QUALIFYING EXAM – ALGEBRA SPRING 1999 MORNING SESSION

Do all problems. Use a separate blue book for each.

Notation: **Z**, **Q**, **R**, **C**, and \mathbf{F}_q denote the ring of integers, and the fields of rational numbers, real numbers, complex numbers, and q elements, respectively.

1. Classify all groups of order 24 containing a normal subgroup which is cyclic of order 4.

2. Describe all similarity classes (conjugacy classes) of 6×6 matrices with minimal polynomial $x^4 + x^2$:

- (i) over \mathbf{Q} ,
- (ii) over \mathbf{F}_5 .
- **3.** Find the Galois group of the splitting field of the polynomial $x^3 x + 1$:
 - (i) over \mathbf{R} ,
 - (ii) over \mathbf{Q} ,
 - (iii) over \mathbf{F}_2 .

4. Suppose K is a finite extension of **Q**. Prove that the integral closure of **Z** in K is a free **Z**-module of rank $[K : \mathbf{Q}]$.

- **5.** Suppose G is a *nonabelian* group of order pq, where p < q are primes.
 - (a) Describe the conjugacy classes in G.
 - (b) Describe all representations of G (over **C**).

QUALIFYING EXAM – ALGEBRA SPRING 1999 AFTERNOON SESSION

Do all problems. Use a separate blue book for each.

Notation: **Z**, **Q**, **R**, **C**, and \mathbf{F}_q denote the ring of integers, and the fields of rational numbers, real numbers, complex numbers, and q elements, respectively.

1. Describe all simple left modules over the matrix ring $M_n(\mathbf{Z})$ ($n \times n$ matrices over \mathbf{Z}). Recall that a module is simple if it has no proper submodules.

2. Let G be a finite group. Prove that the following are equivalent:

- (i) every element of G is conjugate to its inverse,
- (ii) every character of G is real-valued.

3. Let *R* be the ring $C[x, y]/(y^4 - (x - 1)(x - 2)(x - 3)(x - 4))$. (You may assume that $y^4 - (x - 1)(x - 2)(x - 3)(x - 4)$ is irreducible.) Let *K* be the quotient field of *R*.

- (a) Show that K is a Galois extension of $\mathbf{C}(x)$.
- (b) Consider R as an extension of $\mathbf{C}[x]$. For every prime \mathfrak{p} of $\mathbf{C}[x]$, find the primes of R above \mathfrak{p} and describe the action of $\operatorname{Gal}(K/\mathbf{C}(x))$ on them.

4. Suppose G is a finite group, F is a field whose characteristic does not divide the order of G, and V is a representation of G over F (i.e., an F-vector space on which G acts F-linearly). Prove that if U is a subspace of V stable under G, then there is a complementary subspace W of V, also stable under G, such that $V = U \oplus W$.

5. Suppose K is an extension of **Q** of degree n, and let $\sigma_1, \ldots, \sigma_n : K \hookrightarrow \mathbf{C}$ be the distinct embeddings of K into **C**. Let $\alpha \in K$. Regarding K as a vector space over **Q**, let $\phi : K \to K$ be the linear transformation $\phi(x) = \alpha x$. Show that the eigenvalues of ϕ are $\sigma_1(\alpha), \ldots, \sigma_n(\alpha)$.