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respectively. We also gathered some problems from other regional Romanian Con-
tests and made a selection from the Shortlist that we discussed during different
rounds of the Olympiad.
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number of teachers in mathematics, mathematicians and students who contributed
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Stafi and to Barbara Ionescu from ”Theta” for helping the editors in the process
of producing this booklet.
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PART ONE

PROPOSED PROBLEMS



1.1. THE NATIONAL MATHEMATICAL OLYMPIAD
District round — March 16t 2004

7*" GRADE

PROBLEM 1. Find the number of positive 6 digit integers, such that the sum
of their digits is 9, and four of its digits are 1,0,0, 4.

Lucian Dragomir

PROBLEM 2. Let D be a point on the side BC of a given triangle ABC. The
bisector lines of the angles ZADB and Z/ADC intersect AB and AC at M and N,
respectively, and the bisector lines of the angles ZABD and ZACD intersect DM
and DN at K and L, respectively.

Prove that AM = AN if and only if M N and KL are parallel.
Bogdan Enescu

PROBLEM 3. One considers the set A = {n eN*|1</1+V/n< 2}.

a) Find the set A.
b) Find the set of numbers n € A such that

1—\/1+\/E‘<1?

VA

* k%

PROBLEM 4. In the triangle ABC we have AB = AC and the points M, P
on AB such that AM = BP. Let D be the midpoint of BC, and let R on CM
and Q on BC, be such that A, R, Q are collinear and the line AQ is perpendicular
on CM.

Prove that:
a) LAQC = (PQB;
b) LDRQ = 45°.

Manuela Prajea
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8" GRADE

PROBLEM 1. We say that the real numbers a si b have property P if: a2+b €
Qand b>+a€qQ.
Prove that:

1+v2 1-
2

a) The numbers a = i b= T\/i are irrational and have

property P;

b) If a, b have property P and a+b € Q\ {1}, then a si b are rational numbers;
c) If a, b have property P and 3 € Q, then a si b are rational numbers.
L I 3

PROBLEM 2. The real numbers a,b,c,d satisfy a > b > ¢ > d and
a+b+c+d=2004 si a®—b?+ %~ d? = 2004.

Answer, with proof, to the following questions:
a) What is the smallest possible value of a?
b) What is the number of possible values of a?

Mircea Fianu

PROBLEM 3. It is said that a set of three different numbers is an arithmetical
set if one of the three numbers is the average of the other two. Consider the set
A, ={1,2,...,n}, where n is a positive integer, n > 3.

a) How many arithmetical sets are in A;0?

b) Find the smallest n, such that the number of arithmetical sets in A, is
greater than 2004.

Lucian Dragomir

PROBLEM 4. In a given trapezoid ABCD, let AB||CD, /B = 90° and
AB = 2DC. Consider points N and P on the same part of the plane (ABC),
such th:t PA and ND are perpendicular on the trapezoid’s plane, and ND = a,
AP = 3 (a > 0). If M is the midpoint of BC and the triangle MNP is equilateral,
find:

a) The cosine of the angle between planes (M NP) and (ABC);
b) The distance from D to the plane (M NP).

Giannina Busuioc, Niculai Solomon

9" GRADE

PROBLEM 1. Real numbers a, b, ¢ satisfy a? + b2 4 ¢ = 3. Prove the inequa-
lity:
la] + [b] + |¢| — abe < 4.

Virgil Nicula

DisTRICT ROUND 5

PROBLEM 2. Find the cartesian coordinates of the vertices A, B,C od a
triangle ABC whose the orthocenter is H(—3,10), the circumcenter is O(—2, —3),
and the midpoint of BC is D(1,3).

Gabriel Popa, Mihai Bélund

PROBLEM 3. a) Prove that there are infinitely many rational positive num-
bers z such that:
{z®} + {z} =0,99.

b) Prove that there are no rational numbers x > 0 such that:
{z2} 4+ {z}=1.
Bogdan Enescu
PROBLEM 4. A rectangle 2 x 4 is divided in 8 squares of side 1. Call M the

set of the 15 vertices thus obtained.
Find the points A € M satisfying: the set M\ {A} can be arranged in pairs

‘ (A1, B1), (A2, Bs),. .., (A7, By) such that

AB, +ABy+-+A7B; =0

Mihai Balund

10" GRADE

PROBLEM 1. Given a positive integer n, n > 3, find the number of arith-

metical sets of 3 elements, contained in the set {1,2,...,n}.
* ¥ ¥

PROBLEM 2. Find integers n, n > 3, having the property: there are distinct
integers ay,as,...,an, such that:

ayl-agl - -an_q1! =a,!
Bogdan Enescu »
PROBLEM 3. In the thetrahedron ABCD consider the midpoints M, N,
P,Q of sides AB,CD, AC, and BD, respectively. Prove that MN is perpen-
dicular to both AB and CD, and PQ is perpendicular to both AC si BD, if and
only if AB=CD, BC = DA si AC = BD.

Radu Gologan

PROBLEM 4. Let z,y € (0,7/2). Prove that if the equality

(cosz +isiny)"™ = cosnz +isinny
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is true for two consecutive integers, than it is true for all integers n.
Dinu Serbanescu

11** GRADE

PROBLEM 1. Let o > 0 and, for any positive integer n, consider z,4; =

Tn +

V'
23
Find a) lim 2,; b) lim 2.
n—oo n—oo N’
Bogdan Enescu
PROBLEM 2. Consider complex non-zero numbers z1,2s,...,2m, n > 3,
such that |z;] = |2] = -+ = |2p43] and argz; > --- > arg(zn4s). Define for

i,j € {1,2,...in}: by = |2 — zj4n|, and let B = (b;;) € M,. Prove that
det B = 0.

Cilin Popescu

PROBLEM 3. A function f : R — R is said to have property P if: for every
b

a,b e R we have f(%) e {f(a), f(b))-

a) Give an example of a non-constant function possessing P..

b) If f has P and is continuous, prove that it is constant.

Dan Marinescu

PrROBLEM 4. The matrix A = (a;;) € Mp(C) is defined by ajp = az3 =

-+ =ap_1p=1and a;; =0, for the remaining set of indices (3, ).

Prove that there are no non-zero matrices B,C € M,(C) such that
(I, + A)" = B™ + C™, for all non-negative integer n.

Ion Savu

12" GRADE

PROBLEM 1. Let n > 2 be an integer and r € {1,2,...,n}. Consider the set
Sr = {A € Mn(Zy) |rank A = r}.

a) Prove that for any A € S,, and B € S,, AB is in S;

b) Calculate Y X.

X€eS,
Mihai Fulger, Valentin Vornicu

DISTRICT ROUND ’ 7

PROBLEM 2. Prove that the only continuous functions f : [0,1] — R, such
that : .

1 1 1
/0 f(@)g(e)da = ] f(z)da- /; g(@)da

for any non-derivable continuous function g : [0, 1] — R, are the constant functions.
Mihai Piticari
PROBLEM 3. The ring A satisfies the following properties:
i) Its unit 14 has order p, a prime number;
ii) There is a set B C A containing p elements, such that: for any z,y € A,
there is b € B satisfying zy = byz.
Prove that A is commutative.
Ion Savu

PRrOBLEM 4. Let a,b € (0,1) and let f : [0,1] — R be a continuous function,
such that

T az bz
/o f(t)de =/o f(¢)de +/0 f(t)dt, for any z € [0,1].

a) Prove that a + b < 1 implies f = 0.
b) Prove that a + b =1 implies f is constant.
Dan Marinescu



1.2. THE NATIONAL MATHEMATICAL OLYMPIAD
Final Round — Deva, April 5, 2004

7" GRADE

PROBLEM 1. On the sides AB and AD of the rhombus ABCD consider the
points E and F respectively, such that AE = DF. Lines BC and DE intersect at
P, and lines CD and BF intersect at Q. Prove that:

Y pptoE =Y
b) Points P, A, Q are collinear.
Virginia Tic& and Vasile Tica

PROBLEM 2. The side-lengths of a triangle are a, b, c.
a) Prove that there is a triangle with sides /a, Vb si /.
b) Prove that c& vab+ vbe + v/ac < a + b + ¢ < 2v/ab + 2v/be + 2,/ac.
X Xk

*

PROBLEM 3. The diagonals of the trapezoid ABCD are perpendicular and
intersect in O. Angle A equals 90°, and AB||CD, AB > CD. The diagonals
intersect at O. OF is the bisector line of the angle AOD, E is on the segment AD,
and F on BC, such that EF || AB. Denote by P respectively @, the intersection
points of the segment EF with the diagonals AC' and BD, respectively. Prove
that:

a) EP = QF;

b) EF = AD.

Claudiu-$tefan Popa

PROBLEM 4. Sixteen points are placed in the centers of a 4 x 4 chess table
in the following way:

a) Prove that may choose 6 points such that no isosceles triangle can be
drawn with vertices at these points.
b) Prove that one cannot choose 7 points with the above property.
Radu Gologan, Dinu Serbinescu

FINAL ROUND 9

8" GRADE

PROBLEM 1. Find all non-negative integers n such that there are integers a
and b with the property:

n®=a+b and n®=qa2+0b%

Lucian Dragomir

PROBLEM 2. Prove that the equation
2?4 y? 422 4 42 = 92004,

where 0 < z < y < z < ¢, has exactly two solutions in the set of integers.
Mihai Balung

PROBLEM 3. Consider a frustum of a regular quadrilateral pyramid
ABCDA’B'C'D’ in which the lines BC’ are DA’ orthogonal.

a) Prove that the angle between the lines AB’ and DA’ equals 60°.

b) Assume that the projection of B’ onto the plane (ABC) is the incenter of
tlhe triangle ABC. Prove that the distance between the lines CB’ and AD’ equals
3BC'.

Mircea Fianu

PROBLEM 4. A cube of side 6 contains 1001 unit cubes with sides parallel
to those of the given one. Prove that one can find two unit cubes, such that the
center of one of them is inside or on the faces of the other.

Dinu Serbanescu

9" GRADE

PROBLEM 1. Find all increasing functions f : {1,2,...,10} — {1,2,...,100},
having the property: z+ is a divisor of zf(z)+yf(y), forany z,y € {1,2,...,10}.
Cristinel Mortici

PROBLEM 2. For any positive integer n denote by P(n) the number of
quadratic functions f : R - R, f (z) = az? + bz + ¢, having the properties:
a)a,bce {1,2,...,n};
b) The equation f(z) = 0 has integer roots.
Prove that n < P(n) < n?, for all n > 4.
Laurentiu Panaitopol
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PRrROBLEM 3. Let H be the orthocenter of the acute triangle ABC, and let
B’,C’" be the projection of the points B and C onto AC and AB, respectively. A
variable line d, passing through H, intersects the segments BC’ and CB’ in M
and N, respectively. The perpendiculars in M and N on d, intersect BB’ and
CC’, in P and Q, respectively.

Find the locus of the midpoint of the segment PQ.

Gheorghe Szol6sy

PROBLEM 4. Let p,q be positive integers, p > 2, ¢ > 2. A set X has
property (S) if, by definition, for any p subsets B; ¢ X, i = 1,2,...,p, not
necessarily different, any of them having g elements, there is a set Y C X having
p elements, such that the intersection of Y with each B;, i = 1,2,...,p, has at
most one element. Prove that:

a) Any set X with pg — ¢ elements does not satisfy property (S);

b) Any set X with pg — g + 1 has property (S).

Dan Schwarz

10** GRADE

PRrROBLEM 1. Let f: R — R be a function, such that |f(z) — f(y)| < |z —yl,
for any real z,y. Prove that if the sequence z, f(z), f(f(z)),... is in arithmetical
set, for any real x, then there is a real a such that f(z) = z + a, for any real
number z.

Mihai Piticari

PROBLEM 2. Prove that a thetraedron in which pairs of opposite sides are
equal and make equal angles, is regular.

Mircea Becheanu, Bogdan Enescu
PROBLEM 3. Let n > 2 be an integer and a € (0, 00) such that

2% +log, a =n?.

Prove that )
2logyn >a > 2logyn — o
Radu Gologan
PROBLEM 4. Let (P,)n3; an infinite family of planes and (X,),>1 a family

of non-void sets of points, such that X, C P, and the orthogonal projection of
Xny1 onto the plane P, is contained in X, for any n.

Prove that there is a sequence of points (pp),>1, such that p, € P, and pn_

is the orthogonal projection of p,+1 onto the plane P,, for any n.
Does the result remain valid if the sets X,, are infinite?
Claudiu Raicu

FINAL ROUND 11
11*" GRADE

PROBLEM 1. Consider an integer n > 3 and the parabola of equation y? =
2pz, with focus F. A regular n-gone A;A;--- A, has center at F' and no one of
its vertices lies on the z axis. The rays FA;, FAs,...,FA, cut the parabola at
points By, Bs, ..., Bn.

Prove that FBy + FBy + -+ + FB, > np.

Cilin Popescu

PRrROBLEM 2. Consider an integer n, n > 2.
a) Prove that there are matrices A, B € M, (C) such that

rang (AB) — rang (BA) = [g] .
b) Prove that for any X,Y € M, (C) we have
rang (XY) —rang (Y X) < [g] .

Ion Savu

PROBLEM 3. Let f : (a,b) — R be a function with the property that for any
z € (a,b), there is a non-trivial interval [a;, b;], @ < az < & < by < b, such that f
is constant‘on [as, bs].

a) Prove that the image of f is a set that is finite or countable.

b) Find all continuous functions that satisfy the given property.
X k %

PROBLEM 4. a) Construct a function f : R — R with the following prop-
erty, called P:

“Any z € Q is a local strictly minimum point for f”.

b) Construct f : Q@ — R4 with the property that any point is a local mini-
mum point and f is unbounded on any set of the form I NQ, where I a non-trivial
interval.

c) Let f: R — Ry be function that is not bounded on any set of the form
INQ, for any non-degenerate interval I. Prove that f has not the property P.

Claudiu Raicu

12" GRADE
PrOBLEM 1. Find all continuous functions f : R — R satisfying
z+1 1
n? / F#)dt =nf(@)+ 3,
z

for any z € R and any positive integer n, n > 2.
Mihai Piticari
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PROBLEM 2. Let f € Z[X]. For n € N, n > 2, define f, : Z, — Z,, by

fu(@) = f(z), for any = € Z.
Find all polynomials f € Z[X], such that for any n € N, n > 2, the function
fn is onto.
Bogdan Enescu

PROBLEM 3. Let f:[0,1] — R be an integrable function such that

/Olf(a;)dz:/ol:cf(z)dzz 1.

Prove that

1
/ fix)dz > 4.
0
Ton Rasa

PROBLEM 4. Let K be a field of characteristics p, with p = 1 (mod 4).
Prove that any non-zero element in K can be written as the sum of three
squares of non-zero elements from K.
Marian Andronache

IMO AND BMO SELECTION TESTS 13

1.3. THE NATIONAL MATHEMATICAL OLYMPIAD
Selection Tests for the BMO and IMO 2004

First Selection Test

1. Let a1,a2,a3,a, be the lengths of the sides of a quadrilateral and s its
semi-perimeter. Prove that

4
1 2 1
<= _—
;S"'ai 91\;@ (s —ai)(s — a;)
When does equality holds?
Calin Popescu
2. Let R;, i =1,2,...,n, be a finite family of pairwise disjoint closed rect-

angular regions whose sides are parallel to the coordinate axes. It is also known
n

that the area of R = _U1 Ri is at least 4, and the projection onto Oz of their union
i=

is an interval.
Prove that R contains three points which are the vertices of a triangle of
area 1.

Dan Ismailescu

3. Find all injective functions f : N — N such that for each n,

Fimy) < 2

Formulated by Cristinel Mortici

4. Consider an integer n > 2 and a disc D in the complex plane. Prove that
for any 21, 22,...,2n € D, there exists z € D such that z" = z;2 - - - z,,.
Barbu Berceanu, Dan Schwartz, Dan Marinescu
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Second Selection Test

5. A disc D is divided into 2n equal sectors; n of them are colored in red
and the other n are colored in blue. Starting from an arbitrarily chosen sector, we
count from 1 to n, in a clockwise order, the red sectors. We proceed in the same
way with the blue sectors, but in an counterclockwise order. Prove that there
exists a half-disc of D which contains all the numbers from 1 to n.

Kvant, M1684

6. Find nonnegative integers which can be reached by the expression

a? +ab+ b?
ab—1,

when a, b are nonnegative integers and ab # 1.
Mircea Becheanu

7. Let a,b,c be integers, b odd, and consider the sequence zo = 4,z = 0,
g = 2¢,, 3 = 3b,

Tn = @Tn—g +bTn_3 + cTn_o, for n > 4.

Prove that if p is a prime and m a positive integer, then zpm is divisible by p.
: Cilin Popescu

8. A square ABCD is taken inside a circle . Inside the angle opposite to
LBAD one considers the circle tangent to the extended segments AB and AD and
internally tangent to v at A;. The points By, C1, D; are defined in the same way.

Prove that the straight lines AA;, BB, CCy, DD, are concurrent.

Radu Gologan

Third Selection Test

9. Let n > 1 be a positive integer and X be a set containing n elements.
A, A, ..., Ao are subsets of X such that the union of any 50 of them has more
than %n elements.

Prove that among the given subsets it is possible to choose three, such that
every two of them have a non-empty intersection.

Gabriel Dospinescu
10. Prove that if n and m are integers, and m is odd, then
1 & /3m k
I ; (3k)(3” -1

is an integer.
Cilin Popescu

IMO aND BMO SELECTION TESTS 15

11. The incircle of the non-isosceles triangle ABC has center I and it touches
the sides BC,CA, AB, in A', B',C’, respectively. The straight lines A4’ and BB’
intersect in P, AC and A’C’ in M, and B’C’ and BC in N.

Prove that the straight lines IP and M N are perpendicular.

Classical result

12. Let n > 2 be an integer and ay,as,...,a, real numbers. Prove that for
any non-empty subset S C {1,2,...,n} the following inequality holds:

(Zai) < Z (a;+ -+ +aj)2

€S 1ISisn

Gabriel Dospinescu

Fourth Selection Test

13. Let m, m > 2, be an integer. A positive integer n is called m-good if
for every positive integer a, relatively prime to n, one has n|a™ — 1.
Show that any m-good number is at most 4m(2™ —1).
Gabriel Dospinescu

14. A point O is situated in the triangle’s ABC plane. A circle C pass-
ing through O is cut the second time by OA,OB,0OC, in P,Q, R, respectively,
and C cuts the second time the circles (B,0,C),(4,0,C),(4,0,B) in K,L,M
respectively.

Prove that PK,QL, RM are concurrent.

* % %

15. Some of the n faces of a polyhedron are colored in black in such a way
that any two black faces have no vertex in common. All other faces are colored in
white. '

Prove that the number of edges that are common borders of two white faces,
is at least n — 2.

Cilin Popescu
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Fifth Selection Test

16. Consider a triangle ABC and O be an interior point of it. The straight
lines OA, OB, OC meet the sides of the triangle in A;, By, Ci, respectively. Let
Ry, Ry, R3 be the radii of the circles (O, B,C),(0,C, A), (O, A, B) respectively
and R the radius of the circumcircle of the triangle ABC. Prove that

0A; R OB, 0oC;
AA; BB;

Dinu Serbanescu

17. A move on a m x n board consists of:

(i) Choosing some empty squares such that no two of them are in the same
row or in the same column and placing a white stone on each of the selected
squares;

(ii) Placing then a black stone on each empty square that corresponds to a
white stone on his row and on his column.

What is the maximum number of white stones which can appear on the
board, after some moves have been made?

2004 BMO Short-list, Serbia and Montenegro

18. Let p be an odd prime number, a;, i = 1,2,...,p — 1 be Legendre’s
symbol of i relative to p (ie. a; = 1 if i®1/2 = 1 and a; = —1 otherwise).
Consider the polynomial

f=a1+aX 4+ +a,_1 XP72

a) Prove that 1 as a simple root of f if and only if p = 3 (mod 4).
b) Prove that if p =5 (mod 8), then 1 is a root of f of order exactly two.
Cilin Popescu

Supplementary Test

19. Consider a sequence of positive different integers (a)n such that there
is a > 0 satisfying
an < an, for all positive integers n.

Prove that:
i) If @ < 5 the sequence contains infinitely many of numbers for which the
sum of their digits (in decimal representation) is not a multiple of 5.
ii) The above result for a = 5.
Gabriel Dospinecu

IMO AND BMO SELECTION TESTS 17

20. Given an integer number n > 1, consider n distinct unit vectors in the
plane, which have a common origin at point O. Suppose further that for some
non-negative integer m < n/2, on either side of any straight line passing through
O, there are at least m of these vectors. Prove that the length of the sum of all n
vectors cannot exceed n — 2m.

Kvant



1.4. THE NATIONAL MATHEMATICAL OLYMPIAD
Selection tests for the Junior BMO

First selection test

PROBLEM 1. Find all positive real numbers a.b. ¢ which satisfy the inequa-
lities

dab+be+ca) =1 = a® + b+ = 3(a® + 1% + F).

Laurentin Panaitopol

PRrROBLEM 2. Consider the numbers defined by a, = 3n + Vn2 — 1 and
b, = 2(VnZ + n+VnZ —n), for all n = 1.2.....49. Prove that there are integers
A. B so that

\/(11—b|+\/ﬂ2*b2+'“+\/a,,—bn:A+ BV2.

Titu Audreesen

PrOBLEM 3. Consider a circle of center O, and let V' he a point externally
to the circle. The tangents from V touch the circle at points 71, T5. Let T be a
point on the small arc Ti T, of the circle. The tangent at T intersects the line VT
in the point A and the lines 7T} and VT5 intersect in the point B. Let Al be the
intersection point of the lines OM and AB.

Prove that the lines OM and AB are perpendicular.

Mircea Fianu

PROBLEM 4. Consider a cube and let M, N be two of its vertices. Assign
the number 1 to these vertices and 0 to the other six vertices. We are allowed to
select a vertex and to increase with a unit the numbers assigned to the 3 adjacent
vertices and call this a movement. Prove that there is a sequence of movements
after that all the numbers assigned to all the vertices of the cube are equal. if and
only if M N is not a diagonal of a face of the cube.

Marius Ghergu, Dinu Serbanescu
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Second selection test

PROBLEM 5. Let ABC be an acute triangle and let D be a point on the
side BC'. The points E and F are the projections of the point D on the sides
AB and AC, respectively. Lines BF and C'E meet at point. P. Prove that AD
is the bisector line of the angle BAC if and only if the lines AP and B are
perpendicular.

Severius Moldoveanm

PROBLEM 6. An 8 x & array consists of 64 mnit squares. Inside each square
are written the numbers 1 or —1 so that in anv 2 x 2 sub-array the sum of the
four numbers equals 2 or —2. Prove that there exist two rows in the array which
the same nmunbers are inscribed in the same order.

Marins Ghergn

PROBLEM 7. Consider a triangle ABC' with the side lengths a.b. ¢ so that
is the greatest. Prove that ABC is a right triangle if and only if

(Va+b+Va-b)(Va+c+Va—c)=(a +h+ V2.
Virgil Nienla

PROBLEM 8. Find all positive integers n for which there are distinct integer
numbers a,,as, .. .,a, such that

1 2 n ay +ax+ -+ a,
IR LN Sk e SR LA
ay as an 2

Dinu Serbianesen
Third selection test

PROBLEM 9. In a chess tournament each of the players playes with all the
others two games, one time with the white pieces and then with the black pieces.
In each game the winner gets one point. and hoth players receive 0.5 points if the
game ends with a tie. At the end of the tournament, all the players end with the
same number of points.

a) Prove that there are two players which have the same number of ties.

b) Prove that there are two players which have the same mumber of defeates
when playing the white.

Marius Ghergu

ProBLEN 10. Consider the triangle ABC, AB = AC and a variable point
M on the line BC, so that B is between Al and C. Prove that the sun of the
in-radius of AMB and the ex-radius of AMC, corresponding to the angle A, is
constant.

Virgil Nicula
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PROBLEM 11. Let p.g,r be primes and let n be a positive integer such that

p" +q" =72 Prove that n = 1.
Laurentin Panaitopol

PROBLEM 12. Let a < b < ¢ < dbe positive integers so that ad = be and
Vd — \/a < 1. Prove that a is a perfect square.

Dinu Serbanesen
Fourth selection test

PROBLEM 13. Let ABC he a triangle inscribed in the circle K, and consider

a point A/ on the arc BC' which does not contain A. The tangents from Al to

the in-circle of ABC intersect the circle K at the points N and P. Prove that if
LBAC = LNMP, then the triangles ABC and M N P are congruent.

Valentin Vornicu

ProBLEM 14. The real numbers a;, as. ..., a, satisfy the equality
2, 2 2 2
ay +az +---ajyy + (@ +ax + - +ajon)” = 101.

Prove that |a;| < 10, for all k = 1.2,...100.
Dinu Serbanescu
PROBLEM 15. A finite set of positive integers is called isolated. if the sum
of the elements in any proper subset is a number relatively prime with the sum
of the elements of the isolated set. Find all non-prime integers n for which there

exist positive integers a.b, so that the set A = {(a +b)?, (a +2b)%..... (a + nb)?}
is isolated.

Gabriel Dospinescu

PROBLEM 16. A regular polygon with 1000 sides has its vertices colored
in red, yellow or blue. A move consists in choosing to adjacent vertices colored
differently and coloring them in the third color. Prove that there is a sequence of
mouves after which all the vertices of the polygon will have the same color.

Marius Ghergu
Fifth selection test

ProBLEM 17. Consider the triangular array

0112 3 5 8
011 2 3 5
23 5 8 13

4 7 11 18

12 19 31
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defined by the conditions: o

i) on the first two rows, each element, starting with the third, is the sum of
the two preceding elements; )

ii) on the other rows, each element is the sum of the two elements placed
above of the same column. ) o

a) Prove that all the rows are defined according to condition i). )

b) Consider 4 consecutive rows and let a.b,c.d be the first element in each
of these rows, respectively. Find d in terms of a,b and c.

Dinu Serbanesen

PROBLEM 18 . Let M, N, P be the midpoints of the sides BC.C'A.AB of
the triangle ABC, respectively, and let G be the centroid of the triangle. Prove
that if BM/GP is cyclic and 2BN = V3AB. then triangle ABC is equilateral.

BMO shortlist 2004

PROBLEM 19. Let A be a set of positive integers with the properties:
i) if @ € A, then all positive divisors of a are elements of A:
i) if a.b € A and 1 < a < b. then 1+ ab € A. Prove that if the set 4 has at
least 3 elements, then A = N*.
Valentin Vornicu

PROBLEM 20. Consider a convex polygon with n > 5 sides. Prove that

there are at most M triangles of area 1 whose vertices are choosen from
the vertices of the polygon.

Andrei Negut
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Shortlisted Problems for the Final Round

7" and 8" GRADE

1. Paint in red n of the vertices of a regular octagon. n < 8. Find. with
proof, the smallest. value of n which insures the existence of an isosceles triangle
having only red vertices.

Radu Gologan

2. Let a,b, ¢ be non-zero integers snch that a > 0. be > a and ac+ b > 3a.
Prove that ab+ ¢ > 2a.

Lucian Dragomir

3. For a positive integer not ending with 0, we define its reverse to be the
number obtained by writing the given number in reverse order (for example. the
reverse of 1234 is 4321). Find all positive integers n such that

a) n? can he written as the difference hetween a three digit number and its
reverse:

b) n? can be written as the ditference between a four-digit number and its
reverse.

Valeutin Vornicu
AT 1, .

4. Let a.b be positive integers such that /a + N/ is an integer. Prove that

a and b are perfect squares. Y

Mircea Becheann
5. Consider an acute triangle ABC' of orthocenter H and altitudes AA/,
BN,CP. Denote by Q and R the midpoiuts of BH and CH, respectively. Consider
the following intersections U = MQNAB,V =MRNAC.T = AHNPN.
Prove that T is the orthocenter of the triangle UAV.
Manuela Prajea

6. Let P be a variable point on the border of a rectangle ABC'D, where
AB=CD =a,BC=AD=0band a>b.
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Find the position of P for which the sum
PA+ PB+ PC+PD

has minimal value.
Mircea Becheann

7. Consider a parallelogram ABC'D such that m(ZBCD) > 90° and BC >
C'D. Tt is known that for any points M on DA and N on C'B such that CN L DN,
oue has C'M = DN. Show that ABCD is a square.

Alexandru Blaga

8. Consider a point M on the diagonal BD of a given rectangle ABCD,
such that ZAMC = ZCMD. The point N is the intersection point between AN
and the parallel line to C'Al that contains B.

Prove that the triangle BAIN is equilateral if and only if ABC'D is a square.

Valentin Vornicu

9. Given a set X containing n elements (n > 2), find the number of pairs
(A.B) such that AC B C X, B # X and A has more that one element.”?
Valentin Vornicu

10. For n.p positive integers. consider f(n,p) = {’;—f]
a) Prove that f(n.3)+ f(n+ 1.3) + f(n +2.3) is a perfect square.
b) Prove that if f(n) = f(n,p)+ f(n+1,p) + f(n+2,p) is a perfect square
for any positive integer n. then p = 3.
Marius Burtea

11. Find all functions f : R — R, having the property that
f(2x —5) <20 —3< f(2r) -5,

for any real x.
Liliana Antonescu

9" GRADE

12. The positive numbers a.b are given such that « + b = 1. Find the
minimal value of

Toan V. Maftei
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13. The positive numbers a, b, ¢ satisfy abc = 1. Prove that

Z“tb>2(2a+2§—3).

Gabriel Dospinescu

14. Let a,b € R and let f : R — R, be an increasing function. Find the
functions ¢ : [a.b] — [f(a), f(b)] satisfying g(z) — g(y) = |f(+) = f(y)]. for any
.y € [a,b].

Calin Burdugel

15. Find the quadratic functions f(x) = ax? 4+ bx + c. with f(0) € Z having
the property that

1 —1 .
f(n+—)>n27n+l si f(n+"——)<n2+n41.
n n

hold for infinitely many integer values of n.
Cristinel Mortici

1 1 1
16. For any integer n,n > 2, put a, =2+ —+ — +---

ek =
V2 V3 vn

as  a: a
Prove that 14 -2 +‘i+---+J < ly_1.
< n

2 3

Cristinel Mortici
17. Given positive numbers a, b, ¢, prove the inequality

a 27
Nt e
be(c+a) ~ 2(a+b+c)?
Petre Batraunetu
18. Find all quadratic functions f(z) = az? + bz + e, where a.b, ¢ are real
numbers and a # 0, having the property that the images of the intervals [0, 1] and
[4,5] are two intervals having exactly one common point, their union being the
interval [1,9].

Cristinel Mortici

19. For positive numbers a, b, ¢, prove
Z Va(b® + ) = 2Vabe(a? + b2 + ¢2).

Marin Chirciu
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20. Find all pairs (z.y) of real numbers, that satisfy
4 3 1 4 3 !
Tt + 2 —y=\/§—1. Y 42—z =— 3~1
Titu Andreescu

21. Prove that for real numbers a, b, ¢ such that a24+-b2+¢2 = 9, the following
inequality holds

3min{a.b.c} < 1+ abe.
Virgil Nicula

22. Let P be a positive number, g € {p? +1,p*> +2..... p?+2p}t and &, =
[(p+ /@)"], for any non-negative integer n.
Prove that there is a one-to-one correspondence between the sets

{neN|z, iseven} and {n€N]|uz,isodd}.

Radu Miculescu

23. Find all positive integers n, such that the following statement holds: for
any non-zero real numbers a, b, there are real numbers ry, 29, ....x, for which

Mihai Béaluna

24. Consider a triangle ABC and a real number k.k > 1. Let A’. B'.C’ be
points on the sides (BC'), (AC), (AB) respectively, such that

o]

A
Al

A

B’
B’

<k,

N
>

i’
< A <k, %g <k.

kS BC S

Q
L

Prove that
max(A'B’, A'C', B'C") < k
max(AB,AC,BC) ~ k+1’
Dan Ismailescu
25. Prove that a triangle ABC is equilateral if and only if there are points

M, N, P on sides (AB), (BC), (CA) respectively, such that the triangles ABC and
MNP have the same centroid and the same orthocenter.

Marian Ionescu
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26. Prove

1 3 9
+
cot9° —3tan9°  cot 27° — 3 tan27° + cot81° — Jtan81°
i 27
cot 243° — 3 tan 243°

= 10tan9°.

Titu Andreescu

27. In the convex quadrilateral ABCD suppose that AD = DB, AC = C'D
and LBAC =2/BDC.

Prove that ZCBD = 30° and that there is = € (0.30°) such that ZA = G0+,
(B=90+z, LC =150 — .

Virgil Nicula

28. Prove that a quadrilateral ABCD is a rhombus if and only if for any
point M, in its plane, the following inequality holds

4MA-MC+ MB-MD) > AC? + BD?.

Laurentiu Panaitopol

29. Let a € (0.00) \ {1}. Find the real munbers x,y. = that satisfy

a" +log,y=a
a’ +log,z=a

a® +log, = a.
* kK

30. Find all pairs (z1, 22) of complex numbers, satisfying the following two
conditions:

(a) 14+z1+2|=1+zn|=1
(b) l2122(21 + 22)| = 2(Jz| + [22)).
Valentin Vornicu

31. Let z.y,z be positive numbers, such that = +y + z = 3. Prove that
(1 —sinz)(1 —siny)(1 —sinz) > sinzsinysin 2.
Find the cases when the equality holds.
Gheorghe Sz616sy

32. Prove that a tetrahedron whose edges are in arithmetic progression and
the 3 pairs of opposite edges are perpendicular, is regular.
Mircea Becheann
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7

33. Let M be an interior point in the tetraedron ABCD and let A’. B', (“’, D
be the intersections of the lines AM.BM.CAL. DM with the opposite planes,

respectively. Prove that .
DAMEY 20,

Andrei Chites

11*" and 12" GRADES

34. Let (an),3>; be a sequence of real numbers greater than 1. and suppose
that a,+1 = 2a, — 1 for any positive integer n.
a) Prove that the sequence (z,),31. defined by

has a finite limit x.
b) The sequence (), is defined by

Qn

T=z,+ PRy —
102+~ an(@n1 — 1)

for all positive n. Prove that (a,), is monotonic and find its limit.
Marian Tetiva

35. Find the set of all real numbers z, such that there is an increasing
sequence consisting of positive integers (an),»; such that the sequence (bn) 1
defined by
_ In@ 4202 4. 4 2%)

n

bu

satisfies lim b, = z.
n—nc
Radu Gologan
36. The sequence (z,),>1 is recurrently defined by 2,41 =n + 22, where
x7 = 1. Prove that:

1 .
a) The sequence defined by y, = o Inx,, n > 1, is bounded and monotone;

.o
b) There is a positive real number A such that lim T" =1
n—ax \
Cristinel Mortici
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37. Let n > 1 be an integer. Prove that for any » <
sequence (ax(7)),»1 such that ar(z) € {0.1}, k € N, and

1 e
TENETT there is a

. [ a
lim k

ay _
[ ((n+1)3 T Tt (n+k)3> B

Marian Tetiva, Gabriel Dospinescu

38. Prove that for any x € [0.00) there are sequences of positive integers
(@n)nz0 and (by),, >0 such that

lim ! + ! + -4 !
1 e =ur.
n=x\a, +1  a,+2 an + by '

39. Prove that the sequence defined by ,, = log,, n!. for any positive integer
n, doés not contain infinite arithmetic sets.
Adrian Inga

40. Given the non-negative integers, when is the sequence defined by
Tpi2 = Tpgiln. To=a, x1=>b a.b=0

convergent?
Dan Schwarz

41. Let (z,), be a sequence of real numbers such that the sequences y, =
Tp&pp1Tpyo and 2, = Tp4q1 — T, are convergent.
Prove that (z,,), is convergent.
Mihai Piticari
42. Let k be a positive integer. Prove that if a sequence (a,,), satisfies

(@ns1] = [an]* + (k + Dan) + 1.

for any positive n has a finite limit, then k = 2.
Calin Popescu, Sergiu Romagen

43 Let fn :[0,1] — R, be a sequence of functions such that | f,,(x) — f.(y)] <

|z — y| for any 2,y € [0,1], and any positive integer n. Let f : [0,1] — R be a
continuous function such that for any rational number, € [0.1], we have

Jinnf, () = £(2).

Prove that lim, o fo(z) = f(z) for any z € [0,1].
Radu Gologan
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44. Let f.g: R — R be such that g is increasing and lle' f(t) = g(f(2)) for
any .
Prove that f is continuous.
Gabriel Dospinescen

45. Find all functions f: (0,0c) — R having the following properties:
a) f(x) + 2x = f(3z) for any x > 0:
b) lim (f(x) —x)=0.

e~y

Gabriel Dospinescu

46. Let f: T — I, where I C R is an interval. be a continuons function such
that for any @ € I there is n,. € N* such that [+ () = r.
a) If T = [a, 0c). prove that f(x) =, for any = € I.
b) Prove that if f is not the identity function in the case I = (a.~). then
lim f(z) = a.
e
Dan Schwarz
47. Let A. B be n by n matrices such there are non-zero real numbers k. p. ¢,
with the properties A2 = kB? and pAB + qBA = rl,. Prove that if AB # BA
then p = q.
Valentin Vornicu

48. For a given positive n, one considers the matrix

1 1 L
B 2 3 n

1 1 i 1

A= 2 3 3 n+l
1 1 1 .. 1

W o4l n+2 2n—1

Prove that A is non-singular and the sum of the elements in A~! is n?.
loan Rasa. Mircea Dan Rus

49. Find all two by two matrices A, having integer elements, such that
det(A3 +1) =1.
Mircea Becheanu

50. Let A € My(Z) be a non-zero matrix. Prove that the following proper-
ties are equivalent:

a) 4det A = (trA)? and A is not of the form (lé 2) , with & an integer;
b) For any matrix B € M»(Z) commuting with A, the number det(A? + B?)

is the square of an integer.
Gabriel Dospinescu
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51. Let @ > 0 and a > 0. Find all integrable functions f : [0,a] — [0.c).
such that for any x € [0,a]

-
flx) < / tf(t)de.
0
Calin Popescu. Valentin Vornien

n
. Let (a, Jn>0 be a sequence with the property lm Z a, = a € R. Prove
n—=x

=

ot
[N

N
km
lim ), cos — = a.
k=0
Dan Stefan Marinescu, Viorel Cornea
53. Consider the continuous functions fi. fa..... fn 1 10.1] — R. that satisty
the following conditions:
L

a) /(f,,:(:r))"’ de=1fork=12,....,n;

0
b) fi(x) + fa(x) + -+ fulx) =0, for all x € [0,1].
Prove the inequality

'Z' (/0] (f(x) = fr(a))? d.r)l/2 >n.
k=1

Calin Popescu
54. Onside BC. of the triangle ABC. one considers a variable point . such

that ZAPB =t and PB = x. Prove that

1BC|
/ cost(z)dr = AB — AC.
0

55. Let I C (0,00) be an interval and g : I -— R an integrable fiunction.
Prove that there are real numbers .y such that

1 a4y
— g(t)dt < 1.
7l

Christinel Mortici
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y 56. Let : [0.1] = R be a function which has continuous derivative such that
[f'(x)] < 1. for all & € [0.1]. Denote by f,, = o fo---o f the n-th composition
of f with itself.

a) Prove that the sequence I, = fnl fn(x)dz. has a finite limit.
b) Let I be the limit defined above and (.J,),, the sequence defined by

Prove that (.J,,), has a finite limit.
Nelu Chichirim
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1.6. REGIONAL MATHEMATICAL COMPETITIONS

Selected Problems

7'" GRADE

1. Let m.n be positive integers. Show that 25" — 7" is divisible by 3 and
find the least positive integer of the form [25" — 7" — 3™|. when m.n run over the
set of non-negative integers.

2004. lasi. Marius Ghergn

2. Let a.b be real numbers such that || > 2. [b] > 2. Show that
(@®> +1)(b* +1) = (a+b)(ab+ 1) + 5.

and find when equality holds.
2001, lasi

3. Let ABC' be a triangle, M be the foot of the altitude from " and N be
the reflection of Al across the line BC'. The parallel line to C'AM through the point
N intersects BC' in P and AC in Q.

a) Show that A/Q L AP if and only if AB = AC.

b) Show that it is possible to obtain the points A, B.C' when the points
A, N, P are given.

2004, Tasi

9'" GRADE
1. Let a,b, ¢ be real numbers. Show that
Va+Vo+ Ve=Vath+e

if and only if ) ) )
A+ = (a+b+0)’

2004, Focgani Contest, Bogdan Enescu
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2. Let z.y, z be real numbers such that
.r2+y: <2yt <2 2y

Find the minimal and the maximal value of the sum r + y+s.

2004 Foesani Contest

3. We are given the set A = {1.3.6.10.15.21....}. Show that there exist
munbers ay.as. ... .ass € A such that

ay +az +ag+ -+ axos = agoog-
2004. Foesani. Bogdan Euesen

L. The circles C; and Co intersect in distinet. points A. B. An arbitrary line
through A intersects again Cy in ' and C in D and let Af be an arbitrary point ou
the segment C'D. The parallel line to BC through M intersects the segment BD
in K and the parallel to BD through A intersccts the segiment BC in N. The
perpendicular in N to BC intersects the arc BC of C; which does not contain A
in the point E. The perpendicular to BD in K intersects the are BD of Cy which
does not contain A in F.

Show that ZEMF = 90°.

2004, Foesani Coutest.

5. Let n be a positive integer and a, b, ¢ be real numbers such that o = a+b,
" =b+candc" =c+a.
Show that a =b = c.
2004. Iassy Contest

6. Let ABCD be a convex quadrilateral and M. N, P.Q be points on the
sides AB, BC.CD. DA respectively, such that

MA
MB ]

where k # 1. Show that S(ABCD) = 2S(AMNPQ) if and only if S(ABD) =
S(BCD).
2004, Tassy, Petre Astafei

7. Let ABC be a right triangle such that, ZA = 90°, /B > /C, and let

D be an arbitrary point on the segment BC. The angle bisectors of ZADB and

LADC intersect the sides AB and AC in the points A and N. respectively. Show

that the angle between the lines BC' and MN is %(B —C) if and only if D is the
foot of the altitude from A.

2004, Iassy, Bogdan Enescu

8. Find all real numbers x, # > 1, such that {/[z"] is an integer number for
all positive integers n, n > 2.
2004, lassy, Mihai Piticari
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10'" GRADE

1. Find all arithmetic sequences nq.n9, 7. n.4. n5. for which 5jny. 2{na. 1{ns.
7iny and 17|ns.
2004. Foesani Contest

2. Let ABC'D be a convex quadrilateral and A, N, P, be the midpoints of
the sides AB, BC',CD. DA respectively.
Show that if ANP and CMQ are equilateral triangles then ABCD is a
rhombus. Find the angles of ABCD.
2001, Foesani

3. Let A= {1,2.3,4.5}. Find the number of funetions f @ A — AL with
the following property: there is no triple of distinct elements a,b.c € A such that
fla) = [(b) = fle).

2004, Tassy, Adrian Zanoschi

4. Let a > 2 be a an integer. Consider the set
A={Va. Va. Va. Ja....}.

a) Show that A does not contain an infinite geometric ratio.
b) Show that for any » > 3. A contains n numbers which ave in a aeometric
ratio.
2004, Tassy. Bogdan Enescu

5. Let ABCD be a tetrahedron such that the medians starting from vertex

4 in the triangles ABC.ABD, ACD are mutnally perpendicular. Show that all
edges that contain 4 are equal.

2004, Tassy. Dinu Serbanenscu

6. Let x.y, = be real numbers such that

cosx + cosy +cosz =0
cos 31 + cos 3y + cos 3z =

Prove that cos2x cos2ycos2z < 0.
2004, Iassy, Bogdan Enescu

11" GRADE

1. We are given a rectangle ABCD and let P be an arbitrary point on the
diagonal BD, P # B,P # D, and Q be an arbitrary point inside the triangle
ABD. The perpendicular projections of P on the sides AB, AD ave Py. P, respec-
tively, and the perpendicular projections of @ on the sides AB, AD are Q1. Q2
respectively.
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Show that if AQy = }AB and AQy = iAD, then the point Q does not lie
inside the triangle AP, P,. :
2004, Focsani, Mircea Becheanu
2. Let A, N be 2 x 2 real matrices such that AN = NA and N = 0 for
some positive integer m. Show that
a) det(A+ N) = det A:
b) For det A # 0, A+ N is invertible and (A + N)~! = (4 — )42,
2004, Foesani. Ton D. Tou

3. a) Prove that for all positive integers n. the following inequality holds

1 1 1 s L
(l%—]—z) (l+§>(l+p) <e T

b) Show that the sequence of real numbers (a,,),>; defined by a; =1 and

P
) = — E kay. forall n > 1.
n?
k=i
is monotonic increasing. Find with proof if it is a convergent sequence.
2004.Foesani

4. Let a € (0.1) be a real number and f : R — R bhe a fimction which
satisfies the conditions

(i) fim f(x) =0;
x
Show that lim f(x)

n—ox T

(i) lim

=0.

=0.
2004. Focsani. Mircea Becheann

5. Let ABCD be a parallelogram of unequal sides. The point E is the foot
of the perpendicular from B to AC. The line throngh E which is perpendicular
to BD intersects BC' in F and AD in G.

Show that EF = EG if and ounly if ABCD is a rectangle.
2004 Tass

v. Mircea Becheanu
6. Let A.B be 2-by-2 matrices with integer entries, such that AB = BA
and det B = 1.
Prove that if det(A® + B*) =1 then 4% = 1.
2004. Tassy. Mircea Becheanu
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12" GRADE

1. Let G be a gronp such that every clement 2. . # 1. has ovder p.
a) Show that p is a prime number.
D) Show that if any p2 — 1 element subset of G contains p elements which
commte one to another. then G is an Abelian group.
2004, Tassy. Claudin Raien
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District round — Solutions

7*" GRADE

ProOBLEM 1. Find the number of positive 6 digit integers such that the sum
of their digits is 9, and four of its digits are 1,0,0, 4.

Solution. The pair of missing digits must be 1,2 or 0, 3.

In the first case the first digit can be 1,2 or 4. When 1 is the first digit, the
remaining digits, (1,2,0,0,4), can be arranged in 60 ways. When 4 or 2 is the first
digit, the remaining ones can be arranged in 30 ways.

In the same way, when completing with the pair (0, 3), the first digit can be
1,3 or 4. In each case, the remaining ones (three zeros and two distinct non-zero
digits) can be arranged in 20 ways.

In conclusion, we have 60 + 2 - 30 + 3 - 20 = 180 numbers which satisfy the
given property.

PROBLEM 2. Let D be a point on side BC of a given triangle ABC. The
bisector lines of the angles ZADB and ZADC intersect AB and AC at M and N,
‘respectively, and the bisector lines of the angles ZABD and ZACD intersect DM
and DN at K and L, respectively.

Prove that AM = AN if and only if MN and KL are parallel.

Solution. In the triangle ABD, K is the incenter, so AK is the bisector
line of ZBAD. In the same way in the triangle ADC, AL is the bisector line of
LDAC.

Using the bisector theorem in triangles AMD and ANC (for the lines AK
and AL), we get:

AM _ MK AN _NL
4D T KD ™ AD T ID’
But AM = AN if and only if % = &, if and only if KL||MN (by Thales

LD
theorem).



40 g PROPOSED PROBLEMS AND SOLUTION

PROBLEM 3. One considers the set A = {n eN'|1</1+/n< 2}.

a) Describe the set A.
b) Find the set of numbers n € A such that

1—1/14+/n

Solution. a) We have 1+ /n > 2, that is \/1+ v/n > 1.
e {’Il‘h2e ineq\sliality m < 2 is equivalent to 1+ y/n < 4, or n < 9. We get
b)‘ V,Ve ll)ave ll - \/Wﬁ| =/1++/n—1. The inequality \/1+ y/n—1<
;/1—7_1 is equivalent to \/l—m< ! 1—/%/5, that is 1 < %\/E’ orl< % + %
1,1 1,1

n Vn 3" 3

It follows that the given inequality is true if and only if n € {1,2}.

V-

<1?

For n > 3 we have

<L

PROBLEM 4. In the triangle ABC we have AB = AC. Consider the points
M, P on AB such that AM = BP. Let D be the midpoint of BC and let R on CM
and @ on BC, be such that A, R, Q are collinear and the line AQ is perpendicular
on CM.

Prove that:
a) LAQC = (PQB;
b) LDRQ = 45°.

Solution. We suppose without loss of generality that the order of points is
A,M,P,B.

Let E be such that ABEC is a square having center D and N is the inter-
section point of AQ and BE.

a) As the triangles AMC and NBA are equal, we get AM = BN. As
AM = PB, we obtain PB = BN. Because ZABC = /CBE and the line @B is
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a common edge, we get APQB = ANQB. It follows /ZPQB = /NQB and, as
LCQA = LNQB, we obtain LAQC = LPQB.

b) Because of the similarity of the triangles ADQ and RQC, we have
-g—g = —g—g— It follows that the triangles DRQ and ACQ are similar, too. This
gives that the corresponding angles are equal, thus ZDRQ = 45°.

8" GRADE

PROBLEM 1. We say that the real numbers a si b have property P if a?+b € Q
and b2 + a € Q. Prove that:

1+v2 po 1o

7 $PT T

b) If a, b have property P and a+b € Q\ {1}, then a si b are rational numbers;
a

¢) If a,b have property P and i € Q, then a si b are rational numbers.

¥§ib7=#,thatisa2+b=

a) The numbers a =

are irrational and satisfy P;

Solution. a) We have a? =
a+b= g cQ.

b) From a?+b— (b%+a) € Q we get (a —b)(a+b—1) € Q. Because a+b—1
is a non-zero rational number, we have a —b € Q. As a+b € Q, we get 2a,2b € Q,

that is a,b € Q.
c) Let k € Q\ {0,1} such that a = bk. We infer b(1 + k%b) € Q and
2

b(b+ k) € Q, implying >

b++kkb =7 € Q. If »r = k?, then k® = 1. This implies
—rk
)

1
k=1 and a = b, a contradiction. Thus r # k2, from where b = - €Q. Asa

resulta:%-beQ.

PROBLEM 2. The real numbers a, b, ¢, d satisfy a > b > ¢ > d and
a+btc+d=2004 si a®—b?+c? —d? = 2004.

Answer, with proof, to the following questions:
a) What is the smallest possible value of a?
b) What is the number of possible values of a?

Solution. a) One can write a®? — b? + ¢ — d?> = (a —b)(a + b) + (c —
dic+d) > a+b+c+d=2004 Ifa—b>1o0rc—d> 1, we easily deduce
a? —b2+c2—d?>2004. Thusa—b=1,c—d=1,thatisb=a—-1,d=c—1,
case in which a 4+ b + ¢ 4+ d = 2a + 2¢ — 2 = 2004. This implies a + ¢ = 1003. As
a > ¢, we get a > 502. For a = 503, we obtain b = 501,c = 501,d = 500, thus
b = ¢, which does not satisfy the given condition.

For a = 503 one obtains b = 502, ¢ = 500, d = 499.
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b) The maximal value of a is obtained for the smallest value of d. Whend = 1
we get ¢ = 2, a = 1001. Thus a € {503,504, ...,1001}, taking 1001 — 503 +1 = 499
possible values. To check that any a from the set {503,504,...,1001} gives a
solution, take b = a — 1, ¢ = 1003 — a,d = 102 — a. It is easy to see that
a>b>c>d, and the equalities from the hypothesis are fulfilled.

PROBLEM 3. Say that a set of three different numbers is an arithmetical
set if one of the three numbers is the average of the other two. Consider the set
A, ={1,2,...,n}, where n is a positive integer, n > 3.

a) How many arithmetical sets are in A;o?

b) Find the smallest n, such that the number of arithmetical sets in A, is
greater than 2004.

Solution. a) It easy to see, by inspection, that there are 20 arithmetical
subsets of Ajg

b) Consider an arithmetical set B = {a,a +r,a + 2r}. For each r < 45 and
1< a<91-2r, we have B C Ag;. As a consequence, for any r € {1,2,...,45}
there are at least 91 — 27 such subsets of Ag;. The total number of these subsets
is 14345+ -4 89 = 2025. In the same way we can see that the number of
arithmetical subsets in Agg is smaller than 2000.

PROBLEM 4. In a given trapezoid ABCD, let AB || CD, /B = 90° and
AB = 2DC. Consider points N and P on the same part of the plane (ABC), such

that PA and N D are perpendicular on the trapezoid plane, and ND = a, AP = g

(a>0). If M is the midpoint of BC and the triangle M N P is equilateral, find:
a) The cosines of the angle between the planes (M N P) and (ABC);
b) The distance from D to the plane (M N P).

Solution.

a) The orthogonal projection of the triangle PMN onto the plane (ABC) is
the triangle AM D. By the projection theorem

where a is the angle between planes.
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b) We shall use the notations AB = b and BC = c. Because the triangle

MNP is equilateral we have
2 a2 ¥ 2 b2 a?
2, & O & 22,0 o
o+ p=gr =

and consequently a = b=c.

If O is the midpoint of the segment M N, then PO L (DMN). It follows
that the planes (PNM) and (DM N) are perpendicular. If DF L NM, F € NM,
then DF L (MNP). Thus

DN-DM a3
PF==mr =73

9" GRADE

PROBLEM 1. Real numbers a, b, ¢ satisfy a? + b2+ c? = 3. Prove the inequa-

lity:
|a] + [b] + || — abe < 4.
Solution. The Cauchy-Schwarz inequality yields
(Ial + o] +1e)* < 3 (a® +7 +¢) =9,
hence

la] + |b] + |c] < 3.
From the AM-GM inequality it follows that

A+ b2+ >3Y (abc)?,

or |abe| < 1, which implies —abe < 1. The requested inequality is then obtained
by summation.

PROBLEM 2. Find the cartesian coordinates of the vertices A, B,C of a
triangle ABC, whose the orthocenter is H(—3, 10), the circumcenter is O(—2, —3),
and the midpoint of BC is D(1,3).

Solution. We have AH = 20D, implying that the coordinates of the point
A are (—9,-2) and the radius of the circumcircle equals v/50. The line BC is
perpendicular on OD, and its equation is z + 2y = 7. Since BO = CO = V50, we

deduce that the coordinates of the points B, C are (3,2) and (—1,4).

PROBLEM 3. a) Prove that there are infinitely many rational positive num-
bers x such that:
{?} + {=} = 0,99.
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b) Prove that there are no rational numbers z > 0 such that:
{2} +{z} =1

Solution. a) Since 0.99 = %, it is natural to look for a rational z of the

form 10’ for some positive integer n. It is not difficult to see that = = % satisfies

the given equality and then that z = 10k + % also satisfies the equality for any
positive integer k.

b) Suppose, by way of contradiction, that such a rational number z exists.
Let n = [z]; then n <z <n+1, hence n® < 2 < n?+2n+ 1. Let [2?] =n? +k,
where 0 < k < 2n. Substituting {z} = z — [z] =z —n and {22} = 2% - [2?] =
22 — n? — k in the given equality, yields

24z—n?—n—k-1=0.

Consider the above equality as a quadratic equation for the unknown z. Since z
must be rational, its discriminant A = 4n? 4+ 4n + 4k + 5 has to be an odd square,
say (2m+ 1)2. We deduce that n? +-n +k + 1 = m? + m. Clearly, m > n+ 1, and
hence m? +m > n? + 3n + 2. Finally, we obtain k > 2n + 1, a contradiction.

PROBLEM 4. A rectangle 2 x 4 is divided in 8 squares of side 1. Call M the
set of the 15 vertices thus obtained.

Find the points A € M satisfying the following condition: the set M \ {A}
can be arranged in pairs (Ay, By), (A2, Ba), ..., (A7, By) such that

A B+ 2B+ + 4By, =T.

Solution. We will prove that the point A is either the center of the rectangle
or the midpoint of one of its smaller sides. In these cases, the requested pairs can
be chosen as in the figure.

Bs As A; B; B; A; B, B; A, Bs
B I A; LA A, |As 1A,

A

2 By

A, B, B, B, A, A B, B; B; A

For other positions of the point A, consider M = {0,1,2,3,4} x {0,1,2}.
Suppose the partition into pairs possible, and denote A, (z,,yp), By (2p,tp), for
p=1,2,...,7. Then

7 7 7

Z TBP = Z(Zp - xp){"' Z(tﬁ - yp)]
= p= p=1

p=1 1
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= 7 7 7
For the sum to equal 0, the numbers Y (zp — zp) = Y. (Zp+2p) =2 Y 2
p=1 p=1 p=1

7 7 7
and Y (yp —tp) = X (yp +1tp) —2 > yp have to be even. This happens only if
p=1 p=1 p=1

the set M)\ {A} contains an even number of points having an odd abscissa and an
even number of points having an odd ordinate, which is not possible.

10 GRADE

PROBLEM 1. Given a positive integer n, n > 3, find the number of arithme-
tical progressions with 3 elements contained in the set {1,2,...,n}.

Solution. Let us count the subsets according to the value of the common
difference of the progressions. There are n—2 progressions with the common differ-
ence equal to 1: {1,2,3},{2,3,4},...,{n—2,n—1,n}. There are
n — 4 progressions with the common difference equal to 2: {1,3,5},{2,4,6},...,
{n—4,n—2,n}.If nis even, say n = 2k, the maximal value of the common dif-
ference is k — 1; there are two such progressions: {1,k,2k — 1} and {2,k + 1,2k} .
Thus, in this case, the total number of subsets is 2+ 4+ --- +2k—-2=Fk(k-1).

If n is odd, say n = 2k + 1, the maximal value of the common difference is
k and there is only one such progression: {1,k + 1,2k + 1}. The total number of
subsets is 1+3+ ...+ (2k — 1) = k2.

-1
In both cases, the number of subsets equals [g] . [n 3 ]

PROBLEM 2. Find integers n, n > 3, having the property: there are distinct
integers aj,as, ..., a,, such that:

arlag! - an_q! = a,!

Solution. We prove inductively that for all n > 3 such numbers exist.
Indeed, for n = 3 we have 3!- 5! = 6!. Assume that for some n there exist a; <
as < -+ < ap such that

al-ag! ... an_1! =a,!.
Let b=a,! — 1. Then a, < b and
a1l ag! - an_q! bl =ay!- (a,! — 1) = (an!)!

Thus, denoting b = a,, a,! = an41, we have

ay!-an!-an—1! an! = any!,

as desired.



46 : PROPOSED PROBLEMS AND SOLUTION

PROBLLEM 3. Let M, N, P, and Q, be the midpoints of the edges AB,CD,
AC, and BD, respectively, of the thetrahedron ABCD. It is known that MN is
perpendicular to both AB and CD and PQ is perpendicular to both AC and BD.
Prove that AB = CD, BC = DA, and AC = BD

Solution. Denote 4B = T, AC = y, and AD = z. Then MN = rrytz

2
and since MN - AB = MN - CD = 0, we obtain

T2ty —2=0
y?—22 —axy4z2=0.
Substracting these equalities yields 2% = (z — y)2 , hence AD = BC. Adding them

up yields y? = (z —y)?, thus AC = BD.
In the same way, the second condition of perpendicularity leads to AB = CD.

Alternative solution. It easy to see that M N is a median and an altitude
in the triangle ABN; thus the triangle is isosceles. This implies BN = AN. In
the same way one can prove that AQ = CQ, MC = MD and BQ = QD. Using
the formula for the median line, we easily get the equalities of pairs of edges.

PROBLEM 4. Let 2,y € (0,%). Prove that if the equality

(cosz +isiny)™ = cosnz + isinny

is true for two consecutive integers, then it is true for all integers n.

Solution. Suppose

(cosz +isiny)"™ = cosnz + isinny

(cosz + isiny)™*?

=cos(n+1)z+isin(n+1)y.
Multiplying the first relation by cosz + isinz and substracting the second, we get
sin zsin nz = siny sin ny.

Suppose z < y. Then sinz < siny, and hence [sinnz| > |sinny].

Considering the absolute values in the equality (cosz + isiny)” = cosnz +
isin ny, we obtain

(cos®z +sin? )™ = cos® nz + sin? ny.
Thus, we have
1 = (cos®z + sin’ z)" < (cos? x + sin® )"

. n .
= (cos2 nax + sin® ny) < cos? nz +sin’nzx = 1,
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a contradiction. A similar contradiction is reached by assuming = > y. It follows
that « = y, which implies the conclusion.

11** GRADE

PrOBLEM 1. Let zo > 0 and for any positive integer n, consider zp1 =

Tn + \/a:_" .
Find: a) 711520 T} b) nlgx;o o
Solution. a) It is not difficult to see that (Tn)nxo 1s strictly increasing,
1
hence limz, = L exists. If L € R, then the recursive relation gives L = L + ﬁ’
which is impossible. It follows that L = oo.
b) First, observe that
1
Tndl g, ,
Tn Tny/Tn
from which we deduce that
lim 22—
n-—00 I,n :
3
™ using the Stolz lemma:
Jim hm (,/9:731“ \ )
—1\3 3
= lim ( (y+y7') —\/yf‘) =5
Yoo 2
3
oy Tn 9
that is "111:1;10 S
PROBLEM 2. Consider complex non-zero numbers zj,23,...,22,, 1 > 3,
such that |z;] = |zo| = = |zn+3| and arg2z; > -+ > arg(zn43). Define for
4,7 € {1,2,...,n}: |2i — zj4n| and let B = (b;;) € M,. Prove that

det B =0.

Solution. Consider z = r(cos2z +isin2z) and w = r(cos2y + isin2y),
then |z — w| = 27 |sin (z — y)|. Using the hypothesis we can reduce det B to the
form

sin(z; — Tpg1)  sin(@y — Tpyo)  sin(zy — Tngs)

Sin(T, — Tny1) sSiN(Tn — Tny2) sin(Tp — Tnts)

Writing it as a sum of determinants, we reach the desired conclusion.
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ProBLEM 3. Let f : R — R be a function with the property P: for every
b
a,b€ R we have f (%) € {f(a), fB)).

a) Give an example of a non-constant function possesing P.
b) If f satisfies P and is continuous, prove that it is constant.

Solution. a) An example is the function
_J0 z<o0
)= {1 z>1

b) Observe that if ¢ < d and f (c) = f (d), then f is constant on the interval
[e,d] . Indeed, let m; be the midpoint of [c,d], let Ty and mg3 be the midpoints
of [¢,m] and [my,d] and so forth. The set of these points is dense in le,d], and
since f is continuous, the conclusion follows.

Now, suppose there exist a < b such that f(a) # f(b), and let a; =
sup {z € [a,b] | f (a) = f(z)} and by = inf {z € [a,b] | f (b) = f (z)}. Then f (a) =
f(a1), f(b) = f (b1), hence f is constant on both intervals [a, a;] and [b1,]. But

f (al ;rb1> ¢ {f (a1), f (b1)}, a contradiction.

PROBLEM 4. The matrix A = (a;;) € M,(C) is defined by a1y = ax =
+-=ap-1p =1 and a;; = 0 for the remaining set of indices (4, 5).

Prove that there are no non-zero matrices B,C' € M,(C) such that
(I, + A)™ = B™ 4+ C™ for all non-negative integer n.

Solution. From (I, + A)* = B2 + C? and (I, + A)* = B® + C* we obtain
BC = CB = 0,. The equality I, + A= B + C implies B+ AB = B? + BC = B?
and also B + BA = B% + CB = B2 Hence AB = BA and, similarily, AC = CA.
It is easy to see that it follows that there exist b, ¢ such that

b * c *
B=<0b ),C:(Oc )
0 b 0 c

with b + ¢ = 1. The equality BC = 0,, implies bc = 0, so either b or ¢ equals 0. If,
for instance, b = 0, then it follows that ¢ = 1, hence C is invertible. In this case,
the equality BC = 0, implies B = 0,,, as desired.

12 GRADE
PROBLEM 1. Let n > 2 be an integer and r € {1,2,...,n}. Consider the set

S, = {A € M,(Zy) | rank A = r}.

a) Prove that for any A € S, and B € S,, AB is in S,;
b) Calculate Z X.
XeS,
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Solution. a) rank A = n implies A invertible. As rank AB < rank(B) =r
and rank AB > rank(A~!'AB) = rank B = r, we get rank(AB) = 7.

b) Consider A € S, and the function f : S, — S,, f(X) = AX. It easy to
see that A is one-to-one (and thus onto) if and only if f is one-to-one and onto
(the set S, isfinite).

Wethusget S= ) X = Y AX = AS, which can be written (A—1)S =

XeS, X€S,
0.
In order to prove S = 0, it suffices to show that there is an A, € S,, such
that A, — I is invertible. Take for example, for n =2 and n = 3: Ay = % ‘1) R
0 01
As=[1 1 0 ). In general consider matrices of the form
010
A, 0 -~ 0 A3 0 -~ 0
0 Ay --- Ay -+ 0
A= | D02 0 = | O O
0 0 - A 0 0 - A

PROBLEM 2. Prove that constant functions are the only continuous functions
f:[0,1] - R, such that

1 1 1
/0 f(@)g(z)do = / f(@)dz / o(x)da,

for any non-derivable continuous function g : [0,1] — R.

Solution. If f verifies the given property, then, for every real c, the relation
is also verified by f — c. Thus, the function

1
hz) = f(z) - /0 fle)ae

verifies the equality

1
(1) / h(z)g(x)dz =0, for all g continuous and non-derivable.
0

If, by contradiction, /2 is not the zero function, take zo € (0, 1), such that h(zo) # 0.
Consider an interval of the form V = [zg—&,z0+€] C (0,1) where € > 0, on which
h has constant sign. Such an interval exists by the intermediate value property.
The function defined on [0,1] by g(z) = (z — 20)> — &% for x € V and g(z) =0
otherwise, is not derivable. The integral in (1) is not null, a contradiction.

PROBLEM 3. A ring A satisfyies the following properties:
i) Its unit 14 has order p, a prime number;
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ii) There is a set B C A with p elements such that: for any z,y € A, there
is b € B satisfying xy = byz.
Prove that A is commutative.

Solution. As k and p are mutually prime, by Euclid theorem there are
a,b € Z such that ka 4+ pb = 1, that is (k14)(als) = 14. For z = y = 14 we get
14,=b€B.

Suppose A is non-commutative, that is, there are z,y € 4, b € B\ {la}
such that zy = byx. Thus = + k14 and y do not commute for k = 0,1,...,p — 1.
As B\ {14} consists of p — 1 elements, there are s < r in {1,2,...,p — 1} and
a € B\ {14}, such that (z +714)y = ay(z +714) and (z+s14)y = ay(z + s14).
Denoting by z =z +slgand t =7 —s € {1,2,...,p — 1} we get zy = ayz and
(2 +tla)y = ay(z + t14). This gives y = ay, or zy = ayz = yz. In conclusion
(z + sla)y = y(x + s14) implying zy = yz, a contradiction.

PROBLEM 4. Let a,b € (0,1) and let f : [0,1] — R be a continuous function,
such that

r' ax bz
/0 F(t)dt = /0 F(e)dt + /D F(t)dt, for any z € [0,1].

. a) Prove that a + b < 1 implies f = 0.
b) Prove that @ + b =1 implies that f is constant.

Solution. a) As f is continuous, the functions in z defined by the given
equality, have finite derivatives. Taking derivatives on both sides, we get

f(z) = af(az) + bf(bz),

for all z € [0,1]. Consider M = supejo,1) | £(t)|- By the mean theorem, we have
[f(z)| < (a+b)M, that is M < (a+ b)M. Thus M = 0 implying f = 0.
b) Let 2o be a maximum point of f. Then

f(zo) = af(azo) + bf (bzo) < (a+ b)f(zo).

It follows that axo is a maximum point too. By iteration, a™xg is a maximum point,
for any n. As f is continuous, and lim a™zg = 0, we infer that 0 is a maximum
n—oo

point. In thesame way, if z; is a minimum point for f, we get by induction that
a™z; is a minimum point, for any n. Considering limits, we conclude that 0 is a
minimum point. As 0 is in the same time maximum and minimum point for f, we
get f(x) = f(0), for all € [0,1], thus f is constant.

2.2. THE NATIONAL MATHEMATICAL OLYMPIAD

Final Round — Solutions

7" GRADE

PROBLEM 1. On the sides AB and AD of the rhombus ABCD, consider the
points E and F respectively, such that AE = DF'. Lines BC and DE intersect at
P, and lines CD and BF intersect at Q. Prove that:

PE QF _ 1:
Y pp QB b
b) Points P, A, Q are collinear.

PE BE
QSP(‘)Iut;);. a) From BE || CD we have D= CD’ and from DF || BC we
get Q_B =3¢ These imply
PE QF BE FD _ 1

PotQB oD B -

FQ FD EA
b) From FD | BC, we deduce 0B~ BC 4B’
EF | AQ.
From BE || CD, we get PE = BE = A—F, and by Thales theorem we
deduce EF || AP. It follows that the points P, A, Q are collinear.

Thales theorem gives

PROBLEM 2. The side-lengths of a triangle are a, b, c.
a) Prove that there is a triangle with sides v/a, v/ and /.
b) Prove that Vab + \/b_c+\/(ﬁéa+b+c<2\/t;l;+2\/b—c+2\/a_c.

Solution. a) From a+b > c one obtains a+b+2vab > ¢, or (va+vb)? > ¢,
that is \/a + Vb > /c. By symmetry, this proves that /@, v/b, \/c are the sides of

a triangle.

b) The inequality vab+ vbe++/ac < a+b+cis equivalent to 2v/ab+2vbe+
2,/ac < 2a+2b+2c, or (a —2vab+b) + (a—2y/ac+c) + (b—2vbc+c) > 0, that
is (va—vb)? + (va — /&) + (Vb — y/2)? > 0, obviously true.



52 ' SOLUTIONS
Because /a, Vb, v/ are the sides of a triangle, we have:
Va<Vb+ve, Vb<va+ve +e<a+Vb.

Multiply the above relations by v/a, Vb, /¢, respectively. Summing up we get
a+b+c<2vab+2vbe + 2v/ac.

PROBLEM 3. The diagonals of the trapezoid ABCD are perpendicular and
intersect in O. Angle A equals 90°, AB || CD and, AB > CD. The diagonals
intersect at O. OE is the bisector line of the angle AOD, FE is on the segment AD,
and F is on BC, such that EF || AB. Denote by P, @, the intersection points of
the segment EF with the diagonals AC and BD, respectively. Prove that:

a) EP = QF;
b) EF = AD.
Solution. a) The triangles EPA and DCA are similar. We get
1 EP _ 4B
@ DC ~ AD’
From the similarity of the triangles FQB and CDB we also obtain
QF BF
@ DC ~ BC
D V C
Ed ‘A F
A B
AE BF . EP QF
By Thales theorem iD= BC and from (1) and (2) we obtain De = Do

that is EP = QF.

b) Because ZAOQ = LAEQ = 90°, the quadrilateral AEOQ is cyclic, thus
LEQA = /EOA) = 45°. Tt follows that the triangle EAQ is isosceles and AE =
EQ.

The quadrilateral DEPO is cyclic because m(D/EP) = m(D/CTP) = 90°.
This implies ZDPE = /DOE = 45°, that is DEP is isosceles and DE = EP.
But EP = QF. We get EF = EP + PF = ED+ EA= AD.

PROBLEM 4. Sixteen points are placed in the centers of a 4 x 4 chess table
in the following way:
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a) Prove that one may choose 6 points such that no isosceles triangle can be
drawn with vertices at these points.
b) Prove that one cannot choose 7 points with the above property.

Solution. a) Any of the following configurations has the asked property:

o0 o0 e
e e o O
e o o O
e e o O
OO0 e e
o 0o 0o 0
O e e O
® O ® O

b) Suppose that we select 7 points such that there are no isosceles triangles
having the vertices at these points. There are exactly two possibilities:

1) All chosen points are on the border of the big square. Partition the set of
12 points in three sets that are the vertices of three squares as seen in the figure:

+

o o 4+ o
e e O
o4 0 o

L]

L]
+ o
Observe that we cannot choose three points with the same symbol that are not
the vertices of an isosceles triangle.

2) There is at least an interior chosen point. With the other 15 points form
five sets as seen in the figure:

O * % %
RO e *
0 0O O *
® o ® o

From the points marked with o, ®, o, we can choose only one point and from those
marked with %, we can choose two points. In total we can choose at most 6 points.

8h GRADE

PROBLEM 1. Find all non-negative integers n such that there are integers a
and b with the property:

n?=a+b and n®=a%+b%

Solution. From the inequality 2(a? + b?) > (a + b)? we get 2n3 > n’, that
is n < 2. Thus:

— for n =0, we choose a =b =0,

—forn=1, we takea =1, b=0, and,

— for n =2, we may take a = b= 2.

PROBLEM 2. Prove that the equation

IZ +y2 +22 +t2 — 22004Y
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where 0 < z < y < z < t, has exactly two solutions in the set of integers.

Solution. The solutions are (0,0,0,21002) and (21001, 21001 91001 91001y

In order to prove the statement, let (z,y,z,t) be a solution. Observe that
for odd a we have a = 4n £ 1, and a? gives the remainder 1 when divided by 8.
Thus the equation has no solution with an odd component.

We thus must have z = 221, y = 2y, z = 2z, t = 2t;, where 0 < 71 <
y1 < 21 < t) are integers and =} + y? + 27 + t7 = 22092, By the same argument
T1 = 239, Y1 = 2y2, 21 = 229, t1 = 2ty, where 0 < 75 < yp < 22 < ¢ are integers
and 73 + y3 + 22 + t§ = 22002,

Recursively, z = 22001q, y = 22001} 5 — 92001 ¢ = 92001] where 0 < a <
b < ¢ < d are integers and a? + b% + ¢2 + d? = 4. This relation simply implies the
conclusion.

PROBLEM 3. Consider a frustum of a regular quadrilateral pyramid
ABCDA’B'C’'D" in which the lines BC' are DA’ orthogonal.

a) Prove that the angle between the lines AB’ and DA’ equals 60°.

b) If the projection of B’ onto the plane (ABC) is the incenter of the triangle
ABC, prove that the distance between the lines CB’ and AD’ equals %BC’ .

Solution. a) The diagonals BC’ and DA’ are contained in perpendicular
planes to (ABC). They are parallel and contain the points B and D, respectively.
The diagonals CD' and AB’ belong to planes which are perpendicular to (ABC)
and contain C' and A respectively.

D c
D G
[0}
BI
A B
N
M

Consider a point in the space and draw through it parallel lines to the diag-
onals BC', CD', DA’ and AB’ respectively. One obtains a regular quadrilateral
pyramid; its diagonal section is an isosceles right triangle (thus equal to “half” of
the base square).

We infer that the lateral edges of this pyramid are equal to the base edges,
meaning that the lateral faces are equilateral triangles. We thus get that the angle
made by DA’ and AB’ equals 60°.

b) Let B1Cj be the projection of the segment B'C’ onto the plane (ABC)
and D; the projection of point D’ onto the plane (ABC). Then

1 CB, || AD;.
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The triangles B;C1C and ABC are isosceles and B;C; = CC;, AB = AC;. Thus
B:C, + BC = AC.

Let M € CB (B € CM) be such that BM = B1C; = B’C’ and N is the
midpoint of AM. We find out that M B’C’B is a parallelogram, thus M B’ = BC',
and MB' = AM.

In the triangle ACM we get CN L AM, and D1A 1 AM from (1). We see
that AM is perpendicular on the planes (CB’B;) and (AD'Dy), thus the segment
AN equals the common perpendicular of the diagonals CB’ and AD’. Tt follows
AN = 1AM = iBC'.

PROBLEM 4. A cube of side 6 units contains 1001 unit cubes with sides
parallel to those of the given one. Prove that one can find two unit cubes such
that the center of one of them is inside or on the faces of the other.

Solution. Partition the cube into 123 cubes of sides % each. The centers
of the 1001 unit cubes are at least % apart from the initial cube faces. As a
consequence, they cannot be inside the cubes of side % which have a face on one
of the faces of the given cube. It results that the 1001 centers are inside the 1000
cubes of side % which are inside the given cube. By the pigeon-hole principle, two
of centers of the unit cubes are inside or on the faces of the same cube of side %
This proves the result.

9th GRADE

PROBLEM 1. Find all increasing functions f : {1,2,...,10} — {1,2,...,100},
having the property: z+y is a divisor of z f(z)+yf(y), for any z,y € {1,2,...,10}.

Solution. As z + y is a divisor of both zf(z) + yf(y) and zf(y) + yf(y),
we get by subtraction = + y|z(f(y) + f(z)).

For y = x4+ 1 we obtain that 2z + 1 is a divisor of z(f(z + 1) — f(z)) and,
because (24 1,z) = 1, we deduce 2z + 1|f(z + 1) — f(z).

In particular f(z+1) — f(z) > 2z +1, forall z € 1,2,...,9, thus

9 9
D (fle+1)=f=) =Y (2 +1).
z=1 z=1

This implies f(10) > f(1) + 99 > 100, thus f(10) = 100 and f(1) =1.
From f(z+1)—f(z) = 2z+1, foranyz = 1,2,...,9, we conclude f(z) = z°.

PROBLEM 2. For any positive integer n denote by P(n) the number of
quadratic functions f: R — R, f(z) = az® + bz + ¢, having the properties:

a) a,b,c€ {1,2,...,n};

b) The equation f(z) = 0 has integer roots.

Prove that n < P(n) < n?, for all n > 4.

Solution. As the quadratic equations z2 + kz +k—1 =0, k=2,3,...,n
and 222 + 4z + 2 = 0, 22 + 4z + 4 = 0 have integer roots, we infer P(n) > n.
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For f satisfying the given conditions, we write f(z) = a(z+o1)(z+ ag) with
a1,09 € Z, a, a(ay + ag), acyop € {1,2,...,n}.
n
In particular, ap < —. We find
acy

Pmy< Y —"—:n(1+1+1+--~1)2.

Asl+i+1+.--L < y/mforn>5 (induction on n), and P(4) = 5 we
conclude P(n) < n?.

Remark. A more careful analysis of the above solution implies a better

2
bound, namely P(n) < %, forn > 4.

PrOBLEM 3. Let H be the orthocenter of the acute triangle ABC, and let
B’,C’" be the projection of the points B and C onto AC and AB, respectively. A
variable line d, passing through H, intersects the segments BC’ and CB’ in M
and N, respectively. The perpendiculars in M and N on d, intersect BB’ and
CC’, in P and Q, respectively.

Find the locus of the midpoint of the segment PQ.

Solution. By the following similarities:

AHEMP ~AHB'N, AHNQ~AHC'M, AHBC'~AHCE,

HP HM HQ HN HB' HC Theref HP HQ
HN " HB' HM HC' HC  HB CO°HBT HC

As a consequence, the segments PQ and BC are parallel. Thus, the midpoint
S of the segment PQ is situated on the fixed line HAp, where Ap is the midpoint
of BC.

Conversely, let S be a point of the locus and PQ the corresponding segment.
The corresponding point M is one of the points M7, M, where the circle of di-
ameter HP intersects the segment BC. The line My H will intersect AC at N,
k = 1,2. The perpendicular line Ny on M Ny will cut CC” at Qy, k = 1,2. By the
first part of the proof, PQy | BC, k = 1,2. But PQ || BC,s0o Qr = Q, k =1,2.
Therefore, we find out that one of the limiting configurations corresponds to the
case when the circle of diameter H P is tangent to BC'.

we obtain
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Let My be the tangent point, and wy its center. The lines woMy and HC'
are parallel (they are both perpendicular on BC”). As a consequence ZwoMoH =
LMyHC'. But LwoMoH = /woH My, implying that H M is the interior bisector
line of ZBHC".

Let Sp be the point corresponding to this configuration. The locus will be
the segmet ApSy situated on the line HAp, and the limiting position Ap will be
obtained when d coincides with one of the perpendicular lines BB’ or CC".

Remark: The preceeding discussion implies that when d rotates around
H, remaining inside the angles /BHC’ and ZCHB’, the point S moves along
the segment AoSp in two ways: to both lines d; = M1HN; and do = MyHN>,

My, M5 € BC' and Ny, N, € CB’, that make the same angles with the bisector

line HMj of ZBHC', there correspond the same points P and Q, that is the same
point S.

PROBLEM 4. Let p,q be positive integers, p > 2, ¢ > 2. A set X has
property (S) if, by definition, for any p subsets B; ¢ X, i = 1,2,...,p, not
necessarily different, any of them having ¢ elements, there is a set Y C X having
p elements, such that the intersection of ¥ with each B;, i = 1,2,...,p, has at
most one element. Prove that:

a) Any set X with pg — ¢ elements does not satisfy property (S);

b) Any set X with pg — ¢ + 1 has property (S).

Solution. a) If X has pg — ¢ = (p — 1)q elements, chose p — 1 subsets B;,
i=1,...,p— 1 with ¢ elements each. They form a partition of X, and let B,
arbitrary, containing ¢ elements. By the pigeon-hole principle, any subset Y with

p elements, will intersect at least one of the sets B;, i = 1,...,p—1 in at least two
elements,
b) For given i, observe that |J B; contains at most (p — 1)g elements. As
i#i

X has pg— g+ 1= (p—1)g+1 elements, we will find at least one element at our
disposal, say x;, which does not belong to any Bj, j # i.

Apply the above remark for i = 1: if z; € B; we will continue; if not, we
replace an element, say y; € By, by z1. Continuing with i = 2, 3, etc., we observe
that at each step the chosen z; will be different from all the preceding ones.

Consider Y = {z; | i = 1,...,p}. The set ¥ will intersect each new B; in
exactly one element, that is ;. Replace now z; with y;, to obtain the original B;.
If y; ¢ Y, the intersection of Y with B is empty; if y; € Y, the intersection would
contain an element, that has to be y;.

10" GRADE

PRrROBLEM 1. Let f: R — R be a function, such that |f(z) — f(v)| < |z —y|,
for any real z,y. Prove that if the sequence z, f(z), f(f(z)),... arithmetic, for
any real z, then there is a real a such that f(z) = z + a, for any real number z.

Solution. Suppose the existence of z,y € R such that f(z) —z > f(y) - y.
Denoting by p = f(z) — z, and ¢ = f(y) — y, we get f(z +np) = =+ (n + 1)p,
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fly+nqg) =y+(n+1)g, for all n € N. As we must have |f(z+ np) — f(y +ng)| <
|z +np—y —ng|, we deduce [t —y+ (n+1)(p—q)| < |z —y +n(p—q)|.

For suficiently large n, we will have z —y + (n+1)(p—¢q) <z —y+n(p—q)
implying p < ¢, a contradiction. Thus f(z) — z = f(y) — y, for all z,y € R, that
is f(z) —z = f(0) — 0, a constant.

PROBLEM 2. Prove that any thetrahedron in which pairs of opposite sides
are equal and make equal angles, is regular.

Solution. Denote by ABCD the given thetrahedron. We shall use the
following obvious vectorial relation

AB-CD+AC-DB+ AD-BC =0.

Let a the common angle between opposite edges. We get
cosa-(xAB-CD+ AC-BD + AD-BC) =0,

for some choice of the sequence of +, — signes.

If cosa # 0, Then +AB - CD + AC - BD + AD - BC = 0, and we find that
one of the numbers AB-CD, AC - BD, AD - BC equals the sum of the other two,
contradicting the Ptolemei relation.

Thus, cosa = 0, that is, opposite edges are orthogonal. It is an easy argument
to show that AB% + CD? = AC? + BD? = AD? + BC? (take for example AD’
parallel and equal to BD and observe that triangles ACD’ and DCD’ are right
triangles). As by the hypothesis AB = CD, AC = BD and AD = BC, we
conclude that all edges are equal, so ABCD is equilateral.

Alternative solution. One can easily prove that 2|cosa| - AB - CD =
|AD? + BC? — AC? — BD?|. Denote by z,y, z the edges, we get

2% — 9|

WA= 2
v -

b} )

P z2 Y
which implies z =y = 2.
PROBLEM 3. Let n > 2 be an integer and a € (0, 00) such that
2% +logya = n’.
Prove that 1
2logyn > a > 2logyn — s

Solution. It is clear that a > 1, so n? = 2% + logya > 2¢, which gives
2logyn > a.
In order to prove the second inequality observe that

n? = 2% +logya < 2% +logy(2logy n),
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which implies

a > logy(n? — logy(2logy n)) = 2logy n + log, (1 - IOLZQ—IM) .

n2

‘We have to prove that

log, (1 _ 1082(21032")) > 1

n2

n
or

log,(2log,n)\™ _ 1

1 2820208 =

( n? )

log, (2 X 1
Using the Bernoulli inequality, it is sufficient to prove 1 — &(—;M > 3

that is 282loga™) 1
n 2

The last inequality is equivalent to 2log,n < 2%, or logyn < 2" Ttis a
routine induction argument to finish the proof.

PROBLEM 4. Let (P,),>; an infinite family of planes and (Xy)n>1 a family
of non-void sets of points such that X, C P, and the orthogonal projection of

Xp+1 onto the plane P, is contained in X, for any n.

Prove that there is a sequence of points (pp)n>; such that p, € X, and p,
is the orthogonal projection of p,+1 onto the plane P,, for any n.

Does the result remain valid if the sets X, are infinite?

Solution. Consider positive integers n,p. Denote by A, , the image in P,
of the set X,,1p, after succesive projections onto the planes Ppyp_1,..., Pn. Anyp
is a non-empty subset of X,,. As X, ,41 projects onto the plane P4, as a subset
of Xy4p, we deduce that Ay, p41 C Aqp. For any n we get a decreasing sequence
of non-empty subsets X, D Ap1 D Ap2 D - DA 2 -

As X, is finite, one can find p > 1 with the property that A, x = Ay, ;, for any
k > p. Denote by T, this subset of X,,. For large p, Anp = Tn, Ans1,p-1 = Tni1,
thus T}, is the projection of T4 onto the plane P,,. Chose an arbitrary p; in T}.
Then, there is pp in Ty such that p; is the projection of ps onto P;. Inductively,
construct the sequence (pn)n>1 such that p, € Th, pn41 € Tny1 and such that p,
is the projection of p,41 on P,,. This concludes the proof.

If the sets are infinite, consider the planes P, with equation z = n and the
sets X, = {(z,0,n) | > n}. It is easy to check that the conclusion fails.
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11*" GRADE

PROBLEM 1. Consider an integer n > 3 and the parabola of equation y? =
2px, with focus F. A regular n-gone A; Az - - - A, has center at F' and no one of its
vertices lies the z axis. The rays FA;, FA,,...,FA, cut the parabola at points
By,Bs,...,B,.

Prove that FBy + FBy +---+ FB,, > np.

Solution. Let FBy = tx, a the angle made by FB; with Oz and let oy =
o+ @ It follows that the coordinates of By are (123 + t cos ag, t sin ak).

We have t7 sin? oy, = p? + 2pty. cos o.. The positive root of the last equation

: p
ty = ————. Wk
18t 1 —cosoy e get
N1 n 1 2k -7\ n
E t—=—~— cos |+ ——— | = —.
prl O N e n p

Using the Cauchy inequality we obtain
n g n ,
(X)) >

n
that gives Y~ tx > np.

k=1
The equality implies t; =ty = --- =t,, = r, which is impossible because the
circle of center F' and radius r intersects the parabola in at most two points.
n 2
Remark. It can be shown that Zt" =P
1 — cosna

k=1

PROBLEM 2. Consider an integer n, n > 2.

a) Prove that there are matrices A, B € M,,(C) such that
rank (AB) — rank (BA) = [g] }

b) Prove that for any X,Y € M,,(C) we have

rank (XY) — rank (Y X) < [g] ‘

Solution. a) Let A = ! 0) and (0 1). One can easily check that

(0 0 00
rang (AB) —rang (BA) = 1.
In the case when n = 2p, choose

A 0 B 0

A B
Agp = .. ’ By, =
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When n = 2p + 1, choose Agpy1 = (ASP g , Bopi1 = (ng g)

b) Suppose rang (XY) > rang (Y X). We have
(1) rang (XY) — rang (Y X) < rang (XY) < rang (X).

From Sylvester inequality, rang (Y X) > rang (X) + rang (Y') — n, which im-
plies rang (XY) — rang (Y X)) < rang (Y) 4+ n — rang (X) —rang (Y'), that is

(2) rang (XY) —rang (Y X) < n — rang (X).
From (1) and (2) we get rang (XY) —rang (Y X) < [g]

PROBLEM 3. Let f : (a,b) — R be a function with the property that for any
z € (a,b), there is a non-trivial interval [az, bs], a < az < < by < b, such that f
is constant on [az, bs).

a) Prove that the image of f is a set which is finite or countable.

b) Find all continuous functions satisfying the given property.

Solution. a) Let f(z) € Im f, with z € (a,b). Choose 7 € QN [az, bz]. By
the given condition, f(z) = f(r). Thus Im f = {f(rz) | = € (a,b)}.

If we denote {ry | z € (a,b)} by {q1,92,...,4n,...}, then the set Im f =
{f(gn)}nen- is at most countable.

b) If f is continuous, we shall prove that it is constant. Suppose that f takes
at least two different values, say A and p, with A < p. The function f has the
intermediate value property, that is [\, u] C Im f. This is in contradiction with
the fact that Im f is countable.

PROBLEM 4. a) Construct a function f : R — Ry with the following prop-
erty, called P: Any z € Q is a local strictly minimum point for f.

b) Construct f : Q — Ry, with the property that any point is a local strictly
minimum point and f is unbounded on any set of the form I N Q, where I is a
non-trivial interval.

c) Let f: R — Ry be function which is not bounded on any set of the form
INQ, where I is a non-degenerate interval. Prove that f has not the property P.

Solution. a) Define

f(x):{l_%, x:%,(n,p):l,p>0
1, zeR\Q.

One can see that z = — is a local strictly minimum point, because there is

an open interval around x that doesn’t contain fractions with denominators in the
set 1,2,...,p.

b) The function f : Q* — R defined by f (2) = p has the given properties.
p



62 : SOLUTIONS

c) Suppose that f has property P. Consider a non-degenerate interval Iy =
[ao, Bo]. By induction, we shall define a decreasing sequence of closed intervals
I = ok, Be], K =0,1,..., such that f(I) C [k,o0). Suppose we have constructed
I, Iy, ..., I,_1 with the given properties. We can find z, € QN I,_1 with f(z,) >
n. Take a of x,, In = [, Bn] C In_1, such that for z € I, f(z) > flzn) = n.
This proves the induction step.

From the fact that oy, is increasing, Sy is decreasing and oy, < B, we deduce
the existence of an element v € [ I, that is f(y) > n for all integers n, a

n=0

contradiction.

12" GRADE

ProBLEM 1. Find all continuous functions f : R — R satisfying

z4+1
w [T e d=nf@ + 3,

for any = € R and any positive integer n, n > 2.

Solution. As f is continuous on R, consider an anti-derivative F. The given
relation is equivalent to

1) n? (F (er%) —F(z)) =nf(z) + %

for any =z € R and all n € N*,
As a consequence, f has finite derivative at any point. Taking derivatives in
(1), we get

(2) n (f (z + %) - f(z)) = f'(z)

for x € R and n € N*,
From (2) it follows that f is twice derivable and the following relation holds

w(r(=+3)- 1'@) = '@,

implying that f” is continuous.

Consider = € R. By Lagrange theorem, relation (2) implies the existence of
a point ¢, = ¢a(z) € (z,z + 1) with f'(c,) = f'(z). By Rolle theorem, for f’ on
the interval with endpoints z and ¢,, we get a point (, belonging to the interval
with endpoints & and ¢, and having the property that

(3) F"(¢Ga) =0.
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As nlglgo {n = z, the continuity of f” , and (3), give together
f'(z) = lim f"(¢,) =0.
n—oco

As z was arbitrary, we deduce that f has the form f(z) = az + b, where a,b € R.
Substituting in the given relation, we find a = 1.
We conclude f(z) = z + b, with b arbitrary.

PROBLEM 2. Let f € Z[X]. For n € N, n > 2, define f,, : Zp — Zn, by
fn(Z) = f(z), for any z € Z.

Find all polynomials f € Z[X] such that for any n € N, n > 2, the function
fn is onto.

Solution. a) If Z = in Z,, we get k € Z such that z — y = kn. We can

write

f@) = f) = (@ - y)g(z,y),
where g(ﬂ) is an integer. Thus f(x) — f(y) is a multiple of n, and as a conse-
quence, f(z) = f(v), Le. fa(@) = fa(@)-

b) First, we show that deg f < 1. Suppose, by way of contradiction, that
deg f =k > 2. The polynomial g(X) = f(X + 1) — f(X) has degree k — 1. As
k—1 > 1, one can find z € Z, such that |g(z)| > 2. Consider n = lg(@)| =
f@+1) - f@). -

In the ring Z, we have f(z +1) = f(z), or fn(z’—-l—\l) = fo(Z). The last
equality shows that f, is not injective and as a consequence nor onto. As f can
not be constant, let m € Z*, a € Z, such that for any z € Z, f(z) = mz + a.

We shall now show that |m| = 1; for if |m| > 2, the map fiml * Zim) = Zym
is constant, thus not onto, a contradiction.

It is easy to see that the polynomials X + a and —X + a satisfy the given
conditions.

PROBLEM 3. Let f: [0,1] — R be an integrable function such that

/olf(z)dz:/:zf(z)dx=1.

Prove that

1
/ fAz)de > 4.
0

Solution. The degree 1 polynomial p satisfying the relations fol flz)dz =
fol zf(z)dz =1, is p(z) = 6z — 2. Thus

1 1
[ 6@ - panae = [ at7@ - st az =0
0 0
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We get )
/0 ()(F() — plx)) dz = 0.

This implies
1 1
—p(z))?dz = — p(z))?
0< [ (@) ~p@)de = [ @) - @) de
1 1 1 1
:/0 fz(x)dz—()‘/) zf(z)dx+2/0 f(z)dz:/o (@) dz — 4,

whence the conclusion.

PROBLEM 4. Let K be a field of characteristics p, with p = 1 (mod 4).
Prove that any non-zero element in K can be written as the sum of three
squares of non-zero elements from K.

Solution. Let m € N* such that p = 4m + 1.

a) By Wilson theorem p|(p — 1)! + 1, thus (p — 1)! +1 = 0 in K. This
gives (4m)! = —1 in K. On the other hand 1 = —4m,2 = —(4dm —1),...,2m =
—(2m +1) in K, giving

—1=(=1)>™(4m)*(dm —1)2-.- (2m + 1)

We get
—1=[(dm)(@dm —1)---(2m+1)]%,

in K. We conclude that —1 is a perfect square in K.
b) Consider a,b € K* two commuting elements. We have

1) (a+b)2=a2+b2+2ab
and
2) (a—b)? = a® +b* — 2ab.

Consider b= 2"1. If a € K then a and 2~! commute.

Ifa# —271, from (1) we get a = (a+2"1)2 —a® —b% = (a+271)2 +a} + b3,
because —1 is a perfect square in K.

If a = —271, then a # b. By (2) we have a = a?+b* — (a—b)? = a® + b? + 2,
because —1 is a perfect square in K.

Thus any a € K* can be written as a sum of three non-zero squares of some
elements in K.

2.3. THE NATIONAL MATHEMATICAL OLYMPIAD
Selection Tests for the BMO and IMO 2004

First Selection Test

PROBLEM 1. Let aj,az,a3,a4 be the lengths of the sides of a quadrilateral
and s be its semi-perimeter. Prove that

4
1 < z Z 1
mesta 9 1<i<j<d V (s —ai)(s — aj)
When does equality hold?
Solution. Numbers s — a; are positive, and the AM-GM inequality gives
1 1/3
() 33 s=ap) > ([[6s-an) -
J#L J#i

for every i =1,2,3,4. Since ) (s —a;) = s + a;, relation (1) leads to
J#i

3 1 2/3
@ s+ai<(gﬂ) ’

On the other hand, the AM-GM inequality gives
1 1 1 1/3
ht Z —_— > - -
3 skt Vs —ai)(s —ax) (j<,£I,,c¢‘- (s—aj)(s— ak))
H 1 2/3 !
(11 )

Combining (2) and (3) and adding we get the required inequality. The equality
takes place if and only if the quadrilateral is a rhombus.

®3)
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Alternative solution. We can write, using AM-GM-HM inequalities

QZ\/(SVGQ)(SAQJ) Qz:a,—{»a.J Qz(zat+a1)

i<j

4

2 9 1
261,;12(1,-+25 =iz=;s+a,'

PROBLEM 2. Let R;, i =1,2,...,n, be pairwise disjoint closed rectangular
regions whose sides are parallel to the coordinate axes. It is also known that the

area of R = ‘61 R; is at least 4 and the projection onto Oz of their union is an
i=
interval.

Prove that R contains three points which are the vertices of a triangle of
area 1.

Solution. Let [a,b] the projection of R onto Oz. For z € [a,b], define
m(z) = min{y| (z,y) € R} and M(z) = max{y|(z,y) € R}. Since R is included
in {(z,y)|z € [a,b], m(z) < y < M(z)} and has area at least 4, it follows that
there exists o € [a, b] such that

(b—a) (M(zo) — m(z0)) > 4

Consider the points A and B having coordinates (zo,m(zo)) and (zo, M(z0))

. . a+
respectively, and suppose, for instance, 2o < - Then, for

2
N e —
“ ot M(z0) — m(zo)
we have 2o < 21 < 2o + "’T“ < b, therefore one can find a point C € R having
coordinates (z1,y1) such that area(ABC)=

Remark. The above solution is an elementary version of the obvious one
given in terms of the Fubini theorem for a double integral. It is thus clear that
the fact that the regions are rectangles is not important, the main point being the
interval-projection property.

R As the author pointed out to us, the problem comes from a conjecture of
Erd‘os.

ProBLEM 3. Find all injective functions f : N — N such that, for each n,

fmy) < 2@,

Solution. It is clear that if we prove that f(n) < n for any non-negative n
we shall get by easy induction that f(n) = n for any n. Indeed, from f(0) <0 we
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get f(0) = 0 and if we suppose f(k) = k for any k < n, from f(n+1) <n+ 1 and
the injectivity condition, we get f(n+1) =n+1.

Suppose, by way of contradiction, that f(n) > n for some non-negative n
and denote f* = fo fo---o f, the k-composition of f with itself, k¥ = 2,3,....
We easily obtain by induction that f*(n) < f(n) for any k = 2,3,.... Indeed if
fP(n) <nforp=1,2,...,k we have

fp+1(n) <

P(n ~1(n
PO g,

Thus the sequence (f*(n))x is a bounded sequence of non-negative integers and
so fP(n) = f9(n) for some p < g. Since f is injective, it follows that f9~P(n) = n,
therefore f9-P*1(n) = f(n), a contradiction.

It is obvious that the identity function verifies the given relation and is
injective.

Remark. There are many other ways for proving the result and maybe the
simplest is to make connections with a well-known fact on limits of sequences: if a
sequence of non-negative numbers, say (a,), is sub-additive, that is

a. Qp— ..
np1 < _11'5"_1 for any n, then the sequence has a finite limit.

In our case, for any n the sequence ( f"(n)),c is sub-additive, and being
a convergent sequence of integers is constant beginning from some term. This
contradicts the injectivity, as above, if f is not the identity function.

PROBLEM 4. Consider an integer n > 2 and a disc D in the complex plane.
Prove that for any z1, 2, ..., 2z, € D, there exists z € D such that 2™ = 2120+ 2,

Solution. First, consider the case n = 2. In this case, if u? = 2122, then the
two complex roots of second order of z1, 2o are +u and satisfy

lz1 —ul - |z2 +u| + |21 +ul - |22 —u| = 2|u] - |21 — 22,

which shows that zy,u, 22, —u are (in this order) the vertices of a cyclic quadrilat-
eral. This shows that u and —u are on the two arcs determined by z; and 2z, on
a circle C; since at least one of these arcs is included in D, it follows that u or —u
id is D.

In the case n > 3 we may suppose that rx = |2| # 0 for k = 1,2,...,n
and we will denote r = {/riT3---7,. An argument based on continuity (there
exists w; on the segment [z1, 23] such that |w;|? = |21|- |22/, there exists wp on the
segment [wy, z3] such that |ws|> = |wi|?|23], and so on shows that there exists at
least one complex number of modulus 7 inside D, therefore the intersection of the
circle C(O,r) and the interior of D is not empty.

If C(O,7) is included in D, then every root of order n of z;23 - - - z, belongs
to D.

If C(O,7) is not included in D then, for some sufficiently small interval (a,b)
which contains 7, the intersections of D with the circles C(O,a) and C(O,b) are
arcs Aj, Ay of these circles. Let A be the region of D situated between A, and
Ay, that is A = {z € D|a < |z| < b}. Then there exist o, 8 € R such that every
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z € A has an unique argument between o and 3. The case n = 2 and the lemma
below allow replacing in a finite number of steps (z1, 22, ..., z,) with w; € A for
j=1,2,...,nand 2129+ zp, = Wwy - - - wy. Then we can take

n
2, arg(w;)
z=r(cosp +ising), ¢ = =L -~

Lemma. A transformation of a family (ry,72,...,7,) of positive numbers
consists of replacing r; = max{r,|p=1,2,...,n} andr; = min{rp|p=1,2,...,n}
with /75 and /775

If a <7 = 3frita-- -7 < b, then, after a finite number of such transforma-
tions, we get a family (s1, $2,...,8,) with s, € (a,b) for p=1,2,...,n.

Proof. Let o = Ina,B = Inb,x =Inr and x, = Inr —p, p = 1,2,...,n.
Denote d, the value of the sum )|z, — z| after s transformations.

We suppose, for sake of simplicity, that z; <--- <zp <2 < T4 < -+ <
2, Then (z —z1) + -+ (z —2k) = (Tpg1 — ) + -+ + (Tp — ) and

de=2) (z-zp)=2 Y (zp—2).

p<k p>k+1

T1+2Zn T1+Tn
a5

When replacing (z1,z,) with ( ), ds is modified by

2
2 e Bk z| = (z —21) — (zn — ) = —2min{z — 21, 2, — x}.
But ds < 2n(z — z2) and d < 2n(z, — ), implies 2min{z — z;,z, — z} > %ds,

-1
whence dgq1 < ans. This shows that (ds)s tends to 0, and the conclusion
follos immediately.

Second Selection Test

PROBLEM 5. A disc D is divided into 2n equal sectors, n of them are colored
in red and the other n are colored in blue. Starting from an arbitrarily chosen
sector we count from 1 to n, in a clockwise order, the red sectors. We proceed in
the same way with the blue sectors, but in an counterclockwise order.

Prove that there exists a half-disc of D which contains all the numbers from
1ton.

Solution. Let 7; and respectively b; the red, respectively the blue, sector
which carries the number 4,7 =1,2,...,n.

Consider for each i the arc a;, taken in a clockwise order, which starts “just
after r; ¢, and ends “just before b;” and assume that the smallest of the a;-s is ax.
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Then, all the sectors corresponding to ay are of the same color (otherwise ax41 is
less then ay), for instance red. : .

It is now easy to see that the half-disc starting “just after r;,” and taken clock-
wise fulfils the requirement. Indeed, if this half-disc contains p red sectors and n—p
blue sectors, then, with indices taken modulo n, it contains ri41,7k+2, -« Thtp
and bk, bk—1,. .., bk—ntpt1, hence it contains all numbers from 1 to n.

PROBLEM 6. Find all non-negative integers which can be reached by the
expression
a? +ab+b?
ab—1
when a, b are non-negative integers and ab # 1.
2 b b2
Solution. Let o tab+ =k, keN.
ab—1
In the case a = b, the number k£ = 3 +

3 . e .
Z1 is a positive integer if a = 0
or a =2, whence k =0 or k =4.

The case b= 0 leads to k = —a?, hence a = 0 and k = 0.

We will look now for the solutions (a, b) such that a > b > 0. Since the given
relation is equivalent to a? — (k—1)ab+b%+k = 0, we see that if (a, ) is a solution
and b > (k —1)b—a > 0, then (b, (k — 1)b — a) is also a solution. The inequality
(k—1)b—a > 0 is true in all cases because it becomes successively

a+b a®+ab+b? S a+b

3
—a—b.
b ab1 o V>

k>

In the same way, the inequality b > (k — 1)b — a is successively equivalent to

<2b+a a?+ab+b> 2b+a

k<=~ <5

for b>1.

>b+

3b
b2 —1
If 3b < b? — 1, that is b > 4, the previous inequality is true, therefore for each

solution (a,b) with a > b > 4 we find a solution (b,¢) with b > ¢ > 0. Thus, the
descent method shows that each solution corresponds to a solution with b < 3.

,a=4dora=2k="17.

Forb=1wegetk=a+2—
a—1

For b =2 we get 4k =2a +5+

221 ,a=4ora=11,k=4ork=T.

a —

For b =3 we get 9k = 3a + 10 + % which does not yield any solution.
Thus, the answer is k € {0,4,7}.

PROBLEM 7. Let a,b,c be integers, b odd and consider the sequence xo =
4,71 =0, x5 = 2¢,23 = 3b,

Tp = QTp_q + bTn_3 + CTp_o, for n > 4.
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Prove that if p is a prime and m a positive integer, then z,m is divisible by p.

Solution. Consider the characteristic polynomial
f=X'"-cX?-bX -a

associated with the given recursion formula. We can check that all the roots of f
are simple: if « is a root for both f and f’ = 4X3—2¢X —b, then a is a root of g =
4f - X f' = —2cX?—3bX —4a, atoot of h = cf'+2X g = —6bX?—(2c2+8a) X —bc
and a root of I = 3bg — ch = (2¢® + 8ac — 9b?) X + bc? — 12ab. Since () = 0 and
2¢® + 8ac — 9b? is odd, it follows that « is rational and, because f is monic and
f(@) =0, we deduce that « is an integer, whence f’(c) = 40® — 2ca — b is odd, a
contradiction.

The above result shows that there exist coefficients a;, as, as, as, uniquely
determined by zg, z1, T2, T3, such that

Tn = @107 + a0y + azaf + a0y,
where a1, ag, a3, 04 are the roots of f. We notice that

zo=4=0+0f+03 +a}

T1=0=a1+ar+a3+ay
zp=2=0d2+a3+a+ai=-2Y o1
z3=3b=0a} +0j +0of +o =33 aromos,

which proves that a; =as =ag=a4=1.
Remark now that if p is a prime, then p| (:) for each k = 1,2,...,p— 1,
hence
(X+Y)P=XP+Y?+pQ(X,Y),

where Q is a symmetric integer polynomial in two variables. This easily extends
to
X+Y+Z+T)?=XP+YP+2ZP +T? +pR(X,Y, Z,T),

where R is a symmetric polynomial in four variables.
In order to prove the required conclusion, we shall use induction on m. For
m = 1, we notice that

zp =} + of + of + of = ~pR(a1, a3, a3, 1),

and since R can be represented as an integer polynomial in symmetric fundamental
polynomials, R(a1, a2, a3, a4) is an integer.
Assume now that z,m is divisible by p. Then
m+1 m+1 m41 ym+1
Tymir =0f  4+aof 4o +of
=pR(}" 08", 08" 0f") ~ (of +0f" +of" +0f" )

= pS(ou, 02,03, 4) — Thm
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is also divisible by p, because S is also a symmetric integer polynomial (hence

S(ou, g, a3, 04) is an integer). -

PROBLEM 8. A square ABCD is taken inside a circle . Inside the angle
opposite to ZBAD is taken the circle tangent to the extended segments AB and
AD and internally tangent to v at A;. The points B;,C;, D, are defined in the
same way.

Prove that the straight lines AA;, BB1,CCy, DD, are concurrent.

Solution. The common point of AA;, BBy, CCy, DD; is the center P of the
homotethy H of negative ratio which sends the incircle w of ABCD into 7.

This follows from the fact that the circle v; tangent to v at A; can be
obtained from w using an homotethy H; of center A and negative ratio, and 7 can
be obtained from ; through an homotethy H] of center A; and positive ratio.
Therefore H = Hy o H/ has its center P on AA;. In the same way P belongs to
BB,,CCy,DD;.

Third Selection Test

PROBLEM 9. Let n > 1 be a positive integer and X be a set containing n
elements. Ay, Ao, ..., Ajo; are subsets of X such that the union of any 50 of them
has more than g%n elements.

Prove that among the given subsets it is possible to choose three, such that

every two of them have a non-empty intersection.

Solution. Consider a graph I" with vertices A;, A, ..., Ajo1 and edges be-
tween the vertices whose intersection is non-empty.

If this graph has no triangles, the it has 51 vertices with degree at most 50.
Indeed, if there are at most 50 vertices with degree at most 50, then there are 51
vertices with degree at least 51, so two of them, say A and B, must have a common
edge. Since A and B are connected each with 50 vertices among the remaining
99, there exists a vertex C connected with both of them. We therefore obtain a
triangle ABC, which is a contradiction.

Denote now by A;,, A;,, ..., A, the 51 vertices of degree at most 50. Each
of the A;, has common elements with at most 50 subsets, so there exist 50 subsets
such that A;, is contained in the complementary of their union. Since each union

of 50 subsets has more than %n elements, it follows that each A;, has less than
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ﬁn elements. But in this case 4;, U 4;, U+ -+ U Aj,, has less than g—‘in elements,
false.

PROBLEM 10. Prove that if n and m are integers, and m is odd, then

1 o= (3m E
3777;;0(%)(3"' 2

is an integer.

Solution. Let w = . Then
. [3m
3 ( )(Sn —1)F
2 s
=1+ A=)+ (4w D) "+ 1+ B 1)

The right side of the above equality is the sum of the 3m-th power of the roots
21, 29,3 of the polynomial

(X -1°-(Bn-1)=X>-3X*+3X —3n.

@

3m

Let sp = :::‘{ +z§ +:t’3“ Then sg = s3 = s5 = 3 and
(2) Sk4+3 = 3Sk42 — 3Sk41 + 3nsk.

1t follows by induction that each s is an integer divisible by 3[§]+1. A repeated
application of (2) yields

Sk47 = 63nspr2 — 9(n? — 3n — 3) sk + 27n(2n + 1)sk.

Since s3 = 9n, it follows inductively that sex43 is divisible by 32k+2y for all non-
negative integers k, and the conclusion follows by (1).

PRrOBLEM 11. The incircle of the non-isosceles triangle ABC has center [
and it touches in A’, B’,C" the sides BC,C A, AB, respectively. The straight lines
AA’ and BB’ intersect in P, AC and A’C' in M and B’C’ and BC in N.

Prove that the straight lines IP and M N are perpendicular.

Solution. We will use poles and polars with respect to the given circle.

M
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The polar of B is A’C’ and M belongs to A’C’, therefore the polar m of M
passes through B. It follows that m is BB’. In the same way the polar of N is
AA'. These show that the pole of M N is P, the intersection of the lines AA’ and
BB’, therefore MN 1 IP.

PROBLEM 12. Let n > 2 be an integer and ay,as,...,a, be real numbers.
Prove that for any non-empty subset S C {1,2,...,n} the following inequality

holds: ,
(Zﬂi) < Z (ai + -+ +aj)2

i€S 1G<n

‘Solution. Let S = {i1, i1 4+ 1,..., 41,92, + 1,..., 2, ,ip,..., Jp} the
ordering of S where ji < ig41 —1fork=1,2,...,p—1. Put sp=aj+az+---+
ap, so = 0. Then

E @i = Sj, = Sip—1 + 8j, 1 — Sip -1+ S — S
ics

and

Yo @t = Y (s - s

1igi<n 0<i<i<n
It suffices to prove an inequality of the form
!

® (@ —w++ ()@’ Y ()4 Y 9,

1<i<j<t i=1

because this means neglecting some non-negative terms in the right-hand member
of the given inequality.
Inequality (1) reduces to

1

4 Y ma<-1)) ad

1< i=1
j—i=even

This can be obtained by adding up inequalities of the form 4z;a; < 2(x? + z?)

S . ==
i< j, j—1i = even (for an odd i, x; takes part in [ 1] such inequalities, and

for an even i, x; takes part in [5] — 1 of them).



74 ‘ SOLUTIONS

Fourth Selection Test

PROBLEM 13. Let m, m > 2, be an integer. A positive integer n is called
m-good if for every positive integer a, relatively prime to n, one has nja™ — 1.
Show that any m-good number is at most 4m(2™ — 1).

Solution. If m is odd then n|(n — 1)™ — 1 implies n|2, hence n < 2.

Take now m = 2'q, t > 1, ¢ odd. If n = 2%(2v + 1) is m-good, then
(2v+1)|(2v—1)™ —1, whence (2v+1)|2™ — 1. Also, if a = 8v+5 then (a,n) =1,
so

2@ —1=(a? — 1)(a? + 1)(a™ + 1)+ (a7 +1).

But a? = 5 (mod 8) implies that the exponent of the factor 2 in the last product
is t + 2, therefore u < t + 2, whence n < 4-2¢(2v +1) < 4m(2™ —1).

PROBLEM 14. A point O is situated in the triangle’s ABC plane. A circle C
passing through O meets the second time OA, OB, OC in P, Q, R, respectively, and
C intersects the second time the circles (B,0,C),(4,0,C),(A,0,B) in K,L,M
respectively.

Prove that PK,QL, RM are concurrent.

Solution. An inversion of center O transforms the circle C into a straight line
d. Points P, @, R become the intersections of d with the straight lines OA, OB, OC
and K, L, M become the common points of d with BC, C A, AB respectively.

Thus the conclusion reduces to proving that the circles (O, P, K), (0, Q, L),
(O, R, M) have a second common point. In order to do this, it is enough to show
that they have a common radical axis.

Let X be the intersection of the radical axis of the circles (0,Q, L), (O, R, M)
with d. Then, considering oriented segments, we get X XQ-XL=XR-XM and
it is enough to prove that XP- XK = XQ - XL.

By Menelaus theorem for the triangles OPQ,OQR,ORP and straight lines
AB, BC, CA respectively, we get

OA PM QB _, OB QK RC_, OC RL PA_,

QB RK ©OC RC PL 04

whence PM - QK - RL = QM - RK - PL.

Take now coordinates on d, with X as origin (denoted with same but small
letters). Then (m —p)(k —q)(l —7) = (m — q)(k --7)(l — p) and ¢l = mr, which
leads to (pk — gl)(r+m —¢q—1)=0.

Ifr+m = q+1 we get {M, R} = {Q L}, in which case the conclusion is
obvious; otherwise pk = gl, whence XP- XK = XQ- XL.

PROBLEM 15. Some of the n faces of a polyhedron are colored in black, in
such a way that any two black faces have no vertex in common. All other faces
are colored in white.

Prove that the number of edges that are common borders of two white faces
is at least n — 2.
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Solution. By Euler’s formula, E = V+F—2, where E, V and F respectively,
denote the number of edges, vertices and faces of the polyhedron. Let further V,
and Ey denote the number of vertices and edges belonging to black faces. Since
every vertex from Vp belongs to only one black face, it follows that Vy = Ej.
Therefore

E-Ey=V-E+F-2=V-V%W+F-2>F-2=n-2,

so there are at least n — 2 edges which do not belong to a black face.

Fifth Selection Test

PRroBLEM 16. Consider a triangle ABC and O be a point in its interior. The
straight lines OA, OB, OC meet the sides of the triangle in A;, By, Ci, respectively.
Let Ry, Ry, R3 be the radii of the circles (O, B, C), (O, C, A), (O, A, B) respectively
and R the radius of the circumcircle of the triangle ABC. Prove that

04, OB; (o/e)
an g it g2 R
Solution.
A
e] Bi
B A [
Notice that
OA; _ area(OBC) OB-0OC-BC 4R
AA; ~ area(ABC) — 4Ry AB- AC-BC’

so we have to prove that
>"0B-0OC-BC> AB-AC- BC.
Consider the complex coordinates O(0), A(a), B(b), C(c). The conclusion reads

Dolblelel b=l = la=bl-]p—cl-|c—al,

that is
Z [b%c — c2b| > |ab® + be? + ca® — a?b — b%c — c?al,
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which is obvious.

PROBLEM 17. A move on a m x n board consists of:

(i) Choosing some empty squares such that no two of them are in the same
row or in the same column and placing a white stone on each of the selected
squares;

(ii) Placing then a black stone on each empty square which has a white stone
on his row and on his column.

What is the maximum number of white stones which can appear on the board
after some moves have been made?

Solution. The answer is m +n — 1.

We can obtain m +n —1 white stones by making succesively the moves
(1,1),(1,2),...,(L,n),(2,n),...,(m,n).

Take now a board on Wthh stones have been placed according to the rules,
and remove all the lines and colums which contain less than two white stones;
in this way we remove at most m + n — 1 white stones. If some white stone is
remaining, then on every remaining line and column there are at least two white
stones. Among the remaining white stones, consider one which has been placed
with the last move. Then, with the same move, at least another white stone must
have been placed on the same line or on the same column, which contradicts the
established rules.

PROBLEM 18. Let p be an odd prime number and a;, i = 1,2,...,p — 1,

be the Legendre symbol of i relative to p (i.e. a; = 1 if %% =1 and a; = —1
otherwise). Consider the polynomial

f=a1+aX +"'+ap_1va2.

a) Prove that 1 is a simple root of f if and only if p = 3 (mod 4).
b) Prove that if p=5 (mod 8), then 1 is a root of order exactly two for f.

Solution. We shall call “residue” and “non-residue”, the elements of the
set R = {1,2,...,p — 1} which are quadratic residues mod p and, respectively,
non-quadratic residues mod p. Let Q be the set of residues and N be the set of
non-residues. By definition, a; = 1 if 7 is a residue and a; = —1 if 7 is a non-
residue. Since for x,y € R the congruence % = y? (mod p) is equivalent to = =y

-1
or x4y = p, it follows that Q = {z?|x € R} has 2 elements, that is |Q| = |N|,
hence f(1) =0 and f is divisible by X — 1.
a) We have

p—

P P
()= Z i—1)a; = Ziai - Zai
i=1 i=1 i=1
ia; = Zz—z

i=1 i€Q €N

]
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It follows that f’(1) = 0 if and only if the sum of the residues equals the sum of

. . . . pp—1
non-residues. Since Zz + Z 1= P(LQ_)’ the latter is possible only if p = 1
i€Q €N

(mod 4). In this case —1 € Q and x € Q implies p — x € Q, therefore the P

1
pairs, each pair having sum p, hence

. (p—1 1 i
Y=tz Iy

i€Q i€R

elements of ) can be grouped in L

b) We have already proved that in this case (X —1)? is a divisor of f. Notice
that
p=1

(1) = Z(i —1)(i - 2)a;
=

p—1 p—1 p—1
= ZiQa; — 3Ziai + 22(11- = ZiQai.
i=1 i=1 i=1 i=1
We will use the fact that for a prime p of the form 8k + 5, we have 2 € N. Indeed

246 (p—1)=(2-4--- (4k+2)) - (4k +4) - - (8k + 4))
=(2-4- (4k +2)) - (—4k — 1)+ (—1)) (modp),

hence 24%+2.(4k 4 2)! = (=1)*1.(4k + 2)! (mod p), so 24+2 = —1 (mod p).
Consider the sets Q< = {r € Q|7 < 5}, Q> ={re Q| 5}, Ne ={r €
Nir<8}, Ns={reN|r>Ek}.
Since —1 € @, sending r € R to p—r € R defines a one-to-one function from
Q to @, from N to N, form Q« to Qs, and from N, to Ns. Therefore both Q.

and Q> have P~ elements and

L= o= Yt

TEQ> TEQ< T€Q< TEQ<

SO

0 P I T o
TEQ TEQ< TEQ<
In the same way

(2) 27‘2 p(p ‘?p21+22

reN TE€N< re€N<
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By the same arguments, sending 7 to 2r (respectively to p— 2r) defines one-to-one
maps from Q< to the sets Neyen (respectively, Noaa) of even (respectively, odd)
non-residues. Therefore,

2
2 _ 2 2 _Pp-1) 2
(3) Zrﬁz(péw) +4ZT—T 4p2r+82r.
reN r€R< r€Q< r€Q< r€Q<
A similar argument yields
) pILEAUTI SRS SE
reQ reEN< re€Ng

Combining (1) and (3), then (2) and (4), we get

ZTZ—ZT2=2(p z r—3 Z rz),

reQ reN r€Q< r€Q<
P RSP ML
reQ reN r€N< r€N<

Suppose now that f”(1) =0, that is

(5) Z r2 = Z r2,

reEQ reEN

Using (1) and (4) we get

32— P(P 1) pz

reQ TEQ<
-1 4
=t (P ) _ pY
TEQ reN<
which leads to Y, r= Y . On the other hand
r€Q< r€EN<

Z T+ Z = Z 'r————odd
r€R< TEN< r<p/2

a contradiction. This shows that the assumption in (5) is false.

Supplementary Test

PrOBLEM 19 Consider a sequence of positive different integers (an)» such
that there is a > 0 satisfying

» < an, for all positive integers n.
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Prove that:

i) If @ < 5 the sequence contains infinitely many of numbers for which the
sum of their digits (in decimal representation) is not a multiple of 5.

ii) The above result for a = 5.

Solution. Consider B = (by), the strictly increasing sequence of all the
nonnegative integers having the sum of their digits a multiple of 5, i.e.:

bo =0,b; =5,by = 14,b3 = 19,b4 =23, ...

We shall use the following easy result.
Lemma. For all positive n we have 5n < b, < 5n + 4.

Proof. Consider the last digit of the numbers 5n,5n41,5n+2,5n+3,5n+4
and notice that the union of the numerical intervals [5n, 5n + 4] is the set of non-
negative integers.

Let us now assume that a, takes only a finite number of values with sum
of digits not a multiple of 5, i.e. there exists an integer M > 0 such that n >
M implies a, € B. But then, for any integer N > 0, consider the numbers
M,M +1,...,M + N. Since aypr € B for k = 0,1,2,..., N, and because a,,
takes each value at most once, we have

5N <by < o B2X, Mtk < n}cagNa(M+ k) =a(M + N),

M
hence N < — absurd for a < 5, as N is arbitrarily large.

Fora:S ta.kea():lauda":bn 1, for n > 0; we have b,_; <5(n—1) +
4=5n—1<5n,soa,,<5nforn>0butan€B

PROBLEM 20. Given an integer number n > 1, consider n distinct unit
vectors in the plane, which have a common origin at some point O. Suppose
further that for some non-negative integer m < %, on either side of any straight
line passing through O lie at least m of these vectors. Prove that the length of the
sum of all n vectors cannot exceed n — 2m.

Solution. Throughout the proof vectors are written in bold-face characters.
Let v denote the sum of all n vectors. Leaving aside the trivial case v = 0, assume
henceforth v # 0 and consider a standard orthogonal frame Oy whose positive
z-axis is directed along v. The plane punctured at' O comes out with a natural
partition into four quadrants :

Q1 ={(z,y)|z>0and y >0},
2—{(z,y)|z Oandy >0},
= {(z,y) |z <0and y <0},
Q4:{(x,y)|z/0a,ndy<0}.
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Let further vy, ..., v,, be an anti-clockwise sequential order of the given vectors.
Thus, for some integers p, g and r, 0 < p < g<r < n,

a) the v; lie in Q) for 1 <4 < p, and the order is vy, ..., vp ;

b) the v; lie in @3 for p < i < g, and the order is vpi1, ..., V4 ;

c) the v; lie in Q3 for ¢ <i < r, and the order is vgi1, ..., vy ;

d) the v; lie in Q4 for 7 < i < n, and the order is Vy41, ..., Vp .

The cases p =0, or p =g, or ¢ =7, or 7 = n are not necessanly excluded;
they simply mean that no v; lies in Q1, or in @2, or in Q3, or in Qq, 1espect1vely
Applied to the lines = 0 and y = 0, the condition that on either side lie at least
m of the v; yields

(1) m+p<r, and m+r<n+p,
on the one hand, and
2 m<q, and m+4g<n
on the other. By (2) above, the vectors
Vg—m+i t Vgti, 1<i<m,

are well defined. We claim that they always point at the left half-plane z < 0 ;
that is, they have a non-positive z-component :

(3) Vo (Vgomti+Veri) <0, 1<i<m.

To prove (3), fix an index i, 1 < ¢ < m, and note that vy_m,y; always lies in
Q1 U Q2, and v,y always lies in Q3 U Q4. Clearly, only the cases where vyt
lies in Q1 or v lies in Q4 need to be dealt with.

In the first case, g —m +i < p, so g+ < m+p < r by (1); that is,
Vg+i must lie in Q3. Recalling the way the vectors have been ordered and that
at least m of them lie on either side of the line along Vg—m+i, We deduce that
Vgti = V(g—m+i)+m cannot lie outside the angle Z(—v, —v4_n,4;) situated in Q3
and (3) follows.

In the second case, 7 +1 < ¢+i,so0p+1<r—m+1< g—m+iby
(1); that is, vy_p4; must lie in Q;. As in the first case, we then deduce that
Vg—m+i = V(g4i)—m cannot lie outside the angle /(—v, —vy4;) situated in Q2 and
(3) follows again.

Finally, since the length of the sum of the remaining n — 2m unit vectors
cannot exceed n — 2m, we conclude by (3) that neither can the length of v.

2.4. THE NATIONAL MATHEMATICAL OLYMPIAD
Selection Tests for the JBMO 2004

PRrROBLEM 1. Find all positive real numbers a, b, ¢ which satisfy the inequal-
ities

4(ab+be+ca) — 1> a + b2 +c > 3(a® + b + 7).
Solution. Using the Chebyshev inequality we derive
(a+b+c)(a®+ b2 +c?) <3(a® + b + %),
hence a + b+ ¢ < 1. On the other hand,
4(ab+be+ca) —1 > a® +b% +¢* > ab + be + ca,
therefore ab 4+ bc+ ca > 1. As
3(ab+bec+ca) < (a+b+¢)? <1,

we obtain a + b4 ¢ > 1, thus a + b+ ¢ = 1. Consequently, a + b+ ¢ = 1 and
3(ab+bc+ca) = (a+ b + ¢)?, which imply

a=b=c=-.
3

PROBLEM 2. Consider the numbers defined by a,, = 3n + vn2 —1 and
bn =2(vVn? +n++vn?—n), for all n =1,2,...,49. Prove that there are integers
A, B so that

a1 — b1 +Vaz —by+ -+ van — by = A+ BV2.
Solution. The key idea is to observe that

a"—bn:%(\/n— —2vn+vn+1 2
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As 2¢/n > v/n—1+ v/n—1, it follows that the sum is 42 —5.

PROBLEM 3. Consider a circle of center O and V' a point externally to the
circle. The tangents from V touch the circle at points T7,T5. Let T be a point
on the small arc T}, T» of the circle. The tangent at T intersects the line VT; in
the point A and the lines TT) and VT; intersect in the point B. Let M be the
intersection point of the lines BT} and AT5.

Prove that lines OM and AB are perpendicular.

Solution. The approach of the problem is to see no circles in the figure.
Instead, recall that a quadrilateral ABCD is orthogonal if and only if

AB? 4+ CD? = AD* + BC?.

Using succesively the Pytagoras theorem we have

BA? — BT? = BA? — (BO® — OT?) = BA? — (BO? — OT?)
= BA? — (BA® — AT?) = AT? = AO® — OT? = OA* - OT},

so the conclusion follows from the relation.

PROBLEM 4. Consider a cube and let M, N be two of its vertices. Assign
the number 1 to these vertices and 0 to the other six vertices. We are allowed to
select a vertex and to increase with a unit the numbers written in the 3 adjiacent
vertices and call this a movement. Prove that there is a sequence of movements
after that all the numbers assigned to all the vertices of the cube are equal, if and
only if M N is not a diagonal of a face of the cube.

Solution. Color the 8 vertices of the cube in black or white so that the
4 vertices of the 2 regular thetrahedrons have the same color; notice that the 3
vertices adjiacent to a vertex have its opposite color. Therefore, each movement
increase the sum of the numbers assingned to the vertices sharing the same color
by 3. Consider the cases:

1) MN is a diagonal of a face of the cube. Then M and N have the same
color, say black. Assume by contradiction that there is a sequence of movements
after which the same number n is assigned to all the vertices. Let k; and ko be
the number of white, respectively black vertices that were selected to perform the
movements. Then

4n = 3ky + 2 = 3ko,
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a contradiction. .

2) MN is a diagonal of the cube. Selecting the vertices M, then N, and
performing these 2 movements, to all the vertices the number 1 will be assigned,
as needed.

) 3) MN is a side of the cube. The same outcome as in the previous case
will occur after 2 movements when selecting the diagonally opposite vertices of
M and N.

This provides us with a full solution.

PROBLEM 5. Let ABC be an acute triangle and let D be a point on the side
BC. Points E and F are the projections of the point D on the sides AB and AC,
respectively. Lines BF and CE meet at point P. Prove that AD is the bisector
line of the angle BAC if and only if lines AP and BC are perpendicular.

Solution. Let a,b,c,z.y be the lengths of the sides BC,CA, AB,BD, DC,
respectively and let A’ be the foot of the altitude from A in the triangle ABC.
Notice that z +y = a.

—— - = - =5 = 1, which is equivalent t: AB _BD

=5 e °Ac T DC
AsCF =ycosC,FA=b—ycosC,BE = zcos B,AE = c—xcos B,BA’ = ccos B
and A’C = bcosC, the equivalence rewrites

cy(c —xcos B) = bz(b—ycosC),
which is the same as zb = cy. Indeed, we have

2.2 _p2 2, p2_ 2

o, @i+t -b o, a’+b*—¢
YT ey

equivalent to a(cy — b%z) = xy(c® — b?), or c*y(a — z) = b*x(a — y). This gives
c2y? = b%2?, equivalent to cy = bz, as claimed.

PROBLEM 6. An array 8 x 8 consists of 64 unit squares. Inside each square
are written the numbers 1 or —1 so that in any 2 x 2 subarray the sum of the four
numbers equals 2 or —2. Prove that there exist two rows in the array which the
same numbers are inscribed in the same order.
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Solution. The main idea is to observe that two consecutive rows have
exactly 4 equal elements, namely those lying on the columns 1,3,5,7 or 2,4,6,8.
Moreover, on the other 4 columns the elements are different. Without loss of
generality, assume that rows 1 and 2 are equal with respect to the columns 1,3,5,7
and different on the column 2,4, 6,8; we call these rows odd equal. If rows 2 and
3 are also odd equal, then rows 1 and 3 are equal, as needed. If not, then rows 2
and 3 are even equal. Now consider the rows 3 and 4; we are done if the rows are
even equal, so assume that they are odd equal. Finnaly, if rows 4 and 5 are odd
equal,then rows 3 and 5 are equal, and if rows 4 and 5 are even equal, then rows
1 and 5 are equal. This concludes the proof.

PROBLEM 7. Consider a triangle ABC with the side lenghts a, b, ¢ so that a
is the greatest. Prove that the triangle is rightangled if and only if

(\/m-i—\/aTb) (M+ a—c :(a+b—|—c)\/§.

Solution. Squaring both sides of the equality yields
2 (a+ Va2 — b2) (a+ Va2 — cz) =(a+b+c)

It is easy to observe that the equality holds if a® = b2 + ¢2. To prove the converse
statement, assume that a® > b2 + ¢2. Then Va2 — b2 > ¢ and Va2 —¢c? > b, hence

2 (a Va2 bZ) (a +Va?— c2) > 2(a+b)(a+¢) = 2% + 2(ab + be + ca)
>a2+b2+cz+2(ab+bc+ca): (a+b+c)?,
false. The case a? < b% + ¢? leads similarily to a contradiction, and we are done.

PRrOBLEM 8. Find all positive integers n for which there are distinct integer
numbers ag, ag, - -+, a, such that

1 2 n_ a+a+---+a
— TR T Gn
a;  ag an 2
Solution. Rearrange the numbers aj,as,--,a, in ascending order: b; <

by < ... < byn. Obviously, k < by, and substituting by, with k, the left-hand side
term increases. Futhermore, by the rearrangements inequality we infer that the
maximum value of the left-hand side term is

On the other side, the right-hand side term is greater than or equal to

1+2+--4+n_ n(n+1)

2 4
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We have
1 2 n Sn—k+1 =1
-t ——t == — =1 ——n
n+n——1+ 1 ; k );k
n g ntl
=1+(”+I)LZZE:("“)§E'

For n > 6 we prove by induction on n that

which implies that the given equality cannot hold. Indeed, for n = 7 we have

% =1.75> % + % 4+t % = 1.51.... If the inequality holds for n > 7 then it is

true for n + 1, as % > -"ﬁ

We are left with the cases when n = 2,3,4,5,6. Clearly, the case case n = 2
is impossible. )

For n = 3 we have the numbers a; = 1,a2 =2 and a3 =3.,son =3 is a
solution.

If n = 4, then

1 2 3 4 1 2 3 4
— L2« —+-+-+-) <13,
a1+a2+a3+a4—2(a1+a2+a3—|—a4>\2<4+3+2+1

50 a1 +as+as+ay < 12. By inspection, all the cases: {a1,a2,as, a4} = {1,2,3,4},
{1,2,3,5}, {1,2,4,5} and {1,2,3, 6} fail to satisfy the required relation.
If n =5, then

DY (A A A
ay +az+ a3z +aq4 4 as = 11—1 e w e
1 2 3 4 5
S+ -] <174,
<2<5+4+3+2+1> )

50 a1 +ag+az+aq+as < 17. We study the cases {a1, a2, a3,a4,a5} = {1,2,3,4,5},
{1,2,3,4,6} and {1,2,3,5,6} with no succes (for an easy argument, observe that
5 must be as and so on).

Finally, for n = 6 we have a; +as+---+ag < 22, thus {as, as, as, as, as, ag}
can be {1,2,3,4,5,6} or {1,2,3,4,5,7}. The last case fails immediately because
of 7, and the same outcame is for the first one.

Therefore n = 3.

PROBLEM 9. In a chess tournament each of the players have played with all
the others two games, one time with the white and then with the bla.ck. In each
game the winners gets one point and both players receive 0.5 points if the game
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ends with a tie. At the end of the tournament, all the players end with the same
number of points.

a) Prove that there are two players which have the same number of ties.

b) Prove that there are two players which have the same number of defeates
when playing the white.

Solution. Let n be the number of players in the tournament. The total
numbers of matches is n(n — 1), hence each player end up with n — 1 points.

a) Assume by contradiction that each player has a different number of ties.
As a tie gives 0.5 points, it follows that each player has an odd number of ties. Since
the possible cases are: 0,2,4,...,2(n — 1), we infer that each of these numbers is
assigned to each of the players. Consider A the player with 0 ties and B the player
with 2(n — 1) ties. Each player has played 2(n — 1) matches, hence B obtained a
tie in each match played. The match A-B thus ended with a tie, a contradiction,
since A has no ties.

b) Suppose the contrary. Then each of the n players has 0, 1,...,n—1 losses
when playing the white. Let X and Y be the players with 0 and n — 1 losses,
respectively. The player Y has no points when playing the white and n — 1 points,
so he won all the matches with the black pieces. This implies that the match X-Y
is won by Y, so is lost by X, a contradiction, since X has 0 losses with the white
pieces.

PROBLEM 10. Consider the triangle ABC with AB = AC and a variable
point M on the line BC so that B is between M and C. Prove that the sum of
the inradius of AM B and the exradius of AMC corresponding to the angle M is
constant.

Solution. The Stewart relation gives AM?. BC + AC?.-MB = AB%*-MC +
MB - MC - BC, so AM? - BC = AB*(MC — MB) + MB - MC - BC, hence
AM? = AB? + MB - MC. Let r be the inradius of triangle AMB and R the

exradius of triangle AMC' corresponding to the angle /M.

si _ 2area AM B i R= 2area AMC then
mee MTB_ AM + MB 4B an “MAyMB-aB® ¢

r . .
R A MBTAB T AT MC-AB TR e
alent to

MB(MA+ MB — AB) + MC(MA + MB + AB)

=(MA+ MB+ AB)(MA+ MB — AB),
which turns to be equivalent to MB(MA+MB—AB) = (MA+MB+AB)(MA—
AB), or to MB - MC + MB(MA— AB) = MA® — AB®+ MB(MA — AB). The
last equality reduces to

MA? = AB? + MB .- MC,

so the claim holds.

PROBLEM 11. Let p, g, be primes and let n be a positive integer such that

pn +qn =72,
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Prove that n = 1.

Solution. Clearly one of the primes p,q or  is equal to 2. If r = 2‘ then
p" 4+ ¢" = 4, false, so assume that p > ¢ = 2.
Consider the case when n > 1 is odd; we have

(P+2) ("t —2p" 24 2% oy = g2,

Notice that p"~1—2pn=2492pn=3_...yon—1 _ 201 (p=2) (P2 ) > 1
and p+2 > 1 hence both factors are equal to 7. This rewrites as p+2" = (p+2)? =
p? + 4p + 4, which is false for n > 3.

Consider the case when n > 1 is even and let n = 2m. It follows that =
a®—b%2™ = 2aband r = a? + b2, for some integers a, b with (a,b) = 1. Therefore,
a and b are powers of 2,s0 b =1 and a = 2™~1, This implies p™ = 4™"1 -1 < 4™,
so p must be equal to 3. The equality 3™ = 4™~1 — 1 fails for m = 1 and also for
m>2,as 4™ > 3™ 4 1, by induction.

Consequently n = 1; take for example p = 23, g=2andr=>5.

PROBLEM 12. Let a < b < ¢ < d be positive integers so that ad = bc and
Vd - va < 1. Prove that a is a perfect square.

Solution. Consider the integers 0 < m < n < psothatb=a+n,c=a+m
and d = u—l-pv.nThena(a+p) =(a+m)la+n)and a+p<a+1+2ya As
n

p=m+mn+ 22 is an integer, then a < mn and p > m+n+ 1. On the other

hand, 1+2ya>n +'m +1=a> l;m = y/mn, hence a > mn. Consequently,
a=mn,m=n, so a is a square.

PROBLEM 13. Let ABC be a triangle inscribed in the circle K and consider
a point M on the arc BC which does not contain A. The tangents from M to
the incircle of ABC intersect the circle K at the points N and P. Prove that if
LBAC = LNMP, then triangles ABC and MNP are congruent.

Solution.

A

M

Let Q be the intersection point of the line segments AB and MP. The
tangents from A and M to the incirle are equal (as they are r - cot %) More-
over, the tangents from Q to the incircle are equal, so AQ = MQ. This implies
LQMA = LQAM, so the arcs AP and BM are equal. In the trapezoid APBM,

the dfiagonals AB and MP are equal, and likewise AC = MN. This concludes the
proof.
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PROBLEM 14. The real numbers a;,as, ... ,an satisfies the relation
a2 +a2+---+ady + (a1 +az+ - +aio0)® = 101.

Prove that |ax| < 10, for all k = 1,2,...,100.

Solution. Assume by contradiction that |ax| > 10, for some k. Wlog, let
k = 1. Then a? > 100 and a3 +a+.. AFajpo+s? <1, j)vhere s =ay+az+...+ao-
On the other hand, the Cauchy-Schwarz inequality yields

2 2
a% = (s—az—a3+...—amg)2 < 100(a§+a§+u.+amo+s ) < 100,
a contradiction.

PROBLEM 15. A finite set of positive integers is called isolated if the sum
of the elements in any proper subset is a number relatively prime with the sum
of the elements of the isolated set. Find all non-prime integers n for which thezre
exist positive integers a, b so that the set A = {(a +b)?,(a +2b)%,..., (a +nb)’}
is isolated.

%Eleust;;nc.)f the elements of the set 4 is § = na? +n(n+1)b+ ﬂﬂ)—s(Z”—Jrl—)bz.
Assume that n has a prime divisor p > 3. Then p|S and p|(a+b)*+ (a+2b)2+-- -lk
(a+pb)? == pa® + p(p+ 1)b+ ﬂ%z”“)bz, a contradiction. It remains n = 2¥3!,
for some integers k, I. Suppose that & > 1. Then 2| and so all elements of A must
be odd. Taking the subset given by any pair we reach the contra(_iictio?l.. Finally,
suppose that I > 1, so 3|S. If one of the numbers a-+b, a-+2b, a+3bis divisible b}zr 3,
then we have a contradiction; if not, then 3[b. Then 3|(a+b)2+(a+2b)>+(a+3b)* =

2 b2, again a contradiction.
3‘1 +\71Via:r:15flt v:ritl% n = 6. It satisfies the claim: the set A = {4,9,16,25, 36,49}
is isolated, because the sum of its elements is a prime number (139).

PROBLEM 16. A regular polygon with 1000 sides has its vertif:es colored
in red, yellow or blue. A move consists in choosing to adjiacent yertxces colored
differently and coloring them in the third color. Prove that there is a sequence of
moves after which all the vertices of the polygon will have the same color.

Solution. Let Ay, As, ... Ajooo be the vertices of the polygon. We start with
two lemmas.

Lemma 1. Three of four consecutive vertices have the same color. Then after
a sequence of moves all vertices will have the color of the fourth vertex.

Proof. Let the colors be 0,1 and 2. We have two cases:
a) 1110 — 1122 — 1002 — 2202 — 2112 — 0000.
b) 1011 — 1221 — 0000.

Lemma 2. Any 4 consecutive vertices will turn after several moves in the
same color.

SoLuTIOoNs - JBMO SELECTION TESTS 89

Proof. Form two pairs of consecutive vertices and change them in the same

color - if they do not already have it. Then follow the sequence 1122 —» 1002 —
2202 — 2112 — 0000.

By the second lemma, after several moves the vertices Ay, Ay, Az, Ay will
have the same color, say red. Likewise, As, Ag, A7, As will have the same color.
Consider now the vertices A4, As, Ag, A7; the first is red and the other three have
the same color. By the first lemma they all will turn red - of course, we do nothing
if they were already red. We move on with this procedure until A, As, ... Aggr
turn red (note that 997 = 44 3- 332, so this requires 332 steps). Now consider the
vertices Agog, Agge, A1000, A1; by the second lemma they all will share the same
color. If this is red, we are done. If not, say that they are blue, and taking the
vertices Agg7, Agas, Aggg, A1000 We obtain - using the first lemma — all vertices to be
red, except for A;, which is blue. Now A, As, A3, A4 turn blue, then As, As, Az, Ag
and so on. This time, after 333 steps, all the 1000 vertices (1000=1+3-333) will
be colored in blue.

Comment. Substituting colors with digits, notice that all moves: 01-—22,
02—11 and 12—00 preserve the sum (mod 3). This means that the final color
is unique and, of course, is given by the sum of the digits assigned to the vertices
of the injtial configuration.

PROBLEM 17. Consider the triangular array

0112 3 5 38
011 2 3 5
23 5 8 13

4 7 11 18

12 19 31

defined as follows:

i) on the first two rows, each element starting with the third is the sum of
the two preceding elements;

if) on the other rows each element is the sum of the two elements placed
above of the same column.

a) Prove that all the rows are defined according to condition i).

b) Consider 4 consecutive rows and let a, b, c,d be the first element in each
of these rows, respectively. Find d in terms of a,b and c.

Solution. a) In the array below

@ a9
>0 o

c
!
i
where i is an element of the third row, observe that i = c+ f = (a+b) + (d+e) =

(a+d)+ (b+c) = g+ h. The same argument holds for all the other rows, by
induction.
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b) We prove that d = 2b+ 2c — a. Indeed, from the array

a

T
b

o s+

z
u
v’
d

wederived=u+v=">b+t+(ut+2)=20b+t)+(z+y)=2b+2(t+y)+z—y=
2b+2c+z—(x+a)=2b+2c—a.

PROBLEM 18. Let M, N, P be the midpoints of the sides BC, CA, AB of the
triangle ABC, respectively, and let G be the centroid of the triangle. Prove that
if BMGP is cyclic and 2BN = v/3AB , then triangle ABC is equilateral.

Solution. By the power of a point theorem we have AG - AM = AP - AB,
so AMA? = 3AB? and thus AM = Y2AB = BN.

A

B M C

Then AG =GB, so the median GP is also an altitude in the triangle AGB.
This implies ZBPG = 90°, and since BMGP is cyclic, LGM A = 90°. It follows
that BC = CA and AB = AC, so the triangle is equilateral.

PROBLEM 19. Let A be a set of positive integers with the properties:
i) if a € A, then all positive divisors of a are elements of A;

i) ifa,b€ Aand 1 <a <b, then 1 +abe A.

Prové that if the set A has at least 3 elements, then A = N*.

Solution. It is obvious that 1 € A, since 1 is a divisor of any integer.
Consider a, b two elements of A with 1 < a < b. Since at least one of a,b or 1+ ab
is even, then 2 is an element of A.

We induct on n > 6 to prove that n € A. Assume that k € A for all
k=1,2..,n—1 If nis odd, then n = 2p+ 1 with 1 < 2 < p € 4, hence
n € A. If n is even, then n = 2p. As above, 2p — 1 and 2p + 1 are elements of
A and consequently 1+ (2p — 1)(2p + 1) = 4p® € A. The first property implies
n = 2p € A, as needed.

To complete the proof, we need to show that 3,4,5 € A. For this, consider
a > 2 an element of A. Then 1+2-a € 4, 14+2(1+2a) = 3+4a € A and
1+ (1 + 2a)(3 + 4a) = 4 + 10a + 8a% € A. If a is even, then 4|4 + 10a + 8a?
and so 4 € A. If a is odd, then choose a to be 4 + 10a + 8a? and again 4 € A.
Next,as 1 <2 <4 € Awehave1+2-4=9¢€ Aandso3 € A Finally,
7=1+2-3€ A,15=142-7€ A, hence 5 € A and we are done.
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PROBLEN(I 20. Consider a convex polygon with n > 5 sides. Prove that there
n(2n —5 .
are at most n(2n=5) triangles of area 1 with whose vertices are choosen from

the vertices of the polygon.

Solution. Let A;, Ay, ..., A, be the vertices of the polygon. We start with
the following

Lemma: Each segment A;A; belongs to at most 2 triangle of area 1 located
on the same side of the line A;4;.

Proof of the lemma. Indeed, suppose that on the same side of the line 4;4;
exist the vertices A, An, A, so that the triangles A;A;jAm, AiA;A, and A;A;A,
have the area 1. Then the points Ap,, An, A, will be at the same distance to the
line A;A;, hence colinear. This is a contradiction, since the polygon is convex.

Consider first the n sides of the polygon. Each of them can form at most 2
triangles of area 1, as all the vertices lie on the same side, hence we have by now
at most 2n such triangles.

Consider now the n diagonals A; A — with the cyclic notations: An4; = A;.
Each of them can form at most 3 triangles of area 1, one with A;;; and two with
the vertices lying on the other side. Thus we have at most 5n = 2n + 3n triangles.

Finally, consider the other diagonals of the polygon. They are ﬂ"fa, and
each of them can form at most 4 triangles. The final counting is 5n + 4@ =
n(2n — 5), except that we have counted each triangle three times, one time for
each side. Therefore, there are at most "(22_5) triangles, as claimed.




2.5. REGIONAL MATHEMATICAL COMPETITIONS

Problems and Solutions

7" GRADE

1. Let m,n be positive integers. Show that 25 — 7™ is divisible by 3 and
find the least positive integer of the form 25" — 7™ — 3™|, when m,n run over the
set of non-negative integers.

Solution. Since 25 = 1 (mod 3) and 7 = 1 (mod 3), it follows that 257 —7™ =
o (mod 3).

For the second part of the problem, we first remark that if m is odd, then
any number @ = 25" — 7™ — 3™ is divisible by 15. This follows from the first part
toghether with

T4 3™ = 9™ 4 (—2)™ =0 (mod 5).

Moreover, for m = n = 1 one obtains 25 — 7 — 3 = 15.
Assume now that m is even, say m = 2k. Then

7737 = 72 4 3% = ((=3)% 4 3%) (mod 10)
=2-9* (mod 10) = +2 (mod 10) = 2 or 8 (mod 10).
So, the last digit' of the number 25™ —7™ — 3™ is either 3 or 7. Because the number
25" — 7™ — 3™ is divisible by 3, the required number cannot be 7. The situation
[25" — 7™ — 3™] = 3 can also not occur, because 25" — 7™ — 3™ =1 (mod 8).
2. Let a,b be real numbers such that |a| > 2, [b| > 2. Show that
(@®+1)(0*+1) > (a+b)(ab+1) +5,
and find when equality holds.

Solution. We have

(a®+1)(b*+1) - (ab+1)(a—b)—5 = (a®b® —a®b—ab?+ab)+ (a®+b? —a—b—ab)—4.
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Observe that
a?h? — a®h —ab® +ab=abla—1)(b—1) >4
and 1
a?+b?—a-b—ab= 3 ((a—b)%+a(a—2) +b(b—2)) >0.
The inequality becomes an equality for a = b = 2.

3. Let ABC be a triangle, M be the foot of the altitude from C and N be
the reflection of M across the line BC. The parallel line to CM through the point
N intersects BC in P and AC in Q.

a) Show that MQ L AP if and only if AB = AC.

b) Show that it is possible to obtain the points A, B,C when the points
M, N, P are given.

Solution. a) We have AB L PQ. Therefore MQ 1 AP if and only if M is
the orthocenter of the triangle APQ, that is if and only if MP L AC. Because
/MPC = (NPC = /MCP, it follows that PM 1 AC if and only if /B = /C.

b) In the given conditions, B is the orthocenter of the triangle MNP, C
is the intersection of the altitude from P with the parallel line through M to
PN and A is the intersection of MB with the perpendicular bisector of the
segment BC.

9t» GRADE

1. Let a,b,c be real numbers. Show that

Ya+Vo+Ye=Va+b+c

if and only if
@+ +t=@+b+c)’

Solution. Using the well-known identity
(a+b+c) =a+b° 4+ +3(a+b)(b+c)(c+a),

we see that (a4 b+ c)® = a® + b% + ¢ if and only if either a+b =0, or b+c =0,
or ¢+ a = 0. It follows that

Ya+ o+ Ye=Va+b+e
For the converse, one may apply the same argument for the numbers /a, b, e
2. Let z,vy, z be real numbers such that
2 2 2
¥ +yz<2, Y +r2<2, 2*+ay <2

Find the minimal and the maximal value of the sum = +y + 2.
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Solution. Adding up the given inequalities, one obtains
2 +y? + 22 Loy +yz + 22 < 6.
Taking into account that zy+yz+zz < 22492+ 22, one obtains 2(z+y+2)2 < 18,

Therefore, -3 < z+y+ 2 < 3.

The valuesz =y =z2=1and z = Yy = z = —1, respectively, show that both
lower and upper bounds are attainable.

3. We are given the set A = {1,3,6,10, 15,21,...}. Show that there exist
numbers a1, as, ..., a4 € A such that

a1 +az + a3+ -+ azo3 = azo4-

Solution.The set A is the set of the so-called triangular numbers:
A={Tk=l+2+3+---+k|k>1}.

We will prove by induction the following statement: for any k, k > 2, there exist
triangular numbers T},, T}, . .. s Tiyy» such that

T+ T+ 4Ty =Ty,

For k =2, we have T3 + Ts = Tg. Assume that

T+ T+ 4Ty =T,

Since T, = P(P;'”, let

1
Tz<,;,,_1=1+2+‘-~+(%—1).

Then
Toggn_; +Tp = Togen =Tpy +- + T, +Towgn .

4. The circles C; and Cy intersect in distinct points A, B. An arbitrary line
through A intersects again C; in C and Cy in D and let M be an arbitrary point on
the segment CD. The parallel line to BC through M intersects the segment BD
in K and the parallel to BD through M intersects the segment BC in N. The
perpendicular in N to BC intersects the arc BC of C; which does not contain A
in the point E. The perpendicular to BD in K intersects the arc BD of C2 which
does not contain A in F.

Show that ZEMF = 90°.
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Solution.

Let P,Q be the intersection point of EN, KM and FK, NM respectively.
The triangles NPM and KQM are right angled, satisfy ZNMP = /K MQ), there-
fore they are similar. It follows that ZPNM = /MKQ and also ZENM =
LFKM.

5. Let n be a positive integer and a, b, ¢ be real numbers such that a™ = a+b,
*=b+cand c* =c+a.
Show that a =b=rc.

Solution. If n = 1 the conclusion is obvious. let n > 2. We have a” — b* =
a—c,b" —c* =b—a,c" —a™ =c—b. Distinguish two cases:

Case 1. 7 is odd. Then the function f(z) = z" is monotonic increasing
on the real axis. If a > b, one obtains a > ¢,c < b and then a < b, which is a
contradiction.

Case 2. n is even. If a,b,c > 0 the conclusion follows like above. Since
a+b>0,b+c>0,c+a >0, we cannot have negative numbers. Assume that
a<0andb>0,c>0. Leta = —z,z > 0. Then 2" = —z+b,b" = b+c, " = c—=z.
It follows b > z,c¢ > z. Since 2" — c® = b — ¢ we get b < ¢. On the other hand
b* — " =b+x > 0, that is b > ¢, a contradiction.

6. Let ABCD be a convex quadrilateral and M, N, P,Q be points on the
sides AB, BC,CD, DA respectively, such that

MA_NB_PD_QA_,
MB NC PC QD "

where k # 1. Show that S(ABCD) = 2S(MNPQ) if and only if S(ABD) =
S(BCD).

Solution.
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QA MA AM  MQ  k BN _PD _
FromQDfMBAk,weoet AB7~B—ka+1a.ndﬁomchDc—
NC PN 1

Ve BC TBD k41
MQ+PN k+1 . . B
Hence —BD  “kii- 1, implying BD = MQ + PN.

Let h1, hy be the length of the perpendicular from A, C respectively, to BD
and u,v the length of the perpendiculars from M, N respectively, to BD. Since
the triangle AMQ is similar to with ABD, and CPN is similar to CDB, we get

k. ho—u J 1 m-w Therefore. u — 2 d ik
Pt and 7o = o herefore, uw = .== and v = 7=
Since M N PQ is a trapezoid,

(ho + khy).

S(MNPQ) = %(pNJrMQ)( hy ki ) BD

E+1 k+1) 2k+1)

It is clear that S(ABCD) = 132_D(h1 + ha).

Therefore, S(ABCD) = 2S(MNPQ) which is equivalent to
(k +1)(h1 + hg) = 2(hg + khy), or to hy = hy, that is the same with S(ABD) =
S(BCD).

7. Let ABC be a right triangle such that, ZA = 90°, /B > /C, and let
D be an erbitrary point on the segment BC. The angle bisectors of ZADB and
£ADC intersect the sides AB and AC in the points M and N, respectively. Show
that the angle between the lines BC and M N is %(B —C) if and only if D is the
foot of the altitude from A.

Solution. Let P be the intersection point of BC and M N. Since /M DN =
90°, AM DN is a cyclic quadrilateral. It follows that

LADC a4 sanm = LADB.

LAMN = LADN = )

M

P B D C

We have /ZMPB = [ABC - LAMN. Hence, /MPB = }(B — C) is
equivalent to ZABC = LADC — /BCD, which is the same as 90° — /BCD =
LADC — /BCD, or LADC = 90°.

8. Find all real numbers , z > 1, such that {/[2"] is an integer number for
all positive integers n, n > 2.
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Solution. Put {/[z"] = a,. Then [z"] = a] and a? < 2™ < a? + 1. Taking
roots, one obtains an, < = < {/a+n"+ 1. This shows that [z] = a,.

We will show that all positive integers =, = > 2, satisfy the condition. As-
sume, by way of contradiction, that there is a solution = which is not a nonnegative
integer. Putz =a+a,a>1,0<a < 1.

It follows that a™ < (a + @)™ < a™ + 1, and therefore,

a\n 1
1< (1+;) <1+ <2
On the other hand, by Bernoulli inequality,
a\"
(1+2) 21405 >,
a a

for sufficiently large n, a contradiction.

10** GRADE

1. Find all arithmetic sequences n1, ng, n3, ng, ns, for which 5|ny, 2|ng, 11|n3,
7|ng and 17|ns.
2004, Focsani Contest

Solution. We take n; = 5a,ny = 2b,n3 = 1lc,n4 = 7d and ns = 17e. We
require the conditions: ny + ng = 2ny, ny +ny = 2n3,n3 + ns = 2n4. From these,
we derive the system of linear equations:

5a —4b +1lc =0
26 —22¢ +7d =0
llc —14d +17¢ =0

We solve it in rational numbers by expanding a, b, ¢ in terms of d, e, and one obtains

14d — 17, -
c=_e, b:2—1d717e a:———28d 515.

) 11 2 5

From these, one has: d = 2z, 6z — 6e = 0 (mod 11) and z — e = 0 (mod 5).
Therefore z — e = 0 (mod 55), e = = — 55y, where z,y € Z. Thus

a=z+56ly, b=4x+4935y, c=x+85y, d=2z, e=z—55y.

It follows that d is even, d = 2z, and

28z — 17e 56z — 51
c= a= .
11 5
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The required sequence is
ny = 5z + 2805y

ng = 8z + 1870y
ng = 11z + 935y
ng = ldzx

ns = 17z — 935y.

We remark that the ratio of the sequence is 3z — 935y.

2. Let ABCD be a convex quadrilateral and M, N, P, Q be the midpoints of
the sides AB, BC,CD, DA respectively.

Show that if ANP and CMQ are equilateral triangles then ABCD is a
rhombus. Find the angles of ABCD.

Solution. Let O be the intersection point of the diagonals AC and BD.
Since ABCD is a convex quadrilateral, O is an interior point.

We shall first give a solution using complex coordinates. Let a, b, c,d be the
complex coordinates of A, B,C,D respectively, such that O is the origin of the

complex plane. Then M, N, P,Q have complex coordinates m = %, n= b ;’ c’
d d
p= C—+~—, q= +a respectively. The condition that ANP and CMQ are equi-

lateral triangles gives us the equalities

2c+ (a+b)e + (d+a)e =0

1
@ 2a + (c+ d)e + (b+c)e? =0,
where € = cos %" + isin 2—;’- Taking into account that €2 + & + 1 = 0, the above
equation yields

.= 2c—a—-d _2a-b-c

T d-b  b—d
It follows that ¢+ a = b+ d. As AC and BD intersect at O, this gives a + ¢ =
b+ d = 0. Therefore ABCD is a parallelogram and ¢ = —a,d = —b.
The last equalities, when introduced in (1), give

20+ (—a—be+(b—a)e? =0, or 2a—ac—be+(b—a)(—1—¢)=0.
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We obtain % = i?. This shows that OA and OB are perpendicular and -

OA V3
OB tan(ZOBA) = 5

Therefore ABCD is a rhombus and /B = /D = 60° and /A = £C = 120°.

Alternative solution. This is an essentially metric argument. Observe
that one can easily check that in the triangle ABC the medians AN and CM are
equal. This implies that the triangle is isosceles (using, for example, the median
formula). In the same way the triangle DAC is isosceles. The median formula
imply that the two triangles are equal, that is ABCD is a rhombus. Checking the
angles is now an easy task.

3. Let A = {1,2,3,4,5}. Find the number of functions f : A — A, with
the following property: there is no triple of distinct elements a, b, ¢ € A such that
fa) = f(b) = (o).

Solution. There are three types of functions which do not posses the given
property:

1) Functions which assign to three distinct elements a, b, ¢ an element o’ € A,
and to the remaining two elements, arbitrary elements from A\ {a’'}. The number

of such functions is (g -5.42,

2) Functions which assign to four distinct elements from A an element a’ € A
and to the remaining fifth element in A some element from A\ {a’}. The number

of such functions is i -5-4.

3) Constant functions; their number is 5.
The required number is thus, 5° — ((3) -5 - 42 — (g) -5-4—5) =2220.

4. Let a > 2 be a an integer. Consider the set

A={Va, ¥a,¥a, ¥a,...}.

a) Show that A does not contain an infinite geometric ratio.
b) Show that for any n > 3, A contains n numbers which are in a geometric
ratio.

Solution. a) Observe that a C [1,+/a]. Assume that (z,)n is an infinite
geometric ratio of ratio ¢. Then 1 < z1¢™ < v/a, for all n > 1. In the case ¢ < 1
the inequality 1 < z1¢™ gives a contradiction and in the case ¢ > 1, the inequality
q"z1 < v/a gives a contradiction.

b) The numbers a;l'!, a'vﬁ, ...,a™ are in geometric ratio.

5. Let ABCD be a tetrahedron such that the medians starting from vertex
A in the triangles ABC, ABD, ACD are mutually perpendicular. Show that all
edges that contain A are equal.
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Solution.We shall use vectors. Put AB = b,AC = ¢, AD = d. Hence, the
medians are given by the vectors %(b +c), %(c +d), %(d +b). The scalar products
of each pair is zero. We thus obtain

b% + (be+cd + db) =0
c% + (be+cd 4 db) =0
d? + (be + cd + db) = 0,

which easily gives b% = ¢ = d?, that is |b] = |¢| = |d| = 0.
6. Let z,y, z be real numbers such that

CoST +cosy +cosz =0
cos 3z + cos 3y + cos 3z = 0.

Prove that cos 2z cos 2y cos 2z < 0.

Solution. We shall use the formula cos 3z = 4 cos® = — 3 cos z. Summing up
the given equalities yields

cos® z 4 cos® y+cos®z=0.
From the algebraic decomposition formula
a3+b3+cs—3abc=(a+b+c)(a2+b2+cz—ab~bc~ca),

we deduce coszcosycosz = 0. Assume cosz = 0. Then — cosy = cosz and
cos 2z = cos 2y. Since cos 2z = —1, it follows that cos 2z cos 2ycos2z = — cos? 2z <
0, and we are done.

11** GRADE

1. We are given a rectangle ABCD and let P be an arbitrary point on the
diagonal BD, P # B,P # D, and Q be an arbitrary point inside the triangle
ABD. The perpendicular projections of P on the sides AB,AD are Py, P, respec-
tively, and the perpendicular projections of Q on the sides AB, AD are Q1,Q,,
respectively.

Show that if AQ; = ;AB and AQ> = 1AD, then the point Q does not lie
inside the triangle AP, P;.

Solution. We will prove the statement by using coordinates. Take a sys-
tem of coordinates such that A(0,0), B(a,0), D(0,b). Consider P of coordinates

P(p,q). One has Q (%,%
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D C
P P
2
Q
\®
A R B
The equation of the line BD is z + % = 1. Therefore, we have
P, 4q
L S
1) P
Write (1) in the form é + -}; =1 and use Cauchy-Schwarz inequality to obtain
P 9
1,1 (1+1)? a b
l=g+352 (a+ b) or —+-—2>4,
P a sty a

that is

The equation of the line P, P; is z + Y —1. The inequality from above shows that

th point Q (%, %) does not lie in the half plane which contains the triangle AP, P,.

2. Let A, N be 2 x 2 real matrices such that AN = NA and N™ = 0 for
;ome positive integer m. Show that

a) det(A+ N) = det 4; )

b) If det A # 0, then A + N is invertible and (A + N)™! = (4 — N)A~%

Solution. It is easy to show that if N™ = 0 for some m > 1, then N2 = 0. As
A commutes with N, we have also (NA~1)2 = 0. The following easy consequence
of the characteristic equation will be used.

Remark. If B is a 2 x 2 real matrix such that B? = 0 then tr(B +1I) = 2 and
det(B+I) =1.

Proof. The fact that tr (B + I) = 2 is a consequence of the formula of trace.
The characteristic equation for B + I gives

(I+B)?—2(I + B)+det(I + B)I =0,

from which the conclusion of the remark follows.

In the case the given matrix A is invertible, use the preceding remark for
B = NA"'. Thus

det(A + N) =det (A(I + NA™!)) = det Adet(] + NA™!) = det A.
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In the case when A is not invertible, consider the polynomials f(z) = det(zI+
A) and g(z) = det(z]+A+N). They are monic and quadratic and since f # 0 and
f(z) = g(z) for infinitely many , it follows that f = g. In particular f(0) = g(0),
which gives det(A4) = det(A + N).

It is a routine to verify

(A= N)A2(A+N) = (A2 = N)A2 = A%A"2 =],

which proves (A — N)A=2 = (A+ N)~L

3. a) Prove that for all positive integers n, the following inequality holds

1 1 1 o1
(l+'1—2-) (1+§—2')"'(1+¥)<€ n.,

b) Show that the sequence of real numbers (an),>; defined by a; =1 and
2y kag, forall n >1
ﬂn+1=$l§ ag, foralln =1,

is monotonic increasing. Find with proof if it is a convergent sequence.

Solution. a) We prove the statement by induction on n. For n = 1 we have
2 < e, obviously true.
Assume that the statement is true for n. To prove it for n + 1 it suffices to

prove that
o1 1 o _1_
el —_— ] < L
4 (1 ) <
The inequality is equivalent to

1__1 1
< en W = @RI

oy

1 n(n+1)
<l+_(n+1)2) <e.

™
The last is an easy consequence of n(n + 1) < (n + 1)? and (1 + E) < e, for

or

any positive m.
b) From the equalities

n
nza"H = Z kay
k=1

n-1
(n—1)%a, = Z kay,
k=1
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2
. . n®+1
one obtains by subtraction n?ap41 — (n— 1)2a, = 2nan, or any; = an% > an.
. . . . . . 1
This proves that (a,), is monotonically increasing. Since Ayl = (1 + —2> Qn,
n
we get
- 1 1 2
Any1 = H (l+ﬁ) <e?w <e?,
k=1
thus it is bounded and convergent.

4. Let a € (0,1) be a real number and f : R — R be a function which
satisfies the conditions:

(i) lim_f(z) = 0;

(ii) lim f(z) ~ f(az) _

n—00 z
Show that lim @ =0.
n—oo T

Solution. From condition (ii) we have: for any € > 0, there exists § > 0
such that |f(z) — f(az)| < |z, for all z € (—4,4). It follows that for all positive
integers n and all z € (—6,6), one has

[f(@) = f(a"2)| < |f(z) = f(ax)| + |f(az) — f(a®2)| +--- +|f(a"'z) — f(a")|

0.

<elz|l+a+a®+-- +a" 1) = san — 1|7:| < L|:c|
a-1""a-1
Since € > 0 was arbitrary and f has limit 0 at zo = 0, it follows that
lim @ =0.
z—0 T

5. Let ABCD be a parallelogram of unequal sides. The point E is the foot
of the perpendicular from B to AC. The line through E which is perpendicular
to BD intersects BC in F and AD in G.

Show that EF = EG if and only if ABCD is a rectangle.

Solution. First, assume that ABCD is a rectangle. Let H be the intersec-
tion point of FG and BD. In the right triangles ABC and FBG, the segments BE
and BH are altitudes, respectively. Then /ABE = /ACB and /BGF = /HBC.
Since ZHBC = LACB, it follows that /GBE = /BGF and BE = GE. This
proves that GE = EF.

B F c B F CcL
4 ‘
0 e
E
A D A 1 D
G‘
G
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For the second implication we shall present two solutions.

A geometric solution. Let O be the center of the parallelogram. The line
FO intersects AD in I and GI intersects BD in K and BC extended in L. Thus
EO || GI. Therefore, the quadrilateral GECL is a trapezoid. It is known that in a
trapezoid the midpoints of parallel sides and the intersection point of nonparallel
sides are three collinear points. In our case, it follows that K is the midpoint
of GL.

Consider now the triangle FGL. Since E,K are midpoints of the sides
GF,GL respectively, it follows that EK || FL.

Finally, we look at the triangle GBK in which GH and BE are altitudes. It
follows that E is the orthocenter and EK is perpendicular on GB. Since EK ||
BC, the conclusion follows.

A solution using coordinates. We formulate the problem as: give a triangle
ABC, let BE be the altitude from B and O the midpoint of the side BC. The
perpendicular from E on BO is such that the line segments GE and EF are equal.
Then, the angle B is a right angle.

Take the origin of the orthogonal axis to be E and the line EB to be on the
Oy axis. Assume that coordinates of points are A(—a,0), B(0,b),C/(c,0) where
a,b,c > 0. We have to prove that b? = ac.

JA_-"E 0 c
/-
Ge~
By standard calculations, we get the following equations and coordinates:
c—a
-1 F:y=——uz;
line G g; 5 z;
“line BC: 24 ¥ =1
c b 52 " |
2b%c cb(c—a
— point F: = = :
pomt £ Tp = gpa Zoac Ty E g

“line AB: ~Z 4 ¥ = 1;
a b
212 ab(c — a)

2 ac_a2 Y67 —2b2 + ac — a2’
The CDI]dlthl’l EG = EF is equivalent to zr = —z¢, that is

- point G: zg =

2b%¢ _ 2ab?
202 +c2—ac 202 —ac+a?’

which easily gives b = ac.
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6. Let A, B be 2-by-2 matrices with integer entries, such that AB = BA
and det B = 1.
Prove that if det(A® + B%) =1 then A% =I.

Solution. As det B = 1, B is invertible and B~1 has mtewex entries. From
A4+ B3 = ((AB H341) B3 it follows that det ((AB~1)® + I) 1. We will
show that (AB~1)2 = 0. It will be, thus, sufficient to treat the case B =1.

From the decomposition A3 + I = (A + I)(A + eI)(A + €2I), where ¢ is
the complex cubic root of unity, it follows that P(—1)P( (—€)P(e?) = 1, where
P(X) = X?-Tr X + det(A) = X% — mX + n is the characteristic polynomial
of A. Since P(—€?) = P(—¢), it follows that P(—)P(—¢?) € N. Therefore
P(-1) = P(— E)P( 52)—1

We get 1 +m +n =1 and (g2 + me + n)(e + me> + n) = 1, which give
m=n=0.

12" GRADE

1. Let G be a group such that every element z,  # 1, has order p.

a) Show that p is a prime number.

b) Show that if any p? — 1 element subset of G contains p elements which
commute one to another, then G is an Abelian group.

Solution. a) Assume by contradiction that p has the decomposition p = ab,
a > 1,b> 0. Then, the order of z¢ is b, a contradiction.
b) We start with the following

Lemma. Let x,y € G such that 2y’ = y/z for all 2 < 4,5 < p— 1. Then
Ty = yz.

Proof. Since (j, = 1, there exists a, 1 < a < p— 1, such that aj = 1
(mod p). Then 2y = y¥zi. Since aj = 1 + mp, y"j = y*mP — y. Therefore
'y = yz'.

In the same way, since (, p) =1, one can find b, 1 < b < p—1, such that
bi =1 (mod p). Since 2’y = yzi, we deduce zbiy = yzl” and since bz —1=np,

2% = z. Therefore zy = yz, that proves the lemma.

Now, we prove the second statement. Assume by way of contradiction, that
there exist x,y € G such that zy # yz. Conulder the set AC G, A= {z'y’ |0 <
1,j < p—1}\ {1}. Formally, A has p? — 1 elements. By the lemma and the
assumption it has indeed.

Let B C A be a p-element subset, such that any two elements of B commute.
If there exists i, i > 1, such that z* € B B contains at least one element of the
form 9, 0 < a<p-1,0<b<p-1 From zi(z®yb) = (z%’)z?, we get

ziy® = yPz¢ and by the lemma, Ty = yz The same argument shows that if some
element y7 is in B, then zy = yz.
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By the previous considerations, we are led to consider that B contains p
elements from the array bellow:

zy oyt e ayr!
22y z2y? Z2yp-1
aply gPely? L gp-lyp-l

By the pigeon-hole principle, there are two elements in B which lie on the same
line. Let they be 2°y® a nd z°y°. It follows that (z%y®)(z%y°) = (z°y°)(z*y"). By
assuming that b > ¢, one has y*~¢2% = %"=, The lemma implies zy = yz, a
contradiction.
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