$, describe how the ideal $p \mathbb{Z}[\zeta]$ factors in $\mathbb{Z}[\zeta]$.

(a)
$$p = 11;$$
 (b) $p = 43;$ (c) $p = 37.$