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5
1. Shortest paths and trees

1.1. Shortest paths with nonnegative lengthsLet D = (V;A) be a dire
ted graph, and let s; t 2 V . A walk is a sequen
e P =(v0; a1; v1; : : : ; am; vm) where ai is an ar
 from vi�1 to vi for i = 1; : : : ;m. If v0; : : : ; vmall are di�erent, P is 
alled a path.If s = v0 and t = vm, the verti
es s and t are the starting and end vertex of P ,respe
tively, and P is 
alled an s � t walk, and, if P is a path, an s � t path. Thelength of P is m. The distan
e from s to t is the minimum length of any s� t path.(If no s� t path exists, we set the distan
e from s to t equal to 1.)It is not diÆ
ult to determine the distan
e from s to t: Let Vi denote the set ofverti
es of D at distan
e i from s. Note that for ea
h i:(1) Vi+1 is equal to the set of verti
es v 2 V n (V0 [ V1 [ � � � [ Vi) for whi
h(u; v) 2 A for some u 2 Vi.This gives us dire
tly an algorithm for determining the sets Vi: we set V0 := fsg andnext we determine with rule (1) the sets V1; V2; : : : su

essively, until Vi+1 = ;.In fa
t, it gives a linear-time algorithm:Theorem 1.1. The algorithm has running time O(jAj).Proof. Dire
tly from the des
ription.
In fa
t the algorithm �nds the distan
e from s to all verti
es rea
hable from s.Moreover, it gives the shortest paths. These 
an be des
ribed by a rooted (dire
ted)tree T = (V 0; A0), with root s, su
h that V 0 is the set of verti
es rea
hable in D froms and su
h that for ea
h u; v 2 V 0, ea
h dire
ted u� v path in T is a shortest u� vpath in D.1Indeed, when we rea
h a vertex t in the algorithm, we store the ar
 by whi
h t isrea
hed. Then at the end of the algorithm, all stored ar
s form a rooted tree withthis property.There is also a trivial min-max relation 
hara
terizing the minimum length of ans � t path. To this end, 
all a subset A0 of A an s � t 
ut if A0 = Æout(U) for somesubset U of V satisfying s 2 U and t 62 U .2 Then the following was observed byRoba
ker [1956℄:1A rooted tree, with root s, is a dire
ted graph su
h that the underlying undire
ted graph is atree and su
h that ea
h vertex t 6= s has indegree 1. Thus ea
h vertex t is rea
hable from s by aunique dire
ted s� t path.2Æout(U) and Æin(U) denote the sets of ar
s leaving and entering U , respe
tively.
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Theorem 1.2. The minimum length of an s�t path is equal to the maximum numberof pairwise disjoint s� t 
uts.Proof. Trivially, the minimum is at least the maximum, sin
e ea
h s�t path interse
tsea
h s� t 
ut in an ar
. The fa
t that the minimum is equal to the maximum followsby 
onsidering the s� t 
uts Æout(Ui) for i = 0; : : : ; d�1, where d is the distan
e froms to t and where Ui is the set of verti
es of distan
e at most i from s.

This 
an be generalized to the 
ase where ar
s have a 
ertain `length'. For any`length' fun
tion l : A ! Q + and any walk P = (v0; a1; v1; : : : ; am; vm), let l(P ) bethe length of P . That is:
(2) l(P ) := mXi=1 l(a):Now the distan
e from s to t (with respe
t to l) is equal to the minimum length ofany s� t path. If no s� t path exists, the distan
e is +1.Again there is an easy algorithm, due to Dijkstra [1959℄, to �nd a minimum-lengths� t path for all t. Start with U := V and set f(s) := 0 and f(v) =1 if v 6= s. Nextapply the following iteratively:(3) Find u 2 U minimizing f(u) over u 2 U . For ea
h a = (u; v) 2 A for whi
hf(v) > f(u) + l(a), reset f(v) := f(u) + l(a). Reset U := U n fug.We stop if U = ;. Then:Theorem 1.3. The �nal fun
tion f gives the distan
es from s.Proof. Let dist(v) denote the distan
e from s to v, for any vertex v. Trivially,f(v) � dist(v) for all v, throughout the iterations. We prove that throughout theiterations, f(v) = dist(v) for ea
h v 2 V n U . At the start of the algorithm this istrivial (as U = V ).Consider any iteration (3). It suÆ
es to show that f(u) = dist(u) for the 
hosenu 2 U . Suppose f(u) > dist(u). Let s = v0; v1; : : : ; vk = u be a shortest s � u path.Let i be the smallest index with vi 2 U .Then f(vi) = dist(vi). Indeed, if i = 0, then f(vi) = f(s) = 0 = dist(s) = dist(vi).If i > 0, then (as vi�1 2 V n U):(4) f(vi) � f(vi�1) + l(vi�1; vi) = dist(vi�1) + l(vi�1; vi) = dist(vi):This implies f(vi) � dist(vi) � dist(u) < f(u), 
ontradi
ting the 
hoi
e of u.
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Clearly, the number of iterations is jV j, while ea
h iteration takes O(jV j) time.So the algorithm has a running time O(jV j2). In fa
t, by storing for ea
h vertex v thelast ar
 a for whi
h (3) applied we �nd a rooted tree T = (V 0; A0) with root s su
hthat V 0 is the set of verti
es rea
hable from s and su
h that if u; v 2 V 0 are su
h thatT 
ontains a dire
ted u� v path, then this path is a shortest u� v path in D.Thus we have:Theorem 1.4. Given a dire
ted graph D = (V;A), s; t 2 V , and a length fun
tionl : A! Q +, a shortest s� t path 
an be found in time O(jV j2).Proof. See above.
For an improvement, see Se
tion 1.2.A weighted version of Theorem 1.2 is as follows:Theorem 1.5. Let D = (V;A) be a dire
ted graph, s; t 2 V , and let l : A ! Z+.Then the minimum length of an s� t path is equal to the maximum number k of s� t
uts C1; : : : ; Ck (repetition allowed) su
h that ea
h ar
 a is in at most l(a) of the 
utsCi.Proof. Again, the minimum is not smaller than the maximum, sin
e if P is any s� tpath and C1; : : : ; Ck is any 
olle
tion as des
ribed in the theorem:3

(5) l(P ) = Xa2AP l(a) � Xa2AP( number of i with a 2 Ci)
= kXi=1 jCi \ AP j � kXi=1 1 = k:

To see equality, let d be the distan
e from s to t, and let Ui be the set of verti
esat distan
e less than i from s, for i = 1; : : : ; d. Taking Ci := Æout(Ui), we obtain a
olle
tion C1; : : : ; Cd as required.
Appli
ation 1.1: Shortest path. Obviously, �nding a shortest route between 
ities is anexample of a shortest path problem. The length of a 
onne
tion need not be the geographi
aldistan
e. It might represent the time or energy needed to make the 
onne
tion. It might
ost more time or energy to go from A to B than from B to A. This might be the 
ase, forinstan
e, when we take di�eren
es of height into a

ount (when routing tru
ks), or air ando
ean 
urrents (when routing airplanes or ships).Moreover, a route for an airplane 
ight between two airports so that a minimum amountof fuel is used, taking weather, altitude, velo
ities, and air 
urrents into a

ount, 
an be3AP denotes the set of ar
s traversed by P
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found by a shortest path algorithm (if the problem is appropriately dis
retized | otherwiseit is a problem of `
al
ulus of variations'). A similar problem o

urs when �nding theoptimum route for boring say an underground railway tunnel.Appli
ation 1.2: Dynami
 programming. A 
ompany has to perform a job that willtake 5 months. For this job a varying number of extra employees is needed:
(6) month number of extra employees needed1 b1=102 b2=73 b3=94 b4=85 b5=11Re
ruiting and instru
tion 
osts EUR 800 per employee, while stopping engagement 
ostsEUR 1200 per employee. Moreover, the 
ompany has 
osts of EUR 1600 per month forea
h employee that is engaged above the number of employees needed that month. The
ompany now wants to de
ide what is the number of employees to be engaged so that thetotal 
osts will be as low as possible.Clearly, in the example in any month i, the 
ompany should have at least bi and at most11 extra employees for this job. To solve the problem, make a dire
ted graph D = (V;A)with
(7) V := f(i; x) j i = 1; : : : ; 5; bi � x � 11g [ f(0; 0); (6; 0)g,A := f((i; x); (i+ 1; y)) 2 V � V j i = 0; : : : ; 5g.
(Figure 1.1).At the ar
 from (i; x) to (i+ 1; y) we take as length the sum of
(8) (i) the 
ost of starting or stopping engagement when passing from x to y employees(this is equal to 8(y � x) if y � x and to 12(x� y) if y < x);(ii) the 
ost of keeping the surplus of employees in month i+1 (that is, 16(y� bi+1))(taking EUR 100 as unit).Now the shortest path from (0; 0) to (6; 0) gives the number of employees for ea
h monthso that the total 
ost will be minimized. Finding a shortest path is thus a spe
ial 
ase ofdynami
 programming.
Exer
ises
1.1. Solve the dynami
 programming problem in Appli
ation 1.2 with Dijkstra's method.
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Figure 1.1
1.2. Speeding up Dijkstra's algorithm with heapsFor dense graphs, a running time bound of O(jV j2) for a shortest path algorithm isbest possible, sin
e one must inspe
t ea
h ar
. But if jAj is asymptoti
ally smallerthan jV j2, one may expe
t faster methods.In Dijkstra's algorithm, we spend O(jAj) time on updating the values f(u) andO(jV j2) time on �nding a u 2 U minimizing f(u). As jAj � jV j2, a de
rease in therunning time bound requires a speed-up in �nding a u minimizing f(u).A way of doing this is based on storing the u in some order so that a u minimizingf(u) 
an be found qui
kly and so that it does not take too mu
h time to restore theorder if we delete a minimizing u or if we de
rease some f(u).This 
an be done by using a `heap', whi
h is a rooted forest (U; F ) on U , with theproperty that if (u; v) 2 F then f(u) � f(v).4 So at least one of the roots minimizesf(u).Let us �rst 
onsider the 2-heap. This 
an be des
ribed by an ordering u1; : : : ; un4A rooted forest is an a
y
li
 dire
ted graph D = (V;A) su
h that ea
h vertex has indegree atmost 1. The verti
es of indegree 0 are 
alled the roots of D. If (u; v) 2 A, then u is 
alled the parentof v and v is 
alled a 
hild of u.If the rooted forest has only one root, it is a rooted tree.



10 Chapter 1. Shortest paths and trees
of the elements of U su
h that if i = b j2
 then f(ui) � f(uj). The underlying rootedforest is in fa
t a rooted tree: its ar
s are the pairs (ui; uj) with i = b j2
.In a 2-heap, one easily �nds a u minimizing f(u): it is the root u1. The followingtheorem is basi
 for estimating the time needed for updating the 2-heap:Theorem 1.6. If u1 is deleted or if some f(ui) is de
reased, the 2-heap 
an be restoredin time O(log p), where p is the number of verti
es.Proof. To remove u1, perform the following `sift-down' operation. Reset u1 := unand n := n � 1. Let i = 1. While there is a j � n with 2i + 1 � j � 2i + 2 andf(uj) < f(ui), 
hoose one with smallest f(uj), swap ui and uj, and reset i := j.If f(ui) has de
reased perform the following `sift-up' operation. While i > 0 andf(uj) > f(ui) for j := b i�12 
, swap ui and uj, and reset i := j. The �nal 2-heap is asrequired.Clearly, these operations give 2-heaps as required, and 
an be performed in timeO(log jU j).

This gives the result of Johnson [1977℄:Corollary 1.6a. Given a dire
ted graph D = (V;A), s; t 2 V and a length fun
tionl : A! Q +, a shortest s� t path 
an be found in time O(jAj log jV j).Proof. Sin
e the number of times a minimizing vertex u is deleted and the numberof times a value f(u) is de
reased is at most jAj, the theorem follows from Theorem1.6.
Dijkstra's algorithm has running time O(jV j2), while Johnson's heap implemen-tation gives a running time of O(jAj log jV j). So one is not uniformly better than theother.If one inserts a `Fibona

i heap' in Dijkstra's algorithm, one gets a shortest pathalgorithm with running time O(jAj + jV j log jV j), as was shown by Fredman andTarjan [1984℄.A Fibona

i forest is a rooted forest (V;A), so that for ea
h v 2 V the 
hildren ofv 
an be ordered in su
h a way that the ith 
hild has at least i� 2 
hildren. Then:5Theorem 1.7. In a Fibona

i forest (V;A), ea
h vertex has at most 1 + 2 log jV j
hildren.Proof. For any v 2 V , let �(v) be the number of verti
es rea
hable from v. We showthat �(v) � 2(dout(v)�1)=2, whi
h implies the theorem.65dout(v) and din(v) denote the outdegree and indegree of v.6In fa
t, �(v) � F (dout(v)), where F (k) is the kth Fibona

i number, thus explaining the nameFibona

i forest.
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Let k := dout(v) and let vi be the ith 
hild of v (for i = 1; : : : ; k). By indu
tion,�(vi) � 2(dout(vi)�1)=2 � 2(i�3)=2, as dout(vi) � i � 2. Hen
e �(v) = 1 +Pki=1 �(vi) �1 +Pki=1 2(i�3)=2 = 2(k�1)=2 + 2(k�2)=2 + 12 � 12p2 � 2(k�1)=2.
Now a Fibona

i heap 
onsists of a Fibona

i forest (U; F ), where for ea
h v 2 Uthe 
hildren of v are ordered so that the ith 
hild has at least i � 2 
hildren, and asubset T of U with the following properties:(9) (i) if (u; v) 2 F then f(u) � f(v);(ii) if v is the ith 
hild of u and v 62 T then v has at least i� 1 
hildren;(iii) if u and v are two distin
t roots, then dout(u) 6= dout(v).So by Theorem 1.7, (9)(iii) implies that there exist at most 2 + 2 log jU j roots.The Fibona

i heap will be des
ribed by the following data stru
ture:(10) (i) for ea
h u 2 U , a doubly linked list Cu of 
hildren of u (in order);(ii) a fun
tion p : U ! U , where p(u) is the parent of u if it has one, andp(u) = u otherwise;(iii) the fun
tion dout : U ! Z+ ;(iv) a fun
tion b : f0; : : : ; tg ! U (with t := 1+b2 log jV j
) su
h that b(dout(u)) =u for ea
h root u;(v) a fun
tion l : U ! f0; 1g su
h that l(u) = 1 if and only if u 2 T .

Theorem 1.8. When �nding and deleting n times a u minimizing f(u) and de
reas-ing m times the value f(u), the stru
ture 
an be updated in time O(m+ p+ n log p),where p is the number of verti
es in the initial forest.Proof. Indeed, a u minimizing f(u) 
an be identi�ed in time O(log p), sin
e we 
ans
an f(b(i)) for i = 0; : : : ; t. It 
an be deleted as follows. Let v1; : : : ; vk be the 
hildrenof u. First delete u and all ar
s leaving u from the forest. In this way, v1; : : : ; vk havebe
ome roots, of a Fibona

i forest, and 
onditions (9)(i) and (ii) are maintained. Torepair 
ondition (9)(iii), do for ea
h r = v1; : : : ; vk the following:(11) repair(r):if dout(s) = dout(r) for some root s 6= r, then:fif f(s) � f(r), add s as last 
hild of r and repair(r);otherwise, add r as last 
hild of s and repair(s)g.Note that 
onditions (9)(i) and (ii) are maintained, and that the existen
e of a roots 6= r with dout(s) = dout(r) 
an be 
he
ked with the fun
tions b, dout, and p. (Duringthe pro
ess we update the data stru
ture.)
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If we de
rease the value f(u) for some u 2 U we apply the following to u:(12) make root(u):if u has a parent, v say, then:fdelete ar
 (v; u) and repair(u);if v 62 T , add v to T ; otherwise, remove v from T and make root(v)g.Now denote by in
r(::) and de
r(::) the number of times we in
rease and de
rease.. , respe
tively. Then:(13) number of 
alls of make root = de
r(f(u)) + de
r(T )� de
r(f(u)) + in
r(T ) + p � 2de
r(f(u)) + p = 2m+ p,sin
e we in
rease T at most on
e after we have de
reased some f(u).This also gives, where R denotes the set of roots:(14) number of 
alls of repair= de
r(F ) + de
r(R)� de
r(F ) + in
r(R) + p = 2de
r(F ) + p� 2(n log p+number of 
alls of make root)+p � 2(n log p+ 2m+ p) + p.Sin
e de
iding 
alling make root or repair takes time O(1) (by the data stru
ture),we have that the algorithm takes time O(m+ p+ n log p).
As a 
onsequen
e one has:Corollary 1.8a. Given a dire
ted graph D = (V;A), s; t 2 V and a length fun
tionl : A! Q +, a shortest s� t path 
an be found in time O(jAj+ jV j log jV j).Proof. Dire
tly from the des
ription of the algorithm.

1.3. Shortest paths with arbitrary lengthsIf lengths of ar
s may take negative values, it is not always the 
ase that a shortestwalk exists. If the graph has a dire
ted 
ir
uit of negative length, then we 
an obtains� t walks of arbitrary small negative length (for appropriate s and t).However, it 
an be shown that if there are no dire
ted 
ir
uits of negative length,then for ea
h 
hoi
e of s and t there exists a shortest s � t walk (if there exists atleast one s� t path).Theorem 1.9. Let ea
h dire
ted 
ir
uit have nonnegative length. Then for ea
h pairs; t of verti
es for whi
h there exists at least one s � t walk, there exists a shortest
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s� t walk, whi
h is a path.Proof. Clearly, if there exists an s� t walk, there exists an s� t path. Hen
e thereexists also a shortest path P , that is, an s� t path that has minimum length amongall s� t paths. This follows from the fa
t that there exist only �nitely many paths.We show that P is shortest among all s� t walks. Let P have length L. Supposethat there exists an s � t walk Q of length less than L. Choose su
h a Q with aminimum number of ar
s. Sin
e Q is not a path (as it has length less than L), Q
ontains a dire
ted 
ir
uit C. Let Q0 be the walk obtained from Q by removing C.As l(C) � 0, l(Q0) = l(Q) � l(C) � l(Q) < L. So Q0 is another s � t walk of lengthless than L, however with a smaller number of ar
s than Q. This 
ontradi
ts theassumption that Q has a minimum number of ar
s.

Also in this 
ase there is an easy algorithm, the Bellman-Ford method (Bellman[1958℄, Ford [1956℄), determining a shortest s� t path.Let n := jV j. The algorithm 
al
ulates fun
tions f0; f1; f2; : : : ; fn : V ! R [ f1gsu

essively by the following rule:(15) (i) Put f0(s) := 0 and f0(v) :=1 for all v 2 V n fsg.(ii) For k < n, if fk has been found, put
fk+1(v) := minffk(v); min(u;v)2A(fk(u) + l(u; v))g

for all v 2 V .Then, assuming that there is no dire
ted 
ir
uit of negative length, fn(v) is equal tothe length of a shortest s� v walk, for ea
h v 2 V . (If there is no s� v path at all,fn(v) =1.)This follows dire
tly from the following theorem:Theorem 1.10. For ea
h k = 0; : : : ; n and for ea
h v 2 V ,(16) fk(v) = minfl(P ) jP is an s� v walk traversing at most k ar
sg:
Proof. By indu
tion on k from (15).

So the above method gives us the length of a shortest s� t path. It is not diÆ
ultto derive a method �nding an expli
it shortest s � t path. To this end, determineparallel to the fun
tions f0; : : : ; fn, a fun
tion g : V ! V by setting g(v) = u whenwe set fk+1(v) := fk(u) + l(u; v) in (15)(ii). At termination, for any v, the sequen
ev, g(v), g(g(v)); : : : ; s gives the reverse of a shortest s� v path. Therefore:
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Corollary 1.10a. Given a dire
ted graph D = (V;A), s; t 2 V and a length fun
tionl : A ! Q , su
h that D has no negative-length dire
ted 
ir
uit, a shortest s � t path
an be found in time O(jV jjAj).
Proof. Dire
tly from the des
ription of the algorithm.
Appli
ation 1.3: Knapsa
k problem. Suppose we have a knapsa
k with a volume of8 liter and a number of arti
les 1; 2; 3; 4; 5. Ea
h of the arti
les has a 
ertain volume and a
ertain value:
(17) arti
le volume value1 5 42 3 73 2 34 2 55 1 4
So we 
annot take all arti
les in the knapsa
k and we have to make a sele
tion. We wantto do this so that the total value of arti
les taken into the knapsa
k is as large as possible.We 
an des
ribe this problem as one of �nding x1; x2; x3; x4; x5 su
h that:
(18) x1; x2; x3; x4; x5 2 f0; 1g,5x1 + 3x2 + 2x3 + 2x4 + x5 � 8,4x1 + 7x2 + 3x3 + 5x4 + 4x5 is as large as possible.
We 
an solve this problem with the shortest path method as follows. Make a dire
ted graphin the following way (
f. Figure 1.2):There are verti
es (i; x) for 0 � i � 6 and 0 � x � 8 and there is an ar
 from (i� 1; x)to (i; y) if y = x or y = x + ai (where ai is the volume of arti
le i) if i � 5 and there arear
s from ea
h (5; x) to (6; 8). We have deleted in the pi
ture all verti
es and ar
s that donot belong to any dire
ted path from (0; 0).The length of ar
 ((i� 1; x); (i; y)) is equal to 0 if y = x and to �
i if y = x+ ai (where
i denotes the value of i). Moreover, all ar
s ending at (6; 8) have length 0.Now a shortest path from (0; 0) to (6; 8) gives us the optimal sele
tion.
Appli
ation 1.4: PERT-CPM. For building a house 
ertain a
tivities have to be ex-e
uted. Certain a
tivities have to be done before other and every a
tivity takes a 
ertainnumber of days:
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(19) a
tivity days needed to be done beforea
tivity #1. groundwork 2 22. foundation 4 33. building walls 10 4,6,74. exterior plumbing 4 5,95. interior plumbing 5 106. ele
tri
ity 7 107. roof 6 88. �nishing o� outer walls 7 99. exterior painting 9 1410. panelling 8 11,1211. 
oors 4 1312. interior painting 5 1313. �nishing o� interior 614. �nishing o� exterior 2
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We introdu
e two dummy a
tivities 0 (start) and 15 (
ompletion), ea
h taking 0 days, wherea
tivity 0 has to be performed before all other a
tivities and 15 after all other a
tivities.The proje
t 
an be represented by a dire
ted graph D with verti
es 0; 1; : : : ; 14; 15,where there is an ar
 from i to j if i has to be performed before j. The length of ar
 (i; j)will be the number ti of days needed to perform a
tivity i. This graph with length fun
tionis 
alled the proje
t network.
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Now a longest path from 0 to 15 gives the minimum number of days needed to build thehouse. Indeed, if li denotes the length of a longest path from 0 to i, we 
an start a
tivity ion day li. If a
tivity j has been done after a
tivity i, then lj � li+ ti by de�nition of longestpath. So there is suÆ
ient time for 
ompleting a
tivity i and the s
hedule is pra
ti
allyfeasible. That is, there is the following min-max relation:(20) the minimum number of days needed to �nish the proje
t is equal to the maxi-mum length of a path in the proje
t network.A longest path 
an be found with the Bellman-Ford method, as it is equivalent to ashortest path when we repla
e ea
h length by its opposite. Note that D should not haveany dire
ted 
ir
uits sin
e otherwise the whole proje
t would be infeasible.So the proje
t network helps in planning the proje
t and is the basis of the so-
alled`Program Evaluation and Review Te
hnique' (PERT). (A
tually, one often represents a
-tivities by ar
s instead of verti
es, giving a more 
ompli
ated way of de�ning the graph.)Any longest path from 0 to 15 gives the minimum number of days needed to 
ompletethe proje
t. Su
h a path is 
alled a 
riti
al path and gives us the bottlene
ks in the proje
t.It tells us whi
h a
tivities should be 
ontrolled 
arefully in order to meet a deadline. Atleast one of these a
tivities should be sped up if we wish to 
omplete the proje
t faster.This is the basis of the `Criti
al Path Method' (CPM).Appli
ation 1.5: Pri
e equilibrium. A small example of an e
onomi
al appli
ation isas follows. Consider a number of remote villages, say B;C;D;E and F . Certain pairs ofvillages are 
onne
ted by routes (like in Figure 1.4).If villages X and Y are 
onne
ted by a route, let kX;Y be the 
ost of transporting oneliter of oil from X to Y .
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B

C D

E FFigure 1.4
At a 
ertain day, one dete
ts an oil well in village B, and it makes oil freely availablein village B. Now one 
an follow how the oil pri
e will develop, assuming that no other oilthan that from the well in B is available and that only on
e a week there is 
onta
t betweenadja
ent villages.It will turn out that the oil pri
es in the di�erent villages will follow the iterations inthe Bellman-Ford algorithm. Indeed in week 0 (the week in whi
h the well was dete
ted)the pri
e in B equals 0, while in all other villages the pri
e is 1, sin
e there is simply nooil available yet.In week 1, the pri
e in B equals 0, the pri
e in any village Y adja
ent to B is equal tokB;Y per liter and in all other villages it is still 1.In week i + 1 the liter pri
e pi+1;Y in any village Y is equal to the minimum value ofpi;Y and all pi;X + kX;Y for whi
h there is a 
onne
tion from X to Y .There will be pri
e equilibrium if for ea
h village Y one has:(21) it is not 
heaper for the inhabitants of Y to go to an adja
ent village X and totransport the oil from X to Y .Moreover, one has the min-max relation for ea
h village Y :(22) the maximum liter pri
e in village Y is equal to the the minimum length of apath in the graph from B to Ytaking kX;Y as length fun
tion.A 
omparable, but less spatial example is: the verti
es of the graph represent oil prod-u
ts (instead of villages) and kX;Y denotes the 
ost per unit of transforming oil produ
t Xto oil produ
t Y . If oil produ
t B is free, one 
an determine the 
osts of the other produ
tsin the same way as above.

Exer
ises1.2. Find with the Bellman-Ford method shortest paths from s to ea
h of the other verti
esin the following graphs (where the numbers at the ar
s give the length):
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1.3. Let be given the distan
e table:to: A B C D E F Gfrom: A 0 1 1 1 1 2 12B 1 0 1 1 1 1 1C 1 �15 0 4 8 1 1D 1 1 4 0 1 1 �2E 1 1 1 4 0 1 1F 1 1 1 9 3 0 12G 1 �12 2 3 �1 �4 0A distan
e 1 from X to Y should be interpreted as no dire
t route existing from Xto Y .Determine with the Bellman-Ford method the distan
e from A to ea
h of the other
ities.1.4. Solve the knapsa
k problem of Appli
ation 1.3 with the Bellman-Ford method.1.5. Des
ribe an algorithm that tests if a given dire
ted graph with length fun
tion 
on-tains a dire
ted 
ir
uit of negative length.
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1.6. Let D = (V;A) be a dire
ted graph and let s and t be verti
es of D, su
h that t isrea
hable from s. Show that the minimum number of ar
s in an s � t path is equalto the maximum value of �(t) � �(s), where � ranges over all fun
tions � : V ! Zsu
h that �(w)� �(v) � 1 for ea
h ar
 (v; w).
1.4. Minimum spanning treesLet G = (V;E) be a 
onne
ted undire
ted graph and let l : E ! R be a fun
tion,
alled the length fun
tion. For any subset F of E, the length l(F ) of F is, by de�nition:
(23) l(F ) :=Xe2F l(e):In this se
tion we 
onsider the problem of �nding a spanning tree in G of minimumlength. There is an easy algorithm for �nding a minimum-length spanning tree,essentially due to Bor�uvka [1926℄. There are a few variants. The �rst one we dis
ussis sometimes 
alled the Dijkstra-Prim method (after Prim [1957℄ and Dijkstra [1959℄).Choose a vertex v1 2 V arbitrarily. Determine edges e1; e2 : : : su

essively asfollows. Let U1 := fv1g. Suppose that, for some k � 0, edges e1; : : : ; ek have been
hosen, forming a spanning tree on the set Uk. Choose an edge ek+1 2 Æ(Uk) that hasminimum length among all edges in Æ(Uk).7 Let Uk+1 := Uk [ ek+1.By the 
onne
tedness of G we know that we 
an 
ontinue 
hoosing su
h an edgeuntil Uk = V . In that 
ase the sele
ted edges form a spanning tree T in G. This treehas minimum length, whi
h 
an be seen as follows.Call a forest F greedy if there exists a minimum-length spanning tree T of G that
ontains F .Theorem 1.11. Let F be a greedy forest, let U be one of its 
omponents, and lete 2 Æ(U). If e has minimum length among all edges in Æ(U), then F [ feg is again agreedy forest.Proof. Let T be a minimum-length spanning tree 
ontaining F . Let P be the uniquepath in T between the end verti
es of e. Then P 
ontains at least one edge fthat belongs to Æ(U). So T 0 := (T n ffg) [ feg is a tree again. By assumption,l(e) � l(f) and hen
e l(T 0) � l(T ). Therefore, T 0 is a minimum-length spanning tree.As F [ feg � T 0, it follows that F [ feg is greedy.Corollary 1.11a. The Dijkstra-Prim method yields a spanning tree of minimumlength.7Æ(U) is the set of edges e satisfying je \ U j = 1.
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Proof. It follows indu
tively with Theorem 1.11 that at ea
h stage of the algorithmwe have a greedy forest. Hen
e the �nal tree is greedy | equivalently, it has minimumlength.

In fa
t one may show:Theorem 1.12. Implementing the Dijkstra-Prim method using Fibona

i heaps givesa running time of O(jEj+ jV j log jV j).Proof. The Dijkstra-Prim method is similar to Dijkstra's method for �nding a short-est path. Throughout the algorithm, we store at ea
h vertex v 2 V n Uk, the lengthf(v) of a shortest edge fu; vg with u 2 Uk, organized as a Fibona

i heap. A vertexuk+1 to be added to Uk to form Uk+1 should be identi�ed and removed from the Fi-bona

i heap. Moreover, for ea
h edge e 
onne
ting uk+1 and some v 2 V n Uk+1, weshould update f(v) if the length of uk+1v is smaller than f(v).Thus we �nd and delete � jV j times a u minimizing f(u) and we de
rease � jEjtimes a value f(v). Hen
e by Theorem 1.8 the algorithm 
an be performed in timeO(jEj+ jV j log jV j).
The Dijkstra-Prim method is an example of a so-
alled greedy algorithm. We
onstru
t a spanning tree by throughout 
hoosing an edge that seems the best at themoment. Finally we get a minimum-length spanning tree. On
e an edge has been
hosen, we never have to repla
e it by another edge (no `ba
k-tra
king').There is a slightly di�erent method of �nding a minimum-length spanning tree,Kruskal's method (Kruskal [1956℄). It is again a greedy algorithm, and again itera-tively edges e1; e2; : : : are 
hosen, but by some di�erent rule.Suppose that, for some k � 0, edges e1; : : : ; ek have been 
hosen. Choose an edgeek+1 su
h that fe1; : : : ; ek; ek+1g forms a forest, with l(ek+1) as small as possible. Bythe 
onne
tedness of G we 
an (starting with k = 0) iterate this until the sele
tededges form a spanning tree of G.Corollary 1.12a. Kruskal's method yields a spanning tree of minimum length.Proof. Again dire
tly from Theorem 1.11.
In a similar way one �nds a maximum-length spanning tree.Appli
ation 1.6: Minimum 
onne
tions. There are several obvious pra
ti
al situationswhere �nding a minimum-length spanning tree is important, for instan
e, when designing aroad system, ele
tri
al power lines, telephone lines, pipe lines, wire 
onne
tions on a 
hip.Also when 
lustering data say in taxonomy, ar
heology, or zoology, �nding a minimumspanning tree 
an be helpful.
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Appli
ation 1.7: The maximum reliability problem. Often in designing a networkone is not primarily interested in minimizing length, but rather in maximizing `reliability'(for instan
e when designing energy or 
ommuni
ation networks). Certain 
ases of thisproblem 
an be seen as �nding a maximum length spanning tree, as was observed by Hu[1961℄. We give a mathemati
al des
ription.Let G = (V;E) be a graph and let s : E ! R+ be a fun
tion. Let us 
all s(e) thestrength of edge e. For any path P in G, the reliability of P is, by de�nition, the minimumstrength of the edges o

urring in P . The reliability rG(u; v) of two verti
es u and v is equalto the maximum reliability of P , where P ranges over all paths from u to v.Let T be a spanning tree of maximum strength, i.e., withPe2ET s(e) as large as possible.(Here ET is the set of edges of T .) So T 
an be found with any maximum spanning treealgorithm.Now T has the same reliability as G, for ea
h pair of verti
es u; v. That is:
(24) rT (u; v) = rG(u; v) for ea
h u; v 2 V .We leave the proof as an exer
ise (Exer
ise 1.11).
Exer
ises
1.7. Find, both with the Dijkstra-Prim algorithm and with Kruskal's algorithm, a span-ning tree of minimum length in the graph in Figure 1.5.

3 2

2 4 1

5 3

3 6 3

5 4 24 6 3

4 3 5 7 4 2

Figure 1.5

1.8. Find a spanning tree of minimum length between the 
ities given in the followingdistan
e table:
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ht 190 207 176 151 283 183 147 100 236 162 308 203 276 123 192 305 0 242 135 50 188 176 213 182 217Middelburg 176 175 222 200 315 59 96 153 285 124 340 165 238 141 172 306 242 0 187 203 98 156 264 231 246Nijmegen 63 109 42 17 149 128 91 61 102 133 174 129 188 46 81 171 135 187 0 85 111 76 81 48 83Roermond 141 168 127 102 234 144 107 50 187 177 259 184 247 81 150 256 50 203 85 0 151 134 166 133 168Rotterdam 78 77 125 113 217 57 49 101 192 26 242 67 140 79 74 208 188 98 111 151 0 58 177 143 148Utre
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tion. Call a forest Fgood if l(F 0) � l(F ) for ea
h forest F 0 satisfying jF 0j = jF j.Let F be a good forest and e be an edge not in F su
h that F [ feg is a forest andsu
h that (among all su
h e) l(e) is as small as possible. Show that F [ feg is goodagain.1.10. Let G = (V;E) be a 
omplete graph and let l : E ! R+ be a length fun
tion satisfyingl(uw) � minfl(uv); l(vw)g for all distin
t u; v; w 2 V . Let T be a longest spanningtree in G.Show that for all u;w 2 V , l(uw) is equal to the minimum length of the edges in theunique u� w path in T .1.11. Prove (24).
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2. Polytopes, polyhedra, Farkas'lemma, and linear programming

2.1. Convex sets
A subset C of R n is 
alled 
onvex if for all x; y in C and any 0 � � � 1 also �x+(1��)ybelongs to C. So C is 
onvex if with any two points in C, the whole line segment
onne
ting x and y belongs to C.Clearly, the interse
tion of any number of 
onvex sets is again a 
onvex set. So,for any subset X of R n , the smallest 
onvex set 
ontaining X exists. This set is 
alledthe 
onvex hull of X and is denoted by 
onv.hull(X). One easily proves:(1) 
onv.hull(X) = fx j 9t 2 N ;9x1 ; : : : ; xt 2 X;9�1; : : : ; �t � 0 :x = �1x1 + � � � + �txt; �1 + � � � + �t = 1g.A basi
 property of 
losed 
onvex sets is that any point not in C 
an be separatedfrom C by a `hyperplane'. Here a subset H of R n is 
alled a hyperplane (or an aÆnehyperplane) if there exist a ve
tor 
 2 R n with 
 6= 0 and a Æ 2 R su
h that:(2) H = fx 2 R n j 
Tx = Æg:We say that H separates z and C if z and C are in di�erent 
omponents of R n nH.Theorem 2.1. Let C be a 
losed 
onvex set in R n and let z 62 C. Then there existsa hyperplane separating z and C.Proof. Sin
e the theorem is trivial if C = ;, we assume C 6= ;. Then there exists ave
tor y in C that is nearest to z, i.e., that minimizes kz � yk.(The fa
t that su
h a y exists, 
an be seen as follows. Sin
e C 6= ;, there existsan r > 0 su
h that B(z; r) \ C 6= ;. Here B(z; r) denotes the 
losed ball with 
enterz and radius r. Then y minimizes the 
ontinuous fun
tion kz � yk over the 
ompa
tset B(z; r) \ C.)Now de�ne:
(3) 
 := z � y; Æ := 12(kzk2 � kyk2):We show(4) (i) 
T z > Æ,(ii) 
Tx < Æ for ea
h x 2 C.



24 Chapter 2. Polytopes, polyhedra, Farkas' lemma, and linear programming
Indeed, 
T z = (z � y)T z > (z � y)T z � 12kz � yk2 = Æ. This shows (4)(i).If (4)(ii) would not hold, there exists an x in C su
h that 
Tx � Æ. Sin
e 
Ty <
Ty+ 12k
k2 = Æ, we know 
T (x� y) > 0. Hen
e there exists a � with 0 < � � 1 and
(5) � < 2
T (x� y)kx� yk2 :
De�ne(6) w := �x+ (1� �)y:So w belongs to C. Moreover,(7) kw � zk2 = k�(x� y) + (y � z)k2 = k�(x� y)� 
k2= �2kx� yk2 � 2�
T (x� y) + k
k2 < k
k2 = ky � zk2:Here < follows from (5).However, (7) 
ontradi
ts the fa
t that y is a point in C nearest to z.

Theorem 2.1 implies a 
hara
terization of 
losed 
onvex sets { see Exer
ise 2.1.Call a subset H of R n a halfspa
e (or an aÆne halfspa
e) if there exist a ve
tor 
 2 R nwith 
 6= 0 and a Æ 2 R su
h that(8) H = fx 2 R n j 
Tx � Æg:Clearly, ea
h aÆne halfspa
e is a 
losed 
onvex set.Theorem 2.1 implies that if C is a 
losed 
onvex set and z 62 C, then there existsan aÆne halfspa
e H so that C � H and z 62 H.
Exer
ises2.1. Let C � R n . Then C is a 
losed 
onvex set if and only if C = TF for some 
olle
tionF of aÆne halfspa
es.2.2. Let C � R n be a 
onvex set and let A be an m � n matrix. Show that the setfAx j x 2 Cg is again 
onvex.2.3. Let X be a �nite set of ve
tors in R n . Show that 
onv.hull(X) is 
ompa
t.(Hint: Show that 
onv.hull(X) is the image under a 
ontinuous fun
tion of a 
ompa
tset.)2.4. Show that if z 2 
onv.hull(X), then there exist aÆnely independent ve
tors x1; : : : ; xmin X su
h that z 2 
onv.hullfx1; : : : ; xmg. (This is the aÆne form of `Carath�eodory'stheorem' (Carath�eodory [1911℄).)
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(Ve
tors x1; : : : ; xm are 
alled aÆnely independent if there are no reals �1; : : : ; �m,su
h that �1x1+ � � �+ �mxm = 0 and �1+ � � �+ �m = 0 and su
h that �1; : : : ; �m arenot all equal to 0.)2.5. (i) Let C and D be two nonempty, bounded, 
losed, 
onvex subsets of R n su
h thatC \D = ;. Derive from Theorem 2.1 that there exists an aÆne hyperplane Hseparating C and D. (This means that C and D are in di�erent 
omponents ofR n nH.)(Hint: Consider the set C �D := fx� y j x 2 C; y 2 Dg.)(ii) Show that in (i) we 
annot delete the boundedness 
ondition.

2.2. Polytopes and polyhedraSpe
ial 
lasses of 
losed 
onvex sets are formed by the polytopes and the polyhedra.In the previous se
tion we saw that ea
h 
losed 
onvex set is the interse
tion of aÆnehalfspa
es, possibly in�nitely many. If it is the interse
tion of a �nite number of aÆnehalfspa
es, the 
onvex set is 
alled a polyhedron.So a subset P of R n is a polyhedron if and only if there exists an m� n matrix Aand a ve
tor b 2 Rm su
h that(9) P = fx 2 R n j Ax � bg:Here Ax � b means:(10) a1x � b1; : : : ; amx � bm;where a1; : : : ; am are the rows of A.The matrix A may have zero rows, i.e. m = 0. In that 
ase, P = R n .Related is the notion of `polytope'. A subset P of R n is 
alled a polytope if P isthe 
onvex hull of a �nite number of ve
tors. That is, there exist ve
tors x1; : : : ; xtin R n su
h that(11) P = 
onv.hullfx1; : : : ; xtg:We will show that a subset P of R n is a polytope if and only if it is a boundedpolyhedron. This might be intuitively 
lear, but a stri
tly mathemati
al proof requiressome work.We �rst give a de�nition. Let P be a 
onvex set. A point z 2 P is 
alled avertex of P if z is not a 
onvex 
ombination of two other points in P . That is, theredo not exist points x; y in P and a � with 0 < � < 1 su
h that x 6= z; y 6= z andz = �x+ (1� �)y.
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To 
hara
terize verti
es we introdu
e the following notation. Let P = fx j Ax �bg be a polyhedron and let z 2 P . Then Az is the submatrix of A 
onsisting of thoserows ai of A for whi
h aiz = bi.Then we 
an show:Theorem 2.2. Let P = fx j Ax � bg be a polyhedron in R n and let z 2 P . Then zis a vertex of P if and only if rank(Az) = n.Proof. Ne
essity. Let z be a vertex of P and suppose rank(Az) < n. Then thereexists a ve
tor 
 6= 0 su
h that Az
 = 0. Sin
e aiz < bi for every ai that does noto

ur in Az, there exists a Æ > 0 su
h that:(12) ai(z + Æ
) � bi and ai(z � Æ
) � bifor every row ai of A not o

urring in Az. Sin
e Az
 = 0 and Az � b it follows that(13) A(z + Æ
) � b and A(z � Æ
) � b:So z+Æ
 and z�Æ
 belong to P . Sin
e z is a 
onvex 
ombination of these two ve
tors,this 
ontradi
ts the fa
t that z is a vertex of P .SuÆ
ien
y. Suppose rank(Az) = n while z is not a vertex of P . Then there existpoints x and y in P su
h that x 6= z 6= y and z = 12(x+ y). Then for every row ai ofAz:(14) aix � bi = aiz =) ai(x� z) � 0, andaiy � bi = aiz =) ai(y � z) � 0.Sin
e y � z = �(x� z), this implies that ai(x� z) = 0. Hen
e Az(x� z) = 0. Sin
ex� z 6= 0, this 
ontradi
ts the fa
t that rank(Az) = n.
Theorem 2.2 implies that a polyhedron has only a �nite number of verti
es: Forea
h two di�erent verti
es z and z0 one has Az 6= Az0 , sin
e Azx = bz has only onesolution, namely x = z (where bz denotes the part of b 
orresponding to Az). Sin
ethere exist at most 2m 
olle
tions of subrows of A, P has at most 2m verti
es.From Theorem 2.2 we derive:Theorem 2.3. Let P be a bounded polyhedron, with verti
es x1; : : : ; xt. Then P =
onv.hullfx1; : : : ; xtg.Proof. Clearly(15) 
onv.hullfx1; : : : ; xtg � P;
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sin
e x1; : : : ; xt belong to P and sin
e P is 
onvex.The reverse in
lusion amounts to:(16) if z 2 P then z 2 
onv.hullfx1; : : : ; xtg:We show (16) by indu
tion on n� rank(Az).If n� rank(Az) = 0, then rank(Az) = n, and hen
e, by Theorem 2.2, z itself is avertex of P . So z 2 
onv.hullfx1; : : : ; xtg.If n� rank(Az) > 0, then there exists a ve
tor 
 6= 0 su
h that Az
 = 0. De�ne(17) �0 := maxf� j z + �
 2 Pg,�0 := maxf� j z � �
 2 Pg.These numbers exist sin
e P is 
ompa
t. Let x := z + �0
 and y := z � �0
.Now
(18) �0 = minfbi � aizai
 j ai is a row of A; ai
 > 0g:
This follows from the fa
t that �0 is the largest � su
h that ai(z + �
) � bi for ea
hi = 1; : : : ;m. That is, it is the largest � su
h that
(19) � � bi � aizai
for every i with ai
 > 0.Let the minimum (18) be attained by i0. So for i0 we have equality in (18).Therefore(20) (i) Azx = Azz + �0Az
 = Azz;(ii) ai0x = ai0(z + �0
) = bi0 :So Ax 
ontains all rows in Az, and moreover it 
ontains row ai0 . Now Az
 = 0while ai0
 6= 0. This implies rank(Ax) > rank(Az). So by our indu
tion hypothesis, xbelongs to 
onv.hullfx1; : : : ; xtg. Similarly, y belongs to 
onv.hullfx1; : : : ; xtg. There-fore, as z is a 
onvex 
ombination of x and y, z belongs to 
onv.hullfx1; : : : ; xtg.

As a dire
t 
onsequen
e we have:Corollary 2.3a. Ea
h bounded polyhedron is a polytope.Proof. Dire
tly from Theorem 2.3.
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Conversely:Theorem 2.4. Ea
h polytope is a bounded polyhedron.Proof. Let P be a polytope in R n , say(21) P = 
onv.hullfx1; : : : ; xtg:We may assume that t � 1. We prove the theorem by indu
tion on n. Clearly, P isbounded.If P is 
ontained in some aÆne hyperplane, the theorem follows from the indu
tionhypothesis.So we may assume that P is not 
ontained in any aÆne hyperplane. It impliesthat the ve
tors x2 � x1; : : : ; xt � x1 span R n . It follows that there exist a ve
tor x0in P and a real r > 0 su
h that the ball B(x0; r) is 
ontained in P .Without loss of generality, x0 = 0. De�ne P � by(22) P � := fy 2 R n j xTy � 1 for ea
h x 2 Pg:Then P � is a polyhedron, as(23) P � = fy 2 R n j xTj y � 1 for j = 1; : : : ; tg:This follows from the fa
t that if y belongs to the right hand set in (23) and x 2 Pthen x = �1x1 + � � �+ �txt for 
ertain �1; : : : ; �t � 0 with �1 + � � �+ �t = 1, implying

(24) xTy = tXj=1 �jxTj y � tXj=1 �j = 1:
So y belongs to P �.Moreover, P � is bounded, sin
e for ea
h y 6= 0 in P � one has that x := r � kyk�1 � ybelongs to B(0; r) and hen
e to P . Therefore, xTy � 1, and hen
e(25) kyk = (xTy)=r � 1=r:So P � � B(0; 1=r).This proves that P � is a bounded polyhedron. By Corollary 2.3a, P � is a polytope.So there exist ve
tors y1; : : : ; ys in R n su
h that(26) P � = 
onv.hullfy1; : : : ; ysg:We show:
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(27) P = fx 2 R n j yTj x � 1 for all j = 1; : : : ; sg:This implies that P is a polyhedron.To see the in
lusion � in (27), it suÆ
es to show that ea
h of the ve
tors xibelongs to the right hand side in (27). This follows dire
tly from the fa
t that forea
h j = 1; : : : ; s, yTj xi = xTi yj � 1, sin
e yj belongs to P �.To see the in
lusion � in (25), let x 2 R n be su
h that yTj x � 1 for all j = 1; : : : ; s.Suppose x 62 P . Then there exists a hyperplane separating x and P . That is, thereexist a ve
tor 
 6= 0 in R n and a Æ 2 R su
h that 
Tx0 < Æ for ea
h x0 2 P , while
Tx > Æ. As 0 2 P , Æ > 0. So we may assume Æ = 1. Hen
e 
 2 P �. So there exist�1; : : : ; �s � 0 su
h that 
 = �1y1 + � � ��sys and �1 + � � � + �s = 1. This gives the
ontradi
tion:
(28) 1 < 
Tx = sXj=1 �jyTj x � sXj=1 �j = 1:
Convex 
onesConvex 
ones are spe
ial 
ases of 
onvex sets. A subset C of R n is 
alled a 
onvex
one if for any x; y 2 C and any �; � � 0 one has �x+ �y 2 C.For any X � R n , 
one(X) is the smallest 
one 
ontaining X. One easily 
he
ks:(29) 
one(X) = f�1x1 + � � � �txt j x1; : : : ; xt 2 X;�1; : : : ; �t � 0g:A 
one C is 
alled �nitely generated if C = 
one(X) for some �nite set X.
Exer
ises2.6. Determine the verti
es of the following polyhedra:(i) P = f(x; y) j x � 0; y � 0; y � x � 2; x+ y � 8; x+ 2y � 10; x � 4g.(ii) P = f(x; y; z) j x + y � 2; y + z � 4; x + z � 3;�2x � y � 3;�y � 2z �3;�2x� z � 2g.(iii) P = f(x; y) j x+ y � 1; x� y � 2g.(iv) P = f(x; y) j x+ y = 1; x � 3g.(v) P = f(x; y; z) j x � 0; y � 0; x+ y � 1g.(vi) P = f(x; y; z) j x+ y � 1; x+ z � 1; y � z � 0g.(vii) P = f(x; y) j 3x+ 2y � 18; x� y � �6; 5x+ 2y � 20; x � 0; y � 0g.2.7. Let C � R n . Then C is a 
losed 
onvex 
one if and only if C = TF for some
olle
tion F of linear halfspa
es.
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(A subset H of R n is 
alled a linear halfspa
e if H = fx 2 R n j 
Tx � 0g for somenonzero ve
tor 
.)2.8. Show that if z 2 
one(X), then there exist linearly independent ve
tors x1; : : : ; xmin X su
h that z 2 
onefx1; : : : ; xmg. (This is the linear form of `Carath�eodory'stheorem'.)2.9. Let A be an m� n matrix of rank m and let b 2 Rm . Derive from Exer
ise 2.8 thatthe system Ax = b has a nonnegative solution x if and only if it has a nonnegativebasi
 solution.(A submatrix B of A is 
alled a basis of A if B is a nonsingular m�m submatrix ofA. A solution x of Ax = b is a basi
 solution if A has a basis B so that x is 0 in those
oordinates not 
orresponding to 
olumns in B.)2.10. Prove that every �nitely generated 
onvex 
one is a 
losed set. (This 
an be derivedfrom Exer
ise 2.3 and Corollary 2.3a.)2.11. Prove that a 
onvex 
one is �nitely generated if and only if it is the interse
tion of�nitely many linear halfspa
es.(Hint: Use Corollary 2.3a and Theorem 2.4.)2.12. Let P be a subset of R n . Show that P is a polyhedron if and only if P = Q+ C forsome polytope Q and some �nitely generated 
onvex 
one C.(Hint: Apply Exer
ise 2.11 to 
one(X) in R n+1 , where X is the set of ve
tors � 1x �in R n+1 with x 2 P .)2.13. For any subset X of R n , de�ne
(30) X� := fy 2 R n j xT y � 1 for ea
h x 2 Xg:(i) Show that for ea
h 
onvex 
one C, C� is a 
losed 
onvex 
one.(ii) Show that for ea
h 
losed 
onvex 
one C, (C�)� = C.

2.14. Let P be a polyhedron.(i) Show that P � is again a polyhedron.(Hint: Use previous exer
ises.)(ii) Show that P 
ontains the origin if and only if (P �)� = P .(iii) Show that the origin is an internal point of P if and only if P � is bounded.
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2.3. Farkas' lemmaLet A be an m � n matrix and let b 2 Rm . With the Gaussian elimination methodone 
an prove that(31) Ax = bhas a solution x if and only if there is no solution y for the following system of linearequations:(32) yTA = 0; yT b = �1:Farkas' lemma (Farkas [1894,1896,1898℄) gives an analogous 
hara
terization forthe existen
e of a nonnegative solution x for (31).Theorem 2.5 (Farkas' lemma). The system Ax = b has a nonnegative solution ifand only if there is no ve
tor y satisfying yTA � 0 and yT b < 0.Proof. Ne
essity. Suppose Ax = b has a solution x0 � 0 and suppose there exists ave
tor y0 satisfying yT0 A � 0 and yT0 b < 0. Then we obtain the 
ontradi
tion(33) 0 > yT0 b = yT0 (Ax0) = (yT0 A)x0 � 0:

SuÆ
ien
y. Suppose Ax = b has no solution x � 0. Let a1; : : : ; an be the 
olumnsof A. So(34) b 62 C := 
onefa1; : : : ; ang:So by Exer
ise 2.7 there exists a linear halfspa
e H 
ontaining C and not 
ontainingb. That is, there exists a ve
tor 
 su
h that 
T b < 0 while 
Tx � 0 for ea
h x in C.In parti
ular, 
Taj � 0 for j = 1; : : : ; n. So y := 
 satis�es yTA � 0 and yT b < 0.
So Farkas' lemma states that exa
tly one of the following two assertions is true:(35) (i) 9x � 0 : Ax = b,(ii) 9y : yTA � 0 and yT b < 0.There exist several variants of Farkas' lemma, that 
an be easily derived fromTheorem 2.5.Corollary 2.5a. The system Ax � b has a solution x if and only if there is no ve
tory satisfying y � 0; yTA = 0 and yT b < 0.
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Proof. Let A0 be the matrix(36) A0 := [A � A I℄;where I denotes the m�m identity matrix.Then Ax � b has a solution x if and only if the system A0x0 = b has a nonnegativesolution x0. Applying Theorem 2.5 to A0x0 = b gives the 
orollary.

Another 
onsequen
e is:Corollary 2.5b. Suppose that the system Ax � b has at least one solution. Then forevery solution x of Ax � b one has 
Tx � Æ if and only if there exists a ve
tor y � 0su
h that yTA = 
T and yT b � Æ.Proof. SuÆ
ien
y. If su
h a ve
tor y exists, then for every ve
tor x one has(37) Ax � b =) yTAx � yT b =) 
Tx � yT b =) 
Tx � Æ:
Ne
essity. Suppose that su
h a ve
tor y does not exist. It means that the followingsystem of linear inequalities in the variables y and � has no solution (yT �) � (0 0):

(38) (yT �)� A b0 1 � = (
T Æ):
A

ording to Farkas' lemma this implies that there exists a ve
tor � z� � so that
(39) � A b0 1 �� z� � � � 00 � and (
T Æ)� z� � < 0:
We distinguish two 
ases.Case 1: � = 0. Then Az � 0 and 
T z < 0. However, by assumption, Ax � b hasa solution x0. Then, for � large enough:(40) A(x0 � �z) � b and 
T (x0 � �z) > Æ:This 
ontradi
ts the fa
t that Ax � b implies 
Tx � Æ.Case 2: � > 0. As (39) is homogeneous, we may assume that � = 1. Then forx := �z one has:(41) Ax � b and 
Tx > Æ:
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Again this 
ontradi
ts the fa
t that Ax � b implies 
Tx � Æ.
Exer
ises2.15. Prove that there exists a ve
tor x � 0 su
h that Ax � b if and only if for ea
h y � 0satisfying yTA � 0 one has yT b � 0.2.16. Prove that there exists a ve
tor x > 0 su
h that Ax = 0 if and only if for ea
h ysatisfying yTA � 0 one has yTA = 0. (Stiemke's theorem (Stiemke [1915℄).)2.17. Prove that there exists a ve
tor x 6= 0 satisfying x � 0 and Ax = 0 if and only ifthere is no ve
tor y satisfying yTA > 0. (Gordan's theorem (Gordan [1873℄).)2.18. Prove that there exists a ve
tor x satisfying Ax < b if and only if y = 0 is the onlysolution for y � 0; yTA = 0; yT b � 0.2.19. Prove that there exists a ve
tor x satisfying Ax < b and A0x � b0 if and only if for allve
tors y; y0 � 0 one has:(i) if yTA+ y0TA0 = 0 then yT b+ y0T b0 � 0, and(ii) if yTA+ y0TA0 = 0 and y 6= 0 then yT b+ y0T b0 > 0.(Motzkin's theorem (Motzkin [1936℄).)2.20. Let A be an m � n matrix and let b 2 Rm , with m � n + 1. Suppose that Ax � bhas no solution x. Prove that there exist indi
es i0; : : : ; in so that the system ai0x �bi0 ; : : : ; ainx � bin has no solution x. Here ai is the ith row of A and bi is the ith
omponent of b.(Hint: Combine Farkas' lemma with Carath�eodory's theorem.)
2.4. Linear programmingOne of the standard forms of a linear programming (LP) problem is:(42) maximize 
Tx,subje
t to Ax � b.So linear programming 
an be 
onsidered as maximizing a `linear fun
tion' 
Tx overa polyhedron P = fx j Ax � bg. Geometri
ally, this 
an be seen as shifting ahyperplane to its `highest' level, under the 
ondition that it interse
ts P .Problem (42) 
orresponds to determining the following maximum:(43) maxf
Tx j Ax � bg:
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This is the form in whi
h we will denote an LP-problem.If P = fx j Ax � bg is a nonempty polytope, then it is 
lear that maxf
Tx j Ax �bg is attained by a vertex of P (
f. Exer
ise 2.21).Clearly, also any minimization problem 
an be transformed to form (43), sin
e
(44) minf
Tx j Ax � bg = �maxf�
Tx j Ax � bg:One says that x is a feasible solution of (43) if x satis�es Ax � b. If x moreoverattains the maximum, x is 
alled an optimum solution.The famous method to solve linear programming problems is the simplex method,designed by Dantzig [1951b℄. The �rst polynomial-time method for LP-problems isdue to Kha
hiyan [1979,1980℄, based on the ellipsoid method. In 1984, Karmarkar[1984℄ published another polynomial-time method for linear programming, the inte-rior point method, whi
h turns out to be 
ompetitive in pra
ti
e with the simplexmethod.The Duality theorem of linear programming, due to von Neumann [1947℄, statesthat if the maximum (43) is �nite, then the maximum value is equal to the minimumvalue of another, so-
alled dual LP-problem:(45) minfyT b j y � 0; yTA = 
Tg:In order to show this, we �rst prove:Lemma 2.1. Let P be a polyhedron in R n and let 
 2 R n. If supf
Tx j x 2 Pg is�nite, then maxf
Tx j x 2 Pg is attained.Proof. Let Æ := supf
Tx j x 2 Pg. Choose matrix A and ve
tor b so that P = fx jAx � bg. We must show that there exists an x 2 R n su
h that Ax � b and 
Tx � Æ.Suppose that su
h an x does not exist. Then by Farkas' lemma, in the form ofCorollary 2.5a, there exists a ve
tor y � 0 and a real number � � 0 su
h that:(46) yTA� �
T = 0, yT b� �Æ < 0:This gives(47) �Æ = � supf
Tx j Ax � bg = supf�
Tx j Ax � bg = supfyTAx j Ax � bg �yT b < �Æ;
a 
ontradi
tion.

From this we derive:
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Theorem 2.6 (Duality theorem of linear programming). Let A be an m� n matrix,b 2 Rm, 
 2 R n. Then(48) maxf
Tx j Ax � bg = minfyT b j y � 0; yTA = 
Tg;provided that both sets are nonempty.Proof. First note that(49) supf
Tx j Ax � bg � inffyT b j y � 0; yTA = 
Tg;be
ause if Ax � b; y � 0; yTA = 
T , then(50) 
Tx = (yTA)x = yT (Ax) � yT b:As both sets are nonempty,the supremum and the in�mum are �nite. By Lemma 2.1it suÆ
es to show that we have equality in (49).Let Æ := supf
Tx j Ax � bg. Hen
e:(51) if Ax � b then 
Tx � Æ:So by Corollary 2.5b there exists a ve
tor y su
h that(52) y � 0; yTA = 
T ; yT b � Æ:This implies that the in�mum in (49) is at most Æ.

The Duality theorem 
an be interpreted geometri
ally as follows. Let(53) maxf
Tx j Ax � bg =: Æbe attained at a point x�. Without loss of generality we may assume that the �rst krows of A belong to the matrix Ax� . So a1x � b1; : : : ; akx � bk are those inequalitiesin Ax � b for whi
h aix� = bi holds. Elementary geometri
 insight (
f. Figure2.1) gives that 
Tx = Æ must be a nonnegative linear 
ombination of the equationsa1x = b1; : : : ; akx = bk.That is, there exist �1; : : : ; �k � 0 su
h that:(54) �1a1 + � � � + �kak = 
T ;�1b1 + � � �+ �kbk = Æ:De�ne
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(55) y� := (�1; : : : ; �k; 0; : : : ; 0)T :Then y� is a feasible solution for the dual problem minfyT b j y � 0; yTA = 
Tg.Therefore,(56) maxf
Tx j Ax � bg = Æ = �1b1 + � � �+ �kbk � minfyT b j y � 0; yTA = 
Tg:Sin
e trivially the 
onverse inequality holds:(57) maxf
Tx j Ax � bg � minfyT b j y � 0; yTA = 
Tg(
f. (50)), y� is an optimum solution of the dual problem.There exist several variants of the Duality theorem.Corollary 2.6a. Let A be an m� n matrix, b 2 Rm ; 
 2 R n. Then(58) maxf
Tx j x � 0;Ax = bg = minfyT b j yTA � 
Tg;provided that both sets are nonempty.Proof. De�ne
(59) ~A := 0� A�A�I

1A ;~b := 0� b�b0
1A :

Then
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(60) maxf
Tx j x � 0;Ax = bg = maxf
Tx j ~Ax � ~bg =minfzT~b j z � 0; zT ~A = 
Tg =minfuT b� vT b+ wT0 j u; v; w � 0;uTA� vTA� wT = 
Tg =minfyT b j yTA � 
Tg:The last equality follows by taking y := u� v.
Exer
ises2.21. Let P = fx j Ax � bg be a nonempty polytope. Prove that maxf
Tx j Ax � bg isattained by a vertex of P .2.22. Let P = fx j Ax � bg be a (not ne
essarily bounded) polyhedron, su
h that P has atleast one vertex. Prove that if maxf
Tx j Ax � bg is �nite, it is attained by a vertexof P .2.23. Prove the following variant of the Duality theorem:

(61) maxf
Tx j x � 0;Ax � bg = minfyT b j y � 0; yTA � 
Tg
(assuming both sets are nonempty).2.24. Prove the following variant of the Duality theorem:
(62) maxf
Tx j Ax � bg = minfyT b j y � 0; yTA = 
Tg
(assuming both sets are nonempty).2.25. Let a matrix, a 
olumn ve
tor, and a row ve
tor be given:
(63) 0� A B CD E FG H K

1A ;0� ab

1A ; (d e f);

where A;B;C;D;E; F;G;H;K are matri
es, a; b; 
 are 
olumn ve
tors, and d; e; f arerow ve
tors (of appropriate dimensions). Then
(64) maxfdx+ ey + fz j x � 0; z � 0;Ax+By + Cz � a;Dx+Ey + Fz = b;Gx+Hy +Kz � 
g= minfua+ vb+ w
 j u � 0;w � 0;uA+ vD + wG � d;uB + vE + wH = e;uC + vF + wK � fg;
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assuming that both sets are nonempty.2.26. Give an example of a matrix A and ve
tors b and 
 for whi
h both fx j Ax � bg andfy j y � 0; yTA = 
T g are empty.2.27. Let ~x be a feasible solution of maxf
Tx j Ax � bg and let ~y be a feasible solutionof minfyT b j y � 0; yTA = 
T g. Prove that ~x and ~y are optimum solutions of themaximum and minimum, respe
tively if and only if for ea
h i = 1; : : : ;m one has:~yi = 0 or ai~x = bi.(Here A has m rows and ai denotes the ith row of A.)2.28. Let A be an m � n matrix and let b 2 Rm . Let fx j Ax � bg be nonempty and letC be the 
onvex 
one fx j Ax � 0g. Prove that the set of all ve
tors 
 for whi
hmaxf
Tx j Ax � bg is �nite, is equal to C�.
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3. Mat
hings and 
overs inbipartite graphs

3.1. Mat
hings, 
overs, and Gallai's theoremLet G = (V;E) be a graph. A stable set is a subset C of V su
h that e 6� C for ea
hedge e of G. A vertex 
over is a subset W of V su
h that e \W 6= ; for ea
h edge eof G. It is not diÆ
ult to show that for ea
h U � V :(1) U is a stable set () V n U is a vertex 
over.A mat
hing is a subset M of E su
h that e \ e0 = ; for all e; e0 2 M with e 6= e0.A mat
hing is 
alled perfe
t if it 
overs all verti
es (that is, has size 12 jV j). An edge
over is a subset F of E su
h that for ea
h vertex v there exists e 2 F satisfyingv 2 e. Note that an edge 
over 
an exist only if G has no isolated verti
es.De�ne:(2) �(G) := maxfjCj j C is a stable setg,�(G) := minfjW j j W is a vertex 
overg,�(G) := maxfjM j jM is a mat
hingg,�(G) := minfjF j j F is an edge 
overg.These numbers are 
alled the stable set number, the vertex 
over number, themat
hingnumber, and the edge 
over number of G, respe
tively.It is not diÆ
ult to show that:(3) �(G) � �(G) and �(G) � �(G).The triangle K3 shows that stri
t inequalities are possible. In fa
t, equality in one ofthe relations (3) implies equality in the other, as Gallai [1958,1959℄ proved:Theorem 3.1 (Gallai's theorem). For any graph G = (V;E) without isolated verti
esone has(4) �(G) + �(G) = jV j = �(G) + �(G):
Proof. The �rst equality follows dire
tly from (1).To see the se
ond equality, �rst let M be a mat
hing of size �(G). For ea
h of thejV j � 2jM j verti
es v missed by M , add to M an edge 
overing v. We obtain an edge
over of size jM j+ (jV j � 2jM j) = jV j � jM j. Hen
e �(G) � jV j � �(G).
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Se
ond, let F be an edge 
over of size �(G). For ea
h v 2 V delete from F , dF (v)�1edges in
ident with v. We obtain a mat
hing of size at least jF j�Pv2V (dF (v)�1) =jF j � (2jF j � jV j) = jV j � jF j. Hen
e �(G) � jV j � �(G).
This proof also shows that if we have a mat
hing of maximum 
ardinality in anygraph G, then we 
an derive from it a minimum 
ardinality edge 
over, and 
onversely.

Exer
ises3.1. Let G = (V;E) be a graph without isolated verti
es. De�ne:
(5) �2(G) := the maximum number of verti
es su
h that no edge
ontains more than two of these verti
es;�2(G) := the minimum number of edges su
h that ea
h vertexis 
ontained in at least two of these edges;�2(G) := the minimum number of verti
es su
h that ea
h edge
ontains at least two of these verti
es�2(G) := the maximum number of edges su
h that no vertex is
ontained in more than two of these edges;
possibly taking verti
es (edges, respe
tively) more than on
e.(i) Show that �2(G) � �2(G) and that �2(G) � �2(G).(ii) Show that �2(G) + �2(G) = 2jV j.(iii) Show that �2(G) + �2(G) = 2jV j.

3.2. M-augmenting pathsBasi
 in mat
hing theory are M -augmenting paths, whi
h are de�ned as follows. LetM be a mat
hing in a graph G = (V;E). A path P = (v0; v1; : : : ; vt) in G is 
alledM-augmenting if(6) (i) t is odd,(ii) v1v2; v3v4; : : : ; vt�2vt�1 2M ,(iii) v0; vt 62 SM .Note that this implies that v0v1; v2v3; : : : ; vt�1vt do not belong to M .Clearly, if P = (v0; v1; : : : ; vt) is an M -augmenting path, then(7) M 0 :=M4EP
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edge in M
edge not in M vertex covered bynot M

vertex covered by M

Figure 3.1
is a mat
hing satisfying jM 0j = jM j+ 1.8In fa
t, it is not diÆ
ult to show that:Theorem 3.2. Let G = (V;E) be a graph and let M be a mat
hing in G. Theneither M is a mat
hing of maximum 
ardinality, or there exists an M-augmentingpath.Proof. IfM is a maximum-
ardinality mat
hing, there 
annot exist anM -augmentingpath P , sin
e otherwise M4EP would be a larger mat
hing.If M 0 is a mat
hing larger than M , 
onsider the 
omponents of the graph G0 :=(V;M [ M 0). As G0 has maximum valen
y two, ea
h 
omponent of G0 is either apath (possibly of length 0) or a 
ir
uit. Sin
e jM 0j > jM j, at least one of these
omponents should 
ontain more edges of M 0 than of M . Su
h a 
omponent formsan M -augmenting path.
3.3. K}onig's theoremsA 
lassi
al min-max relation due to K}onig [1931℄ (extending a result of Frobenius[1917℄) 
hara
terizes the maximum size of a mat
hing in a bipartite graph (we followde proof of De Caen [1988℄):Theorem 3.3 (K}onig's mat
hing theorem). For any bipartite graph G = (V;E) onehas(8) �(G) = �(G).That is, the maximum 
ardinality of a mat
hing in a bipartite graph is equal to theminimum 
ardinality of a vertex 
over.Proof. By (3) it suÆ
es to show that �(G) � �(G). We may assume that G has atleast one edge. Then:(9) G has a vertex u 
overed by ea
h maximum-size mat
hing.8EP denotes the set of edges in P . 4 denotes symmetri
 di�eren
e.
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To see this, let e = uv be any edge of G, and suppose that there are maximum-sizemat
hingsM and N missing u and v respe
tively9. Let P be the 
omponent ofM[N
ontaining u. So P is a path with end vertex u. Sin
e P is not M -augmenting (as Mhas maximum size), P has even length, and hen
e does not traverse v (otherwise, Pends at v, 
ontradi
ting the bipartiteness ofG). So P[e would form anN -augmentingpath, a 
ontradi
tion (as N has maximum size). This proves (9).Now (9) implies that for the graph G0 := G � u one has �(G0) = �(G) � 1.Moreover, by indu
tion, G0 has a vertex 
over C of size �(G0). Then C [ fug is avertex 
over of G of size �(G0) + 1 = �(G).

Combination of Theorems 3.1 and 3.3 yields the following result of K}onig [1932℄.Corollary 3.3a (K}onig's edge 
over theorem). For any bipartite graph G = (V;E),without isolated verti
es, one has(10) �(G) = �(G).That is, the maximum 
ardinality of a stable set in a bipartite graph is equal to theminimum 
ardinality of an edge 
over.Proof. Dire
tly from Theorems 3.1 and 3.3, as �(G) = jV j � �(G) = jV j � �(G) =�(G).
Exer
ises3.2. (i) Prove that a k-regular bipartite graph has a perfe
t mat
hing (if k � 1).(ii) Derive that a k-regular bipartite graph has k disjoint perfe
t mat
hings.(iii) Give for ea
h k > 1 an example of a k-regular graph not having a perfe
tmat
hing.3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in thesame line (=row or 
olumn), is equal to the minimum number of lines that in
ludeall nonzero entries.3.4. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. A subset Y of X is
alled a transversal or a system of distin
t representatives (SDR) of A if there existsa bije
tion � : f1; : : : ; ng ! Y su
h that �(i) 2 Ai for ea
h i = 1; : : : ; n.De
ide if the following 
olle
tions have an SDR:(i) f3; 4; 5g; f2; 5; 6g; f1; 2; 5g; f1; 2; 3g; f1; 3; 6g,(ii) f1; 2; 3; 4; 5; 6g; f1; 3; 4g; f1; 4; 7g; f2; 3; 5; 6g; f3; 4; 7g; f1; 3; 4; 7g; f1; 3; 7g.9M misses a vertex u if u 62 SM . Here SM denotes the union of the edges in M ; that is, theset of verti
es 
overed by the edges in M .
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3.5. Let A = (A1; : : : ; An) be a family of subsets of some �nite set X. Prove that A hasan SDR if and only if(11) ��[i2I Ai�� � jIj

for ea
h subset I of f1; : : : ; ng.[Hall's `marriage' theorem (Hall [1935℄).℄3.6. Let A = (A1; : : : ; An) be subsets of the �nite set X. A subset Y of X is 
alled apartial transversal or a partial system of distin
t representatives (partial SDR) if it isa transversal of some sub
olle
tion (Ai1 ; : : : ; Aik) of (A1; : : : ; An).Show that the maximum 
ardinality of a partial SDR of A is equal to the minimumvalue of(12) jX n Zj+ jfi j Ai \ Z 6= ;gj;where Z ranges over all subsets of X.3.7. Let A = (A1; : : : ; An) be a family of �nite sets and let k be a natural number. Showthat A has k pairwise disjoint SDR's of A if and only if
(13) ��[i2I Ai�� � kjIj
for ea
h subset I of f1; : : : ; ng.3.8. Let A = (A1; : : : ; An) be a family of subsets of a �nite set X and let k be a naturalnumber. Show that X 
an be partitioned into k partial SDR's if and only if
(14) k � jfi j Ai \ Y 6= ;gj � jY j
for ea
h subset Y of X.(Hint: Repla
e ea
h Ai by k 
opies of Ai and use Exer
ise 3.6 above.)3.9. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X.(i) Show that (A1; : : : ; An) and (B1; : : : ; Bn) have a 
ommon SDR if and only if forea
h subset I of f1; : : : ; ng, the set Si2I Ai interse
ts at least jIj sets amongB1; : : : ; Bn.(ii) Suppose that jA1j = � � � = jAnj = jB1j = � � � = jBnj. Show that the twopartitions have a 
ommon SDR.3.10. Let (A1; : : : ; An) and (B1; : : : ; Bn) be two partitions of the �nite set X. Show that theminimum 
ardinality of a subset of X interse
ting ea
h set among A1; : : : ; An; B1; : : : ;Bn is equal to the maximum number of pairwise disjoint sets in A1; : : : ; An; B1; : : : ; Bn.
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3.11. A matrix is 
alled doubly sto
hasti
 if it is nonnegative and ea
h row sum and ea
h
olumn sum is equal to 1. A matrix is 
alled a permutation matrix if ea
h entry is 0or 1 and ea
h row and ea
h 
olumn 
ontains exa
tly one 1.(i) Show that for ea
h doubly sto
hasti
 matrix A = (ai;j)ni;j=1 there exists a per-mutation � 2 Sn su
h that ai;�(i) 6= 0 for all i = 1; : : : ; n.(ii) Derive that ea
h doubly sto
hasti
 matrix is a 
onvex linear 
ombination ofpermutation matri
es.[Birkho�-von Neumann theorem (Birkho� [1946℄, von Neumann [1953℄).℄3.12. Let G = (V;E) be a bipartite graph with 
olour 
lasses U and W . Let b : V ! Z+be so that Pv2U b(v) =Pv2W b(v) =: t.A b-mat
hing is a fun
tion 
 : E ! Z+ so that for ea
h vertex v of G:(15) Xe2E;v2e 
(e) = b(v)

Show that there exists a b-mat
hing if and only if(16) Xv2X b(v) � t
for ea
h vertex 
over X.3.13. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that G has a subgraphG0 = (V;E0) su
h that degG0(v) = b(v) for ea
h v 2 V if and only if ea
h X � V
ontains at least(17) 12(Xv2X b(v)� Xv2V nX b(v))edges.3.14. Let G = (V;E) be a bipartite graph and let b : V ! Z+ . Show that the maximumnumber of edges in a subset F of E so that ea
h vertex v of G is in
ident with atmost b(v) of the edges in F , is equal to(18) minX�V Xv2X b(v) + jE(V nX)j:

3.15. Let G = (V;E) be a bipartite graph and let k 2 N . Prove that G has k disjointperfe
t mat
hings if and only if ea
h X � V 
ontains at least k(jXj � 12 jV j) edges.3.16. Show that ea
h 2k-regular graph 
ontains a set F of edges so that ea
h vertex isin
ident with exa
tly two edges in F .
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3.4. Cardinality bipartite mat
hing algorithmWe now fo
us on the problem of �nding a maximum-sized mat
hing in a bipartitegraph algorithmi
ally.In any graph, if we have an algorithm �nding an M -augmenting path for anymat
hing M (if it exists), then we 
an �nd a maximum 
ardinality mat
hing: weiteratively �nd mat
hings M0;M1; : : :, with jMij = i, until we have a mat
hing Mksu
h that there does not exist any Mk-augmenting path.We now des
ribe how to �nd an M -augmenting path in a bipartite graph.Mat
hing augmenting algorithm for bipartite graphsinput: a bipartite graph G = (V;E) and a mat
hing M ,output: a mat
hing M 0 satisfying jM 0j > jM j (if there is one).des
ription of the algorithm: Let G have 
olour 
lasses U and W . Orient ea
hedge e = fu;wg of G (with u 2 U;w 2 W ) as follows:(19) if e 2M then orient e from w to u,if e 62M then orient e from u to w.Let D be the dire
ted graph thus arising. Consider the sets(20) U 0 := U nSM and W 0 := W nSM .Now an M -augmenting path (if it exists) 
an be found by �nding a dire
ted pathin D from any vertex in U 0 to any vertex in W 0. Hen
e in this way we 
an �nd amat
hing larger than M .

This implies:Theorem 3.4. A maximum-size mat
hing in a bipartite graph 
an be found in timeO(jV jjEj).Proof. The 
orre
tness of the algorithm is immediate. Sin
e a dire
ted path 
anbe found in time O(jEj), we 
an �nd an augmenting path in time O(jEj). Hen
e amaximum 
ardinality mat
hing in a bipartite graph 
an be found in time O(jV jjEj)(as we do at most jV j iterations).
Hop
roft and Karp [1973℄ gave an O(jV j1=2jEj) algorithm.Appli
ation 3.1: Assignment problem. Suppose we have k ma
hines at our disposal:m1; : : : ;mk. On a 
ertain day we have to 
arry out n jobs: j1; : : : ; jn. Ea
h ma
hinesis 
apable of performing some jobs, but 
an do only one job a day. E.g., we 
ould have
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�ve ma
hines m1; : : : ;m5 and �ve jobs j1; : : : ; j5 and the 
apabilities of the ma
hines areindi
ated by 
rosses in the following table:j1 j2 j3 j4 j5m1 X X Xm2 X X X Xm3 X Xm4 Xm5 XWe want to assign the ma
hines to the jobs in su
h a way that every ma
hine performsat most one job and that a largest number of jobs is 
arried out.In order to solve this problem we represent the ma
hines and jobs by verti
esm1; : : : ;mkand j1; : : : ; jn of a bipartite graph G = (V;E), and we make an edge from mi to jj if job j
an be performed by ma
hine i. Thus the example gives Figure 3.2. Then a maximum-sizemat
hing in G 
orresponds to a maximum assignment of jobs.
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Exer
ises3.17. Find a maximum-size mat
hing and a minimum vertex 
over in the bipartite graphin Figure 3.3.3.18. Solve the assignment problem given in Appli
ation 3.1.3.19. Derive K}onig's mat
hing theorem from the 
ardinality mat
hing algorithm for bipar-tite graphs.3.20. Show that a minimum-size vertex 
over in a bipartite graph 
an be found in polyno-mial time.3.21. Show that, given a family of sets, a system of distin
t representatives 
an be foundin polynomial time (if it exists).
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3.5. Weighted bipartite mat
hingWe now 
onsider the problem of �nding a mat
hing of maximum weight for whi
hwe des
ribe the so-
alled Hungarian method developed by Kuhn [1955℄, using work ofEgerv�ary [1931℄ (see Corollary 3.7b below).Let G = (V;E) be a graph and let w : E ! R be a `weight' fun
tion. For anysubset M of E de�ne the weight w(M) of M by
(21) w(M) :=Xe2M w(e):
The maximum-weight mat
hing problem 
onsists of �nding a mat
hing of maximumweight.Again, augmenting paths are of help at this problem. Call a mat
hing M extremeif it has maximum weight among all mat
hings of 
ardinality jM j.Let M be an extreme mat
hing. De�ne a `length' fun
tion l : E ! R as follows:
(22) l(e) := (w(e) if e 2M ,�w(e) if e 62M .Then the following holds:Proposition 1. Let P be an M-augmenting path of minimum length. If M isextreme, then M 0 :=M4EP is extreme again.Proof. Let N be any extreme mat
hing of size jM j + 1. As jN j > jM j, M [N hasa 
omponent Q that is an M -augmenting path. As P is a shortest M -augmentingpath, we know l(Q) � l(P ). Moreover, as N4EQ is a mat
hing of size jM j, and asM is extreme, we know w(N4EQ) � w(M). Hen
e(23) w(N) = w(N4EQ)� l(Q) � w(M)� l(P ) = w(M 0):Hen
e M 0 is extreme.
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This implies that if we are able to �nd a minimum-length M -augmenting path inpolynomial time, we 
an �nd a maximum-weight mat
hing in polynomial time: �nditeratively extreme mat
hings M0;M1; : : : su
h that jMkj = k for ea
h k. Then themat
hing among M0;M1; : : : of maximum weight is a maximum-weight mat
hing.IfG is bipartite, we 
an �nd a minimum-lengthM -augmenting path as follows. LetG have 
olour 
lasses U andW . Orient the edges of G as in (19), making the dire
tedgraph D, and let U 0 and W 0 as in (20). Then a minimum-lengthM -augmenting path
an be found by �nding a minimum-length path in D from any vertex in U 0 to anyvertex in W 0. This 
an be done in polynomial time, sin
e:Theorem 3.5. Let M be an extreme mat
hing. Then D has no dire
ted 
ir
uit ofnegative length.Proof. Suppose C is a dire
ted 
ir
uit in D with length l(C) < 0. We may assumeC = (u0; w1; u1; : : : ; wt; ut) with u0 = ut and u1; : : : ; ut 2 U and w1; : : : ; wt 2 W .Then the edges w1u1; : : : ; wtut belong to M and the edges u0w1; u1w2; : : : ; ut�1wt donot belong to M . Then M 00 := M4EC is a mat
hing of 
ardinality k of weightw(M 00) = w(M)� l(C) > w(M), 
ontradi
ting the fa
t that M is extreme.
This gives a polynomial-time algorithm to �nd a maximum-weight mat
hing in abipartite graph. The des
ription above yields:Theorem 3.6. A maximum-weight mat
hing in a bipartite graph G = (V;E) 
an befound in O(jV j2jEj) time.Proof.We do O(jV j) iterations, ea
h 
onsisting of �nding a shortest path (in a graphwithout negative-length dire
ted 
ir
uits), whi
h 
an be done in O(jV jjEj) time (withthe Bellman-Ford algorithm | see Corollary 1.10a).
In fa
t, a sharpening of this method (by transmitting a `potential' p : V ! Qthroughout the mat
hing augmenting iterations, making the length fun
tion l non-negative, so that Dijkstra's method 
an be used) gives an O(jV j(jEj + jV j log jV j))algorithm.Appli
ation 3.2: Optimal assignment. Suppose that we have n jobs and m ma
hinesand that ea
h job 
an be done on ea
h ma
hine. Moreover, let a 
ost fun
tion (or 
ostmatrix) ki;j be given, spe
ifying the 
ost of performing job j by ma
hine i. We want toperform the jobs with a minimum of total 
osts.This 
an be solved with the maximum-weight bipartite mat
hing algorithm. To thisend, we make a 
omplete bipartite graph G with 
olour 
lasses of 
ardinality m and n. LetK be the maximum of ki;j over all i; j. De�ne the weight of the edge 
onne
ting ma
hine iand job j to be equal to K � ki;j . Then a maximum-weight mat
hing in G 
orresponds to
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an optimum assignment of ma
hines to jobs.So the algorithm for solving the assignment problem 
ounters the remarks made byThorndike [1950℄ in an Address delivered on September 9, 1949 at a meeting of the Ameri
anPsy
hologi
al Asso
iation at Denver, Colorado:There are, as has been indi
ated, a �nite number of permutations in the assign-ment of men to jobs. When the 
lassi�
ation problem as formulated above waspresented to a mathemati
ian, he pointed to this fa
t and said that from thepoint of view of the mathemati
ian there was no problem. Sin
e the number ofpermutations was �nite, one had only to try them all and 
hoose the best. Hedismissed the problem at that point. This is rather 
old 
omfort to the psy-
hologist, however, when one 
onsiders that only ten men and ten jobs meanover three and a half million permutations. Trying out all the permutationsmay be a mathemati
al solution to the problem, it is not a pra
ti
al solution.
Appli
ation 3.3: Transporting earth. Monge [1784℄ was one of the �rst to 
onsiderthe assignment problem, in the role of the problem of transporting earth from one area toanother, whi
h he 
onsidered as the dis
ontinuous, 
ombinatorial problem of transportingmole
ules:Lorsqu'on doit transporter des terres d'un lieu dans un autre, on a 
outime dedonner le nom de D�eblai au volume des terres que l'on doit transporter, & lenom de Remblai �a l'espa
e qu'elles doivent o

uper apr�es le transport.Le prix du transport d'une mol�e
ule �etant, toutes 
hoses d'ailleurs �egales, pro-portionnel �a son poids & �a l'espa
e qu'on lui fait par
ourir, & par 
ons�equent leprix du transport total devant être proportionnel �a la somme des produits desmol�e
ules multipli�ees 
ha
une par l'espa
e par
ouru, il s'ensuit que le d�eblai &le remblai �etant donn�e de �gure & de position, il n'est pas indi��erent que tellemol�e
ule du d�eblai soit transport�ee dans tel ou tel autre endroit du remblai,mais qu'il y a une 
ertaine distribution �a faire des mol�e
ules du premier dansle se
ond, dapr�es laquelle la somme de 
es produits sera la moindre possible, &le prix du transport total sera minimum.10Monge des
ribes an interesting geometri
 method to solve the assignment problem in this
ase: let l be a line tou
hing the two areas from one side; then transport the earth mole
ule10When one must transport earth from one pla
e to another, one usually gives the name of D�eblaito the volume of earth that one must transport, & the name of Remblai to the spa
e that theyshould o

upy after the transport.The pri
e of the transport of one mole
ule being, if all the rest is equal, proportional to its weight& to the distan
e that one makes it 
overing, & hen
e the pri
e of the total transport having to beproportional to the sum of the produ
ts of the mole
ules ea
h multiplied by the distan
e 
overed,it follows that, the d�eblai & the remblai being given by �gure and position, it makes di�eren
e if a
ertain mole
ule of the d�eblai is transported to one or to another pla
e of the remblai, but that thereis a 
ertain distribution to make of the mol
ules from the �rst to the se
ond, after whi
h the sum ofthese produ
ts will be as little as possible, & the pri
e of the total transport will be a minimum.
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tou
hed in one area to the position tou
hed in the other area. Then repeat, until allmole
ules are transported.
Exer
ises3.22. Five me
hani
s, stationed in the 
ities A;B;C;D;E, have to perform jobs in the 
itiesF;G;H; I; J . The jobs must be assigned in su
h a way to the me
hani
s that everyonegets one job and that the total distan
e traveled by them is as small as possible. Thedistan
es are given in the tables below. Solve these assignment problems with theweighted mat
hing algorithm.

(i)
F G H I JA 6 17 10 1 3B 9 23 21 4 5C 2 8 5 0 1D 19 31 19 20 9E 21 25 22 3 9

(ii)
F G H I JA 11 5 21 7 18B 17 4 20 9 25C 4 1 3 2 4D 6 2 19 3 9E 19 7 23 18 26

3.23. Derive from the weighted mat
hing algorithm for bipartite graphs an algorithm for�nding a minimum-weight perfe
t mat
hing in a bipartite graph G = (V;E). (Amat
hing M is perfe
t if SM = V .)3.24. Let A1; : : : ; An be subsets of the �nite set X and let w : X ! R+ be a `weight'fun
tion. Derive from the weighted mat
hing algorithm a polynomial-time algorithmto �nd a minimum-weight SDR.
3.6. The mat
hing polytopeThe weighted mat
hing problem is related to the `mat
hing polytope'. Let G = (V;E)be a graph. For ea
h mat
hing M let the in
iden
e ve
tor �M : E ! R of M bede�ned by:(24) �M (e) := 1 if e 2M ,�M (e) := 0 if e 62M ,
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for e 2 E.It is important to realize that the set of fun
tions f : E ! R 
an be 
onsideredas a ve
tor spa
e and ea
h su
h fun
tion as a ve
tor. Thus we 
an denote f(e) by fe.The fun
tion �M 
an be 
onsidered alternatively as a ve
tor in the ve
tor spa
e R E .Similarly for fun
tions g : V ! R .The mat
hing polytope of G is de�ned as:(25) Pmat
hing(G) :=
onv.hullf�M jM is a mat
hing in Gg.So Pmat
hing(G) is a polytope in R E .The mat
hing polytope is a polyhedron, and hen
e 
an be des
ribed by linearinequalities. For bipartite graphs, these inequalities are quite simple. To this endit is 
onvenient �rst to 
onsider perfe
t mat
hings. (A mat
hing M is perfe
t ifSM = V .) Now the perfe
t mat
hing polytope of G is de�ned by:(26) Pperfe
t mat
hing(G) :=
onv.hullf�M jM is a perfe
t mat
hing in Gg.Again, Pperfe
t mat
hing(G) is a polytope in R E . Now the following 
an be derived quitedire
tly from Exer
ise 3.11:Theorem 3.7. Let G = (V;E) be a bipartite graph. Then the perfe
t mat
hingpolytope Pperfe
t mat
hing(G) is equal to the set of ve
tors x 2 R E satisfying:(27) xe � 0 for ea
h e 2 E;Xe3v xe = 1 for ea
h v 2 V .
Proof. Left to the reader (Exer
ise 3.25).

Clearly, ea
h ve
tor x in Pperfe
t mat
hing(G) should satisfy (27), sin
e ea
h ve
tor�M satis�es (27). The essen
e of the theorem is that the inequalities (27) are enoughto de�ne the polytope Pperfe
t mat
hing(G).(An alternative way of proving Theorem 3.7 is using the `total unimodularity' ofthe in
iden
e matrix of a bipartite graph, together with the Ho�man-Kruskal theoremon integer solutions to linear programming problems with integer data and totallyunimodular 
onstraint matrix | see Se
tion 8.3.)From Theorem 3.7 one 
an derive the linear inequalities des
ribing the mat
hingpolytope of a bipartite graph:Corollary 3.7a. Let G = (V;E) be a bipartite graph. Then the mat
hing polytopePmat
hing(G) is equal to the set of ve
tors x 2 R E satisfying:
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(28) xe � 0 for ea
h e 2 E;Xe3v xe � 1 for ea
h v 2 V .
Proof. Left to the reader (Exer
ise 3.26).

Clearly, one 
annot delete the bipartiteness 
ondition: if G is the triangle K3 thenthe fun
tion x de�ned by xe := 1=2 for ea
h edge e satis�es (28), but does not belongto the mat
hing polytope.Corollary 3.7a asserts that the weighted mat
hing problem 
an be formulated asa linear programming problem:(29) maximize wTx,subje
t to xe � 0 for ea
h e 2 E;Xe3v xe � 1 for ea
h v 2 V .
With linear programming duality one 
an derive from this a `weighted' extensionof K}onig's mat
hing theorem, due to Egerv�ary [1931℄:Corollary 3.7b. Let G = (V;E) be a bipartite graph and let w : E ! R be a `weight'fun
tion. Then the maximum weight of a mat
hing is equal to the minimum value ofPv2V y(v), where y ranges over all fun
tions y : V ! R+ satisfying y(u)+y(v) � w(e)for ea
h edge e = uv of G.Proof. The maximum weight of a mat
hing in G is equal to(30) maxfwT�M jM is a mat
hing in Gg.Sin
e Pmat
hing(G) is the 
onvex hull of the �M , (30) is equal to(31) maxfwTx j x 2 Pmat
hing(G)g.By Corollary 3.7a this is equal to(32) maxfwTx j xe � 0 for ea
h e 2 E;Pe3v xe � 1 for ea
h v 2 V g.By linear programming duality this is equal to(33) minfPv2V yv j yv � 0 for ea
h v 2 V ;yu + yv � we for ea
h edge e = uvg.
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This is exa
tly the minimum des
ribed in the Corollary.

An extension of this 
orollary gives a further extension of K}onig's mat
hing the-orem (Theorem 3.3):Theorem 3.8. In Corollary 3.7b, if w is integer-valued, then we 
an take also yinteger-valued.Proof. Let y 2 R V+ attain the minimum, and assume that we have 
hosen y so thatthe number of verti
es v with yv 62 Z is as small as possible. Let U and W be the two
olour 
lasses of G and let X be the set of verti
es v of G with yv 62 Z. If X = ; weare done, so assume that X 6= ;. Without loss of generality, jX \U j � jX \W j. Letu be a vertex in X \U with yu�byu
 as small as possible. Let " := yu�byu
. Reset
(34) ~yv := 8><>:yv � " if v 2 X \ U ,yv + " if v 2 X \W ,yv if v 62 X.One easily 
he
ks that again ~yv+~yv0 � w(e) for ea
h edge e = vv0 of G (using the fa
tthat w is integer-valued). Moreover, Pv2V ~yv = Pv2V yv � "jX \ U j + "jX \W j �Pv2V yv. So ~y also attains the minimum. However, ~y has fewer noninteger-valued
omponents than y (as ~yu 2 Z), 
ontradi
ting our assumption.
Exer
ises3.25. Derive Theorem 3.7 from Exer
ise 3.11.3.26. Derive Corollary 3.7a from Theorem 3.7.
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4. Menger's theorem, 
ows, and
ir
ulations

4.1. Menger's theoremIn this se
tion we study the maximum number k of pairwise disjoint paths in a graph
onne
ting two verti
es, or two sets of verti
es. Here `disjoint' 
an mean: internallyvertex-disjoint (= having no vertex in 
ommon ex
ept for their end verti
es) or ar
-disjoint (= having no ar
 in 
ommon).Let D = (V;A) be a dire
ted graph and let S and T be subsets of V . A path is
alled an S � T path if it runs from a vertex in S to a vertex in T .Menger [1927℄ gave a min-max theorem for the maximum number of disjoint S�Tpaths. We follow the proof given by G�oring [2000℄.A set C of verti
es is 
alled S � T dis
onne
ting if C interse
ts ea
h S � T path(C may interse
t S [ T ).Theorem 4.1 (Menger's theorem (dire
ted vertex-disjoint version)). Let D = (V;A)be a digraph and let S; T � V . Then the maximum number of vertex-disjoint S � Tpaths is equal to the minimum size of an S � T dis
onne
ting vertex set.Proof. Obviously, the maximum does not ex
eed the minimum. Equality is shownby indu
tion on jAj, the 
ase A = ; being trivial.Let k be the minimum size of an S � T dis
onne
ting vertex set. Choose a =(u; v) 2 A. If ea
h S � T dis
onne
ting vertex set in D � a has size at least k, thenindu
tively there exist k vertex-disjoint S � T paths in D � a, hen
e in D.So we 
an assume that D � a has an S � T dis
onne
ting vertex set C of size� k � 1. Then C [ fug and C [ fvg are S � T dis
onne
ting vertex sets of D of sizek. Now ea
h S� (C [fug) dis
onne
ting vertex set B of D�a has size at least k, asit is S � T dis
onne
ting in D. Indeed, ea
h S � T path P in D interse
ts C [ fug,and hen
e P 
ontains an S � (C [ fug) path in D � a. So P interse
ts B.So by indu
tion, D � a 
ontains k disjoint S � (C [ fug) paths. Similarly, D � a
ontains k disjoint (C [ fvg) � T paths. Any path in the �rst 
olle
tion interse
tsany path in the se
ond 
olle
tion only in C, sin
e otherwise D� a 
ontains an S � Tpath avoiding C.Hen
e, as jCj = k� 1, we 
an pairwise 
on
atenate these paths to obtain disjointS � T paths, inserting ar
 a between the path ending at u and the path starting atv.
A 
onsequen
e of this theorem is a variant on internally vertex-disjoint s�t paths,
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that is, s� t paths having no vertex in 
ommon ex
ept for s and t. Re
all that a setU of verti
es is 
alled an s� t vertex-
ut if s; t 62 U and ea
h s� t path interse
ts U .
Corollary 4.1a (Menger's theorem (dire
ted internally vertex-disjoint version)). LetD = (V;A) be a digraph and let s and t be two nonadja
ent verti
es of D. Then themaximum number of internally vertex-disjoint s � t paths is equal to the minimumsize of an s� t vertex-
ut.Proof. Let D0 := D � s � t and let S and T be the sets of outneighbours of s andof inneighbours of t, respe
tively. Then Theorem 4.1 applied to D0; S; T gives the
orollary.

In turn, Theorem 4.1 follows from Corollary 4.1a by adding two new verti
es sand t and ar
s (s; v) for all v 2 S and (v; t) for all v 2 T .Also an ar
-disjoint version 
an be derived (where paths are ar
-disjoint if theyhave no ar
 in 
ommon).Re
all that a set C of ar
s is an s� t 
ut if C = Æout(U) for some subset U of Vwith s 2 U and t 62 U .Corollary 4.1b (Menger's theorem (dire
ted ar
-disjoint version)). Let D = (V;A)be a digraph and s; t 2 V . Then the maximum number of ar
-disjoint s � t paths isequal to the minimum size of an s� t 
ut.Proof. Let L(D) be the line digraph of D and let S := ÆoutA (s) and T := ÆinA (t). ThenTheorem 4.1 for L(D); S; T implies the 
orollary. Note that a minimum-size set ofar
s interse
ting ea
h s� t path ne
essarily is an s� t 
ut.
The internally vertex-disjoint version of Menger's theorem 
an be derived in turnfrom the ar
-disjoint version: make a digraph D0 as follows from D: repla
e anyvertex v by two verti
es v0; v00 and make an ar
 (v0; v00); moreover, repla
e ea
h ar
(u; v) by (u00; v0). Then Corollary 4.1b for D0; s00; t0 gives Corollary 4.1a for D; s; t.Similar theorems hold for undire
ted graphs. They 
an be derived from the di-re
ted 
ase by repla
ing ea
h undire
ted edge uw by two opposite ar
s (u;w) and(w; u).Appli
ation 4.1: Routing airplanes. An airline 
ompany 
arries out a 
ertain numberof 
ights a

ording to some �xed timetable, in a weekly 
y
le. The timetable is basi
allygiven by a 
ight number i (for instan
e 562), a departure 
ity d
i (for instan
e Van
ouver),a departure time dti (for instan
e Monday 23.15h), an arrival 
ity a
i (for instan
e Tokyo),and an arrival time ati (for instan
e Tuesday 7.20h). All times in
lude boarding and disem-barking and preparing the plane for a next 
ight. Thus a plane with arrival time Tuesday7.20h at 
ity 
, 
an be used for any 
ight from 
 with departure time from Tuesday 7.20h
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on. The 
ights are 
arried out by n airplanes of one type, denoted by a1; : : : ; an. At ea
hweekday there should be an airplane for maintenan
e at the home basis, from 6.00h till18.00h. Legal rules pres
ribe whi
h of the airplanes a1; : : : ; an should be at the home basisduring one day the 
oming week, but it is not pres
ribed whi
h airplane should be at thehome basis at whi
h day (see Appli
ation 9.4 for an extension where this is pres
ribed).The timetable is made in su
h a way that at ea
h 
ity the number of in
oming 
ights isequal to the number of outgoing 
ights. Here `maintenan
e' is also 
onsidered as a 
ight.However, there is 
exibility in assigning the airplanes to the 
ights: if at a 
ertain momentat a 
ertain 
ity two or more airplanes are available for a 
ight, in prin
iple any of them
an be used for that 
ight. Whi
h of the available airplanes will be used, is de
ided by themain oÆ
e of the 
ompany. This de
ision is made at 18.00h on the Saturday before. Atthat time the 
ompany makes the exa
t routing of the planes for the 
oming week.

SatFriThuSat Sun Mon Tue Wed

maintenancemaintenancemaintenancemaintenancemaintenance

B

C

D

E

F

G

J

K

L

N

H

I

M

A

Figure 4.1
At that moment, 
ertain planes are performing 
ertain 
ights, while other planes aregrounded at 
ertain 
ities. Routing the airplanes is easy as the timetable is set up in su
ha way that at ea
h moment and ea
h 
ity enough airplanes are available.Indeed, one 
an make a dire
ted graph D (Figure 4.1) with vertex set all pairs (d
i; dti)and (a
i; ati) for all 
ight numbers i. For ea
h 
ight i that is not in the air at Saturday18.00h, one makes an ar
 from (d
i; dti) to (a
i; ati). We also do this for the \
ights"representing maintenan
e.Moreover, for ea
h 
ity 
 and ea
h two 
onse
utive times t; t0 at whi
h any 
ight departsor arrives at 
, one makes m parallel ar
s from (
; t) to (
; t0), where m is the number ofairplanes that will be in 
ity 
 during the period t{t0.In this way we obtain a dire
ted graph su
h that at ea
h vertex the indegree is equal
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to the outdegree, ex
ept at any (
; t
) where t
 is the earliest time after Saturday 18.00hat whi
h any 
ight arrives at or leaves 
ity 
. Hen
e we 
an �nd in D ar
-disjoint pathsP1; : : : ; Pn (where n is the number of airplanes) in D su
h that ea
h ar
 is in exa
tly one ofthe Pi. This would give a routing for the airplanes.However, the restri
tion that some pres
ribed airplanes must undergo maintenan
e the
oming week gives some 
ompli
ations. It means for instan
e that if a 
ertain airplane ai(say) is now on the ground at 
ity 
 and should be home for maintenan
e the 
oming week,then the path Pi should start at (
; t
) and should traverse one of the ar
s representingmaintenan
e. If ai is now in the air, then path Pi should start at (
; t) where t is the�rst-
oming arrival time of ai and should traverse a maintenan
e ar
. So the 
ompany �rst�nds ar
-disjoint paths Pi1 ; : : : ; Pik , where ai1 ; : : : ; aik are the airplanes that should undergomaintenan
e the 
oming week. These paths 
an be extended to paths P1; : : : ; Pn su
h thatea
h ar
 is traversed exa
tly on
e.So the problem 
an be solved by �nding ar
-disjoint paths starting in a given set ofverti
es and ending in a given set of verti
es (by slightly extending the graph D).
Exer
ises4.1. Let D = (V;A) be a dire
ted graph and let s; t1; : : : ; tk be verti
es of D. Provethat there exist pairwise ar
-disjoint paths P1; : : : ; Pk su
h that Pi is an s � ti path(i = 1; : : : ; k) if and only if for ea
h U � V with s 2 U one has(1) jÆout(U)j � jfi j ti 62 Ugj:4.2. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set.Show that A and B have a 
ommon SDR if and only if for all I; J � f1; : : : ; ng onehas

(2) ��[i2I Ai \ [j2J Bj�� � jIj+ jJ j � n:
4.3. Let G = (V;E) be a bipartite graph, with 
olour 
lasses V1 and V2, su
h that jV1j =jV2j. Show that G has k pairwise disjoint perfe
t mat
hings if and only if for ea
hsubset U of V1:(3) Xv2V2minfk; jE(v) \ U jg � kjU j;

where E(v) denotes the set of verti
es adja
ent to v.4.4. Let D = (V;A) be a simple dire
ted graph and let s; t 2 V . Let � be the minimumlength of an s� t path. Show that the maximum number of pairwise ar
-disjont s� tpaths is at most (jV j=�)2.(Hint : Let Uk denote the set of verti
es at distan
e at most k from s. Show thatjÆout(Uk)j � (jV j=�)2 for some k < �.)
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4.2. Flows in networksOther 
onsequen
es of Menger's theorem 
on
ern `
ows in networks'. Let D = (V;A)be a dire
ted graph and let s; t 2 V . A fun
tion f : A ! R is 
alled an s � t 
owif:11(4) (i) f(a) � 0 for ea
h a 2 A;(ii) Xa2Æin(v) f(a) = Xa2Æout(v) f(a) for ea
h v 2 V n fs; tg:
Condition (4)(ii) is 
alled the 
ow 
onservation law : the amount of 
ow entering avertex v 6= s; t should be equal to the amount of 
ow leaving v.The value of an s� t 
ow f is, by de�nition:
(5) value(f) := Xa2Æout(s) f(a)� Xa2Æin(s) f(a):So the value is the net amount of 
ow leaving s. It 
an be shown that it is equal tothe net amount of 
ow entering t.Let 
 : A ! R+ , 
alled a 
apa
ity fun
tion. We say that a 
ow f is under 
 (orsubje
t to 
) if(6) f(a) � 
(a) for ea
h a 2 A:The maximum 
ow problem now is to �nd an s� t 
ow under 
, of maximum value.To formulate a min-max relation, de�ne the 
apa
ity of a 
ut Æout(U) by:
(7) 
(Æout(U)) := Xa2Æout(U) 
(a):Then:Proposition 2. For every s� t 
ow f under 
 and every s� t 
ut Æout(U) one has:(8) value(f) � 
(Æout(U)):
Proof.(9) value(f) = Xa2Æout(s) f(a)� Xa2Æin(s) f(a)11Æout(v) and Æin(v) denote the sets of ar
s leaving v and entering v, respe
tively.



Se
tion 4.2. Flows in networks 59
= Xa2Æout(s) f(a)� Xa2Æin(s) f(a) + Xv2Unfsg( Xa2Æout(v) f(a)� Xa2Æin(v) f(a))=Xv2U( Xa2Æout(v) f(a)� Xa2Æin(v) f(a)) = Xa2Æout(U) f(a)� Xa2Æin(U) f(a)?� Xa2Æout(U) f(a) ??� Xa2Æout(U) 
(a) = 
(Æout(U)).

It is 
onvenient to note the following:(10) equality holds in (8) () 8a 2 Æin(U) : f(a) = 0 and8a 2 Æout(U) : f(a) = 
(a):This follows dire
tly from the inequalities ? and ?? in (9).Now from Menger's theorem one 
an derive that equality 
an be attained in (8),whi
h is a theorem of Ford and Fulkerson [1956℄:Theorem 4.2 (max-
ow min-
ut theorem). For any dire
ted graph D = (V;A),s; t 2 V , and 
 : A! R+, the maximum value of an s� t 
ow under 
 is equal to theminimum 
apa
ity of an s� t 
ut. In formula:
(11) maxf s-t 
ow value(f) = minÆout(U) s-t 
ut 
(Æout(U)):
Proof. If 
 is integer-valued, the 
orollary follows from Menger's theorem by repla
ingea
h ar
 a by 
(a) parallel ar
s. If 
 is rational-valued, there exists a natural numberN su
h that N
(a) is integer for ea
h a 2 A. This resetting multiplies both themaximum and the minimum by N . So the equality follows from the 
ase where 
 isinteger-valued.If 
 is real-valued, we 
an derive the 
orollary from the 
ase where 
 is rational-valued, by 
ontinuity and 
ompa
tness arguments.

Moreover, one has (Dantzig [1951a℄):Corollary 4.2a (Integrity theorem). If 
 is integer-valued, there exists an integer-valued maximum 
ow.Proof. Dire
tly from Menger's theorem.
Exer
ises
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4.5. Let D = (V;A) be a dire
ted graph and let s; t 2 V . Let f : A! R+ be an s� t 
owof value �. Show that there exists an s � t 
ow f 0 : A ! Z+ of value d�e su
h thatbf(a)
 � f 0(a) � df(a)e for ea
h ar
 a. (Integer 
ow theorem (Dantzig [1951a℄).)4.6. Let G = (V;E) be a graph and let 
 : E ! R+ be a `
apa
ity' fun
tion. Let K bethe 
omplete graph on V . For ea
h edge st of K, let w(st) be the minimum 
apa
ityof any s� t 
ut in G. [An s� t 
ut is any subset Æ(W ) with s 2W; t 62W .℄Let T be a spanning tree in K of maximum total weight with respe
t to the fun
tionw. Prove that for all s; t 2 V , w(st) is equal to the minimum weight of the edges ofT in the unique s� t path in T .(Hint: Use Exer
ise 1.10.)
4.3. Finding a maximum 
owLet D = (V;A) be a dire
ted graph, let s; t 2 V , and let 
 : A ! Q + be a `
apa
ity'fun
tion. We now des
ribe the algorithm of Ford and Fulkerson [1956℄ to �nd an s� t
ow of maximum value under 
.In this se
tion, by 
ow we will mean an s � t 
ow under 
, and by 
ut an s � t
ut. A maximum 
ow is a 
ow of maximum value.We now des
ribe the algorithm of Ford and Fulkerson [1957℄ to determine a max-imum 
ow. We assume that 
(a) > 0 for ea
h ar
 a. First we give an importantsubroutine:Flow augmenting algorithminput: a 
ow f .output: either (i) a 
ow f 0 with value(f 0) > value(f),or (ii) a 
ut Æout(W ) with 
(Æout(W )) = value(f).des
ription of the algorithm: For any pair a = (v; w) de�ne a�1 := (w; v). Makean auxiliary graph Df = (V;Af ) by the following rule: for any ar
 a 2 A,(12) if f(a) < 
(a) then a 2 Af ,if f(a) > 0 then a�1 2 Af .So if 0 < f(a) < 
(a) then both a and a�1 are ar
s of Af .Now there are two possibilities:(13) Case 1: There exists an s� t path in Df ,Case 2: There is no s� t path in Df .
Case 1: There exists an s� t path P = (v0; a1; v1; : : : ; ak; vk) in Df = (V;Af ).So v0 = s and vk = t. We may assume that P is a simple path. As a1; : : : ; ak belong



Se
tion 4.3. Finding a maximum 
ow 61
to Af , we know by (12) that for ea
h i = 1; : : : ; k:(14) either (i) ai 2 A and �i := 
(ai)� f(ai) > 0or (ii) a�1i 2 A and �i := f(a�1i ) > 0:De�ne � := minf�1; : : : ; �kg. So � > 0. Let f 0 : A! R+ be de�ned by, for a 2 A:(15) f 0(a) := f(a) + �; if a = ai for some i = 1; : : : ; k;:= f(a)� �; if a = a�1i for some i = 1; : : : ; k;:= f(a); for all other a.Then f 0 again is an s � t 
ow under 
. The inequalities 0 � f 0(a) � 
(a) holdbe
ause of our 
hoi
e of �. It is easy to 
he
k that also the 
ow 
onservation law(4)(ii) is maintained.Moreover,(16) value(f 0) = value(f) + �;sin
e either (v0; v1) 2 A, in whi
h 
ase the outgoing 
ow in s is in
reased by �, or(v1; v0) 2 A, in whi
h 
ase the ingoing 
ow in s is de
reased by �.Path P is 
alled a 
ow augmenting path.Case 2: There is no path in Df = (V;Af ) from s to t.Now de�ne:(17) U := fu 2 V j there exists a path in Df from s to ug:Then s 2 U while t 62 U , and so Æout(U) is an s� t 
ut.By de�nition of U , if u 2 U and v 62 U , then (u; v) 62 Af (as otherwise also vwould belong to U). Therefore:(18) if (u; v) 2 Æout(U), then (u; v) 62 Af , and so (by (12)): f(u; v) = 
(u; v),if (u; v) 2 Æin(U), then (v; u) 62 Af , and so (by (12)): f(u; v) = 0.Then (10) gives:(19) 
(Æout(U)) = value(f):This �nishes the des
ription of the 
ow augmenting algorithm. The des
riptionof the (Ford-Fulkerson) maximum 
ow algorithm is now simple:Maximum 
ow algorithm
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input: dire
ted graph D = (V;A); s; t 2 V; 
 : A! R+ .output: a maximum 
ow f and a 
ut Æout(U) of minimum 
apa
ity, with value(f) =
(Æout(U)).des
ription of the algorithm: Let f0 be the `null 
ow' (that is, f0(a) = 0 for ea
har
 a). Determine with the 
ow augmenting algorithm 
ows f1; f2; : : : ; fN su
h thatfi+1 = f 0i , until, in the Nth iteration, say, we obtain output (ii) of the 
ow augmentingalgorithm. Then we have 
ow fN and a 
ut Æout(U) with the given properties.

We show that the algorithm terminates, provided that all 
apa
ities are rational.Theorem 4.3. If all 
apa
ities 
(a) are rational, the algorithm terminates.Proof. If all 
apa
ities are rational, there exists a natural number K so that K
(a)is an integer for ea
h a 2 A. (We 
an take for K the l.
.m. of the denominators ofthe 
(a).)Then in the 
ow augmenting iterations, every 
ow fi(a) and every � is a multipleof 1=K. So at ea
h iteration, the 
ow value in
reases by at least 1=K. Sin
e the 
owvalue 
annot ex
eed 
(Æout(s)), we 
an have only �nitely many iterations.
We should note here that this theorem is not true if we allow general real-valued
apa
ities.In Se
tion 4.4 we shall see that if we 
hoose always a shortest path as 
ow aug-menting path, then the algorithm has polynomially bounded running time.Note that the algorithm also implies the max-
ow min-
ut theorem (Theorem4.2). Note moreover that in the maximum 
ow algorithm, if all 
apa
ities are integer,then the maximum 
ow will also be integer-valued. So it also implies the integritytheorem (Corollary 4.2a).Appli
ation 4.2: Transportation problem. Suppose that there are m fa
tories, thatall produ
e the same produ
t, and n 
ustomers that use the produ
t. Ea
h month, fa
toryi 
an produ
e si tons of the produ
t. Customer j needs every month dj tons of the produ
t.From fa
tory i to 
ustomer j we 
an transport every month at most 
i;j tons of the produ
t.The problem is: 
an the needs of the 
ustomers be ful�lled?In order to solve the problem with the maximum-
ow algorithm, we make the graph asin Figure 4.2 (for m = 3, n = 5). We de�ne a 
apa
ity fun
tion 
 on the ar
s as follows:(20) 
(s; fi) := si for i = 1; : : : ;m,
(fi; bj) := 
i;j for i = 1; : : : ;m; j = 1; : : : ; n,
(bj; t) := dj for j = 1; : : : ; n.Now we have:(21) the needs of the 
ustomers 
an be ful�lled() there is an s� t 
ow under 
 with
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Figure 4.2
value d1 + � � �+ dn.Sin
e there 
annot exist an s � t 
ow under 
 of value larger than d1 + � � � + dn (sin
e
(Æin(t)) = d1 + � � �+ dn), the problem 
an be solved with the maximum-
ow algorithm.If there exists a 
ow of value d1+ � � �+dn, then the 
ow on ar
 (fi; bj) gives the amountthat should be transported ea
h month from fa
tory i to 
ustomer j. The 
ow on ar
 (s; fi)gives the amount to be produ
ed ea
h month by fa
tory fi.

Exer
ises
4.7. Determine with the maximum 
ow algorithm an s � t 
ow of maximum value andan s� t 
ut of minimum 
apa
ity in the following graphs (where the numbers at thear
s give the 
apa
ities):

(i)
1 11

5

2

5

1

2

4

2

7

4

10 12

2 2s t

2
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4.8. Solve the transportation problem with the maximum-
ow algorithm for the followingdata: m = n = 3; s1 = 13; s2 = 9; s3 = 4; d1 = 3; d2 = 7; d3 = 12,

i;j j = 1 j = 2 j = 3i = 1 2 0 8i = 2 3 8 3i = 3 0 1 3

4.9. Des
ribe the problem of �nding a maximum-size mat
hing in a bipartite graph as amaximum 
ow problem.
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4.10. Determine with the maximum-
ow algorithm if there exists a 3 � 3 matrix A = (ai;j)satisfying:12ai;j � 0 for all i; j = 1; 2; 3;

A1 � 0� 1394
1A;

1TA = (3; 7; 12);
A � 0� 2 0 83 8 30 1 3

1A.
4.11. Give an example of a dire
ted graph with irrational 
apa
ities, in whi
h, at a bad
hoi
e of 
ow augmenting paths, the maximum 
ow algorithm does not terminate.4.12. Let D = (V;A) be a dire
ted graph, let s; t 2 V and let f : A! Q + be an s� t 
owof value b. Show that for ea
h U � V with s 2 U; t 62 U one has:

(22) Xa2Æout(U) f(a) � Xa2Æin(U) f(a) = b:
4.4. Speeding up the maximum 
ow algorithmWe saw that the number of iterations in the maximum 
ow algorithm is �nite, if all
apa
ities are rational. If we 
hoose as our 
ow augmenting path P in the auxiliarygraph Df an arbitrary s � t path, the number of iterations yet 
an get quite large.For instan
e, in the graph in Figure 4.3 the number of iterations, at a bad 
hoi
e ofpaths, 
an be
ome 2 � 10k.

s t1

10 10

1010

k k

kk

Figure 4.3
However, if we 
hoose always a shortest s� t path in Df as our 
ow augmentingpath P (that is, with a minimum number of ar
s), then the number of iterations isat most jV j � jAj. This was shown by Dinits [1970℄ and Edmonds and Karp [1972℄.121 denotes the ve
tor (1; 1; 1)T .
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Again, for any dire
ted graph D = (V;A) and s; t 2 V , let �(D) denote theminimum length of an s� t path. Moreover, let �(D) denote the set of ar
s 
ontainedin at least one shortest s� t path. Then one has:Proposition 3. Let D = (V;A) and s; t 2 V . Let D0 := (V;A [ �(D)�1). Then�(D0) = �(D) and �(D0) = �(D).Proof. It suÆ
es to show that �(D) and �(D) are invariant if we add a�1 to D forone ar
 a 2 �(D). Suppose not. Then there is an s � t path P traversing a�1, oflength at most �(D). As a 2 �(D), there is an s � t path Q traversing a, of length�(D). Hen
e AP [ AQ n fa; a�1g 
ontains an s� t path of length less than �(D), a
ontradi
tion.
This implies the result of Dinits [1970℄ and Edmonds and Karp [1972℄:Theorem 4.4. If we 
hoose in ea
h iteration a shortest s�t path as 
ow augmentingpath, the number of iterations is at most jV jjAj.Proof. If we augment 
ow f along a shortest path P , obtaining 
ow f 0, then Df 0is a subgraph of D0 := (V;Af [ �(Df )�1). Hen
e �(Df 0) � �(D0) = �(Df ) (byProposition 3). Moreover, if �(Df 0) = �(Df ), then �(Df 0) � �(D0) = �(Df ) (againby Proposition 3). As at least one ar
 in P belongs to Df but not to Df 0 , we have astri
t in
lusion.
Sin
e a shortest path 
an be found in time O(jAj), this gives:Corollary 4.4a. The maximum 
ow problem 
an be solved in time O(jV jjAj2).Proof. Dire
tly from Theorem 4.4.
This algorithm 
an be improved, as was shown by Karzanov [1974℄. In ea
hiteration we �nd a shortest path in O(jAj) time. But as long as the distan
e from sto t does not in
rease, we 
ould use the data-stru
ture of the previous shortest pathsear
h so as to �nd the next shortest path.This 
an be des
ribed as follows. Call an s � t 
ow f blo
king if for ea
h s � t
ow g � f one has g = f . Now Karzanov [1974℄ showed the following (we give theshort proof of Malhotra, Kumar, and Maheshwari [1978℄; see also Tarjan [1984℄):Theorem 4.5. Given an a
y
li
 dire
ted graph D = (V;A), s; t 2 V , and a 
apa
ityfun
tion 
 : A! Q +, a blo
king 
ow 
an be found in time O(jV j2).Proof. First order the verti
es rea
hable from s as s = v1; v2; : : : ; vn�1; vn topologi-
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ally ; that is, if (vi; vj) 2 A then i < j. This 
an be done in time O(jAj).13We des
ribe the pro
edure re
ursively. Consider the minimum of the values
(Æin(v)) for all v 2 V n fsg and 
(Æout(v)) for all v 2 V n ftg. Let the minimumbe attained by vi and 
(Æout(vi)) (without loss of generality). De�ne f(a) := 
(a) forea
h a 2 Æout(vi) and f(a) := 0 for all other a.Next for j = i+1; : : : ; n�1, rede�ne f(a) for ea
h a 2 Æout(vj) so that f(a) � 
(a)and so that f(Æout(vj)) = f(Æin(vj)). By the minimality of vi and 
(Æin(v)), we 
analways do this, as initially f(Æin(vj)) � 
(Æout(vi)) � 
(Æin(vj)). We do this in su
h away that �nally f(a) 2 f0; 
(a)g for all but at most one a in Æout(vj).After that, for j = i; i � 1; : : : ; 2, rede�ne similarly f(a) for a 2 Æin(vj) so thatf(a) � 
(a) and so that f(Æin(vj)) = f(Æout(vj)).If vi 2 fs; tg we stop, and f is a blo
king 
ow.If vi 62 fs; tg, set 
0(a) := 
(a) � f(a) for ea
h a 2 A, and delete all ar
s a with
0(a) = 0 and delete vi and all ar
s in
ident with vi, thus obtaining the dire
ted graphD0 = (V 0; A0). Obtain (re
ursively) a blo
king 
ow f 0 in D0 subje
t to the 
apa
ityfun
tion 
0. De�ne f 00(a) := f(a) + f 0(a) for a 2 A0 and f 00(a) = f(a) for a 2 A n A0.Then f 00 is a blo
king 
ow in D.This des
ribes the algorithm. The 
orre
tness 
an be seen as follows. If vi 2 fs; tgthe 
orre
tness is immediate. If vi 62 fs; tg, suppose f 00 is not a blo
king 
ow in D,and let P be an s � t path in D su
h that f 00(a) < 
(a) for ea
h ar
 a in P . Thenea
h ar
 of P belongs to A0, sin
e f 00(a) = f(a) = 
(a) for ea
h a 2 A n (A0 [ Æin(vi)).So for ea
h ar
 a of P one has 
0(a) = 
(a) � f(a) > f 00(a) � f(a) = f 0(a). This
ontradi
ts the fa
t that f 0 is a blo
king 
ow in D0.The running time of the algorithm is O(jV j2), sin
e the running time of the iter-ation is O(jV j + jA n A0j), and sin
e there are at most jV j iterations. (Note that wedetermine the topologi
al ordering only on
e, at the prepro
essing.)

Theorem 4.5 has the following 
onsequen
e:Corollary 4.5a. Given a dire
ted graph D = (V;A), s; t 2 V , and a 
apa
ity fun
tion
 : A! Q , a 
ow f satisfying �(Df ) > �(D) 
an be found in time O(jV j2).Proof. Let ~D be the subgraph of D 
onsisting of all ar
s that are 
ontained in ashortest s � t path in D. Find a blo
king 
ow in ~D. Then �(Df ) > �(D) (byProposition 3).
Hen
e we have:13This 
an be done re
ursively as follows (
f. Knuth [1968℄, Tarjan [1974℄). If Æout(s) = ;, thenthe ordering is trivial. If Æout(s) 6= ;, 
hoose (s; v) 2 Æout(s), and order the verti
es rea
hable from vtopologi
ally, as w1; : : : ; wm, delete them from D, and order the remaining verti
es rea
hable froms topologi
ally as v1; : : : ; vk; then v1; : : : ; vk; w1; : : : ; wm gives a required topologi
al ordering.
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Corollary 4.5b. Given a dire
ted graph D = (V;A), s; t 2 V , and a 
apa
ity fun
tion
 : A! Q , a maximum s� t 
ow 
an be found in time O(jV j3).Proof. Dire
tly from the foregoing.

Goldberg and Tarjan [1990℄ gave an O(jAj log(jV j2=jAj)) algorithm for �ndinga blo
king 
ow in an a
y
li
 dire
ted graph, implying an O(jV jjAj log(jV j2=jAj))algorithm for �nding a maximum 
ow in any dire
ted graph. An alternative approa
h�nding a maximum 
ow in time O(jV jjAj log(jV j2=jAj)) was des
ribed in Goldbergand Tarjan [1988℄.For surveys on maximum 
ow algorithms, see Goldberg, Tardos, and Tarjan [1990℄and Ahuja, Magnanti, and Orlin [1993℄.
4.5. Cir
ulationsA theorem related to the max-
ow min-
ut theorem is due to Ho�man [1960℄ and
on
erns 
ir
ulations. Let D = (V;A) be a dire
ted graph. A fun
tion f : A ! R is
alled a 
ir
ulation if for ea
h vertex v 2 V one has:(23) Xa2Æin(v) f(a) = Xa2Æout(v) f(a):So now the 
ow 
onservation law holds at ea
h vertex v.Ho�man [1960℄ proved the following theorem (whi
h 
an also be derived from themax-
ow min-
ut theorem, but a dire
t proof seems shorter). For any dire
ted graphD = (V;A), and any d; 
; f : A ! R with d(a) � f(a) � 
(a) for ea
h a 2 A, wede�ne(24) Af := fa j f(a) < 
(a)g [ fa�1 j d(a) < f(a)g;and Df := (V;Af ).Theorem 4.6 (Ho�man's 
ir
ulation theorem). Let D = (V;A) be a dire
ted graphand let d; 
 : A ! R be su
h that d(a) � 
(a) for ea
h ar
 a. Then there exists a
ir
ulation f su
h that(25) d(a) � f(a) � 
(a)for ea
h ar
 a if and only if
(26) Xa2Æin(U) d(a) � Xa2Æout(U) 
(a)
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for ea
h subset U of V .Proof. To see ne
essity of (26), suppose that a 
ir
ulation f satisfying (25) exists.Then(27) d(Æin(U)) � f(Æin(U)) = f(Æout(U)) � 
(Æout(U)):To see suÆ
ien
y, de�ne for any f : A! R and any v 2 V ,(28) lossf (v) := f(Æout(v))� f(Æin(v)):So lossf 
an be seen as a ve
tor in R V .Choose a fun
tion f satisfying d � f � 
 and minimizing klossfk1. Let(29) S := fv 2 V j lossf (v) < 0g and T := fv 2 V j lossf (v) > 0g.If S = ;, then f is a 
ir
ulation, and we are done. So assume S 6= ;. If Df 
ontainsan S � T path, we 
an modify f so as to redu
e klossfk1. So Df does not 
ontainany S � T path. Let U be the set of verti
es rea
hable in Df from S. Then for ea
ha 2 Æout(U) we have a 62 Af and hen
e f(a) = 
(a). Similarly, for ea
h a 2 Æin(U) wehave a�1 62 Af and hen
e f(a) = d(a). Therefore(30) 
(Æout(U))� d(Æin(U)) = f(Æout(U))� f(Æin(U)) = lossf (U) = lossf (S) < 0;
ontradi
ting (26).

One has moreover:Theorem 4.7. In Theorem 4.6, if 
 and d are integer and there exists a 
ir
ulationf satisfying d � f � 
, then there exists an integer-valued 
ir
ulation f 0 satisfyingd � f 0 � 
.Proof. Dire
tly from the proof above.
Exer
ises4.13. Let D = (V;A) be a dire
ted graph and let f : A ! R be a 
ir
ulation. Show thatthere exists a 
ir
ulation f 0 su
h that f 0 is integer-valued and su
h that bf(a)
 �f 0(a) � df(a)e for ea
h ar
 a.4.14. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be partitions of a �nite set X and let kbe a natural number. Prove that X 
an be 
overed by k 
ommon SDR's of A and Bif and only if
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(31) ��([i2IAi [ [j2J Bj)�� � jXj+ k(jIj+ jJ j � n)
for all I; J � f1; : : : ; ng with Si2I Ai \Sj2J Bj = ;.4.15. Let D = (V;A) be a dire
ted graph, and let f : A ! R+ . Let C be the 
olle
tionof dire
ted 
ir
uits in D. For ea
h dire
ted 
ir
uit C in D let �C be the in
iden
eve
tor of C. That is, �C : A! f0; 1g, with �C(a) = 1 if C traverses a and �C(a) = 0otherwise.Show that f is a nonnegative 
ir
ulation if and only if there exists a fun
tion � : C !R+ su
h that
(32) f =XC2C �(C)�C :
That is, the nonnegative 
ir
ulations form the 
one generated by f�C j C 2 Cg.

4.6. Minimum-
ost 
owsIn the previous se
tions we were sear
hing for 
ows of maximum value. In this se
tionwe 
onsider the problem of �nding a 
ow of maximum value with the additionalproperty that it has `minimum 
ost'.Let be given again a dire
ted graph D = (V;A), verti
es s and t of D, and a
apa
ity fun
tion 
 : A ! R+ . Let moreover be given a fun
tion k : A ! R+ , 
alledthe 
ost fun
tion.De�ne for any fun
tion f : A! R+ the 
ost of f as:
(33) 
ost(f) :=Xa2A k(a)f(a):The following is the minimum-
ost 
ow problem (or min-
ost 
ow problem):(34) given: a dire
ted graph D = (V;A), s; t 2 V , a 
apa
ity fun
tion 
 : A ! R+and a 
ost fun
tion k : A! R+ ;�nd: an s � t 
ow subje
t to 
 of maximum value, su
h that f has minimum
ost among all s� t 
ows subje
t to 
 of maximum value.This problem 
an be solved with an adaptation of the algorithm des
ribed inSe
tion 4.3. Let us de�ne an s� t 
ow f � 
 to be an extreme 
ow if f has minimum
ost among all s� t 
ows g � 
 with value(g) = value(f).So an extreme 
ow does not need to have maximum value. An extreme 
ow is a
ow f that has minimum 
ost among all 
ows with the same value as f .
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Let f be a 
ow and let Df = (V;Af ) be the auxiliary graph 
orresponding to f(in the sense of the 
ow augmenting algorithm). De�ne a length fun
tion l : Af ! Ron Af by:

(35) l(a) := (k(a) if a 2 A,�k(a�1) if a�1 2 A
for ea
h a 2 Af .Given this, the following 
an be shown:Proposition 4. f is an extreme 
ow if and only if Df has no dire
ted 
ir
uits ofnegative length (with respe
t to l).Proof. Ne
essity. Suppose that C = (a1; : : : ; ak) is a dire
ted 
ir
uit inDf of negativelength; that is,
(36) length(C) = l(a1) + l(a2) + � � �+ l(ak) < 0:
So a1; : : : ; ak are ar
s in Df . De�ne for i = 1; : : : ; k:
(37) �i := (
(ai)� f(ai) if ai 2 A,f(a�1i ) if a�1i 2 A.
Note that by de�nition of Df , �i > 0 for ea
h i = 1; : : : ; k. Let � := minf�1; : : : ; �kgand de�ne for ea
h a 2 A:
(38) g(a) := 8><>:f(a) + � if a 2 C,f(a)� � if a�1 2 C,f(a) otherwise.
Then g is again an s � t 
ow subje
t to 
, with value(g) = value(f). Moreover onehas
(39) 
ost(g) = 
ost(f) + � � length(C) < 
ost(f):
So f is not an extreme 
ow.SuÆ
ien
y. Let g be any 
ow with value(g) =value(f). De�ne h : Af ! R+ by:
(40) h(a) := g(a)� f(a) if g(a) > f(a), andh(a�1) := f(a)� g(a) if g(a) < f(a),
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for a 2 A, while h(a) = 0 for all other ar
s a of Af . Then h is a 
ir
ulation in Df .Hen
e, by Exer
ise 4.15, there exists a fun
tion � : C ! R+ su
h that h =PC2C �(C)�C . Hen
e 
ost(g) � 
ost(f) = PC2C �(C)length(C). Assuming Df hasno dire
ted 
ir
uits of negative length, it follows that 
ost(g) � 
ost(f). So f is anextreme 
ow.

With this we 
an show:Proposition 5. Let f be an extreme 
ow. Let f 0 arise by 
hoosing in the 
owaugmenting algorithm a path in Df of minimum length with respe
t to l. Then f 0 isan extreme 
ow again.Proof. Suppose Df 0 has a dire
ted 
ir
uit C of negative length with respe
t to thelength fun
tion l0 
orresponding to f 0. As C does not o

ur in Df , part of C o

ursin the 
ow augmenting path 
hosen. But then we 
ould have 
hosen a shorter 
owaugmenting path.
This implies that the min-
ost 
ow problem 
an be solved by 
hoosing in the 
owaugmenting algorithm a shortest path in the auxiliary graph throughout. The �rst
ow, the all-zero 
ow f0, is trivially an extreme 
ow. Hen
e also all further 
owsf1; f2; f3; : : : will be extreme 
ows by Proposition 5. Therefore, also the last 
ow,whi
h is of maximum value, is an extreme 
ow. So we have a solution to the min-
ost
ow problem. (Here we assume that all 
apa
ities are rational.)In this pro
ess, we should be able to �nd a shortest s � t path in the auxiliarygraphs Df . This is indeed possible with the Bellman-Ford method, sin
e Df does nothave dire
ted 
ir
uits of negative length as we saw in Proposition 4.The algorithm 
an be modi�ed so that all lengths are nonnegative throughout theiterations, and this yields a running time of O(M �(m+n logn)), whereM is the valueof a maximum 
ow (assuming all 
apa
ities to be integer). This is not polynomial-time. Ho�man [℄ gave the �rst polynomial-time algorithm to �nd a minimum-
ost
ow of maximum value. At the moment of writing, the asymptoti
ally fastest methodwas given by Orlin [1988,1993℄ and runs in O(m log n(m+ n log n)) time.In a similar way one 
an des
ribe a minimum-
ost 
ir
ulation algorithm. For moreabout network 
ows we refer to the books of Ford and Fulkerson [1962℄ and Ahuja,Magnanti, and Orlin [1993℄.Appli
ation 4.3: Minimum-
ost transportation problem. Beside the data in Appli-
ation 4.2 one may also have a 
ost fun
tion ki;j , giving the 
ost of transporting 1 ton fromfa
tory i to 
ostumer j. Moreover, there is given a 
ost ki of produ
ing 1 ton by fa
toryi (for ea
h i). We want to make a produ
tion and transportation plan that minimizes thetotal 
ost.This problem 
an be solved by assigning also 
osts to the ar
s in Appli
ation 4.2. We
an take the 
osts on the ar
s from bj to t equal to 0.



Se
tion 4.6. Minimum-
ost 
ows 73
Appli
ation 4.4: Routing empty freighters. Histori
ally, in his paper \Optimumutilization of the transportation system", Koopmans [1948℄ was one of the �rst studyingthe minimum-
ost transportation problem, in parti
ular with appli
ation to the problem ofrouting empty freighters. Koopmans 
onsidered the surplus and need of register ton of ship
apa
ity at harbours all over the world, as given by the following table (data are aggregatedto main harbours):

Net re
eipt of dry 
argo in overseas trade, 1925Unit: Millions of metri
 tons per annumHarbour Re
eived Dispat
hed Net re
eiptsNew York 23.5 32.7 �9.2San Fran
is
o 7.2 9.7 �2.5St. Thomas 10.3 11.5 �1.2Buenos Aires 7.0 9.6 �2.6Antofagasta 1.4 4.6 �3.2Rotterdam 126.4 130.5 � 4.1Lisbon 37.5 17.0 20.5Athens 28.3 14.4 13.9Odessa 0.5 4.7 �4.2Lagos 2.0 2.4 �0.4Durban 2.1 4.3 �2.2Bombay 5.0 8.9 �3.9Singapore 3.6 6.8 �3.2Yokohama 9.2 3.0 6.2Sydney 2.8 6.7 �3.9Total 266.8 266.8 0.0
Given is moreover a distan
e table between these harbours. Koopmans wondered howships should be routed between harbours so as to minimize the total amount of ton kilome-ters made by empty ships.This problem is a spe
ial 
ase of the min-
ost 
ow problem. Make a graph with vertexset all harbours, together with two dummy harbours s and t. From any harbour u witha surplus (positive net re
eipt) to any harbour w with a need (negative net re
eipt) makean ar
 with 
ost equal to the distan
e between u and w, and with 
apa
ity 1. Moreover,from s to any harbour u with a surplus �, make an ar
 with 
ost 0 and 
apa
ity equal to�. Similarly, from any harbour w with a need �, make an ar
 to t, with 
ost 0 and 
apa
ityequal to �.Now a maximum 
ow of minimum 
ost 
orresponds to an optimum routing of shipsbetween harbours.A similar model applies to the problem of routing empty box 
ars in a railway network(Feeney [1957℄, 
f. Norman and Dowling [1968℄, White and Bomberault [1969℄).Appli
ation 4.5: Routing of railway sto
k. NS (Nederlandse Spoorwegen = Dut
hRailways) performs a daily s
hedule on its line Amsterdam{Vlissingen, with the following(weekday) timetable:
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ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191Amsterdam d 6.48 7.55 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.56 20.56 21.56 22.56Rotterdam a 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58Rotterdam d 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14.02 15.02 16.00 17.01 18.01 19.02 20.02 21.02 22.02 23.02Roosendaal a 7.40 8.41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54Roosendaal d 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 16.45 17.45 18.44 19.43 20.43 21.43Vlissingen a 8.38 9.38 10.38 11.38 12.38 13.38 14.38 15.38 16.38 17.40 18.40 19.39 20.38 21.38 22.38ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176Vlissingen d 5.30 6.54 7.56 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.55Roosendaal a 6.35 7.48 8.50 9.50 10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.49Roosendaal d 5.29 6.43 7.52 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53 17.53 18.53 19.53 20.52 21.53Rotterdam a 6.28 7.26 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32 16.32 17.33 18.32 19.32 20.32 21.30 22.32Rotterdam d 5.31 6.29 7.32 8.35 9.34 10.34 11.34 12.34 13.35 14.35 15.34 16.34 17.35 18.34 19.34 20.35 21.32 22.34Amsterdam a 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 15.38 16.40 17.38 18.38 19.38 20.38 21.38 22.38 23.38The rides are 
arried out by one type of sto
k, that 
onsists of two-way units that 
anbe 
oupled with ea
h other. The length of the trains 
an be 
hanged at the end stationsand at two intermediate stations: Rotterdam and Roosendaal. So in this example, ea
htrain ride 
onsists of three ride `segments'.Based on the expe
ted number of passengers, NS determines for ea
h ride segment aminimum number of units that should be deployed for that segment:ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191Amsterdam-Rotterdam 3 5 4 3 3 3 3 3 3 4 5 5 3 2 2 2 1Rotterdam-Roosendaal 2 3 4 4 2 3 3 3 3 4 5 5 4 2 2 2 1Roosendaal-Vlissingen 3 2 2 2 2 3 2 3 3 3 4 4 3 2 1ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176Vlissingen-Roosendaal 2 4 4 4 2 2 3 2 2 2 3 3 2 2 2Roosendaal-Rotterdam 2 4 5 4 5 3 3 3 2 3 3 4 3 2 2 2 2Rotterdam-Amsterdam 1 3 5 4 4 5 3 3 3 3 3 4 5 3 2 2 2 2A unit un
oupled from a train at a station 
an be 
oupled at any other later train, inthe same dire
tion or the other. Moreover, for ea
h segment there is a maximum numberof units given that 
an be used for that segment (depending for instan
e on the length ofstation platforms).The 
ompany now wishes to �nd the minimum number of units that should be used torun the s
hedule (ex
luding maintenan
e).As was observed by Bartlett [1957℄ (
f. van Rees [1965℄) this problem 
an be 
onsideredas a minimum-
ost 
ir
ulation problem (
f. Figure 4.4). Make a dire
ted graph D withvertex set all pairs (s; t) where s is any station where the train 
omposition 
an be 
hanged(in our example: the end stations and the two intermediate stations) and t is any time atwhi
h there is a train arriving at or leaving s. For ea
h ride segment make an ar
 from (s; t)to (s0; t0) if the segment leaves s at time t and arrives at s0 at time t0.Moreover, for ea
h station s and ea
h two 
onse
utive times t; t0 at whi
h segmentsarrive or leave, one makes an ar
 from (s; t) to (s; t0). One also does this overnight.Now for ea
h ar
 a 
oming from a segment assign a lower bound d(a) equal to thenumber given in the table above for the segment. Moreover, de�ne an upper bound 
(a)equal to the maximum number of units that 
an be used for that segment. For ea
h ar
 afrom (s; t) to (s; t0) let d(a) := 0 and 
(a) :=1.For ea
h ar
 a de�ne a 
ost k(a) := 0, ex
ept if a 
orresponds to an overnight stay atone of 
ities, when k(a) := 1. Then a minimum-
ost 
ir
ulation 
orresponds to a routing ofthe sto
k using a minimum number of units.There are several variations possible. Instead of an upper bound 
(a) =1 for the ar
s afrom (
; t) to (s; t0) one 
an take 
(a) equal to the 
apa
ity of the storage area at s. Instead
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Figure 4.4
of a 
ost k(a) = 0 at ea
h segment one 
an take k(a) equal to the 
ost of riding one unit ofsto
k over that segment. This 
an be weighed against the 
ost of buying extra units.A similar model for routing airplanes was 
onsidered by Ferguson and Dantzig [1955℄.

Exer
ises
4.16. Determine in the following networks a maximum s� t 
ow of minimum-
ost (
ost initali
s, 
apa
ity in bold):
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4.17. Solve the minimum-
ost transportation problem for the following data sets:(i) m = n = 3; s1 = 9; s2 = 15; s3 = 7; d1 = 5; d2 = 13; d3 = 7; k1 = 2; k2 = 3; k3 =2, 
i;j j = 1 j = 2 j = 3i = 1 6 4 0i = 2 3 9 4i = 3 0 2 6
ki;j j = 1 j = 2 j = 3i = 1 8 3 5i = 2 2 7 1i = 3 2 5 9(ii) m = n = 3; s1 = 11; s2 = 7; s3 = 6; d1 = 9; d2 = 7; d3 = 5; k1 = 4; k2 = 3; k3 = 3,
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i;j j = 1 j = 2 j = 3i = 1 7 4 0i = 2 3 3 2i = 3 0 2 4

ki;j j = 1 j = 2 j = 3i = 1 3 2 4i = 2 2 8 4i = 3 1 3 24.18. Des
ribe the problem of �nding a maximum-weight mat
hing in a bipartite graph asa minimum-
ost 
ow problem.4.19. Redu
e the problem of �nding an extreme 
ow of given value, to the min-
ost 
owproblem as des
ribed above.
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5. Nonbipartite mat
hing

5.1. Tutte's 1-fa
tor theorem and the Tutte-BergeformulaA basi
 result on mat
hings in arbitrary (not ne
essarily bipartite) graphs was foundby Tutte [1947℄. It 
hara
terizes graphs that have a perfe
t mat
hing. A perfe
tmat
hing (or a 1�fa
tor) is a mat
hing M that 
overs all verti
es of the graph. (SoM partitions the vertex set of G.)Berge [1958℄ observed that Tutte's theorem implies a min-max formula for themaximum size of a mat
hing in a graph, the Tutte-Berge formula, whi
h we prove�rst.Call a 
omponent of a graph odd if it has an odd number of verti
es. For anygraph G, de�ne(1) o(G) := number of odd 
omponents of G.Let �(G) denotes the maximum size of a mat
hing. For any graph G = (V;E) andU � V , the graph obtained by deleting all verti
es in U and all edges in
ident withU , is denoted by G� U .Then:Theorem 5.1 (Tutte-Berge formula). For ea
h graph G = (V;E),
(2) �(G) = minU�V 12(jV j+ jU j � o(G� U)):
Proof. To see �, we have for ea
h U � V :(3) �(G) � jU j+�(G�U) � jU j+ 12(jV nU j�o(G�U)) = 12(jV j+jU j�o(G�U)):We prove the reverse inequality by indu
tion on jV j, the 
ase V = ; being trivial.We 
an assume that G is 
onne
ted, sin
e otherwise we 
an apply indu
tion to the
omponents of G.First assume that there exists a vertex v 
overed by all maximum-size mat
hings.Then �(G� v) = �(G)� 1, and by indu
tion there exists a subset U 0 of V n fvg with(4) �(G� v) = 12(jV n fvgj+ jU 0j � o(G� v � U 0)).Then U := U 0 [ fvg gives equality in (2), sin
e
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(5) �(G) = �(G� v) + 1 = 12(jV n fvgj+ jU 0j � o(G� v � U 0)) + 1= 12(jV j+ jU j � o(G� U)).So we 
an assume that there is no su
h v. In parti
ular, �(G) < 12 jV j. We showthat there exists a mat
hing of size 12(jV j � 1), whi
h implies the theorem (takingU := ;).Indeed, suppose to the 
ontrary that ea
h maximum-size mat
hing M misses atleast two distin
t verti
es u and v. Among all su
h M;u; v, 
hoose them su
h thatthe distan
e dist(u; v) of u and v in G is as small as possible.If dist(u; v) = 1, then u and v are adja
ent, and hen
e we 
an augment M by theedge uv, 
ontradi
ting the maximality of jM j. So dist(u; v) � 2, and hen
e we 
an
hoose an intermediate vertex t on a shortest u�v path. By assumption, there existsa maximum-size mat
hing N missing t. Choose su
h an N with jM \N j maximal.By the minimality of dist(u; v), N 
overs both u and v. Hen
e, as M and N 
overthe same number of verti
es, there exists a vertex x 6= t 
overed by M but not by N .Let x 2 e = xy 2M . Then y is 
overed by some edge f 2 N , sin
e otherwise N [fegwould be a mat
hing larger than N . Repla
ing N by (N n ffg)[ feg would in
reaseits interse
tion with M , 
ontradi
ting the 
hoi
e of N .
(This proof is based on the proof of Lov�asz [1979℄ of Edmonds' mat
hing polytopetheorem.)The Tutte-Berge formula immediately implies Tutte's 1-fa
tor theorem.Corollary 5.1a (Tutte's 1-fa
tor theorem). A graph G = (V;E) has a perfe
t mat
h-ing if and only if G� U has at most jU j odd 
omponents, for ea
h U � V .Proof. Dire
tly from the Tutte-Berge formula (Theorem 5.1), sin
e G has a perfe
tmat
hing if and only if �(G) � 12 jV j.

In the following se
tions we will show how to �nd a maximum-size mat
hingalgorithmi
ally.With Gallai's theorem, the Tutte-Berge formula implies a formula for the edge
over number �(G), where o(U) denotes the number of odd 
omponents of the sub-graph G[U ℄ of G indu
ed by U (meaning that G[U ℄ = (U; fe 2 E j e � Ug)):Corollary 5.1b. Let G = (V;E) be a graph without isolated verti
es. Then
(6) �(G) = maxU�V jU j+ o(U)2 :
Proof. By Gallai's theorem (Theorem 3.1) and the Tutte-Berge formula (Theorem5.1),
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(7) �(G) = jV j � �(G) = jV j � minW�V jV j+ jW j � o(V nW )2 = maxU�V jU j+ o(U)2 :
Exer
ises5.1. (i) Show that a tree has at most one perfe
t mat
hing.(ii) Show (not using Tutte's 1-fa
tor theorem) that a tree G = (V;E) has a perfe
tmat
hing if and only if the subgraph G� v has exa
tly one odd 
omponent, forea
h v 2 V .5.2. Let G be a 3-regular graph without any bridge. Show that G has a perfe
t mat
hing.(A bridge is an edge e not 
ontained in any 
ir
uit; equivalently, deleting e in
reasesthe number of 
omponents; equivalently, feg is a 
ut.)5.3. Let A1; : : : ; An be a 
olle
tion of nonempty subsets of the �nite set X so that ea
helement in X is in exa
tly two sets among A1; : : : ; An. Show that there exists a setY interse
ting all sets A1; : : : ; An, and satisfying jY j � t if and only if for ea
h subsetI of f1; : : : ; ng the number of 
omponents of (Ai j i 2 I) 
ontaining an odd numberof sets in (Ai j i 2 I) is at most 2t� jIj.(Here a subset Y of X is 
alled a 
omponent of (Ai j i 2 I) if it is a minimal nonemptysubset of X with the property that for ea
h i 2 I: Ai \ Y = ; or Ai � Y .)5.4. Let G = (V;E) be a graph and let T be a subset of V . Then G has a mat
hing
overing T if and only if the number of odd 
omponents of G�W 
ontained in T isat most jW j, for ea
h W � V .5.5. Let G = (V;E) be a graph and let b : V ! Z+ . Show that there exists a fun
tionf : E ! Z+ so that for ea
h v 2 V :

(8) Xe2E;v2e f(e) = b(v)
if and only if for ea
h subset W of V the number �(W ) is at most b(V nW ).(Here for any subset W of V , b(W ) := Pv2W b(v). Moreover, �(W ) denotes thefollowing. Let U be the set of isolated verti
es in the graph GjW indu
ed by W andlet t denote the number of 
omponents C of the graph GjW nU with b(C) odd. Then�(W ) := b(U) + t.)5.6. Let G = (V;E) be a graph and let b : V ! Z+ . Show that G has a subgraphG0 = (V;E0) su
h that degG0(v) = b(v) for ea
h v 2 V if and only if for ea
h twodisjoint subsets U and W of V one has(9) Xv2U b(v) � q(U;W ) + Xv2W(b(v)� dG�U (v)):



Se
tion 5.2. Cardinality mat
hing algorithm 81
Here q(U;W ) denotes the number of 
omponents K of G� (U [W ) for whi
h b(K)plus the number of edges 
onne
ting K and W , is odd. Moreover, dG�U (v) is thedegree of v in the subgraph indu
ed by V n U .

5.2. Cardinality mat
hing algorithmWe now investigate the problem of �nding a maximum-
ardinality mat
hing algorith-mi
ally. Like in the bipartite 
ase, the key is to �nd an augmenting path. However,the idea for bipartite graphs to orient the edges using the two 
olour 
lasses, does notapply to nonbipartite graphs.Yet one 
ould try to �nd an M -augmenting path by �nding a so-
alled M -alternating walk, but su
h a path 
an run into a loop that 
annot immediately bedeleted. It was J. Edmonds who found the tri
k to resolve this problem, namelyby `shrinking' the loop (whi
h he 
alled a `blossom'). Then applying re
ursion to asmaller graph solves the problem.We �rst des
ribe the operation of shrinking. Let X and Y be sets. Then we de�neX=Y as follows:(10) X=Y := X if X \ Y = ;,X=Y := (X n Y ) [ fY g if X \ Y 6= ;.So if G = (V;E) is a graph and C � V , then V=C arises from V by deleting allverti
es in C, and adding one new vertex 
alled C. For any edge e of G, e=C = e ife is disjoint from C, while e=C = uC if e = uv with u 62 C, v 2 C. (If e = uv withu; v 2 C, then e=C is a loop CC; they 
an be negle
ted in the 
ontext of mat
hings.)Then for any F � E:(11) F=C := ff=C j f 2 Fg:So G=C := (V=C;E=C) is again a graph. We say that G=C arises from G by shrinkingC. Let G = (V;E) be a graph and let M be a mat
hing in G, and let W be the set ofverti
es missed by M . A walk P = (v0; v1; : : : ; vt) is 
alled M-alternating if for ea
hi = 1; : : : ; t� 1 exa
tly one of vi�1vi and vivi+1 belongs to M . Note that one 
an �nda shortest M -alternatingW �W walk of positive length, by 
onsidering the auxiliarydire
ted graph D = (V;A) with(12) A := f(w;w0) j 9x 2 V : fw; xg 2 E; fx;w0g 2Mg:Then M -alternating W �W walks 
orrespond to dire
ted walks in D from a vertexin W to a vertex that is adja
ent to at least one vertex in W .
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So an M -augmenting path is an M -alternating W �W walk of positive length,in whi
h all verti
es are distin
t. By Theorem 3.2, a mat
hing M has maximum sizeif and only if there is no M -augmenting path. We 
all an M -alternating walk P anM-blossom if v0; : : : ; vt�1 are distin
t, v0 is missed by M , and vt = v0.The 
ore of the algorithm is the following observation.Theorem 5.2. Let C be an M -blossom in G. Then M has maximum size in G ifand only if M=C has maximum size in G=C.Proof. Let C = (v0; v1; : : : ; vt), G0 := G=C and M 0 := M=C.First let P be anM -augmenting path in G. We may assume that P does not startat v0 (otherwise we 
an reverse P ). If P does not traverse any vertex in C, then Pis also M 0-augmenting in G0. If P does traverse a vertex in C, we 
an de
ompose Pas P = QR, where Q ends at a vertex in C, and no other vertex on Q belongs to C.Then by repla
ing the last vertex of Q by C makes Q to an M 0-augmenting path inG0. Conversely, let P 0 be an M 0-augmenting path in G0. If P 0 does not traverse vertexC of G0, then P 0 is also an M -augmenting path in G. If P 0 traverses vertex C of G0,we may assume it ends at C (as C is missed by M 0). So we 
an repla
e C in P 0 bysome vertex vi 2 C to obtain a path Q in G ending at vi. If i is odd, extending Qby vi+1; : : : ; vt�1; vt gives an M -augmenting path in G. If i is even, extending Q byvi�1; : : : ; v1; v0 gives an M -augmenting path in G.
Another useful observation is (where a W � v walk is a walk starting at a vertexin W and ending at v):Theorem 5.3. Let P = (v0; v1; : : : ; vt) be a shortest even-lengthM-alternatingW�vwalk. Then either P is simple or there exist i < j su
h that vi = vj, i is even, j isodd, and v0; : : : ; vj�1 are all distin
t.Proof. Assume P is not simple. Choose i < j su
h that vj = vi and su
h that j is assmall as possible. If j � i is even, we 
an delete vi+1; : : : ; vj from P so as to obtaina shorter M -alternating W � v walk. So j � i is odd. If j is even and i is odd, thenvi+1 = vj�1 (as it is the vertex mat
hed to vi = vj), 
ontradi
ting the minimality ofj.
We now des
ribe an algorithm for the following problem:(13) given: a mat
hing M ;�nd: a mat
hing N with jN j = jM j+ 1 or 
on
lude that M is a maximum-sizemat
hing.Let W be the set of verti
es missed by M .
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(14) Case 1. There is no M -alternating W �W walk. Then M has maximum size(as there is no M -augmenting path).Case 2. There is an M -alternating W �W walk. Let P = (v0; v1; : : : ; vt) be ashortest su
h walk.Case 2a. P is path. Hen
e P is an M -augmenting path. Then output N :=M4EP .Case 2b. P is not a path. That is, not all verti
es in P are di�erent. Choosei < j su
h that vi = vj with j as small as possible. Reset M :=M4fv0v1; v1v2; : : : ; vi�1vig. Then C := (vi; vi+1; : : : ; vj) is anM -blossom.Apply the algorithm (re
ursively) to G0 = G=C and M 0 :=M=C.� If it gives an M 0-augmenting path P 0 in G0, transform P 0 to anM -augmenting path in G (as in the proof of Theorem 5.2).� If it 
on
ludes that M 0 has maximum size in G0, then M has max-imum size in G (by Theorem 5.2).

This gives a polynomial-time algorithm to �nd a maximum-size mat
hing, whi
his a basi
 result of Edmonds [1965
℄.Theorem 5.4. Given an undire
ted graph, a maximum-size mat
hing 
an be foundin time O(jV j2jEj).Proof. The algorithm dire
tly follows from algorithm (14), sin
e one 
an iterativelyapply it, starting with M = ;, until a maximum-size mat
hing is attained.By using (12), a shortestM -alternatingW �W walk 
an be found in time O(jEj).Moreover, the graph G=C 
an be 
onstru
ted in time O(jEj). Sin
e the re
ursion hasdepth at most jV j, ea
h appli
ation of algorithm (14) takes O(jV jjEj) time. Sin
e thenumber of appli
ations is at most jV j, we have the time bound given in the theorem.
In fa
t, the method 
an be sharpened to O(jV j3) (Balinski [1969℄), O(jV j5=2) (Evenand Kariv [1975℄) and even to O(jV j1=2jEj) (Mi
ali and Vazirani [1980℄). For surveys,see S
hrijver [2003℄.Appli
ation 5.1: Pairing. If a 
ertain group of people has to be split into pairs, where
ertain pairs �t and other pairs do not �t (for instan
e, when assigning hotel rooms or busseats to a touring group), we have an example of a (perfe
t) mat
hing problem.Appli
ation 5.2: Two-pro
essor s
heduling. Suppose we have to 
arry out 
ertainjobs, where some of the jobs have to be done before other. We 
an represent this by apartially ordered set (X;�) where X is the set of jobs and x < y indi
ates that job x hasto be done before job y. Ea
h job takes one time-unit, say one hour.Suppose now that there are two workers, ea
h of whi
h 
an do one job at a time.Alternatively, suppose that you have one ma
hine, that 
an do at ea
h moment two jobs
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simultaneously (su
h a ma
hine is 
alled a two-pro
essor).We wish to do all jobs within a minimum total time span. This problem 
an be solvedwith the mat
hing algorithm as follows. Make a graph G = (X;E), with vertex set X (theset of jobs) and with edge set(15) E := ffu; vg j u 6� v and v 6� ug.(So (X;E) is the 
omplementary graph of the `
omparability graph' asso
iated with (X;�).)Consider now a possible s
hedule of the jobs. That is, we have a sequen
e p1; : : : ; pt,where ea
h pi is either a singleton vertex or an edge of G so that p1; : : : ; pt partition X andso that if x 2 pi and y 2 pj and x < y then i < j.14Now the pairs in this list should form a mat
hing M in G. Hen
e t = jXj � jM j. Inparti
ular, t 
annot be smaller than jXj � �(G), where �(G) is the mat
hing number of G.Now it 
an be shown that in fa
t one 
an always make a s
hedule with t = jXj � �(G).To this end, let Q be a minimum partition of V into verti
es and edges of G, and let Y bethe set of minimal elements of X. If q � Y for some q 2 Q, we 
an repla
e X by X n q andQ by Q n fqg, and apply indu
tion.So we may assume that ea
h y 2 Y is 
ontained in an edge yz 2 Q with z 62 Y . Choosean edge yz 2 Q su
h that y 2 Y and su
h that the height of z is as small as possible. (Theheight of an element z is the maximum size of a 
hain in (X;�) with maximum element z.)As z 62 Y there exists an y0z0 2 Q with y0 2 Y and y0 < z.Now 
learly yy0 is an edge of G, as y and y0 are minimal elements. Moreover, zz0 is anedge of G. For if z < z0 then y0 < z < z0, 
ontradi
ting the fa
t that y0z0 2 EG; and ifz0 < z than z0 would have smaller height than z.So repla
ing yz and y0z0 in Q by yy0 and zz0, we have yy0 � Y , and we 
an applyindu
tion as before.
Exer
ises5.7. Apply the mat
hing augmenting algorithm to the mat
hings in the following graphs:

(i)

(ii)
14Here we identify a vertex v with the set fvg.
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(iii)

5.3. Weighted mat
hing algorithmEdmonds [1965a℄ proved that also the maximum-weight mat
hing problem 
an besolved in polynomial time. Equivalently, the minimum-weight perfe
t mat
hing prob-lem 
an be solved in polynomial time. It is the problem:(16) given: a graph G = (V;E) and a `weight' fun
tion w : E ! Q ;�nd: a perfe
t mat
hing M minimizingPe2M w(e).We des
ribe the algorithm, assuming without loss of generality that G has at leastone perfe
t mat
hing and that w(e) � 0 for ea
h edge e (we 
an add a 
onstant toall edge weights without 
hanging the problem).Like the 
ardinality mat
hing algorithm, the weighted mat
hing algorithm is basedon shrinking sets of verti
es. Unlike the 
ardinality mat
hing algorithm however, forweighted mat
hings one has to `deshrink' sets of verti
es (the reverse operation ofshrinking). Thus we have to keep tra
k of the shrinking history throughout theiterations.The algorithm is `primal-dual'. The `vehi
le' 
arrying us to a minimum-weightperfe
t mat
hing is a pair of a nested15 
olle
tion 
 of odd-size subsets of V , and afun
tion � : 
! Q satisfying:(17) (i) �(U) � 0 if U 2 
 with jU j � 3,(ii) XU2
e2Æ(U) �(U) � w(e) for ea
h e 2 E.
This implies that for ea
h perfe
t mat
hing N in G one has w(N) �XU2
 �(U), sin
e(18) w(N) =Xe2N w(e) �Xe2N XU2
e2Æ(U) �(U) =

XU2
�(U)jN \ Æ(U)j �XU2
 �(U):
Notation and assumptions. Let be given 
 and � : 
! Q . De�ne15A 
olle
tion 
 of subsets of a set V is 
alled nested if U \W = ; or U � W or W � U for anyU;W 2 
.
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(19) w�(e) := w(e)� XU2
e2Æ(U) �(U)for any edge e 2 E. (So (17)(ii) implies w�(e) � 0.)G=
 denotes the graph obtained from G by shrinking all sets in 
max, the set ofin
lusionwise maximal sets in 
. We will assume throughout that fvg 2 
 for ea
hv 2 V . Hen
e, as 
 is nested and 
overs V , 
max is a partition of V .When shrinking a set U 2 
, we denote the new vertex representing the shrunkset U just by U . So G=
 has verti
es the sets in 
max, with two distin
t elementsU;U 0 2 
max adja
ent if and only if G has an edge 
onne
ting U and U 0. We denoteany edge of G=
 by the original edge in G.Throughout we restri
t ourselves to 
 and � satisfying:(20) for ea
h U 2 
 with jU j � 3, the graph obtained from GjU by shrinking allin
lusionwise maximal proper subsets of U that are in 
, has a Hamiltonian
ir
uit CU of edges e with w�(e) = 0.

X

PSfrag repla
ements
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overed by MFigure 5.1. An M -alternating forest
M-alternating forests. An important role in the algorithm is played by a so-
alled`M -alternating forest' relative to a mat
hing M (
f. Figure 5.1).Let M be a mat
hing in a graph G = (V;E) and let W be the set of verti
esmissed by M . Then a subset F of E is an M-alternating forest in G if F is a forest
ontaining M su
h that ea
h 
omponent of (V; F ) 
onsists either of an edge in M
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or 
ontains exa
tly one vertex in W and su
h that ea
h path in F starting in W isM -alternating.The set of verti
es v 2 V for whi
h there exists an even-length (odd-length,respe
tively) W � v path in F is denoted by even(F ) (odd(F ), respe
tively).The algorithm. We iterate with 
 and � : 
 ! Q satisfying (17) and (20), amat
hing M in G=
 and an M -alternating forest F in G=
 with w�(F ) = 0.Initially, we set M := ;, F := ;, 
 := ffvg j v 2 V g, and �(fvg) := 0 forea
h v 2 V . Then, as long as M is not a perfe
t mat
hing in G=
, we perform thefollowing iteratively:(21) Reset �(U) := �(U) � � for U 2 odd(F ) and �(U) := �(U) + � for U 2even(F ), where � is the largest value su
h that (17) is maintained. Afterthat (i) there exists an edge e of G=
 with w�(e) = 0 su
h that einterse
ts even(F ) but not odd(F ),or (ii) there exists a U 2 odd(F ) with jU j � 3 and �(U) = 0.First assume (i) holds. If only one end of e belongs to even(F ), extend Fby e. If both ends of e belong to even(F ) and F [ feg 
ontains a 
ir
uitC,let U := V C and CU := C, add U to 
 (de�ning �(U) := 0), and repla
e Fby F=U and M by M=U . If both ends of e belong to even(F ) and F [ feg
ontains an M -augmenting path, augment M and reset F := M .Next assume (ii) holds. Delete U from 
, repla
e F by F [ P [ N andM by M [ N , where P is the even-length path in CU 
onne
ting the twoedges of F in
ident with U and where N is the mat
hing in CU 
overing allverti
es in U that are not 
overed by M .(Note that in this iteration � is bounded, sin
e PU2
 �(U) is bounded (by (18), asthere is at least one perfe
t mat
hing), and sin
e jeven(F )j > jodd(F )j (as M is notperfe
t).)If M is a perfe
t mat
hing in G=
, we are done: by (20) we 
an expand M to aperfe
t mat
hing N in G with w�(N) = 0 and jN \ Æ(U)j = 1 for ea
h U 2 
; then Nhas equality throughout in (18), and hen
e it is a minimum-weight perfe
t mat
hing.Theorem 5.5. There are at most jV j2 iterations.Proof. In any iteration where we augmentM , the value of jV (G=
)j�2jM j de
reasesby 2. If there is no mat
hing augmentation, this value remains invariant. So thereare at most 12 jV j mat
hing augmentations.Let Veven be the set of verti
es v 2 V that are shrunk to a vertex in even(F ).Let 
0 be the set of verti
es of G=
 that do not belong to even(F ). Then in anyiteration with no mat
hing augmentation, 2jVevenj + j
0j in
reases. Sin
e this value
annot ex
eed 2jV j, between any two mat
hing augmentations there are at most 2jV j
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iterations.

This gives the theorem of Edmonds [1965a℄:Corollary 5.5a. A minimum-weight perfe
t mat
hing 
an be found in polynomialtime.Proof. The nestedness of 
 implies that j
j � 2jV j (whi
h is an easy exer
ise | seeExer
ise 5.10). Hen
e ea
h iteration 
an be performed in polynomial time. With anyU 2 
 with jU j � 3 we should keep the Hamiltonian 
ir
uit CU of (20) | whi
h wehad obtained earlier when shrinking U .
As a 
onsequen
e one 
an derive:Corollary 5.5b. In any graph with weight fun
tion on the edges, a maximum-weightmat
hing 
an be found in polynomial time.Proof. Left to the reader. (Exer
ise 5.9.)
The above algorithm 
an be implemented in time O(jV j3), whi
h is a result ofGabow [1973℄ and Lawler [1976℄. Faster algorithms were given by Galil, Mi
ali, andGabow [1986℄ (O(jEjjV j log jV j)) and Gabow [1990℄ (O(jV jjEj + jV j2 log jV j)).For more about mat
hings we refer to the book of Lov�asz and Plummer [1986℄.Appli
ation 5.3: Optimal pairing. In several pra
ti
al situations one has to �nd an`optimal pairing', for example, when s
heduling 
rews for airplanes. Also if one has toassign bus seats optimally to the parti
ipants of an organized tour, or to a

ommodate theparti
ipants most satisfa
torily in two-bed hotel rooms, one has to solve a maximum-weightperfe
t mat
hing problem.Appli
ation 5.4: Airline timetabling. A European airline 
ompany has for its European
ights a number of airplanes available. Ea
h plane 
an make on any day two return 
ights toEuropean destinations (not ne
essarily the same destinations). The pro�t one makes on any
ight depends on the departure and arrival times of the 
ight (also due to inter
ontinental
onne
tions). The 
ompany wants to make a timetable so that it 
an be performed bythe available 
eet and so that the total pro�t is maximized. Assume that the number ofdestinations to be rea
hed is equal to twi
e the number of airplanes available.To solve this problem, 
onsider the 
omplete graph with vertex set all possible destina-tions. For ea
h edge of this graph, 
onne
ting destinations B and C say, one 
al
ulates thepro�t that will be made if one and the same air plane will make its 
ights to B and C (inone order or the other). So one determines the optimum s
hedule for the 
ights to B and Cso that the two return 
ights 
an be done by the same airplane and so that the total pro�ton the two 
ights is maximized.
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Now a timetable yielding maximum pro�t is found by determining a maximum-weightperfe
t mat
hing in this graph.Appli
ation 5.5: Chinese postman problem. The Chinese postman problem, �rststudied by Guan [1960℄, 
onsists of the following. Given a 
onne
ted graph G = (V;E) anda length fun
tion l : E ! Q + , �nd a minimum-length tour T that traverses ea
h edge atleast on
e.It is not diÆ
ult to see that if ea
h vertex of G has an even degree, then the optimaltour traverses ea
h edge exa
tly on
e. But if the graph has verti
es of odd degree, 
ertainedges have to be traversed more than on
e. To �nd su
h edges we 
an pro
eed as follows.First determine the set U of verti
es of odd degree. Note that jU j is even. For ea
h pairu; u0 of verti
es in U determine the distan
e d(u; u0) between u and u0 in the graph G (takingl as length). Consider the 
omplete graph H = (U;E0) on U . Determine a minimum-weightperfe
t mat
hing M in H, taking d as weight fun
tion. For ea
h edge uu0 in M we 
andetermine a path Pu;u0 in G of length d(u; u0). It 
an be shown that any two di�erent su
hpaths do not have any edge in 
ommon (assuming that ea
h edge has positive length) |see Exer
ise 5.13. Let ~E be the set of edges o

urring in the Pu;u0 (uu0 2 M). Then thereexists a tour T so that ea
h edge e 2 E n ~E is traversed exa
tly on
e and ea
h edge e 2 ~E istraversed exa
tly twi
e. This tour T is a shortest `Chinese postman tour' (Exer
ise 5.14).Appli
ation 5.6: Christo�des' approximative algorithm for the traveling sales-man problem. Christo�des [1976℄ designed the following algorithm to �nd a short travel-ing salesman tour in a graph (generally not the shortest however). The traveling salesmanproblem is the problem, given a �nite set V and a `length' fun
tion l : V �V ! Q + , to �nda shortest traveling salesman tour. A traveling salesman tour (or Hamiltonian 
ir
uit) is a
ir
uit in the 
omplete graph on V traversing ea
h vertex exa
tly on
e.Suppose that the length fun
tion is symmetri
 (that is, l(u; v) = l(v; u) for all u; v 2 V )and satis�es the triangle inequality:(22) l(u;w) � l(u; v) + l(v; w)for all u; v; w 2 V . Then a reasonably short traveling salesman tour 
an be found as follows.First determine a shortest spanning tree S (with the greedy algorithm). Next, let U bethe set of verti
es that have odd degree in S. Find a shortest perfe
t mat
hing M on U ,taking l as weight fun
tion. Now ES [M forms a set of edges su
h that ea
h vertex haseven degree. (If an edge o

urs both in ES and in M , we take it as two parallel edges.) Sowe 
an make a 
y
le T su
h that ea
h edge in ES [M is traversed exa
tly on
e. Then Ttraverses ea
h vertex at least on
e. By inserting short
uts we obtain a traveling salesmantour T 0 with length(T 0) �length(T ).How far away is the length of T 0 from the length of a shortest traveling salesman tour?Let � be the length of a shortest traveling salesman tour. It is not diÆ
ult to show that:(23) (i) length(S) � �;(ii) length(M) � 12�.
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(Exer
ise 5.18.) Hen
e(24) length(T 0) �length(T ) =length(S)+length(M) � 32�.So the tour obtained with Christo�des' algorithm is not longer than 32 times the optimaltour.The fa
tor 32 seems quite large, but it is the smallest fa
tor for whi
h a polynomial-timemethod is known. Don't forget moreover that it is a worst-
ase bound, and that in pra
ti
e(or on average) the algorithm might have a mu
h better performan
e.
Exer
ises5.8. Find with the weighted mat
hing algorithm a minimum-weight perfe
t mat
hing inthe following weighted graphs:

(i) 1

1

1
3

4

2

7

5

6

PSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M

(ii)
0

0

0

0

1

6

50

0

1

2

4

1

8

5

6

7

3

PSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M

5.9. Derive Corollary 5.5b from Corollary 5.5a.5.10. A 
olle
tion 
 of subsets of a �nite set V is 
alled 
ross-free if:
(25) if X;Y 2 
, then X � Y , or Y � X, or X \ Y = ;, or X [ Y = V .
Show that if 
 is 
ross-free, then j
j � 4jV j.5.11. Find a shortest Chinese postman route in the graph in Figure 5.2.5.12. Find a shortest Chinese postman route in the map of Figure 5.3.
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Figure 5.2
5.13. Show that the paths found in the algorithm for the Chinese postman problem pairwisedo not have any edge in 
ommon (if ea
h edge has positive length).5.14. Show that the tour found in Appli
ation 5.5 is indeed a shortest Chinese postmantour.5.15. Apply Christo�des' algorithm to the table in Exer
ise 1.8.5.16. Let G = (V;E) be a graph and let T � V with jT j even. Call a subset F of E aT -join if T is equal to the set of verti
es of odd degree in the graph (V; F ).Derive from Corollary 5.5a that a minimum-weight T -join 
an be found in polynomialtime.5.17. Let G = (V;E) be a graph and let l : E ! Q be a length fun
tion su
h that ea
h
ir
uit has nonnegative length. Let s; t 2 V .Derive from the minimum-weight perfe
t mat
hing algorithm an algorithm to �nd aminimum-length s� t path in G.5.18. Show (23).
5.4. The mat
hing polytopeThe weighted mat
hing algorithm of Edmonds [1965a℄ gives as a side result a 
hara
-terization of the perfe
t mat
hing polytope Pperfe
t mat
hing(G) of any graph G. Thisis Edmonds' mat
hing polytope theorem.
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Figure 5.3. Part of the Xuhui distri
t of Shanghai
The perfe
t mat
hing polytope of a graphG = (V;E), denoted by Pperfe
t mat
hing(G),is the 
onvex hull of the in
iden
e ve
tors of the perfe
t mat
hings in G.16 That is,(26) Pperfe
t mat
hing(G) =
onv.hullf�M jM perfe
t mat
hing in Gg.So Pperfe
t mat
hing(G) is a polytope in R E .In Se
tion 3.6 we saw that for a bipartite graph G = (V;E), the perfe
t mat
hingpolytope is fully determined by the following set of inequalities:(27) (i) xe � 0 for ea
h e 2 E;(ii) Pe3v xe = 1 for ea
h v 2 V .These inequalities are not enough for, say, K3: taking x(e) := 12 for ea
h edge e of K3gives a ve
tor x satisfying (27) but not belonging to the perfe
t mat
hing polytopeof K3.Edmonds [1965a℄ showed that it is enough to add the following set of inequalities:

(28) Xe2Æ(U) xe � 1 for ea
h odd subset U of V .
It is 
lear that for any perfe
t mat
hing M in G the in
iden
e ve
tor �M satis�es(28). So 
learly, Pperfe
t mat
hing(G) is 
ontained in the polyhedron Q de�ned by (27)and (28). The essen
e of Edmonds' theorem is that one does not need more.In order to show Edmonds' theorem, we derive from Edmonds' algorithm the16For any �nite set X and any subset Y of X, the in
iden
e ve
tor or in
iden
e fun
tion of asubset Y of X is the ve
tor �Y 2 RX de�ned by: �Yx := 1 if x 2 Y and �Yx := 0 otherwise.
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following theorem, where Podd(V ) denotes the 
olle
tion of odd subsets of V :Theorem 5.6. Let G = (V;E) be a graph and let w : E ! Q be a `weight' fun
tion.Then the minimum weight of a perfe
t mat
hing is equal to the maximum value ofPX2Podd(V ) �(X) where � ranges over all fun
tions � : Podd(V )! Q satisfying (17).Proof.We may assume that w is nonnegative: if � is the minimum value of w(e) overall edges e, de
reasing ea
h w(e) by � de
reases both the maximum and the minimumby 12 jV j�.The fa
t that the minimum is not smaller than the maximum follows from (18).Equality follows from the fa
t that in the algorithm the �nal perfe
t mat
hing andthe �nal fun
tion � have equality throughout in (18).

This implies:Corollary 5.6a (Edmonds' perfe
t mat
hing polytope theorem). The perfe
t mat
h-ing polytope of any graph G = (V;E) is determined by (27) and (28).Proof. By Theorem 5.6 and LP-duality, for any weight fun
tion w 2 Q E , the min-imum weight of a perfe
t mat
hing is equal to the minimum of wTx taken over thepolytope determined by (27) and (28). Hen
e the two polytopes 
oin
ide, by Theorem2.1.
From this one 
an derive Edmonds' mat
hing polytope theorem, 
hara
terizingthe mat
hing polytope of a graph G = (V;E), denoted by Pmat
hing(G), whi
h is the
onvex hull of the in
iden
e ve
tors of the mat
hings in G. That is,(29) Pmat
hing(G) =
onv.hullf�M jM mat
hing in Gg.

Again, Pmat
hing(G) is a polytope in R E .Corollary 5.6b (Edmonds' mat
hing polytope theorem). For any graph G = (V;E)the mat
hing polytope is determined by:
(30) (i) xe � 0 for ea
h e 2 E;(ii) Pe3v xe � 1 for ea
h v 2 V ;(iii) Pe�U xe � b12 jU j
 for ea
h U � V with jU j odd.
Proof. Left to the reader (Exer
ise 5.21).

This in turn has the following 
onsequen
e:
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Corollary 5.6
. Let G = (V;E) be a graph and let w : E ! Q +. Then the maximumweight of a mat
hing is equal to the minimum value of
(31) Xv2V yv +XU�V zUb12 jU j
;
where y 2 Q V+ and z 2 Q P odd(V )+ satisfy Pv2e yv +PU2Podd(V );e�U zU � w(e) for ea
hedge e.Proof. Dire
tly with LP-duality from Corollary 5.6b.

In fa
t, Cunningham and Marsh' theorem shows that if w is integer-valued, we
an restri
t y and z to integer ve
tors | see Se
tion 5.5.
Exer
ises5.19. Show that for any graph G = (V;E), if the inequalities (30)(i)(ii) fully determine themat
hing polytope, then G is bipartite.5.20. Show that the perfe
t mat
hing polytope of a graph G = (V;E) is also determinedby the following inequalities:

(32) xe � 0 for ea
h e 2 E;Xe2Æ(U)xe � 1 for ea
h odd subset U of V ;Xe2E xe = 12 jV j.
5.21. Derive Edmonds' mat
hing polytope theorem from Edmonds' perfe
t mat
hing poly-tope theorem.5.22. Derive from Edmonds mat
hing polytope theorem the linear inequalities determiningthe 
onvex hull of all symmetri
 permutation matri
es.5.23. Let G = (V;E) be a graph. Show that the 
onvex hull of the in
iden
e ve
tors ofmat
hings of size k is equal to the interse
tion of the mat
hing polytope of G withthe hyperplane fx j 1Tx = kg.5.24. Let G = (V;E) be a graph. Show that the 
onvex hull of the in
iden
e ve
tors ofmat
hings of size at least k and at most l is equal to the interse
tion of the mat
hingpolytope of G with the set fx j k � 1Tx � lg.
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5.5. The Cunningham-Marsh formulaCunningham and Marsh [1978℄ showed a more general result, whi
h generalizes bothEdmonds' mat
hing polytope theorem and the Tutte-Berge formula. We give a dire
tproof.Theorem 5.7 (Cunningham-Marsh formula). In Corollary 5.6
, if w is integer, we
an take y and z integer.Proof. We must give a mat
hing M and integer values yv; zU as required with w(M)equal to (31).Let T be equal to the maximum weight of a mat
hing and let M be the set ofmat
hingsM of weight T . We prove the theorem by indu
tion on T . We may assumethat G is the 
omplete graph on V . Let G;w be a 
ounterexample to the theoremwith (�xing V and T ) Pe2E w(e) as large as possible.First assume that there exists a vertex u of G 
overed by every mat
hingM 2M.Let w0 be obtained from w by de
reasing w(e) by 1 for ea
h edge e in
ident with uwith w(e) � 1. Then the maximum of w0(M) over all mat
hings M is equal to T � 1,sin
e ea
h M 2 M 
ontains an edge e in
ident with u with w(e) � 1. Hen
e, byindu
tion, there exist y0v; z0U as required for w0. Now in
reasing y0u by 1 and leavingall other values of y0v; z0U invariant, gives yv; zU as required for w.So we may assume that for ea
h vertex v there exists a mat
hing M 2 M not
overing v. We show that for ea
h three distin
t verti
es a; b; 
 2 V one has(33) w(a
) � minfw(ab); w(b
)g:Indeed, by the maximality of Pe2E w(e) there exists a mat
hing M 2M 
ontaininga
. (Otherwise we 
ould in
rease the weight of a
 without in
reasing T , 
ontradi
tingthe maximality of Pe2E w(e).) Moreover, there exists a mat
hing M 0 2 M not
overing b. Let P be the 
omponent ofM[M 0 
ontaining a
. At least one 
omponent,Q say, of P n fa
g does not 
ontain b. By symmetry of a and 
 we may assume thatQ 
ontains a. Then M4(Q [ fa
g) and M 04(Q [ fabg) are mat
hings again. Noww(M4(Q[fa
g)) � T = w(M), and so w(Q\M 0) � w(Q\M)+w(a
). Moreover,w(M 04(Q [ fabg)) � T = w(M 0), and so w(Q \M) + w(ab) � w(Q \M 0). Hen
ew(ab) � w(a
), proving (33).For ea
h natural number n � 1 let Gn be the graph on V with as edges all e 2 Ewith w(e) � n, and let Kn be the set of 
omponents of Gn. Consider some n andsome U 2 Kn.By (33), GjU is a 
omplete graph. We show that ea
h M 2 M 
ontains exa
tlyb12 jU j
 edges that are in EU (= set of edges 
ontained in U).Suppose to the 
ontrary that U 
ontains two verti
es a and b su
h that a and b arenot 
overed by any edge inM\EU . If a or b is not 
overed byM we 
ould repla
e theedge in M in
ident with a or b (if any) by the edge ab, thereby in
reasing the weight
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| a 
ontradi
tion. So we may assume that a
; bd 2 M for some 
; d 62 U . By (33),w(
d) � minfw(a
); w(ad)g � minfw(a
); w(ab); w(bd)g = minfw(a
); w(bd)g. Sin
ew(ab) > maxfw(a
); w(bd)g this implies w(ab) + w(
d) > w(a
) + w(bd). Therefore,repla
ing a
 and bd in M by ab and 
d would in
rease the weight | a 
ontradi
tion.So jM \ EU j = b12 jU j
.For ea
h U � V with jU j > 1, de�ne zU as the number of natural numbers n � 1for whi
h U 2 Kn. Then PU�e zU � w(e) for ea
h edge e (sin
e e is in w(e) graphsGn). Moreover, 
hoose M 2M arbitrarily. Then
(34) XU�V zUb12 jU j
 = 1Xn=1 XU2Knb12 jU j
 = 1Xn=1 XU2Kn jM \ EU j

=Xe2M (number of n; U with e � U 2 Kn) =Xe2M w(e):
Exer
ises5.25. Derive the Tutte-Berge formula from the Cunningham-Marsh formula (Theorem 5.7).5.26. Derive Edmonds' mat
hing polytope theorem from the Cunningham-Marsh formula(Theorem 5.7).
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6. Problems, algorithms, andrunning time

6.1. Introdu
tion
Probably most of the readers will have some intuitive idea about what is a problemand what is an algorithm, and what is meant by the running time of an algorithm. Al-though for the greater part of this 
ourse this intuition will be suÆ
ient to understandthe substan
e of the matter, in some 
ases it is important to formalize this intuition.This is parti
ularly the 
ase when we deal with 
on
epts like NP and NP-
omplete.The 
lass of problems solvable in polynomial time is usually denoted by P. The
lass NP, that will be des
ribed more pre
isely below, is a 
lass of problems thatmight be larger (and many people believe it is larger). It in
ludes most 
ombinatorialoptimization problems, in
luding all problems that are in P. That is: P�NP. Inparti
ular, NP does not mean: \non-polynomial time". The letters NP stand for\nondeterministi
 polynomial-time". The 
lass NP 
onsists, roughly speaking, of allthose questions with the property that for any input that has a positive answer, thereis a `
erti�
ate' from whi
h the 
orre
tness of this answer 
an be derived in polynomialtime.For instan
e, the question:(1) `Given a graph G, is G Hamiltonian?'belongs to NP. If the answer is `yes', we 
an 
onvin
e anyone that this answer is
orre
t by just giving a Hamiltonian 
ir
uit in G as a 
erti�
ate. With this 
erti�
ate,the answer `yes' 
an be 
he
ked in polynomial time | in fa
t: trivially. Here it isnot required that we are able to �nd the 
erti�
ate in polynomial time. The onlyrequirement is that there exists a 
erti�
ate whi
h 
an be 
he
ked in polynomialtime.Che
king the 
erti�
ate in polynomial time means: 
he
king it in time boundedby a polynomial in the original input. In parti
ular, it implies that the 
erti�
ateitself has size bounded by a polynomial in the original input.To elu
idate the meaning of NP, it is not known if for any graph G for whi
hquestion (1) has a negative answer, there is a 
erti�
ate from whi
h the 
orre
tness ofthis answer 
an be derived in polynomial time. So there is an easy way of 
onvin
ing`your boss' that a 
ertain graph is Hamiltonian (just by exhibiting a Hamiltonian
ir
uit), but no easy way is known for 
onvin
ing this person that a 
ertain graph isnon-Hamiltonian.Within the 
lass NP there are the \NP-
omplete" problems. These are by de�-nition the hardest problems in the 
lass NP: a problem � in NP is NP-
omplete if
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every problem in NP 
an be redu
ed to �, in polynomial time. It implies that if oneNP-
omplete problem 
an be proved to be solvable in polynomial time, then ea
hproblem in NP 
an be solved in polynomial time. In other words: then P=NP wouldfollow.Surprisingly, there are several prominent 
ombinatorial optimization problemsthat are NP-
omplete, like the traveling salesman problem and the problem of �ndinga maximum 
lique in a graph. This pioneering eye-opener was given by Cook [1971℄and Karp [1972℄.Sin
e that time one generally sets the polynomially solvable problems against theNP-
omplete problems, although there is no proof that these two 
on
epts really aredistin
t. For almost every 
ombinatorial optimization problem one has been ableeither to prove that it is solvable in polynomial time, or that it is NP-
omplete. Buttheoreti
ally it is still a possibility that these two 
on
epts are just the same! Thusit is unknown whi
h of the two diagrams in Figure 6.1 applies.

NP

NP-c

P

NP-c P=NP

PSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M

Figure 6.1
Below we make some of the notions more pre
ise. We will not elaborate all te
h-ni
al details fully, but hope that the reader will be able to see the details with nottoo mu
h e�ort. For pre
ise dis
ussions we refer to the books by Aho, Hop
roft, andUllman [1974℄, Garey and Johnson [1979℄, and Papadimitriou [1994℄.

6.2. WordsIf we use the 
omputer to solve a 
ertain graph problem, we usually do not put api
ture of the graph in the 
omputer. (We are not working with analog 
omputers,but with digital 
omputers.) Rather we put some appropriate en
oding of the problemin the 
omputer, by des
ribing it by a sequen
e of symbols taken from some �xed�nite `alphabet' �. We 
an take for � for instan
e the ASCII set of symbols or theset f0; 1g. It is 
onvenient to have symbols like ( , ) , f , g and the 
omma in �, andmoreover some symbol like meaning: `blank'. Let us �x one alphabet �.
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We 
all any ordered �nite sequen
e of elements from � a word. The set of allwords is denoted by ��.

e

d

b

c

a

PSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M
Figure 6.2

It is not diÆ
ult to en
ode obje
ts like rational numbers, ve
tors, matri
es, graphs,and so on, as words. For instan
e, the graph given in Figure 6.2 
an be en
oded, asusual, by the word:
(2) (fa; b; 
; d; eg; ffa; bg; fa; 
g; fb; 
g; f
; dg; fd; eg; fe; agg):
A fun
tion f de�ned on a �nite set X 
an be en
oded by giving the set of pairs(x; f(x)) with x 2 X. For instan
e, the following des
ribes a fun
tion de�ned on theedges of the graph above:
(3) f(fa; bg; 32); (fa; 
g;�17); (fb; 
g; 5=7); (f
; dg; 6); (fd; eg;�1); (fe; ag;�9)g:
A pair of a graph and a fun
tion 
an be des
ribed by the word (w; v), where w is theen
oding of the graph and v is the en
oding of the fun
tion.The size of a word w is the number of symbols used in w, 
ounting multipli
ities.(So the word abaa32b
 has size 8.) The size is important when we make estimates onthe running time of algorithms.Note that in en
oding numbers (integers or rational numbers), the size dependson the number of symbols ne
essary to en
ode these numbers. Thus if we en
ountera problem on a graph with numbers de�ned on the edges, then the size of the inputis the total number of bits ne
essary to represent this stru
ture. It might be mu
hlarger than just the number of nodes and edges of the graph, and mu
h smaller thanthe sum of all numbers o

urring in the input.Although there are several ways of 
hoosing an alphabet and en
oding obje
ts bywords over this alphabet, any way 
hosen is quite arbitrary. We will be dealing withsolvability in polynomial time in this 
hapter, and for that purpose most en
odingsare equivalent. Below we will sometimes exploit this 
exibility.
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6.3. ProblemsWhat is a problem? Informally, it is a question or a task, for instan
e, \Does this givengraph have a perfe
t mat
hing?" or \Find a shortest traveling salesman tour in thisgraph!". In fa
t there are two types of problems: problems that 
an be answered by`yes' or `no' and those that ask you to �nd an obje
t with 
ertain pres
ribed properties.We here restri
t ourselves to the �rst type of problems. From a 
omplexity point ofview this is not that mu
h of a restri
tion. For instan
e, the problem of �nding ashortest traveling salesman tour in a graph 
an be studied by the related problem:Given a graph, a length fun
tion on the edges, and a rational number r, does thereexist a traveling salesman tour of length at most r? If we 
an answer this questionin polynomial time, we 
an �nd the length of a shortest tour in polynomial time, forinstan
e, by binary sear
h.So we study problems of the form: Given a 
ertain obje
t (or sequen
e of obje
ts),does it have a 
ertain property? For instan
e, given a graph G, does it have a perfe
tmat
hing?As we en
ode obje
ts by words, a problem is nothing but: given a word w, doesit have a 
ertain property? Thus the problem is fully des
ribed by des
ribing the\
ertain property". This, in turn, is fully des
ribed by just the set of all wordsthat have the property. Therefore we have the following mathemati
al de�nition: aproblem is any subset � of ��.If we 
onsider any problem � � ��, the 
orresponding `informal' problem is:(4) Given word w, does w belong to �?In this 
ontext, the word w is 
alled an instan
e or the input.
6.4. Algorithms and running timeAn algorithm is a list of instru
tions to solve a problem. The 
lassi
al mathemati
alformalization of an algorithm is the Turing ma
hine. In this se
tion we will des
ribea slightly di�erent 
on
ept of an algorithm (the `Thue system') that is useful for ourpurposes (explaining NP-
ompleteness). In Se
tion 6.10 below we will show that it isequivalent to the notion of a Turing ma
hine.A basi
 step in an algorithm is: repla
e subword u by u0. It means that if wordw is equal to tuv, where t and v are words, we repla
e w by the word tu0v. Nowby de�nition, an algorithm is a �nite list of instru
tions of this type. It thus is fullydes
ribed by a sequen
e(5) ((u1; u01); : : : ; (un; u0n));where u1; u01; : : : ; un; u0n are words. We say that word w0 follows from word w if there
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exists a j 2 f1; : : : ; ng su
h that w = tujv and w0 = tu0jv for 
ertain words t and v, insu
h a way that j is the smallest index for whi
h this is possible and the size of t is assmall as possible. The algorithm stops at word w if w has no subword equal to one ofu1; : : : ; un. So for any word w, either there is a unique word w0 that follows from w,or the algorithm stops at w. A (�nite or in�nite) sequen
e of words w0; w1; w2; : : : is
alled allowed if ea
h wi+1 follows from wi and, if the sequen
e is �nite, the algorithmstops at the last word of the sequen
e. So for ea
h word w there is a unique allowedsequen
e starting with w. We say that A a

epts w if this sequen
e is �nite.For reasons of 
onsisten
y it is important to have the `empty spa
e' at both sidesof a word as part of the word. Thus instead of starting with a word w, we start withw , where is a symbol indi
ating spa
e.Let A be an algorithm and let � � �� be a problem. We say that A solves � if� equals the set of words a

epted by A. Moreover, A solves � in polynomial-time ifthere exists a polynomial p(x) su
h that for any word w 2 ��: if A a

epts w, thenthe allowed sequen
e starting with w 
ontains at most p(size(w)) words.This de�nition enables us indeed to de
ide in polynomial time if a given word wbelongs to �. We just take w0 := w, and next, for i = 0; 1; 2; : : :, we 
hoose `the �rst'subword uj in wi and repla
e it by u0j (for some j 2 f1; : : : ; ng) thus obtaining wi+1.If within p(size(w)) iterations we stop, we know that w belongs to �, and otherwisewe know that w does not belong to �.Then P denotes the set of all problems that 
an be solved by a polynomial-timealgorithm.
6.5. The 
lass NP
We mentioned above that NP denotes the 
lass of problems for whi
h a positiveanswer has a `
erti�
ate' from whi
h the 
orre
tness of the positive answer 
an bederived in polynomial time. We will now make this more pre
ise.The 
lass NP 
onsists of those problems � � �� for whi
h there exist a problem�0 2P and a polynomial p(x) su
h that for any w 2 ��:(6) w 2 � if and only if there exists a word v su
h that (w; v) 2 �0 and su
hthat size(v) � p(size(w)).So the word v a
ts as a 
erti�
ate showing that w belongs to �. With the polynomial-time algorithm solving �0, the 
erti�
ate proves in polynomial time that w belongsto �.As examples, the problems(7) �1 := fG j G is a graph having a perfe
t mat
hingg and�2 := fG j G is a Hamiltonian graphg
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(en
oding G as above) belong to NP, sin
e the problems(8) �01 := f(G;M) j G is a graph and M is a perfe
t mat
hing in Ggand�02 := f(G;H) j G is a graph and H is a Hamiltonian 
ir
uit inGgbelong to P.Similarly, the problem(9) TSP := f(G; l; r) j G is a graph, l is a `length' fun
tion on theedges of G and r is a rational number su
h that G has aHamiltonian tour of length at most rg(`the traveling salesman problem') belongs to NP, sin
e the problem(10) TSP0 := f(G; l; r;H) j G is a graph, l is a `length' fun
tion on theedges of G, r is a rational number, and H is a Hamiltoniantour in G of length at most rgbelongs to P.Clearly, P�NP, sin
e if � belongs to P, then we 
an just take the empty stringas 
erti�
ate for any word w to show that it belongs to �. That is, we 
an take�0 := f(w; ) j w 2 �g. As � 2P, also �0 2P.The 
lass NP is apparently mu
h larger than the 
lass P, and there might be notmu
h reason to believe that the two 
lasses are the same. But, as yet, nobody hasbeen able to show that they really are di�erent! This is an intriguing mathemati
alquestion, but besides, answering the question might also have pra
ti
al signi�
an
e.If P=NP 
an be shown, the proof might 
ontain a revolutionary new algorithm,or alternatively, it might imply that the 
on
ept of `polynomial-time' is 
ompletelyuseless. If P 6=NP 
an be shown, the proof might give us more insight in the reasonswhy 
ertain problems are more diÆ
ult than other, and might guide us to dete
t andatta
k the kernel of the diÆ
ulties.
6.6. The 
lass 
o-NPBy de�nition, a problem � � �� belongs to the 
lass 
o-NP if the `
omplementary'problem � := �� n � belongs to NP.For instan
e, the problem �1 de�ned in (7) belongs to 
o-NP, sin
e the problem(11) �001 := f(G;W ) j G is a graph and W is a subset of the vertex setof G su
h that the graph G �W has more than jW j odd
omponentsg
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belongs to P. This follows from Tutte's `1-fa
tor theorem' (Corollary 5.1a): a graph Ghas no perfe
t mat
hing if and only if there is a subset W of the vertex set of G withthe properties des
ribed in (11). (Here, stri
tly speaking, the 
omplementary problem�1 of �1 
onsists of all words w that either do not represent a graph, or representa graph having no perfe
t mat
hing. We assume however that there is an easy wayof de
iding if a given word represents a graph. Therefore, we might assume that the
omplementary problem is just fG j G is a graph having no perfe
t mat
hingg.)It is not known if the problems �2 and TSP belong to 
o-NP.Sin
e for any problem � in P also the 
omplementary problem � belongs to P,we know that P�
o-NP. So P�NP\
o-NP. The problems in NP\
o-NP are those forwhi
h there exist 
erti�
ates both in 
ase the answer is positive and in 
ase the answeris negative. As we saw above, the perfe
t mat
hing problem �1 is su
h a problem.Tutte's theorem gives us the 
erti�
ates. Therefore, Tutte's theorem is 
alled a good
hara
terization.In fa
t, there are very few problems known that are proved to belong to NP\
o-NP,but that are not known to belong to P. Most problems having a good 
hara
terization,have been proved to be solvable in polynomial time. The notable ex
eption for whi
hthis is not yet proved is primality testing (testing if a given natural number is a primenumber).
6.7. NP-
ompletenessThe NP-
omplete problems are by de�nition the hardest problems in NP. To be morepre
ise, we �rst de�ne the 
on
ept of a polynomial-time redu
tion. Let � and �0be two problems and let A be an algorithm. We say that A is a polynomial-timeredu
tion of �0 to � if A is a polynomial-time algorithm (`solving' ��), so that forany allowed sequen
e starting with w and ending with v one has: w 2 �0 if and onlyif v 2 �. A problem � is 
alled NP-
omplete, if � 2NP and for ea
h problem �0 inNP there exists a polynomial-time redu
tion of �0 to �.It is not diÆ
ult to see that if � belongs to P and there exists a polynomial-timeredu
tion of �0 to �, then also �0 belongs to P. It implies that if one NP-
ompleteproblem 
an be solved in polynomial time, then ea
h problem in NP 
an be solved inpolynomial time. Moreover, if � belongs to NP, �0 is NP-
omplete and there existsa polynomial-time redu
tion of �0 to �, then also � is NP-
omplete.
6.8. NP-
ompleteness of the satis�ability problemWe now �rst show that in fa
t there exist NP-
omplete problems. In fa
t we showthat the so-
alled satis�ability problem, denoted by SAT, is NP-
omplete.To de�ne SAT, we need the notion of a boolean expression. Examples are:
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(12) ((x2 ^ x3) _ :(x3 _ x5) ^ x2), ((:x47 ^ x2) ^ x47), :(x7 ^ :x7).Boolean expressions 
an be de�ned indu
tively. First, for ea
h natural number n,the `word' xn is a boolean expression (using some appropriate en
oding of naturalnumbers and of subs
ripts). Next, if v and w are boolean expressions, then also(v ^ w), (v _ w) and :v are boolean expressions. These rules give us all booleanexpressions. (If ne
essary, we may use other subs
ripts than the natural numbers.)Now SAT is a sub
olle
tion of all boolean expressions, namely it 
onsists of thoseboolean expressions that are satis�able. A boolean expression f(x1; x2; x3; : : :) is
alled satis�able if there exist �1; �2; �3; : : : 2 f0; 1g su
h that f(�1; �2; �3; : : :) = 1,using the well-known identities(13) 0 ^ 0 = 0 ^ 1 = 1 ^ 0 = 0; 1 ^ 1 = 1;0 _ 0 = 0; 0 _ 1 = 1 _ 0 = 1 _ 1 = 1;:0 = 1;:1 = 0; (0) = 0; (1) = 1:
Exer
ise. Let n � 1 be a natural number and let W be a 
olle
tion of words inf0; 1g� all of length n. Prove that there exists a boolean expression f(x1; : : : ; xn) inthe variables x1; : : : ; xn su
h that for ea
h word w = �1 : : : �n in the symbols 0 and 1one has: w 2W if and only if f(�1; : : : ; �n) = 1.

The satis�ability problem SAT trivially belongs to NP: we 
an take as 
erti�
atefor a 
ertain f(x1; x2; x3; : : :) to belong to SAT, the equations xi = �i that give f thevalue 1. (We only give those equations for whi
h xi o

urs in f .)To show that SAT is NP-
omplete, it is 
onvenient to assume that � = f0; 1g.This is not that mu
h a restri
tion: we 
an �x some order of the symbols in �, anden
ode the �rst symbol by 10, the se
ond one by 100, the third one by 1000, and soon. There is an easy (
ertainly polynomial-time) way of obtaining one en
oding fromthe other.The following result is basi
 for the further proofs:Theorem 6.1. Let � � f0; 1g� be in P. Then there exist a polynomial p(x) andan algorithm that �nds for ea
h natural number n in time p(n) a boolean expressionf(x1; x2; x3; : : :) with the property:(14) any word �1�2 : : : �n in f0; 1g� belongs to � if and only if the boolean ex-pression f(�1; : : : ; �n; xn+1; xn+2; : : :) is satis�able.
Proof. Sin
e � belongs to P, there exists a polynomial-time algorithm A solving �.So there exists a polynomial p(x) su
h that a word w belongs to � if and only if theallowed sequen
e for w 
ontains at most p(size(w)) words. It implies that there exists
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a polynomial q(x) su
h that any word in the allowed sequen
e for w has size less thanq(size(w)).We des
ribe the algorithm meant in the theorem. Choose a natural number n.Introdu
e variables xi;j and yi;j for i = 0; 1; : : : ; p(n), j = 1; : : : ; q(n). Now there exists(
f. the Exer
ise above) a boolean expression f in these variables with the followingproperties. Any assignment xi;j := �i;j 2 f0; 1g and yi;j := �i;j 2 f0; 1g makes f equalto 1 if and only if the allowed sequen
e starting with the word w0 := �0;1�0;2 : : : �0;nis a �nite sequen
e w0; : : : ; wk, so that:
(15) (i) �i;j is equal to the jth symbol in the word wi, for ea
h i � k and ea
hj � size(wi);(ii) �i;j = 1 if and only if i > k or j � size(wi).

The important point is that f 
an be found in time bounded by a polynomial inn. To see this, we 
an en
ode the fa
t that word wi+1 should follow from word wiby a boolean expression in the `variables' xi;j and xi+1;j, representing the di�erentpositions in wi and wi+1. (The extra variables yi;j and yi+1;j are introdu
ed to indi
atethe sizes of wi and wi+1.) Moreover, the fa
t that the algorithm stops at a word walso 
an be en
oded by a boolean expression. Taking the `
onjun
tion' of all theseboolean expressions, will give us the boolean expression f .
As a dire
t 
onsequen
e we have:

Corollary 6.1a. Theorem 6.1 also holds if we repla
e P by NP in the �rst senten
e.Proof. Let � � f0; 1g� belong to NP. Then, by de�nition of NP, there exists aproblem �0 in P and a polynomial r(x) su
h that any word w belongs to � if andonly if (w; v) belongs to �0 for some word v with size(v) � r(size(w)). By properlyre-en
oding, we may assume that for ea
h n 2 N , any word w 2 f0; 1g� belongs to �if and only if wv belongs to �0 for some word v of size r(size(w)). Applying Theorem6.1 to �0 gives the 
orollary.
Now the main result of Cook [1971℄ follows:

Corollary 6.1b (Cook's theorem). The satis�ability problem SAT is NP-
omplete.Proof. Let � belong to NP. We des
ribe a polynomial-time redu
tion of � to SAT.Let w = �1 : : : �n 2 f0; 1g�. By Corollary 6.1a we 
an �nd in time bounded bya polynomial in n a boolean expression f su
h that w belongs to � if and only iff(�1; : : : ; �n; xn+1; : : :) is satis�able. This is the required redu
tion to SAT.
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6.9. NP-
ompleteness of some other problemsWe next derive from Cook's theorem some of the results of Karp [1972℄. First weshow that the 3-satis�ability problem 3-SAT is NP-
omplete. Let B1 be the set ofall words x1;:x1; x2;:x2; : : :. Let B2 be the set of all words (w1 _ � � � _ wk), wherew1; � � � ; wk are words in B1 and 1 � k � 3. Let B3 be the set of all words w1^: : :^wk,where w1; : : : ; wk are words in B2. Again, we say that a word f(x1; x2; : : :) 2 B3 issatis�able if there exists an assignment xi := �i 2 f0; 1g (i = 1; 2; : : :) su
h thatf(�1; �2; : : :) = 1 (using the identities (13)).Now the 3-satis�ability problem 3-SAT is: Given a word f 2 B3, de
ide if it issatis�able.Corollary 6.1
. The 3-satis�ability problem 3-SAT is NP-
omplete.Proof. We give a polynomial-time redu
tion of SAT to 3-SAT. Let f(x1; x2; : : :) be aboolean expression. Introdu
e a variable yg for ea
h subword g of f that is a booleanexpression.Now f is satis�able if and only if the following system is satis�able:(16) yg = yg0 _ yg00 (if g = g0 _ g00),yg = yg0 ^ yg00 (if g = g0 ^ g00),yg = :yg0 (if g = :g0),yf = 1.Now yg = yg0 _ yg00 
an be equivalently expressed by: yg _ :yg0 = 1; yg _ :yg00 =1;:yg _ yg0 _ yg00 = 1. Similarly, yg = yg0 ^ yg00 
an be equivalently expressed by::yg _ yg0 = 1;:yg _ yg00 = 1; yg _ :yg0 _ :yg00 = 1. The expression yg = :yg0 isequivalent to: yg _ yg0 = 1;:yg _ :yg0 = 1.By renaming variables, we thus obtain words w1; : : : ; wk in B2, so that f is satis-�able if and only if the word w1 ^ : : : ^ wk is satis�able.

We next derive that the partition problem PARTITION is NP-
omplete. This isthe problem: Given a 
olle
tion C of subsets of a �nite set X, is there a sub
olle
tionof C that forms a partition of X?Corollary 6.1d. The partition problem PARTITION is NP-
omplete.Proof. We give a polynomial-time redu
tion of 3-SAT to PARTITION. Let f =w1^ : : :^wk be a word in B3, where w1; : : : ; wk are words in B2. Let x1; : : : ; xm be thevariables o

urring in f . Make a bipartite graph G with 
olour 
lasses fw1; : : : ; wkgand fx1; : : : ; xmg, by joining wi and xj by an edge if and only if xj or :xj o

urs inwi. Let X be the set of all verti
es and edges of G.Let C 0 be the 
olle
tion of all sets fwig[E 0, where E 0 is a nonempty subset of the
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edge set in
ident with wi. Let C 00 be the 
olle
tion of all sets fxjg[E 0j and fxjg[E 00j ,where E 0j is the set of all edges fwi; xjg so that xj o

urs in wi and where E 00j is theset of all edges fwi; xjg so that :xj o

urs in wi.Now f is satis�able if and only if the 
olle
tion C 0 [ C 00 
ontains a sub
olle
tionthat partitions X. Thus we have a redu
tion of 3-SAT to PARTITION.

We derive the NP-
ompleteness of the dire
ted Hamiltonian 
y
le problem DI-RECTED HAMILTONIAN CYCLE: Given a dire
ted graph, does it have a dire
tedHamiltonian 
y
le?Corollary 6.1e. DIRECTED HAMILTONIAN CYCLE is NP-
omplete.Proof.We give a polynomial-time redu
tion of PARTITION to DIRECTED HAMIL-TONIAN CYCLE. Let C = fC1; : : : ; Cmg be a 
olle
tion of subsets of the set X =fx1; : : : ; xkg. Introdu
e `verti
es' r0; r1; : : : ; rm; s0; s1; : : : ; sk.For ea
h i = 1; : : : ;m we do the following. Let Ci = fxj1; : : : ; xjtg. We 
onstru
t adire
ted graph on the verti
es ri�1; ri, sjh�1; sjh (for h = 1; : : : ; t) and 3t new verti
es,as in Figure 6.3. Moreover, we make ar
s from rm to s0 and from sk to r0.
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Let D be the dire
ted graph arising. Then it is not diÆ
ult to 
he
k that thereexists a sub
olle
tion C 0 of C that partitions X if and only if D has a dire
ted Hamil-tonian 
y
le C. (Take: (ri�1; ri) 2 C () Ci 2 C 0.)
From this we derive the NP-
ompleteness of the undire
ted Hamiltonian 
y
leproblem UNDIRECTED HAMILTONIAN CYCLE: Given a graph, does it have aHamiltonian 
y
le?Corollary 6.1f. UNDIRECTED HAMILTONIAN CYCLE is NP-
omplete.Proof. We give a polynomial-time redu
tion of DIRECTED HAMILTONIAN CY-CLE to UNDIRECTED HAMILTONIAN CYCLE. Let D be a dire
ted graph. Re-pla
e ea
h vertex v by three verti
es v0; v00; v000, and make edges fv0; v00g and fv00; v000g.Moreover, for ea
h ar
 (v1; v2) of D, make an edge fv01; v0002 g. This makes the undi-re
ted graph G. One easily 
he
ks that D has a dire
ted Hamiltonian 
y
le if and
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only if G has an (undire
ted) Hamiltonian 
y
le.

This trivially implies the NP-
ompleteness of the traveling salesman problem TSP:Given a 
omplete graph G = (V;E), a `length' fun
tion l on E, and a rational r, doesthere exist a Hamiltonian 
y
le of length at most r?Corollary 6.1g. The traveling salesman problem TSP is NP-
omplete.Proof. We give a polynomial-time redu
tion of UNDIRECTED HAMILTONIANCYCLE to TSP. Let G be a graph. Let G0 be the 
omplete graph on V . Let l(e) := 0for ea
h edge e of G and let l(e) := 1 for ea
h edge of G0 that is not an edge of G.Then G has a Hamiltonian 
y
le if and only if G0 has a Hamiltonian 
y
le of lengthat most 0.
6.10. Turing ma
hinesIn Se
tion 6.4 we gave a de�nition of `algorithm'. How adequate is this de�nition?Can any 
omputer program be modelled after that de�nition?To study this question, we need to know what we understand by a `
omputer'.Turing [1937℄ gave the following 
omputer model, now 
alled a Turing ma
hine or aone-tape Turing ma
hine.A Turing ma
hine 
onsists of a `pro
essor' that 
an be in a �nite number of `states'and of a `tape', of in�nite length (in two ways). Moreover, there is a `read-write head',that 
an read symbols on the tape (one at a time). Depending on the state of thepro
essor and the symbol read, the pro
essor passes to another (or the same) state,the symbol on the tape is 
hanged (or not) and the tape is moved one position `tothe right' or `to the left'.The whole system 
an be des
ribed by just giving the dependen
e mentioned inthe previous senten
e. So, mathemati
ally, a Turing ma
hine is just a fun
tion(17) T : M � �!M � �� f+1;�1g.Here M and � are �nite sets: M is interpreted as the set of states of the pro
essor,while � is the set of symbols that 
an be written on the tape. The fun
tion Tdes
ribes an `iteration': T (m;�) = (m0; �0;+1) should mean that if the pro
essor isin state m and the symbol read on the tape is �, then the next state will be m0, thesymbol � is 
hanged to the symbol �0 and the tape is moved one position to the right.T (m;�) = (m0; �0;�1) has a similar meaning | now the tape is moved one positionto the left.Thus if the pro
essor is in state m and has the word w0�0��00w00 on the tape,where the symbol indi
ated by � is read, and if T (m;�) = (m0; �0;+1), then next the



Se
tion 6.10. Turing ma
hines 109
pro
essor will be in state m0 and has the word w0�0�0�00w00 on the tape, where thesymbol indi
ated by �00 is read. Similarly if T (m;�) = (m0; �0;�1).We assume that M 
ontains a 
ertain `start state' 0 and a 
ertain `halting state'1. Moreover, � is assumed to 
ontain a symbol meaning `blank'. (This is ne
essaryto identify the beginning and the end of a word on the tape.)We say that the Turing ma
hine T a

epts a word w 2 (�nf g)� if, when startingin state 0 and with word w on the tape (all other symbols being blank), so thatthe read-write head is reading the �rst symbol of w, then after a �nite number ofiterations, the pro
essor is in the halting state 1. (If w is the empty word, thesymbol read initially is the blank symbol .)Let � be the set of words a

epted by T . So � is a problem. We say that T solves�. Moreover, we say that T solves � in polynomial time if there exists a polynomialp(x) su
h that if T a

epts a word w, it a

epts w in at most p(size(w)) iterations.It is not diÆ
ult to see that the 
on
ept of algorithm de�ned in Se
tion 6.4 aboveis at least as powerful as that of a Turing ma
hine. We 
an en
ode any state of the
omputer model (pro
essor+tape+read-write head) by a word (w0;m;w00). Here m isthe state of the pro
essor and w0w00 is the word on the tape, while the �rst symbol ofw00 is read. We de�ne an algorithm A by:(18) repla
e subword ;m; � by �0;m0, whenever T (m;�) = (m0; �0;+1) and m 6=1;repla
e subword �;m; � by m0; ��0, whenever T (m;�) = (m0; �0;�1) andm 6=1.To be pre
ise, we should assume here that the symbols indi
ating the states in Mdo not belong to �. Moreover, we assume that the symbols ( and ) are not in �.Furthermore, to give the algorithm a start, it 
ontains the tasks of repla
ing subword� by the word (; 0; � , and subword � by �) (for any � in � n f g). Then, whenstarting with a word w, the �rst two iterations transform it to the word (; 0; w). Afterthat, the rules (18) simulate the Turing ma
hine iterations. The iterations stop assoon as we arrive at state 1.So T a

epts a word w if and only if A a

epts w | in (about) the same numberof iterations. That is, T solves a problem � (in polynomial time) if and only if Asolves � (in polynomial time).This shows that the 
on
ept of `algorithm' de�ned in Se
tion 6.4 is at least aspowerful as that of a Turing ma
hine. Conversely, it is not hard (although te
hni
allysomewhat 
ompli
ated) to simulate an algorithm by a Turing ma
hine. But howpowerful is a Turing ma
hine?One 
ould think of several obje
tions against a Turing ma
hine. It uses only onetape, that should serve both as an input tape, and as a memory, and as an outputtape. We have only limited a

ess to the information on the tape (we 
an shift onlyone position at a time). Moreover, the 
omputer program seems to be implemented in
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the `hardware' of the 
omputer model; the Turing ma
hine solves only one problem.To 
ounter these obje
tions, several other 
omputer models have been proposedthat model a 
omputer more realisti
ally: multi-tape Turing ma
hines, random a

essma
hines (RAM's), the universal Turing ma
hine. However, from a polynomial-timealgorithmi
 point of view, these models all turn out to be equivalent. Any problemthat 
an be solved in polynomial time by any of these 
omputer models, 
an alsobe solved in polynomial time by some one-tape Turing ma
hine, and hen
e by analgorithm in the sense of Se
tion 6.4. We refer to Aho, Hop
roft, and Ullman [1974℄and Papadimitriou [1994℄ for an extensive dis
ussion.



111
7. Cliques, stable sets, and
olourings

7.1. Introdu
tionWe have seen in Chapter 5 that in any graph G = (V;E), a mat
hing of maximum
ardinality 
an be found in polynomial time. Similarly, an edge-
over of minimum
ardinality 
an be found in polynomial time.On the other hand, it is NP-
omplete to �nd a maximum-
ardinality stable set ina graph. That is, determining �(G) is NP-
omplete. To be more pre
ise, the problemCOCLIQUE is:(1) given: a graph G and a natural number k,de
ide: if �(G) � k.Then:Theorem 7.1. The problem COCLIQUE is NP-
omplete.Proof. We redu
e SAT to COCLIQUE. Let C1 ^ � � � ^ Ck be a boolean expres-sion in the variables x1; : : : ; xn, where ea
h expression is a disjun
tion of the literalsx1;:x1; : : : ; xn;:xn. Consider the graph G = (V;E) with V := f(�; i) j � is a literalin Cig and E := ff(�; i); (�; j)g j i = j or � = :�g. Then the expression is satis�ableif and only if G has a stable set of size k.
Sin
e by Gallai's theorem Theorem 3.1, �(G) = jV j � �(G), also determining thevertex-
over number �(G) is NP-
omplete.A 
lique in a graph G = (V;E) is a subset C of V su
h that u and w are adja
entfor any two distin
t u;w in C. The 
lique number of G, denoted by !(G), is themaximum 
ardinality of any 
lique in G.Observe that a subset C of V is a 
lique in G if and only if C is a stable set in the
omplementary graph G. So �nding a maximum-
ardinality 
lique in G is equivalentto �nding a maximum-
ardinality stable set in G, and !(G) = �(G). As determining�(G) is NP-
omplete, also determining !(G) is NP-
omplete.A (vertex-)
olouring of a graph G = (V;E) is a partition of V into stable setsC1; : : : ; Ck. The sets C1; : : : ; Ck are 
alled the 
olours of the 
olouring. The (vertex-) 
olouring number, or (vertex-)
hromati
 number, of G, denoted by 
(G), is theminimum number of 
olours in any vertex-
olouring of G. A graph G is 
alled k-
olourable if 
(G) � k.Well-known is the four-
olour 
onje
ture (4CC ), stating that 
(G) � 4 for ea
h
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planar graph G. This 
onje
ture was proved by Appel and Haken [1977℄ and Appel,Haken, and Ko
h [1977℄, and is now 
alled the four-
olour theorem (4CT ).Again, it is NP-
omplete to de
ide if a graph is k-
olourable. In fa
t, it is NP-
omplete to de
ide if a planar graph is 3-
olourable. [Note that one 
an de
ide inpolynomial time if a graph G is 2-
olourable, as bipartiteness 
an be 
he
ked inpolynomial time.℄These NP-
ompleteness results imply that if NP6=
o-NP, then one may not ex-pe
t a min-max relation 
hara
terizing the stable set number �(G), the vertex-
overnumber �(G), the 
lique number !(G), or the 
olouring number 
(G) of a graph G.There is a trivial upper bound on the 
olouring number:(2) 
(G) � �(G) + 1;where �(G) denotes the maximum valen
y of G. Brooks [1941℄ sharpened this in-equality as follows:Theorem 7.2 (Brooks' theorem). For any 
onne
ted graph G one has 
(G) � �(G),ex
ept if G = Kn or G = C2n+1 for some n � 1.17

Another inequality relates the 
lique number and the 
olouring number:(3) !(G) � 
(G):This is easy, sin
e in any 
lique all verti
es should have di�erent 
olours.But there are several graphs whi
h have stri
t inequality in (3). We mentionthe odd 
ir
uits C2k+1, with 2k + 1 � 5: then !(C2k+1) = 2 and 
(C2k+1) = 3.Moreover, for the 
omplement C2k+1 of any su
h graph we have: !(C2k+1) = k and
(C2k+1) = k + 1.It was a 
onje
ture of Berge [1963℄ that these graphs are 
ru
ial, whi
h was provedin 2002 by Chudnovsky, Robertson, Seymour, and Thomas: 18Strong perfe
t graph theorem: Let G be a graph. If !(G) < 
(G) then G
ontains Cn or Cn, for some odd n � 5, as an indu
ed subgraph.Another 
onje
ture is due to Hadwiger [1943℄. Sin
e there exist graphs with!(G) < 
(G), it is not true that if 
(G) � n then G 
ontains the 
omplete graphKn on n verti
es as a subgraph. However, Hadwiger 
onje
tured the following, wherea graph H is 
alled a minor of a graph G if H arises from some subgraph of G by
ontra
ting some (possible none) edges.17Here Ck denotes the 
ir
uit with k verti
es.18Let G = (V;E) be a graph and let V 0 � V . Then the subgraph of G indu
ed by V 0, denoted byGjV 0 is the graph (V 0; E0), where E0 equals the set of all edges in E 
ontained in V 0. The graphGjV 0 is 
alled an indu
ed subgraph of G.
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Hadwiger's 
onje
ture: If 
(G) � n then G 
ontains Kn as a minor.In other words, for ea
h n, the graph Kn is the only graph G with the property thatG is not (n� 1)-
olourable and ea
h proper minor of G is (n� 1)-
olourable.Hadwiger's 
onje
ture is trivial for n = 1; 2; 3, and was shown by Hadwiger forn = 4 (see Exer
ise 7.8). As planar graphs do not 
ontain K5 as a minor, Hadwiger's
onje
ture for n = 5 implies the four-
olour theorem. In fa
t, Wagner [1937℄ showedthat Hadwiger's 
onje
ture for n = 5 is equivalent to the four-
olour 
onje
ture.Re
ently, Robertson, Seymour, and Thomas [1993℄ showed that Hadwiger's 
onje
tureis true also for n = 6, by showing that in that 
ase it is equivalent to the four-
olourtheorem. For n � 7 Hadwiger's 
onje
ture is unsettled.Appli
ation 7.1: Map 
olouring. A well-known appli
ation of 
olouring the verti
es ofa graph is that of 
olouring the 
ountries in a map in su
h a way that adja
ent 
ountriesobtain di�erent 
olours. So the four-
olour theorem implies that if ea
h 
ountry is 
onne
ted,then the map 
an be 
oloured using not more than four 
olours. (One should not 
onsider
ountries as `adja
ent' if they have a 
ommon boundary of measure 0 only.)There are several other 
ases where 
olouring a map amounts to �nding a minimumvertex-
olouring in a graph. For instan
e, 
onsider a map of the Paris M�etro network(Figure 7.1).Suppose now that you want to print a 
oloured map of the network, indi
ating ea
h ofthe 13 lines by a 
olour, in su
h a way that lines that 
ross ea
h other or meet ea
h otherin a station, are indi
ated by di�erent 
olours and in su
h a way that a minimum numberof 
olours is used. This easily redu
es to a graph 
olouring problem.Appli
ation 7.2: Storage of goods, et
. Suppose you are the dire
tor of a 
ir
us andwish to transport your animals in a number of 
arriages, in su
h a way that no two of theanimals put into one 
arriage eat ea
h other, and in su
h a way that you use a minimumnumber of 
arriages.This trivially redu
es to a graph 
olouring problem. A similar problem is obtained ifyou have to store a number of 
hemi
als in a minimum number of rooms of a storehouse,in su
h a way that no two of the 
hemi
als stored in one room rea
t upon ea
h other in anunwanted way.This problem may also o

ur when assigning multiple-bed rooms to s
hool boys on as
hool trip.Appli
ation 7.3: Assigning frequen
ies to radio stations, 
ar phones, et
. Supposeone has to assign frequen
ies to radio stations in a 
ertain area. Certain pairs of radiostations that are too 
lose to ea
h other 
annot be assigned the same frequen
y as it would
ause mutual interferen
e. Su
h pairs of radio stations form the edge set of a graph G, withvertex set the set of radio stations. The 
hromati
 number of G is equal to the minimumnumber of di�erent frequen
ies that one needs in order to assign a frequen
y to ea
h of thestations.The problem o

urs also when assigning frequen
ies to 
ar phones, where often in a veryshort time new frequen
ies should be determined.
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Exer
ises7.1. Determine !(G) and 
(G) for the graph G obtained from the Paris M�etro map givenin Appli
ation 7.1.7.2. Colour the map of Figure 7.2 (from the April 1975 issue of S
ienti�
 Ameri
an).7.3. Show that if G is a bipartite graph, then !(G) = 
(G).7.4. Derive from K}onig's edge 
over theorem (Corollary 3.3a) that if G is the 
omplementof a bipartite graph, then !(G) = 
(G).7.5. Derive K}onig's edge 
over theorem (Corollary 3.3a) from the strong perfe
t graphtheorem.7.6. Let H be a bipartite graph and let G be the 
omplement of the line-graph of H.Derive from K}onig's mat
hing theorem (Theorem 3.3) that !(G) = 
(G).7.7. Derive K}onig's mat
hing theorem (Theorem 3.3) from the strong perfe
t graph the-orem.7.8. Let G = (V;E) be a simple graph su
h that no minor of G is isomorphi
 to K4. Showthat 
(G) � 3.
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[Hint: One may assume that G is not a forest or a 
ir
uit. Then G has a 
ir
uit not
overing all verti
es of G. As G has no K4-minor, G is not 3-
onne
ted, that is, Ghas a vertex 
ut set of size less than 3; then 
(G) � 3 follows by indu
tion.℄

7.2. Edge-
olourings of bipartite graphsFor any graph G = (V;E), an edge-
olouring is a partition � = fM1; : : : ;Mpg of theedge set E, where ea
h Mi is a mat
hing. Ea
h of these mat
hings is 
alled a 
olour.De�ne the edge-
olouring number or edge-
hromati
 number �(G) by(4) �(G) := minfj�j j � is an edge-
olouring of Gg.So �(G) = 
(L(G)), where L(G) is the line graph of G.Let �(G) denote the maximum degree of (the verti
es of) G. Clearly,(5) �(G) � �(G);sin
e at ea
h vertex v, the edges in
ident with v should have di�erent 
olours. Againthe triangle K3 has stri
t inequality. K}onig [1916℄ showed that for bipartite graphsthe two numbers are equal.Theorem 7.3 (K}onig's edge-
olouring theorem). For any bipartite graph G = (V;E)one has(6) �(G) = �(G).



116 Chapter 7. Cliques, stable sets, and 
olourings
That is, the edge-
olouring number of a bipartite graph is equal to its maximum de-gree.Proof. First noti
e that the theorem is easy if �(G) � 2. In that 
ase, G 
onsists ofa number of vertex-disjoint paths and even 
ir
uits.In the general 
ase, 
olour as many edges of G as possible with �(G) 
olours,without giving the same 
olour to two interse
ting edges. If all edges are 
oloured weare done, so suppose some edge e = fu;wg is not 
oloured. At least one 
olour, sayred, does not o

ur among the 
olours given to the edges in
ident with u. Similarly,there is a 
olour, say blue, not o

urring at w. (Clearly, red6=blue, sin
e otherwise we
ould give edge e the 
olour red.)Let H be the subgraph of G having as edges all red and blue edges of G, togetherwith the edge e. Now �(H) = 2, and hen
e �(H) = �(H) = 2. So all edges o

urringin H 
an be (re)
oloured with red and blue. In this way we 
olour more edges of Gthan before. This 
ontradi
ts the maximality assumption.

This proof also gives a polynomial-time algorithm to �nd an edge-
olouring with�(G) 
olours.We remark here that Vizing [1964℄ proved that for general simple graphs G onehas(7) �(G) � �(G) � �(G) + 1:Here `simple' 
annot be deleted, as is shown by the graph G with three verti
es, whereany two verti
es are 
onne
ted by two parallel edges: then �(G) = 4 while �(G) = 6.A theorem `dual' to K}onig's edge-
olouring theorem was also shown by K}onig.Note that the edge-
olouring number �(G) of a graph G is the minimum number ofmat
hings needed to 
over the edges of a bipartite graph. Dually, one 
an de�ne:(8) �(G) := the maximum number of pairwise disjoint edge 
overs in G.So, in terms of 
olours, �(G) is the maximum number of 
olours that 
an be used in
olouring the edges of G in su
h a way that at ea
h vertex all 
olours o

ur. Hen
e,if Æ(G) denotes the minimum degree of G, then(9) �(G) � Æ(G):The triangle K3 again is an example having stri
t inequality. For bipartite graphshowever:Corollary 7.3a. For any bipartite graph G = (V;E) one has
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(10) �(G) = Æ(G).That is, the maximum number of pairwise disjoint edge 
overs is equal to the minimumdegree.Proof. One may derive from G a bipartite graph H, ea
h vertex of whi
h has degreeÆ(G) or 1, by repeated appli
ation of the following pro
edure:(11) for any vertex v of degree larger than Æ(G), add a new vertex u, and repla
eone of the edges in
ident with v, fv; wg say, by fu;wg.So there is a one-to-one 
orresponden
e between the edges of the �nal graphH andthe edges of G. Sin
e H has maximum degree Æ(G), by Theorem 7.3 the edges of H
an be 
oloured with Æ(G) 
olours su
h that no two edges of the same 
olour interse
t.So at any vertex of H of degree Æ(G) all 
olours o

ur. This gives a 
olouring of theedges of G with Æ(G) 
olours su
h that at any vertex of G all 
olours o

ur.Appli
ation 7.4: S
heduling 
lasses. Suppose we have n 
lasses and m tea
hers. In thefollowing s
heme it is indi
ated by an X whi
h 
lasses should be taught by whi
h tea
hers(one lesson of one hour a day): 
lass: 1 2 3 4 5 6tea
her: a X X Xb X X X X
 X X Xd X Xe X X X Xf X X X Xg X X X XThe question is: What is the minimum timespan in whi
h all lessons 
an be s
heduled?Theorem 7.3 tells us that all lessons 
an be s
heduled within a timespan of 4 hours.Indeed, make a bipartite graph G with 
olour 
lasses T := set of tea
hers and C := set of
lasses, where t 2 T and 
 2 C are 
onne
ted if and only if tea
her t should tea
h 
lass 
;that is, if there is an X in position (t; 
) in the s
heme.In the above example G will have maximum degree �(G) equal to 4. Hen
e a

ording toTheorem 7.3, the edge-
olouring number �(G) of G is also equal to 4. So we 
an 
olour theedges of G by 4 
olours so that no two edges of the same 
olour have a vertex in 
ommon.That is, we 
an 
olour the X's in the s
heme by 4 
olours so that there are no two 
rossesof the same 
olour in any row or 
olumn. If every 
olour represent one hour, we obtain as
hedule spanning 4 hours.This appli
ation 
an be extended to the 
ase where tea
hers 
an give more than onelesson a day to a 
lass. In that 
ase we obtain a bipartite graph with multiple edges.For any k-edge-
olouring of a graph G = (V;E), we 
an assume that any two 
oloursdi�er by at most 1 in size (if they di�er more, one 
an ex
hange the two 
olours on one of the
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path 
omponents of the union of the two 
olours, to bring their 
ardinalities 
loser together).That is, ea
h 
olour has size bjEj=k
 or djEj=ke. It implies that there is a s
hedule in whi
hno more than djEj=ke lessons are s
heduled simultaneously. So the number of 
lassroomsneeded is djEj=ke, whi
h is 
learly best possible if we want to s
hedule jEj lessons within khours.

Exer
ises

7.9. Determine a s
hedule for the following s
heduling problems:

(i) X X X XX X X XX X X XX X X XX X X X

(ii)
X X X XX X X XX X X XX X X XX X X XX X X XX X X X
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(iii)
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(Here the slots to be s
heduled are indi
ated by open 
ells.)7.10. Let G be the line-graph of some bipartite graph H. Derive from K}onig's edge-
olouring theorem (Theorem 7.3) that !(G) = 
(G).7.11. Derive K}onig's edge-
olouring theorem (Theorem 7.3) from the strong perfe
t graphtheorem.7.12. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be partitions of a �nite set X su
h thatjA1j = � � � = jAnj = jB1j = � � � = jBnj = k. Show that A and B have k pairwise
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disjoint 
ommon transversals.7.13. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set X.(i) Let k 2 N . Suppose that X 
an be partitioned into k partial SDR's of A, andthat X also 
an be partitioned into k partial SDR's of B. Derive that X 
an bepartitioned into k 
ommon partial SDR's for A and B.(ii) Show that the minimum number of 
ommon partial SDR's of A and B neededto 
over X is equal to(12) dmaxY�Xmaxf jY jjfijAi \ Y 6= ;gj ; jY jjfijBi \ Y 6= ;gjge:(Hint: Use Exer
ise 3.8.)7.14. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set Xand let k 2 N . Suppose that X has a partition (Y1; : : : ; Yk) su
h that ea
h Yi is anSDR of A. Suppose moreover that X has a partition (Z1; : : : ; Zk) su
h that ea
h Ziis an SDR of B. Derive that X has a partition (X1; : : : ;Xk) su
h that ea
h Xi is anSDR both of A and of B.7.15. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set Xand let k 2 N . Suppose that X has a partition (Y1; : : : ; Yn) su
h that jYij = k andYi � Ai for i = 1; : : : ; n. Suppose moreover that X has a partition (Z1; : : : ; Zn) su
hthat jZij = k and Zi � Bi for i = 1; : : : ; n. Derive that X has a partition (X1; : : : ;Xk)su
h that ea
h Xi is an SDR both of A and of B.7.16. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bm) be families of subsets of a �nite set andlet k be a natural number. Prove that A and B have k pairwise disjoint 
ommonSDR's if and only if for all I; J � f1; : : : ; ng:
(13) ��[i2I Ai \ [j2J Bj�� � k(jIj+ jJ j � n):
(Hint: Use Exer
ise 7.15.)7.17. Let A = (A1; : : : ; An) and B = (B1; : : : ; Bn) be families of subsets of a �nite set X.(i) Let k 2 N . Suppose that A has k pairwise disjoint SDR's and that also Bhas k pairwise disjoint SDR's. Derive that X 
an be partitioned into k subsetsX1; : : : ;Xk su
h that ea
h Xi 
ontains an SDR of A and 
ontains an SDR of B.(ii) Show that the maximum number k for whi
h there exists a partition as in (i) isequal to(14) b min;6=I�f1;:::;ngminf ��Si2I Ai��jIj ; ��Si2I Bi��jIj g
:(Hint: Use Exer
ise 3.7.)
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7.3. Partially ordered sets
A partially ordered set is a pair (X;�) where X is a set and where � is a relation onX satisfying (for all x; y; z 2 X):
(15) (i) x � x;(ii) if x � y and y � x then x = y;(iii) if x � y and y � z then x � z.
A subset C of X is 
alled a 
hain if for all x; y 2 C one has x � y or y � x. A subsetA of X is 
alled an anti
hain if for all x; y 2 A with x 6= y one has x 6� y and y 6� x.Note that if C is a 
hain and A is an anti
hain then
(16) jC \ Aj � 1:

First we observe the following easy min-max relation:Theorem 7.4. Let (X;�) be a partially ordered set, with X �nite. Then the mini-mum number of anti
hains needed to 
over X is equal to the maximum 
ardinality ofany 
hain.Proof. The fa
t that the maximum 
annot be larger than the minimum follows easilyfrom (16). To see that the two numbers are equal, de�ne for any element x 2 X theheight of x as the maximum 
ardinality of any 
hain in X with maximum x. For anyi 2 N , let Ai denote the set of all elements of height i.Let k be the maximum height of the elements ofX. Then A1; : : : ; Ak are anti
hains
overing X, and moreover there exists a 
hain of size k.
Dilworth [1950℄ proved that the same theorem also holds when we inter
hange thewords `
hain' and `anti
hain':Theorem 7.5 (Dilworth's de
omposition theorem). Let (X;�) be a partially orderedset, with X �nite. Then the minimum number of 
hains needed to 
over X is equalto the maximum 
ardinality of any anti
hain.Proof.We apply indu
tion on jXj. The fa
t that the maximum 
annot be larger thanthe minimum follows easily from (16). To see that the two numbers are equal, let �be the maximum 
ardinality of any anti
hain and let A be an anti
hain of 
ardinality�. De�ne

(17) A# := fx 2 X j 9y 2 A : x � yg;A" := fx 2 X j 9y 2 A : x � yg:
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Then A# [ A" = X (sin
e A is a maximum anti
hain) and A# \ A" = A.First assume A# 6= X and A" 6= X. Then by indu
tion A# 
an be 
overed with �
hains. Sin
e A � A#, ea
h of these 
hains 
ontains exa
tly one element in A. Forea
h x 2 A, let Cx denote the 
hain 
ontaining x. Similarly, there exist � 
hains C 0x(for x 2 A) 
overing A", where C 0x 
ontains x. Then for ea
h x 2 A, Cx [C 0x forms a
hain in X, and moreover these 
hains 
over X.So we may assume that for ea
h anti
hain A of 
ardinality � one has A# = X orA" = X. It means that ea
h anti
hain A of 
ardinality � is either the set of minimalelements of X or the set of maximal elements of X. Now 
hoose a minimal elementx and a maximal element y of X su
h that x � y. Then the maximum 
ardinality ofan anti
hain in X nfx; yg is equal to ��1 (sin
e ea
h anti
hain in X of 
ardinality �
ontains x or y). By indu
tion, X n fx; yg 
an be 
overed with �� 1 
hains. Addingthe 
hain fx; yg yields a 
overing of X with � 
hains.Appli
ation 7.5: Proje
t s
heduling. Suppose you have to perform a proje
t 
onsistingof several jobs. Ea
h job takes one time-unit, say one hour. Certain jobs have to be donebefore other jobs; this relation is given by a partial order on the jobs. Assuming that youhave suÆ
ient workers, the time required to �nish the proje
t is equal to the size 
 of thelongest 
hain. Indeed, by Theorem 7.4, the jobs 
an be split into 
 anti
hains A1; : : : ; A
 ;in fa
t, these anti
hains 
an be 
hosen su
h that if x 2 Ai and y 2 Aj and x < y then i < j.As in ea
h of these anti
hains, the jobs 
an be done simultaneously, we obtain a feasibles
hedule.This is an appli
ation quite similar to PERT-CPM (Appli
ation 1.4).Appli
ation 7.6: Bungalow assignment. Suppose you are the manager of a bungalowpark, with bungalows that 
an be rented out during the holiday season. There have beenmade a number of reservations, ea
h for a 
onne
ted period of some weeks, like in Figure7.3. If the number of reservations during any of the weeks in the holiday season is not largerPSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M

Figure 7.3
than the total number of bungalows available, then there exists an allo
ation of 
ustomers tobungalows, in su
h a way that no renter has to swit
h bungalows during his/her stay. This
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rule well-known to bungalow park managers, is a spe
ial 
ase of Dilworth's de
ompositiontheorem.Indeed, one 
an make a partial order as follows. Let X be the set of reservations made,and for any x; y 2 X let x < y if the last day for reservation x is earlier than or equal tothe �rst day of reservation y.Then the maximum size of any anti
hain of (X;�) is equal to the maximum number nof reservations made for any week in the season. By Dilworth's de
omposition theorem, X
an be split into n 
hains. Ea
h 
hain now gives a series of reservations that 
an be assignedto one and the same bungalow.A similar problem o

urs when assigning hotel rooms to hotel guests.Appli
ation 7.7: Terminal and platform assignment. A similar problem as in Appli-
ation 7.6 o

urs when one has to assign airplanes to terminals at an airport, or trains orbuses to platforms in a train or bus station. The model has to be adapted however, if onerequires a periodi
 assignment; this o

urs for instan
e if the trains or buses run a periodi
timetable, say with period one hour.
Exer
ises7.18. Let (X;�) be a partially ordered set. Call a 
hain maximal if it is not 
ontainedin any other 
hain. Prove that the maximum number of pairwise disjoint maximal
hains is equal to the minimum 
ardinality of a set interse
ting all maximal 
hains.7.19. Derive K}onig's edge 
over theorem from Dilworth's de
omposition theorem.7.20. Let G = (V;E) be a bipartite graph, with 
olour 
lasses V1 and V2, with jV1j = jV2j =n. Let k be a natural number. Derive from Dilworth's de
omposition theorem thatthe edges of G 
an be 
overed by k perfe
t mat
hings if and only if for ea
h vertex
over W � V the number of edges 
ontained in W is at most k(jW j � n).7.21. Let I = (I1; : : : ; In) be a family of intervals on R , in su
h a way that ea
h x 2 Ris 
ontained in at most k of these intervals. Show that I 
an be partitioned into k
lasses I1; : : : ; Ik so that ea
h Ij 
onsists of pairwise disjoint intervals.7.22. Let D = (V;A) be an a
y
li
 dire
ted graph and let s and t be verti
es of D su
h thatea
h ar
 of D o

urs in at least one s� t path. Derive from Dilworth's de
ompositiontheorem that the minimum number of s� t paths needed to 
over all ar
s is equal tothe maximum 
ardinality of Æout(U), where U ranges over all subsets of V satisfyings 2 U; t 62 U and Æin(U) = ;.7.23. A graph G = (V;E) is 
alled a 
omparability graph if there exists a partial order �on V su
h that for all u;w in V with u 6= w one has:(18) fu;wg 2 E , u � w or w � u:(i) Show that if G is a 
omparability graph, then !(G) = 
(G).
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(ii) Show that if G is the 
omplement of a 
omparability graph, then !(G) = 
(G).(Hint: Use Dilworth's de
omposition theorem (Theorem 7.5).)7.24. Let (X;�) be a partially ordered set, withX �nite. Let C andA denote the 
olle
tionsof 
hains and anti
hains in (X;�), respe
tively. Let w : X ! Z+ be a `weight'fun
tion.(i) Show that the maximumweight w(C) of any 
hain is equal to the minimum valueof PA2A �(A), where the �(A) range over all nonnegative integers satisfying(19) XA2A;x2A�(A) = w(x)

for ea
h x 2 X.(ii) Show that the maximum weight w(A) of any anti
hain is equal to the mini-mum value of PC2C �(C), where the �(C) range over all nonnegative integerssatisfying
(20) XC2C;x2C �(C) = w(x)
for ea
h x 2 X.(iii) Derive that the 
onvex hull of the in
iden
e ve
tors of anti
hains (as ve
tors inRX ) is equal to the set of all ve
tors f 2 RX+ satisfying f(C) � 1 for ea
h 
hainC.[For any �nite setX and any subset Y ofX, de�ne the in
iden
e ve
tor �Y 2 RXof Y as:(21) �Yx := 1 if x 2 Y ;:= 0 if x 62 Y .℄(iv) Derive also that the 
onvex hull of the in
iden
e ve
tors of 
hains (as ve
torsin RX ) is equal to the set of all ve
tors f 2 RX+ satisfying f(A) � 1 for ea
hanti
hain A.7.25. Derive Dilworth's de
omposition theorem (Theorem 7.5) from the strong perfe
tgraph theorem.

7.4. Perfe
t graphsWe now 
onsider a general 
lass of graphs, the `perfe
t' graphs, that turn out to unifyseveral results in 
ombinatorial optimization, in parti
ular, min-max relations and
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polyhedral 
hara
terizations.As we saw before, the 
lique number !(G) and the 
olouring number 
(G) of agraph G = (V;E) are related by the inequality:(22) !(G) � 
(G):There are graphs that have stri
t inequality; for instan
e, the 
ir
uit C5 on �veverti
es.Having equality in (22) does not say that mu
h about the internal stru
ture of agraph: any graph G = (V;E) 
an be extended to a graph G0 = (V 0; E 0) satisfying!(G0) = 
(G0), simply by adding to G a 
lique of size 
(G), disjoint from V .However, if we require that equality in (22) holds for ea
h indu
ed subgraph ofG, we obtain a mu
h more powerful 
ondition. The idea for this was formulated byBerge [1963℄. He de�ned a graph G = (V;E) te be perfe
t if !(G0) = 
(G0) holds forea
h indu
ed subgraph G0 of G.Several 
lasses of graphs 
ould be shown to be perfe
t, and Berge [1961,1963℄observed the important phenomenon that for several 
lasses of graphs that were shownto be perfe
t, also the 
lass of 
omplementary graphs is perfe
t. (The 
omplementor the 
omplementary graph G of a graph G = (V;E) is the graph with vertex setV , where any two distin
t verti
es in V are adja
ent in G if and only if they arenonadja
ent in G.)Berge therefore 
onje
tured that the 
omplement of any perfe
t graph is perfe
tagain. This 
onje
ture was proved by Lov�asz [1972b℄, and his perfe
t graph theoremforms the kernel of perfe
t graph theory. It has several other theorems in graph theoryas 
onsequen
e. Lov�asz [1972a℄ gave the following stronger form of the 
onje
ture,whi
h we show with the elegant linear-algebrai
 proof found by Gasparian [1996℄.Theorem 7.6. A graph G is perfe
t if and only if !(G0)�(G0) � jV (G0)j for ea
hindu
ed subgraph G0 of G.Proof. Ne
essity is easy, sin
e if G is perfe
t, then !(G0) = 
(G0) for ea
h indu
edsubgraph G0 of G, and sin
e 
(G0)�(G0) � jV (G0)j for any graph G0.To see suÆ
ien
y, suppose to the 
ontrary that there exists an imperfe
t graph Gsatisfying the 
ondition, and 
hoose su
h a graph with jV (G)j minimal. So 
(G) >!(G), while 
(G0) = !(G0) for ea
h indu
ed subgraph G0 6= G of G.Let ! := !(G) and � := �(G). We 
an assume that V (G) = f1; : : : ; ng.We �rst 
onstru
t(23) stable sets C0; : : : ; C�! su
h that ea
h vertex is 
overed by exa
tly � of theCi.Let C0 be any stable set in G of size �. By the minimality of G, we know that forea
h v 2 C0, the subgraph of G indu
ed by V (G) n fvg is perfe
t, and that hen
e its
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olouring number is at most ! (as its 
lique number is at most !); therefore V (G)nfvg
an be partitioned into ! stable sets. Doing this for ea
h v 2 C0, we obtain stablesets as in (23).Now for ea
h i = 0; : : : ; �!, there exists a 
lique Ki of size ! with Ki \ Ci = ;.Otherwise, the subgraph G0 of G indu
ed by V (G) n Ci would have !(G0) < !, andhen
e it has 
olouring number at most ! � 1. Adding Ci as a 
olour would give an!-vertex 
olouring of G, 
ontradi
ting the assumption that 
(G) > !(G).Then, if i 6= j with 0 � i; j � �!, we have jKj \ Cij = 1. This follows from thefa
t that Kj has size ! and interse
ts ea
h Ci in at most one vertex, and hen
e, by(23), it interse
ts �! of the Ci. As Kj \ Cj = ;, we have that jKj \ Cij = 1 if i 6= j.Now 
onsider the (�! + 1) � n in
iden
e matri
es M = (mi;j) and N = (ni;j)of C0; : : : ; C�! and K0; : : : ;K�! respe
tively. So M and N are 0; 1 matri
es, withmi;j = 1 , j 2 Ci, and ni;j = 1 , j 2 Ki, for i = 0; : : : ; �! and j = 1; : : : ; n. Bythe above, MNT = J � I, where J is the �! � �! all-1 matrix, and I the �! � �!identity matrix. As J � I has rank �!+1, we have n � �!+1. This 
ontradi
ts the
ondition given in the theorem.

This implies:Corollary 7.6a ((Lov�asz's) perfe
t graph theorem). The 
omplement of a perfe
tgraph is perfe
t again.Proof. Dire
tly from Theorem 7.6, as the 
ondition given in it is maintained undertaking the 
omplementary graph.
In fa
t, Berge [1963℄ also made an even stronger 
onje
ture, whi
h was provedin 2002 by Chudnovsky, Robertson, Seymour, and Thomas (we mentioned this inSe
tion 7.1 in a di�erent but equivalent form):Strong perfe
t graph theorem. A graph G is perfe
t if and only if G does not
ontain any odd 
ir
uit C2k+1 with k � 2 or its 
omplement as an indu
ed subgraph.We now show how several theorems we have seen before follow as 
onsequen
esfrom the perfe
t graph theorem. First observe that trivially, any bipartite graph G isperfe
t. This implies K}onig's edge 
over theorem (Theorem 3.3a):Corollary 7.6b (K}onig's edge 
over theorem). The 
omplement of a bipartite graphis perfe
t. Equivalently, the edge 
over number of any bipartite graph (without isolatedverti
es) is equal to its stable set number.Proof. Dire
tly from the perfe
t graph theorem. Note that if G is a bipartite graph,then its 
liques have size at most 2; hen
e 
(G) is equal to the edge 
over number ofG if G has no isolated verti
es.Note moreover that the 
lass of 
omplements of bipartite graphs is 
losed under
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taking indu
ed subgraphs. Hen
e the se
ond statement in the Corollary indeed isequivalent to the �rst.

We saw in Se
tion 3.3 that by Gallai's theorem (Theorem 3.1), K}onig's edge 
overtheorem dire
tly implies K}onig's mat
hing theorem (Theorem 3.3), saying that themat
hing number of a bipartite graph G is equal to its vertex 
over number. That is,the stable set number of the line graph L(G) of G is equal to the minimum numberof 
liques of L(G) that 
over all verti
es of L(G). As this is true for any indu
edsubgraph of L(G) we know that the 
omplement L(G) of the line graph L(G) of anybipartite graph G is perfe
t.Hen
e with the perfe
t graph theorem we obtain K}onig's edge-
olouring theorem(Theorem 7.3):Corollary 7.6
 (K}onig's edge-
olouring theorem). The line graph of a bipartite graphis perfe
t. Equivalently, the edge-
olouring number of any bipartite graph is equal toits maximum degree.Proof. Again dire
tly from K}onig's mat
hing theorem and the perfe
t graph theorem.
We 
an also derive Dilworth's de
omposition theorem (Theorem 7.5) easily fromthe perfe
t graph theorem. Let (V;�) be a partially ordered set. Let G = (V;E) bethe graph with:

(24) uv 2 E if and only if u < v or v < u.
Any graph G obtained in this way is 
alled a 
omparability graph.As Theorem 7.4 we saw the following easy `dual' form of Dilworth's de
ompositiontheorem:Theorem 7.7. In any partially ordered set (V;�), the maximum size of any 
hainis equal to the minimum number of anti
hains needed to 
over V .Proof. For any v 2 V de�ne the height of v as the maximum size of any 
hain in Vwith maximum element v. Let k be the maximum height of any element v 2 V . Fori = 1; : : : ; k let Ai be the set of elements of height i. Then A1; : : : ; Ak are anti
hains
overing V , and moreover, there is a 
hain of size k, sin
e there is an element of heightk.

Equivalently, we have !(G) = 
(G) for any 
omparability graph. As the 
lass of
omparability graphs is 
losed under taking indu
ed subgraphs we have:
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Corollary 7.7a. Any 
omparability graph is perfe
t.Proof. Dire
tly from Theorem 7.7.

So by the perfe
t graph theorem:Corollary 7.7b. The 
omplement of any 
omparability graph is perfe
t.Proof. Dire
tly from Corollary 7.7a and the perfe
t graph theorem (Corollary 7.6a).
That is:Corollary 7.7
 (Dilworth's de
omposition theorem). In any partially ordered set(V;�), the maximum size of any anti
hain is equal to the minimum number of 
hainsneeded to 
over V .Proof. Dire
tly from Corollary 7.7b.
A further appli
ation of the perfe
t graph theorem is to `
hordal graphs', whi
hwe des
ribe in the next se
tion.We note here that it was shown with the help of the `ellipsoid method' thatthere exists a polynomial-time algorithm for �nding a maximum-size 
lique and aminimum vertex-
olouring in any perfe
t graph (Gr�ots
hel, Lov�asz, and S
hrijver[1981℄). However no 
ombinatorial polynomial-time algorithm is known for theseproblems.

Exer
ises7.26. Show that the graph obtained from the Paris M�etro network (see Appli
ation 7.1) isperfe
t.7.27. Show that Theorem 7.6 is implied by the strong perfe
t graph theorem.
7.5. Chordal graphsWe �nally 
onsider a further 
lass of perfe
t graphs, the `
hordal graphs' (or `rigid
ir
uit graphs' or `triangulated graphs'). A graph G is 
alled 
hordal if ea
h 
ir
uitin G of length at least 4 has a 
hord. (A 
hord is an edge 
onne
ting two verti
es ofthe 
ir
uit that do not form two neighbours in the 
ir
uit.)For any set A of verti
es let N(A) denote the set of verti
es not in A that areadja
ent to at least one vertex in A. Call a vertex v simpli
ial if N(fvg) is a 
liquein G.
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Dira
 [1961℄ showed the following basi
 property of 
hordal graphs:Theorem 7.8. Ea
h 
hordal graph G 
ontains a simpli
ial vertex.Proof. We may assume that G has at least two nonadja
ent verti
es a; b. Let Abe a maximal nonempty subset of V su
h that GjA is 
onne
ted and su
h thatA[N(A) 6= V . Su
h a subset A exists as Gjfag is 
onne
ted and fag[N(fag) 6= V .Let B := V n(A[N(A)). Then ea
h vertex v in N(A) is adja
ent to ea
h vertex inB, sin
e otherwise we 
ould in
rease A by v. Moreover, N(A) is a 
lique, for supposethat u;w 2 N(A) are nonadja
ent. Choose v 2 B. Let P be a shortest path inA [N(A) 
onne
ting u and w. Then P [ fu; v; wg would form a 
ir
uit of length atleast 4 without 
hords, a 
ontradi
tion.Now indu
tively we know that GjB 
ontains a vertex v that is simpli
ial in GjB.Sin
e N(A) is a 
lique and sin
e ea
h vertex in B is 
onne
ted to ea
h vertex in N(A),v is also simpli
ial in G.
This implies a result of Hajnal and Sur�anyi [1958℄:Theorem 7.9. The 
omplement of any 
hordal graph is perfe
t.Proof. Let G = (V;E) be a 
hordal graph. Sin
e the 
lass of 
hordal graphs is 
losedunder taking indu
ed subgraphs, it suÆ
es to show !(G) � 
(G).By Theorem 7.1, G has a simpli
ial vertex v. So K := fvg [ N(fvg) is a 
lique.Let G0 be the subgraph of G indu
ed by V nK. By indu
tion we have !(G0) = 
(G0).Now !(G) � !(G0) + 1, sin
e we 
an add v to any 
lique of G0. Similarly, 
(G) �
(G0) + 1, sin
e we 
an add K to any 
olouring of G0. Hen
e !(G) � 
(G).
With Lov�asz's perfe
t graph theorem, this implies the result of Berge [1960℄:Corollary 7.9a. Any 
hordal graph is perfe
t.Proof. Dire
tly from Theorem 7.9 and the perfe
t graph theorem (Corollary 7.6a).
We 
an 
hara
terize 
hordal graphs in terms of subtrees of a tree T . Let S be a
olle
tion of nonempty subtrees of a tree T . The interse
tion graph of S is the graphwith vertex set S, where two verti
es S; S 0 are adja
ent if and only if they interse
t(in at least one vertex).The 
lass of graphs obtained in this way 
oin
ides with the 
lass of 
hordal graphs.To see this, we �rst show the following elementary lemma:Lemma 7.1. Let S be a 
olle
tion of pairwise interse
ting subtrees of a tree T . Thenthere is a vertex of T 
ontained in all subtrees in S.
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Proof. By indu
tion on jV T j. If jV T j = 1 the lemma is trivial, so assume jV T j � 2.Let t be an end vertex of T . If there exists a subtree in S 
onsisting only of t, thelemma is trivial. Hen
e we may assume that ea
h subtree in S 
ontaining t also
ontains the neighbour of t. So deleting t from T and from all subtrees in S gives thelemma by indu
tion.

Then:Theorem 7.10. A graph is 
hordal if and only if it is isomorphi
 to the interse
tiongraph of a 
olle
tion of subtrees of some tree.Proof. Ne
essity. LetG = (V;E) be 
hordal. By Theorem 7.8, G 
ontains a simpli
ialvertex v. By indu
tion, the subgraphG�v ofG is the interse
tion graph of a 
olle
tionS of subtrees of some tree T . Let S 0 be the sub
olle
tion of S 
orresponding to theset N of neighbours of v in G. As N is a 
lique, S 0 
onsists of pairwise interse
tingsubtrees. Hen
e, by Lemma 7.1 these subtrees have a vertex t of T in 
ommon. Nowwe extend T and all subtrees in S 0 with a new vertex t0 and a new edge tt0. Moreover,we introdu
e a new subtree ft0g representing v. In this way we obtain a subtreerepresentation for G.SuÆ
ien
y. Let G be the interse
tion graph of some 
olle
tion S of subtreesof some tree T . Suppose that G 
ontains a 
hordless 
ir
uit Ck with k � 4. LetCk be the interse
tion graph of S1; : : : ; Sk 2 S, with S1 and S2 interse
ting. ThenS1; S2; S3[� � �[Sk are three subtrees of T that are pairwise interse
ting. So by Lemma7.1, T has a vertex v 
ontained in ea
h of these three subtrees. So v 2 S1 \ S2 \ Sifor some i 2 f3; : : : ; kg. This yields a 
hord in Ck.
This theorem enables us to interpret the perfe
tness of 
hordal graphs in terms oftrees:Corollary 7.10a. Let S be a 
olle
tion of nonempty subtrees of a tree T . Thenthe maximum number of pairwise vertex-disjoint trees in S is equal to the minimumnumber of verti
es of T interse
ting ea
h tree in S.Proof. Dire
tly from Theorems 7.9 and 7.10, using Lemma 7.1.
Similarly we have:Corollary 7.10b. Let S be a 
olle
tion of subtrees of a tree T . Let k be the max-imum number of times that any vertex of T is 
overed by trees in S. Then S 
anbe partitioned into sub
olle
tions S1; : : : ;Sk su
h that ea
h S i 
onsists of pairwisevertex-disjoint trees.Proof. Dire
tly from Corollary 7.9a and Theorem 7.10, again using Lemma 7.1.
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Exer
ises7.28. Show that a graph G = (V;E) is 
hordal if and only if ea
h indu
ed subgraph has asimpli
ial vertex.7.29. Show that a graph is an interval graph if and only if it is 
hordal and its 
omplementis a 
omparability graph.7.30. Derive from the proof of Theorem 7.8 that ea
h 
hordal graph is either a 
lique or
ontains two nonadja
ent simpli
ial verti
es.7.31. Let G be a 
hordal graph. Derive from the proof of Theorem 7.8 that ea
h vertexv that is nonadja
ent to at least one vertex w 6= v, is nonadja
ent to at least onesimpli
ial vertex w 6= v.7.32. Show that a graph G = (V;E) is 
hordal if and only if the edges of G 
an be orientedso as to obtain a dire
ted graph D = (V;A) with the following properties:
(25) (i)D is a
y
li
;(ii)if (u; v) and (u;w) belong to A then (v; w) or (w; v) belongs to A.
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8. Integer linear programming andtotally unimodular matri
es
8.1. Integer linear programmingMany 
ombinatorial optimization problems 
an be des
ribed as maximizing a linearfun
tion 
Tx over the integer ve
tors in some polyhedron P = fx j Ax � bg. (Ave
tor x 2 R n is 
alled integer if ea
h 
omponent is an integer, i.e., if x belongs toZn .)So this type of problems 
an be des
ribed as:(1) maxf
Tx j Ax � b;x 2 Zng:Su
h problems are 
alled integer linear programming problems. They 
onsist of max-imizing a linear fun
tion over the interse
tion P \ Zn of a polyhedron P with the setZn of integer ve
tors.Example. Consider a graph G = (V;E). Then the problem of �nding a mat
hingof maximum 
ardinality 
an be des
ribed as follows. Let A be the V � E in
iden
ematrix of G. So the rows of A are indexed by the verti
es of G, while the 
olumns ofA are indexed by the edges of G and for any v 2 V and e 2 E:(2) Av;e := 1 if v 2 e;:= 0 if v 62 e.Now �nding a maximum-
ardinality mat
hing is equivalent to:
(3) maximize Xe2E xesubje
t to Xe3v xe � 1 for ea
h v 2 V ,xe � 0 for ea
h e 2 E,xe 2 Z for ea
h e 2 E.This is the same as:(4) maxf1Tx j x � 0;Ax � 1;x integerg;where 1 denotes an all-one ve
tor, of appropriate size.
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Clearly, always the following holds:(5) maxf
Tx j Ax � b;x integerg � maxf
Tx j Ax � bg:The above example, applied to the graph K3 shows that stri
t inequality 
an hold.This implies, that generally one will have stri
t inequality in the following dualityrelation:(6) maxf
Tx j Ax � b;x integerg � minfyT b j y � 0; yTA = 
T ; y integerg:A polytope P is 
alled integer if ea
h of its verti
es is an integer ve
tor. Clearly,if a polytope P = fx j Ax � bg is integer, then the LP-problem(7) maxf
Tx j Ax � bghas an integer optimum solution. So in that 
ase,(8) maxf
Tx j Ax � b;x integerg = maxf
Tx j Ax � bg:In Exer
ise 8.5 below we shall see that in a sense also the 
onverse holds.No polynomial-time algorithm is known to exist for solving an integer linear pro-gramming problem in general. In fa
t, the general integer linear programming prob-lem is NP-
omplete, and it is 
onje
tured that no polynomial-time algorithm exists.However, for spe
ial 
lasses of integer linear programming problems, polynomial-time algorithms have been found. These 
lasses often 
ome from 
ombinatorial prob-lems, like the mat
hing problem above.

Exer
ises8.1. Let P be a polytope. Prove that the set 
onv.hull(P \ Zn) is again a polytope.8.2. Let P = fx j Ax � bg be a polyhedron, where A is a rational matrix. Show that theset 
onv.hull(P \ Zn) is again a polyhedron.8.3. LetG = (V;E) be a graph. Des
ribe the problem of �nding a vertex 
over of minimum
ardinality as an integer linear programming problem.8.4. Let G = (V;E) be a graph. Des
ribe the problem of �nding a 
lique (= 
ompletesubgraph) of maximum 
ardinality as an integer linear programming problem.8.5. Show that a polytope P is integer if and only if for ea
h ve
tor 
, the linear program-ming problem maxf
Tx j Ax � bg has an integer optimum solution.
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8.2. Totally unimodular matri
esTotal unimodularity of matri
es turns out to form an important tool in studyinginteger ve
tors in polyhedra.A matrix A is 
alled totally unimodular if ea
h square submatrix of A has determi-nant equal to 0, +1, or �1. In parti
ular, ea
h entry of a totally unimodular matrixis 0, +1, or �1.A link between total unimodularity and integer linear programming is given bythe following fundamental result.Theorem 8.1. Let A be a totally unimodular m � n matrix and let b 2 Zm. Thenea
h vertex of the polyhedron(9) P := fx j Ax � bgis an integer ve
tor.Proof. Let A have order m � n. Let z be a vertex of P . By Theorem 2.2, thesubmatrix Az has rank n. So Az has a nonsingular n� n submatrix A0. Let b0 be thepart of b 
orresponding to the rows of A that o

ur in A0.Sin
e, by de�nition, Az is the set of rows ai of A for whi
h aiz = bi, we knowA0z = b0. Hen
e z = (A0)�1b0. However, sin
e j detA0j = 1, all entries of the matrix(A0)�1 are integer. Therefore, z is an integer ve
tor.

As a dire
t 
orollary we have a similar result for polyhedra in general (not ne
es-sarily having verti
es). De�ne a polyhedron P to be integer if for ea
h ve
tor 
 forwhi
h(10) maxf
Tx j x 2 Pgis �nite, the maximum is attained by some integer ve
tor. So:(11) if P = fx j Ax � bg where A is an m�n matrix of rank n, then P is integerif and only if ea
h vertex of P is integer.Then we have:Corollary 8.1a. Let A be a totally unimodular m� n matrix and let b 2 Zm. Thenthe polyhedron(12) P := fx j Ax � bgis an integer polyhedron.
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Proof. Let x� be an optimum solution of (10). Choose integer ve
tors d0; d00 2 Znsu
h that d0 � x� � d00. Consider the polyhedron(13) Q := fx 2 R n j Ax � b; d0 � x � d00g:So Q is bounded.Moreover, Q is the set of all ve
tors x satisfying
(14) 0� A�II

1Ax � 0� b�d0d00
1A :

Now the matrix here is again totally unimodular (this follows easily from the totalunimodularity of A). Hen
e by Theorem 8.1, Q is an integer polytope. This impliesthat the linear programming problem maxf
Tx j x 2 Qg is attained by some integerve
tor ~x.But then ~x is also an optimum solution for the original LP-problem maxf
Tx jAx � bg. Indeed, ~x satis�es A~x � b, as ~x belongs to Q. Moreover,(15) 
T ~x � 
Tx� = maxf
Tx j Ax � bg;implying that ~x is an optimum solution.
It follows that ea
h linear programming problem with integer data and totallyunimodular 
onstraint matrix has integer optimum primal and dual solutions:Corollary 8.1b. Let A be a totally unimodular m � n matrix, let b 2 Zm and let
 2 Zn. Then both problems in the LP-duality equation:(16) maxf
Tx j Ax � bg = minfyT b j y � 0; yTA = 
Tghave integer optimum solutions (if the optima are �nite).Proof. Dire
tly from Corollary 8.1a, using the fa
t that with A also the matrix

(17) 0� �IAT�AT
1A

is totally unimodular.
Ho�man and Kruskal [1956℄ showed, as we shall see below, that the above property
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more or less 
hara
terizes total unimodularity.To derive this result, de�ne an m� n matrix A to be unimodular if it has rank mand ea
h m�m submatrix has determinant equal to 0, +1, or �1. It is easy to seethat a matrix A is totally unimodular if and only if the matrix [I A℄ is unimodular.We follow the proof of Ho�man and Kruskal's result given by Veinott and Dantzig[1968℄. As a preparation one �rst shows:Theorem 8.2. Let A be an integer m� n matrix of rank m. Then A is unimodularif and only if for ea
h integer ve
tor b the polyhedron(18) P = fx j x � 0;Ax = bgis integer.Proof. Ne
essity. First suppose that A is unimodular. Let b be an integer ve
tor.Let D be the matrix
(19) D := 0� �IA�A

1A and f := 0� 0b�b
1A :

Note that the system x � 0; Ax = b is the same as Dx � f .Sin
e D has rank n, we know that for ea
h 
 2 R n , the linear programmingproblem(20) maxf
Tx j x � 0;Ax = bg = maxf
Tx j Dx � fgis attained by a vertex z of P (if the optima are �nite).Now 
onsider the matrix Dz. By de�nition, this is the submatrix of D 
onsistingof those rows Di of D whi
h have equality in Dz � f .Clearly, Dz 
ontains all rows of D that are in A and in �A. Sin
e A has rank m,this implies that Dz 
ontains a nonsingular n�n matrix B that fully 
ontains A andmoreover, part of �I. Sin
e A is unimodular, detB equals +1 or �1. Let f 0 be thepart of f 
orresponding to B. So Bz = f 0, and hen
e z = B�1f 0. As j detBj = 1, itfollows that z is an integer ve
tor.SuÆ
ien
y. Suppose that P = fx j x � 0;Ax = bg is integer, for ea
h 
hoi
e ofan integer ve
tor b. Let B be an m�m nonsingular submatrix of A. We must showthat detB equals +1 or �1.Without loss of generality, we may assume that B 
onsists of the �rst m 
olumnsof A.It suÆ
es to show that B�1v is an integer ve
tor for ea
h 
hoi
e of an integerve
tor v. (This follows from the fa
t that then B�1 itself is an integer matrix, and
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hen
e (detB)�1=det(B�1) is an integer. This implies that detB equals +1 or �1.)So let v be an integer ve
tor. Then there exists an integer ve
tor u 2 Rm su
hthat(21) z := u+B�1v > 0:De�ne(22) b := Bz:So b = Bz = Bu+BB�1v = Bu+ v is an integer ve
tor.Let z0 arise from z by adding zero-
omponents to z so as to obtain a ve
tor in R n .So
(23) z0 = � z0 � ;where 0 is the all-zero ve
tor in R n�m .Then z0 is a vertex of the polyhedron P (sin
e z0 2 P and sin
e there are n linearlyindependent rows in the matrix D for whi
h Dz � f holds with equality).So z0 is integer, and hen
e(24) B�1v = z � uis an integer ve
tor.

This gives the result of Ho�man and Kruskal [1956℄:Corollary 8.2a (Ho�man-Kruskal theorem). Let A be an integer m � n matrix.Then A is totally unimodular if and only if for ea
h integer ve
tor b the polyhedron(25) P = fx j x � 0;Ax � bgis integer.Proof. Ne
essity. Dire
tly from Corollary 8.1a.SuÆ
ien
y. Let P be an integer polyhedron, for ea
h 
hoi
e of an integer ve
torb. We show that, for ea
h 
hoi
e of b 2 Zm , ea
h vertex z of the polyhedron(26) Q := fz j z � 0; [I A℄z = bg:is integer. Indeed, z 
an be de
omposed as
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(27) z = � z0z00 � ;where z0 2 Rm and z00 2 R n. So z0 = b� Az00.Then z00 is a vertex of P . [This follows from the fa
t that if z00 would be equal to12(v + w) for two other points v; w in P , then
(28) z0 = b� Az00 = 12(b� Av) + 12(b� Aw):
Hen
e
(29) z = � z0z00 � = 12 � b� Avv �+ 12 � b� Aww � :
This 
ontradi
ts the fa
t that z is a vertex of Q.℄So, by assumption, z00 is integer. Hen
e also z0 = b� Az00 is integer, and hen
e zis integer.So for ea
h 
hoi
e of b in Zm , the polyhedron Q is integer. Hen
e, by Theorem8.2, the matrix [I A℄ is unimodular. This implies that A is totally unimodular.
Exer
ises8.6. Show that an integer matrix A is totally unimodular if and only if for all integerve
tors b and 
, both sides of the linear programming duality equation

(30) maxf
Tx j x � 0;Ax � bg = minfyT b j y � 0; yTA � 
T g
are attained by integer optimum solutions x and y (if the optima are �nite).8.7. Give an example of an integer matrix A and an integer ve
tor b su
h that the poly-hedron P := fx j Ax � bg is integer, while A is not totally unimodular.8.8. Let A be a totally unimodular matrix. Show that the 
olumns of A 
an be splitinto two 
lasses su
h that the sum of the 
olumns in one 
lass, minus the sum of the
olumns in the other 
lass, gives a ve
tor with entries 0, +1, and �1 only.8.9. Let A be a totally unimodular matrix and let b be an integer ve
tor. Let x be aninteger ve
tor satisfying x � 0;Ax � 2b. Show that there exist integer ve
tors x0 � 0and x00 � 0 su
h that Ax0 � b, Ax00 � b and x = x0 + x00.
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8.3. Totally unimodular matri
es from bipartitegraphsLet A be the V � E in
iden
e matrix of a graph G = (V;E) (
f. (2)). The matrixA generally is not totally unimodular. E.g., if G is the 
omplete graph K3 on threeverti
es, then the determinant of A is equal to +2 or �2.However, the following 
an be proved:Theorem 8.3. Graph G is bipartite if and only if its in
iden
e matrix A is totallyunimodular.Proof. SuÆ
ien
y. Let A be totally unimodular. Suppose G is not bipartite. ThenG 
ontains an odd 
ir
uit, say with verti
es v1; : : : ; vk and edges e1; : : : ; ek. The sub-matrix of A on the rows indexed by v1; : : : ; vk and the 
olumns indexed by e1; : : : ; ek,is of type

(31)
0BBBBBBBBB�

1 1 0 � � � � � � 0 00 1 1 � � � � � � 0 00 0 1 � � � � � � 0 0... ... ... . . . ... ...... ... ... . . . ... ...0 0 0 � � � � � � 1 11 0 0 � � � � � � 0 1

1CCCCCCCCCA ;

up to permutation of rows and 
olumns.It is not diÆ
ult to see that matrix (31) has determinant 2. This 
ontradi
ts thetotal unimodularity of A.Ne
essity. Let G be bipartite. Let B be a square submatrix of A, of order t � t,say. We show that detB equal 0 or �1 by indu
tion on t. If t = 1, the statement istrivial.So let t > 1. We distinguish three 
ases.Case 1. B has a 
olumn with only 0's. Then detB=0.Case 2. B has a 
olumn with exa
tly one 1. In that 
ase we 
an write (possiblyafter permuting rows or 
olumns):
(32) B = � 1 bT0 B0 � ;
for some matrix B0 and ve
tor b, where 0 denotes the all-zero ve
tor in R t�1 . By theindu
tion hypothesis, detB0 2 f0;�1g. Hen
e, by (32), detB 2 f0;�1g.
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Case 3. Ea
h 
olumn of B 
ontains exa
tly two 1's. Then, sin
e G is bipartite,we 
an write (possibly after permuting rows):

(33) B = � B0B00 � ;
in su
h a way that ea
h 
olumn of B0 
ontains exa
tly one 1 and ea
h 
olumn ofB00 
ontains exa
tly one 1. So adding up all rows in B0 gives the all-one ve
tor, andalso adding up all rows in B00 gives the all-one ve
tor. Therefore, the rows of B arelinearly dependent, and hen
e detB=0.

As dire
t 
orollaries of this theorem, together with Corollary 8.1b, we obtain sometheorems of K}onig. First:Corollary 8.3a (K}onig's mat
hing theorem). Let G be a bipartite graph. Then themaximum 
ardinality of a mat
hing in G is equal to the minimum 
ardinality of avertex 
over in G.Proof. Clearly, the maximum 
annot be larger than the minimum. To see thatequality holds, let A be the V � E in
iden
e matrix of G. Then by Corollary 8.1b,both optima in the LP-duality equation(34) maxf1Tx j x � 0;Ax � 1g = minfyT1 j y � 0; yTA � 1gare attained by integer optimum solutions x� and y�.Sin
e x� is an integer ve
tor satisfying x � 0;Ax � 1, x� is a f0; 1g ve
tor. LetM be the set of edges e of G for whi
h x�e = 1. Then M is a mat
hing, sin
e Ax� � 1holds, implying that for ea
h vertex v there is at most one edge e with x�e = 1.Moreover, the 
ardinality jM j of M satis�es jM j = 1Tx�. So jM j is equal to themaximum in (34).On the other hand, as ve
tor y� attains the minimum in (34), it should be a f0; 1gve
tor. (If some 
omponent would be 2 or larger, we 
ould redu
e it to 1, withoutviolating yTA � 1 but de
reasing yT1. This 
ontradi
ts the fa
t that y� attains theminimum.)Let W be the set of verti
es of G for whi
h y�v = 1. Then W is a vertex 
over,sin
e y�TA � 1 holds, implying that for ea
h edge e of G there is at least one vertexv with y�v = 1. Moreover, the 
ardinality jW j of W satis�es jW j = y�T1. So jW j isequal to the minimum in (34).
One similarly derives:Corollary 8.3b (K}onig's edge 
over theorem). Let G be a bipartite graph. Then the
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maximum 
ardinality of a stable set in G is equal to the minimum 
ardinality of anedge 
over in G.Proof. Similar to the proof of Corollary 8.1a (now with AT instead of A).

One 
an also derive weighted versions of these two min-max relations. Let X besome �nite set and let w : X ! R be a `weight' fun
tion on X. The weight w(Y ) ofsome subset Y � X is, by de�nition:
(35) w(Y ) :=Xx2Y w(x):Then:Corollary 8.3
. Let G = (V;E) be a bipartite graph and let w : V ! Z+ be a weightfun
tion on E. Then:(i) The maximum weight of a mat
hing in G is equal to the minimum value ofPv2V f(v), where f ranges over all fun
tions f : V ! Z+ su
h that f(u) +f(v) � w(fu; vg) for ea
h edge fu; vg of G;(ii) The minimum weight of an edge 
over in G is equal to the maximum value ofPv2V f(v), where f ranges over all fun
tions f : V ! Z+ su
h that f(u) +f(v) � w(fu; vg) for ea
h edge fu; vg of G.
Proof. The statements are equivalent to both sides in(36) maxfwTx j x � 0;Ax � 1g = minfyT1 j y � 0; yTA � wgand in(37) minfwTx j x � 0;Ax � 1g = maxfyT1 j y � 0; yTA � wghaving integer optimum solutions. These fa
ts follow from Theorem 8.3 and Corollary8.1b.

Similarly one has min-max relations for the maximum weight of a stable set andthe minimum weight of a vertex 
over in bipartite graphs (
f. Exer
ises 8.10 and 8.11).Another 
orollary is as follows. For any �nite set X and any subset Y of X, de�nethe in
iden
e ve
tor �Y 2 RX of Y as:(38) �Yx := 1 if x 2 Y ;:= 0 if x 62 Y .
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Now let G = (V;E) be a graph. The mat
hing polytope Pmat
hing(G) of G is, byde�nition, the 
onvex hull (in R E ) of the in
iden
e ve
tors of all mat
hings in G.That is:(39) Pmat
hing(G) = 
onv.hullf�M jM mat
hing in Gg:Now with Theorem 8.3 we 
an give the linear inequalities des
ribing Pmat
hing(G):Corollary 8.3d. If G is bipartite, the mat
hing polytope Pmat
hing(G) of G is equalto the set of ve
tors x in R E satisfying:(40) (i) xe � 0 for ea
h e 2 E;(ii) Xe3v xe � 1 for ea
h v 2 V .

Proof. Let Q be the polytope de�ned by (40). Clearly, Pmat
hing(G) � Q, sin
e thein
iden
e ve
tor �M of any mat
hing M satis�es (40).To see that Q � Pmat
hing(G), observe that Q satis�es(41) Q = fx j x � 0;Ax � 1g;where A is the in
iden
e matrix of A.Sin
e A is totally unimodular (Theorem 8.3), we know that Q is integer, i.e., thatea
h vertex of Q is an integer ve
tor (Corollary 8.1a). So Q is the 
onvex hull of theinteger ve
tors 
ontained in Q. Now ea
h integer ve
tor in Q is equal to the in
iden
eve
tor �M of some mat
hing M in G. So Q must be 
ontained in Pmat
hing(G).
Again, one 
annot delete the bipartiteness 
ondition here, as for any odd 
ir
uitthere exists a ve
tor satisfying (40) but not belonging to the mat
hing polytopePmat
hing(G).Similarly, let the perfe
t mat
hing polytope Pperfe
t mat
hing(G) of G be de�ned asthe 
onvex hull of the in
iden
e ve
tors of the perfe
t mat
hings in G. Then we have:Corollary 8.3e. If G is bipartite, the perfe
t mat
hing polytope Pperfe
t mat
hing(G) ofG is equal to the set of ve
tors x in R E satisfying:(42) (i) xe � 0 for ea
h e 2 E;(ii) Xe3v xe = 1 for ea
h v 2 V .

Proof. Similarly as above.
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Exer
ises8.10. Give a min-max relation for the maximum weight of a stable set in a bipartite graph.8.11. Give a min-max relation for the minimum weight of a vertex 
over in a bipartitegraph.8.12. Let G = (V;E) be a nonbipartite graph. Show that the inequalities (40) are notenough to de�ne the mat
hing polytope of G.8.13. The edge 
over polytope Pedge 
over(G) of a graph is the 
onvex hull of the in
iden
eve
tors of the edge 
overs in G. Give a des
ription of the linear inequalities de�ningthe edge 
over polytope of a bipartite graph.8.14. The stable set polytope Pstable set(G) of a graph is the 
onvex hull of the in
iden
eve
tors of the stable sets in G. Give a des
ription of the linear inequalities de�ningthe stable set polytope of a bipartite graph.8.15. The vertex 
over polytope Pvertex 
over(G) of a graph is the 
onvex hull of the in
iden
eve
tors of the vertex 
overs in G. Give a des
ription of the linear inequalities de�ningthe vertex 
over polytope of a bipartite graph.8.16. Derive from Corollary 8.3e that for ea
h doubly sto
hasti
 matrix M there existpermutation matri
es P1; : : : ; Pm and reals �1; : : : ; �m � 0 su
h that �1+ � � �+�m = 1and

(43) M = �1P1 + � � ��mPm:
(A matrixM is 
alled doubly sto
hasti
 if ea
h row sum and ea
h 
olumn sum is equalto 1. A matrix P is 
alled a permutation matrix if it is a f0; 1g matrix, with in ea
hrow and in ea
h 
olumn exa
tly one 1.)

8.4. Totally unimodular matri
es from dire
ted graphsA se
ond 
lass of totally unimodular matri
es 
an be derived from dire
ted graphs.Let D = (V;A) be a dire
ted graph. The V � A in
iden
e matrix M of D is de�nedby:(44) Mv;a := +1 if a leaves v,:= �1 if a enters v,:= 0 otherwise.So ea
h 
olumn of M has exa
tly one +1 and exa
tly one �1, while all other entriesare 0.Now we have:
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Theorem 8.4. The in
iden
e matrix M of any dire
ted graph D is totally unimodu-lar.Proof. Let B be a square submatrix of M , of order t say. We prove that detB 2f0;�1g by indu
tion on t, the 
ase t = 1 being trivial.Let t > 1. We distinguish three 
ases.Case 1. B has a 
olumn with only zeros. Then detB = 0.Case 2. B has a 
olumn with exa
tly one nonzero. Then we 
an write (up topermuting rows and 
olumns):
(45) B = � �1 bT0 B0 � ;
for some ve
tor b and matrix B0.Now by our indu
tion hypothesis, detB0 2 f0;�1g, and hen
e detB 2 f0;�1g.Case 3. Ea
h 
olumn of B 
ontains two nonzeros. Then ea
h 
olumn of B
ontains one +1 and one �1, while all other entries are 0. So the rows of B add upto an all-zero ve
tor, and hen
e detB = 0.

The in
iden
e matrix M of a dire
ted graph D = (V;A) relates to 
ows and
ir
ulations in D. Indeed, any ve
tor x 2 RA 
an be 
onsidered as a fun
tion de�nedon the ar
s of D. Then the 
ondition(46) Mx = 0is just the `
ow 
onservation law'. That is, it says:
(47) Xa2Æout(v)x(a) = Xa2Æin(v)x(a) for ea
h v 2 V .
So we 
an derive from Theorem 8.4:Corollary 8.4a. Let D = (V;A) be a dire
ted graph and let 
 : A! Z and d : A! Z.If there exists a 
ir
ulation x on A with 
 � x � d, then there exists an integer
ir
ulation x on A with 
 � x � d.Proof. If there exists a 
ir
ulation x with 
 � x � d, then the polytope(48) P := fx j 
 � x � d;Mx = 0gis nonempty. So it has at least one vertex x�. Then, by Corollary 8.1a, x� is aninteger 
ir
ulation satisfying 
 � x� � d.
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In fa
t, one 
an derive Ho�man's 
ir
ulation theorem| see Exer
ise 8.17. Anothertheorem that 
an be derived is the max-
ow min-
ut theorem.Corollary 8.4b (max-
ow min-
ut theorem). Let D = (V;A) be a dire
ted graph,let s and t be two of the verti
es of D, and let 
 : A ! R+ be a `
apa
ity' fun
tionon A. Then the maximum value of an s� t 
ow subje
t to 
 is equal to the minimum
apa
ity of an s� t 
ut.Proof. Sin
e the maximum 
learly 
annot ex
eed the minimum, it suÆ
es to showthat there exists an s � t 
ow x � 
 and an s � t 
ut, the 
apa
ity of whi
h is notmore than the value of x.LetM be the in
iden
e matrix of D and letM 0 arise fromM by deleting the rows
orresponding to s and t. So the 
onditionM 0x = 0 means that the 
ow 
onservationlaw should hold in any vertex v 6= s; t.Let w be the row of M 
orresponding to vertex s. So wa = +1 if ar
 a leaves sand wa = �1 if ar
 a enters s, while wa = 0 for all other ar
s a.Now the maximum value of an s� t 
ow subje
t to 
 is equal to(49) maxfwTx j 0 � x � 
;M 0x = 0g:By LP-duality, this is equal to(50) minfyT 
 j y � 0; yT + zTM 0 � wg:The inequality system in (50) is:

(51) (yT zT )� I I0 M 0 � � (0 w):
The matrix here is totally unimodular, by Theorem 8.4.Sin
e w is an integer ve
tor, this implies that the minimum (50) is attained byinteger ve
tors y and z.Now de�ne(52) W := fv 2 V n fs; tg j zv � �1g [ fsg:So W is a subset of V 
ontaining s and not 
ontaining t.It suÆ
es now to show that(53) 
(Æout(W )) � yT 
;sin
e yT 
 is not more than the maximum 
ow value (49).
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To prove (53) it suÆ
es to show that(54) if a = (u; v) 2 Æout(W ) then ya � 1.De�ne ~zr := �1, ~zs := 0, and ~zu = zu for all other u. Then yT + ~zTM � 0. Hen
efor all a = (u; v) 2 Æout(W ) one has ya+ ~zu� ~zv � 0, implying ya � ~zv � ~zu � 1. Thisproves (54).
Similarly as in Corollary 8.4a it follows that if all 
apa
ities are integers, thenthere exists a maximum integer 
ow.Next de�ne a matrix to be an interval matrix if ea
h entry is 0 or 1 and ea
h rowis of type(55) (0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0):

Corollary 8.4
. Ea
h interval matrix is totally unimodular.Proof. Let M be an interval matrix and let B be a t � t submatrix of M . Then Bis again an interval matrix. Let N be the t� t matrix given by:

(56) N :=
0BBBBBBBBB�

1 �1 0 � � � � � � 0 00 1 �1 � � � � � � 0 00 0 1 � � � � � � 0 0... ... ... . . . ... ...... ... ... . . . ... ...0 0 0 � � � � � � 1 �10 0 0 � � � � � � 0 1

1CCCCCCCCCA :

Then the matrix N � BT is a f0;�1g matrix, with at most one +1 and at most one�1 in ea
h 
olumn.So it is a submatrix of the in
iden
e matrix of some dire
ted graph. Hen
e byTheorem 8.4, det(N � BT ) 2 f0;�1g. Moreover, detN = 1. So detB = detBT 2f0;�1g.
Exer
ises8.17. Derive Ho�man's 
ir
ulation theorem (Theorem 4.6) from Theorem 8.4.8.18. Derive Dilworth's de
omposition theorem (Theorem 7.5) from Theorem 8.4.8.19. Let D = (V;A) be a dire
ted graph and let T = (V;A0) be a dire
ted spanning treeon V .
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Let C be the A0 � A matrix de�ned as follows. Take a0 2 A0 and a = (u; v) 2 A,and de�ne Ca0;a := +1 if a0 o

urs in forward dire
tion in the u � v path in T andCa0;a := �1 if a0 o

urs in ba
kward dire
tion in the u � v path in T . For all othera0 2 A0 and a 2 A set Ca0;a := 0.(i) Prove that C is totally unimodular.(Hint: Use a matrix similar to matrix N in Corollary 8.4
.)(ii) Show that interval matri
es and in
iden
e matri
es of dire
ted graphs are spe
ial
ases of su
h a matrix C.
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9. Multi
ommodity 
ows anddisjoint paths

9.1. Introdu
tionThe problem of �nding a maximum 
ow from one `sour
e' s to one `sink' t is highlytra
table. There is a very eÆ
ient algorithm, whi
h outputs an integer maximum
ow if all 
apa
ities are integer. Moreover, the maximum 
ow value is equal tothe minimum 
apa
ity of a 
ut separating s and t. If all 
apa
ities are equal to 1,the problem redu
es to �nding ar
-disjoint paths. Some dire
t transformations givesimilar results for vertex 
apa
ities and for vertex-disjoint paths.Often in pra
ti
e however, one is not interested in 
onne
ting only one pair ofsour
e and sink by a 
ow or by paths, but several pairs of sour
es and sinks simulta-neously. One may think of a large 
ommuni
ation or transportation network, whereseveral messages or goods must be transmitted all at the same time over the samenetwork, between di�erent pairs of terminals. A re
ent appli
ation is the design ofvery large-s
ale integrated (VLSI) 
ir
uits, where several pairs of pins must be inter-
onne
ted by wires on a 
hip, in su
h a way that the wires follow given `
hannels' andthat the wires 
onne
ting di�erent pairs of pins do not interse
t ea
h other.Mathemati
ally, these problems 
an be formulated as follows. First, there is themulti
ommodity 
ow problem (or k-
ommodity 
ow problem):(1) given: a dire
ted graph G = (V;E); pairs (s1; t1); : : : ; (sk; tk) of verti
es of G, a`
apa
ity' fun
tion 
 : E ! Q + , and `demands' d1; : : : ; dk;�nd: for ea
h i = 1; : : : ; k; an si� ti 
ow xi 2 Q E+ so that xi has value di and sothat for ea
h ar
 e of G:kXi=1 xi(e) � 
(e):
The pairs (si; ti) are 
alled the 
ommodities or the nets. (We assume si 6= ti through-out.)If we require ea
h xi to be an integer 
ow, the problem is 
alled the integermulti
ommodity 
ow problem or integer k-
ommodity 
ow problem. (To distinguishfrom the integer version of this problem, one sometimes adds the adje
tive fra
tionalto the name of the problem if no integrality is required.)The problem has a natural analogue to the 
ase where G is undire
ted. We repla
eea
h undire
ted edge e = fv; wg by two opposite ar
s (v; w) and (w; v) and ask for
ows x1; : : : ; xk of values d1; : : : ; dk, respe
tively, so that for ea
h edge e = fv; wg ofG:
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(2) kXi=1 (xi(v; w) + xi(w; v)) � 
(e):
Thus we obtain the undire
ted multi
ommodity 
ow problem or undire
ted k-
ommodity
ow problem. Again, we add integer if we require the xi to be integer 
ows.If all 
apa
ities and demands are 1, the integer multi
ommodity 
ow problem isequivalent to the ar
- or edge-disjoint paths problem:(3) given: a (dire
ted or undire
ted) graph G = (V;E), pairs (s1; t1); : : : ; (sk; tk) ofverti
es of G,�nd: pairwise edge-disjoint paths P1; : : : ; Pk where Pi is an si � ti path (i =1; : : : ; k).Related is the vertex-disjoint paths problem:(4) given: a (dire
ted or undire
ted) graph G = (V;E), pairs (s1; t1); : : : ; (sk; tk) ofverti
es of G,�nd: pairwise vertex-disjoint paths P1; : : : ; Pk where Pi is an si � ti path (i =1; : : : ; k).We leave it as an exer
ise (Exer
ise 9.1) to 
he
k that the vertex-disjoint pathsproblem 
an be transformed to the dire
ted edge-disjoint paths problem.The (fra
tional) multi
ommodity 
ow problem 
an be easily des
ribed as one ofsolving a system of linear inequalities in the variables xi(e) for i = 1; : : : ; k ande 2 E. The 
onstraints are the 
ow 
onservation laws for ea
h 
ow xi separately,together with the inequalities given in (1). Therefore, the fra
tional multi
ommod-ity 
ow problem 
an be solved in polynomial time with any polynomial-time linearprogramming algorithm.In fa
t, the only polynomial-time algorithm known for the fra
tional multi
om-modity 
ow problem is any general linear programming algorithm. Ford and Fulker-son [1958℄ designed an algorithm based on the simplex method, with 
olumn genera-tion | see Se
tion 9.6.The following 
ut 
ondition trivially is a ne
essary 
ondition for the existen
e ofa solution to the fra
tional multi
ommodity 
ow problem (1):(5) for ea
h W � V the 
apa
ity of ÆoutE (W ) is not less than the demand ofÆoutR (W );where R := f(s1; t1); : : : ; (sk; tk)g. However, this 
ondition is in general not suÆ
ient,even not in the two simple 
ases given in Figure 9.1 (taking all 
apa
ities and demandsequal to 1).One may derive from the max-
ow min-
ut theorem that the 
ut 
ondition is
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suÆ
ient if s1 = s2 = � � � = sk (similarly if t1 = t2 = � � � = tk) | see Exer
ise 9.3.Similarly, in the undire
ted 
ase a ne
essary 
ondition is the following 
ut 
ondi-tion:(6) for ea
h W � V; the 
apa
ity of ÆE(W ) is not less than the demand ofÆR(W )(taking R := ffs1; t1g; : : : ; fsk; tkgg). In the spe
ial 
ase of the edge-disjoint pathsproblem (where all 
apa
ities and demands are equal to 1), the 
ut 
ondition reads:(7) for ea
h W � V; jÆE(W )j � jÆR(W )j:Figure 9.2 shows that this 
ondition again is not suÆ
ient.
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However, Hu [1963℄ showed that the 
ut 
ondition is suÆ
ient for the existen
eof a fra
tional multi
ommodity 
ow, in the undire
ted 
ase with k = 2 
ommodities.He gave an algorithm that yields a half-integer solution if all 
apa
ities and demandsare integer. This result was extended by Roths
hild and Whinston [1966℄. We dis
ussthese results in Se
tion 9.2.Similar results were obtained by Okamura and Seymour [1981℄ for arbitrary k,provided that the graph is planar and all terminals si; ti are on the boundary of theunbounded fa
e | see Se
tion 9.5.
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The integer multi
ommodity 
ow problem is NP-
omplete, even in the undire
ted
ase with k = 2 
ommodities and all 
apa
ities equal to 1, with arbitrary demandsd1; d2 (Even, Itai, and Shamir [1976℄). This implies that the undire
ted edge-disjointpaths problem is NP-
omplete, even if jffs1; t1g; : : : ; fsk; tkggj = 2.In fa
t, the disjoint paths problem is NP-
omplete in all modes (dire
ted/undire
ted,vertex/edge disjoint), even if we restri
t the graph G to be planar (D.E. Knuth (seeKarp [1975℄), Lyn
h [1975℄, Kramer and van Leeuwen [1984℄). For general dire
tedgraphs the ar
-disjoint paths problem is NP-
omplete even for k = 2 `opposite' 
om-modities (s; t) and (t; s) (Fortune, Hop
roft, and Wyllie [1980℄).On the other hand, it is a deep result of Robertson and Seymour [1995℄ thatthe undire
ted vertex-disjoint paths problem is polynomially solvable for any �xednumber k of 
ommodities. Hen
e also the undire
ted edge-disjoint paths problem ispolynomially solvable for any �xed number k of 
ommodities.Robertson and Seymour observed that if the graph G is planar and all termi-nals si; ti are on the boundary of the unbounded fa
e, there is an easy `greedy-type'algorithm for the vertex-disjoint paths problem | see Se
tion 9.4.It is shown by S
hrijver [1994℄ that for ea
h �xed k, the k disjoint paths problemis solvable in polynomial time for dire
ted planar graphs. For the dire
ted planar ar
-disjoint version, the 
omplexity is unknown. That is, there is the following resear
hproblem:Resear
h problem. Is the dire
ted ar
-disjoint paths problem polynomially solvablefor planar graphs with k = 2 
ommodities? Is it NP-
omplete?Appli
ation 9.1: Multi
ommodity 
ows. Certain goods or messages must be trans-ported through the same network, where the goods or messages may have di�erent sour
esand sinks.This is a dire
t spe
ial 
ase of the problems des
ribed above.Appli
ation 9.2: VLSI-routing. On a 
hip 
ertain modules are pla
ed, ea
h 
ontaininga number of 'pins'. Certain pairs of pins should be 
onne
ted by an ele
tri
al 
onne
tion(a `wire') on the 
hip, in su
h a way that ea
h wire follows a 
ertain (very �ne) grid on the
hip and that wires 
onne
ting di�erent pairs of pins are disjoint.Determining the routes of the wires 
learly is a spe
ial 
ase of the disjoint paths prob-lem.Appli
ation 9.3: Routing of railway sto
k. An extension of Appli
ation 4.5 is asfollows. The sto
k of the railway 
ompany NS for the Amsterdam{Vlissingen line now
onsists of two types (1 and 2 say) of units, with a di�erent number of seats s1 and s2 anddi�erent length l1 and l2. All units (also of di�erent types) 
an be 
oupled with ea
h other.Again there is a s
hedule given, together with for ea
h segment a minimum number ofseats and a maximum length of the train. Moreover, the pri
e pi of buying any unit of typei is given.Now the 
ompany wishes to determine the minimum 
osts of buying units of the two
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types so that the s
hedule 
an be performed and so that the total 
ost is minimized.This 
an be 
onsidered as a `min-
ost integer multi
ommodity 
ir
ulation problem'.That is we make the dire
ted graph D as in Appli
ation 4.5. For ea
h ar
 a 
orrespondingto a segment we de�ne d(a) to be the minimum number of seats that should be o�ered onthat segment, and 
(a) to be the maximum length possible at that segment. For all otherar
s a we de�ne d(a) := 0 and 
(a) :=1.One should �nd two integer-valued 
ir
ulations f1 and f2 in D su
h that(8) s1f1(a) + s2f2(a) � d(a) and l1f1(a) + l2f2(a) � 
(a)for ea
h ar
 a and su
h that the sum P(p1f1(a) + p2f2(a)) is minimized, where a rangesover all `overnight' ar
s. Then fi(a) denotes the number of units of type i that should goon segment a.Again several variations are possible, in
orporating for instan
e the kilometer 
osts andmaximum 
apa
ities of sto
k areas.
Exer
ises9.1. Show that ea
h of the following problems (a), (b), (
) 
an be redu
ed to problems(b), (
), (d), respe
tively:(a) the undire
ted edge-disjoint paths problem,(b) the undire
ted vertex-disjoint paths problem,(
) the dire
ted vertex-disjoint paths problem,(d) the dire
ted ar
-disjoint paths problem.9.2. Show that the undire
ted edge-disjoint paths problem for planar graphs 
an be re-du
ed to the dire
ted ar
-disjoint paths problem for planar graphs.9.3. Derive from the max-
ow min-
ut theorem that the 
ut 
ondition (5) is suÆ
ient forthe existen
e of a fra
tional multi
ommodity 
ow if s1 = � � � = sk.9.4. Show that if the undire
ted graph G = (V;E) is 
onne
ted and the 
ut 
ondition (7)is violated, then it is violated by some W � V for whi
h both W and V nW indu
e
onne
ted subgraphs of G.9.5. (i) Show with Farkas' lemma: the fra
tional multi
ommodity 
ow problem (1) hasa solution if and only if for ea
h `length' fun
tion l : E ! Q + one has:

(9) kXi=1 di � distl(si; ti) �Xe2E l(e)
(e):(Here distl(s; t) denotes the length of a shortest s� t path with respe
t to l.)(ii) Interprete the 
ut 
ondition (5) as a spe
ial 
ase of this 
ondition.
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9.2. Two 
ommoditiesHu [1963℄ gave a dire
t 
ombinatorial method for the undire
ted two-
ommodity 
owproblem and he showed that in this 
ase the 
ut 
ondition suÆ
es. In fa
t, he showedthat if the 
ut 
ondition holds and all 
apa
ities and demands are integer, there existsa half-integer solution. We �rst give a proof of this result due to Sakarovit
h [1973℄.Consider a graph G = (V;E), with 
ommodities fs1; t1g and fs2; t2g, a 
apa
ityfun
tion 
 : E ! Z+ and demands d1 and d2.Theorem 9.1 (Hu's two-
ommodity 
ow theorem). The undire
ted two-
ommodity
ow problem, with integer 
apa
ities and demands, has a half-integer solution if andonly if the 
ut 
ondition (6) is satis�ed.Proof. Suppose that the 
ut 
ondition holds. Orient the edges of G arbitrarily,yielding the dire
ted graph D = (V;A). For any a 2 A we denote by 
(a) the
apa
ity of the underlying undire
ted edge.De�ne for any x 2 RA and any v 2 V :
(10) f(x; v) := Xa2Æout(v)x(a)� Xa2Æin(v)x(a):So f(x; v) is the `net loss' of x in vertex v.By the max-
ow min-
ut theorem there exists a fun
tion x0 : A! Z satisfying:(11) f(x0; s1) = d1; f(x0; t1) = �d1; f(x0; s2) = d2; f(x0; t2) = �d2;f(x0; v) = 0 for ea
h other vertex v,jx0(a)j � 
(a) for ea
h ar
 a of D:This 
an be seen by extending the undire
ted graph G by adding two new verti
es s0and t0 and four new edges fs0; s1g; ft1; t0g (both with 
apa
ity d1) and fs0; s2g; ft2; t0g(both with 
apa
ity d2) as in Figure 9.3.
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Then the 
ut 
ondition for the two-
ommodity 
ow problem implies that theminimum 
apa
ity of any s0� t0 
ut in the extended graph is equal to d1+ d2. Hen
e,by the max-
ow min-
ut theorem, there exists an integer-valued s0 � t0 
ow in theextended graph of value d1 + d2. This gives x0 satisfying (11).Similarly, the max-
ow min-
ut theorem implies the existen
e of a fun
tion x00 :A! Z satisfying:(12) f(x00; s1) = d1; f(x00; t1) = �d1; f(x00; s2) = �d2; f(x00; t2) = d2;f(x00; v) = 0 for ea
h other vertex v,jx00(a)j � 
(a) for ea
h ar
 a of D.To see this we extend G with verti
es s00 and t00 and edges fs00; s1g; ft1; t00g (both with
apa
ity d1) and fs00; t2g; fs2; t00g (both with 
apa
ity d2) (
f. Figure 9.4).
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After this we pro
eed as above.Now 
onsider the ve
tors(13) x1 := 12(x0 + x00) and x2 := 12(x0 � x00):Sin
e f(x1; v) = 12(f(x0; v) + f(x00; v)) for ea
h v, we see from (11) and (12) that x1satis�es:(14) f(x1; s1) = d1; f(x1; t1) = �d1; f(x1; v) = 0 for all other v:So x1 gives a half-integer s1 � t1 
ow in G of value d1. Similarly, x2 satis�es:
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(15) f(x2; s2) = d2; f(x2; t2) = �d2; f(x2; v) = 0 for all other v:So x2 gives a half-integer s2 � t2 
ow in G of value d2.Moreover, x1 and x2 together satisfy the 
apa
ity 
onstraint, sin
e for ea
h edgea of D:(16) jx1(a)j+ jx2(a)j = 12 jx0(a) + x00(a)j+ 12 jx0(a)� x00(a)j= maxfjx0(a)j; jx00(a)jg � 
(a):(Note that 12 j� + �j+ 12 j�� �j = maxfj�j; j�jg for all reals �; �.)So we have a half-integer solution to the two-
ommodity 
ow problem.

This proof also dire
tly gives a polynomial-time algorithm for �nding a half-integer
ow.The 
ut 
ondition is not enough to derive an integer solution, as is shown byFigure 9.5 (taking all 
apa
ities and demands equal to 1).
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Moreover, as mentioned, the undire
ted integer two-
ommodity 
ow problem is NP-
omplete (Even, Itai, and Shamir [1976℄).However, Roths
hild and Whinston [1966℄ showed that an integer solution existsif the 
ut 
ondition holds, provided that the following Euler 
ondition is satis�ed:(17) Pe2Æ(v) 
(e) � 0 (mod 2) if v 6= s1; t1; s2; t2;� d1 (mod 2) if v = s1; t1;� d2 (mod 2) if v = s2; t2:(Equivalently, the graph obtained from G by repla
ing ea
h edge e by 
(e) paralleledges and by adding di parallel edges 
onne
ting si and ti (i = 1; 2), should be anEulerian graph.)Theorem 9.2. If all 
apa
ities and demands are integer and the 
ut 
ondition andthe Euler 
ondition are satis�ed, then the undire
ted two-
ommodity 
ow problem hasan integer solution.
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Proof. If the Euler 
ondition holds, we 
an take x0 in the proof of Theorem 9.1 sothat the following further 
ondition is satis�ed:(18) x0(a) � 
(a) (mod 2) for ea
h a 2 A:To see this, let x0 satisfy (11) and let(19) A0 := fa 2 A j x0(a) 6� 
(a) (mod 2)g:Then ea
h vertex v is in
ident with an even number Æ of ar
s in A0, sin
e(20) Æ � f(x0; v)� f(
; v) � 0 (mod 2);by (11) and (17). So if A0 6= ; then A0 
ontains an (undire
ted) 
ir
uit. In
reasingand de
reasing x0 by 1 on the ar
s along this 
ir
uit (depending on whether the ar
is forward or ba
kward), we obtain a fun
tion again satisfying (11). Repeating this,we �nally obtain a fun
tion x0 satisfying (18).Similarly, we 
an take x00 so that(21) x00(a) � 
(a) (mod 2) for ea
h a 2 A:Conditions (18) and (21) imply that x0(a) � x00(a) (mod 2) for ea
h a 2 A.Hen
e x1 = 12(x0 + x00) and x2 = 12(x0 � x") are integer ve
tors.

This proof dire
tly yields a polynomial-time algorithm for �nding the integersolution.
Exer
ises9.6. Derive from Theorem 9.1 the following max-bi
ow min-
ut theorem of Hu: Let G =(V;E) be a graph, let s1; t1; s2; t2 be distin
t verti
es, and let 
 : E ! Q + be a
apa
ity fun
tion. Then the maximum value of d1+d2 so that there exist si� ti 
owsxi of value di (i = 1; 2), together satisfying the 
apa
ity 
onstraint, is equal to theminimum 
apa
ity of a 
ut both separating s1 and t1 and separating s2 and t2.9.7. Derive from Theorem 9.1 that the 
ut 
ondition suÆ
es to have a half-integer solu-tion to the undire
ted k-
ommodity 
ow problem (with all 
apa
ities and demandsinteger), if there exist two verti
es u and w so that ea
h 
ommodity fsi; tig interse
tsfu;wg. (Dinits (
f. Adel'son-Vel'ski��, Dinits, and Karzanov [1975℄).)9.8. Derive the following from Theorem 9.2. Let G = (V;E) be a Eulerian graph andlet s1; t1; s2; t2 be distin
t verti
es. Then the maximum number t of pairwise edge-disjoint paths P1; : : : ; Pt, where ea
h Pj 
onne
ts either s1 and t1 or s2 and t2, is
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equal to the minimum 
ardinality of a 
ut both separating s1 and t1 and separatings2 and t2.

9.3. Disjoint paths in a
y
li
 dire
ted graphsFortune, Hop
roft, and Wyllie [1980℄ showed that the vertex-disjoint paths problemis NP-
omplete for dire
ted graphs, even when �xing the number of paths to k = 2.On the other hand they proved that if D is a
y
li
, then for ea
h �xed k, the kvertex-disjoint paths problem 
an be solved in polynomial time. (A dire
ted graph is
alled a
y
li
 if it does not 
ontain any dire
ted 
ir
uit.)The algorithm is 
ontained in the proof of the following theorem:Theorem 9.3. For ea
h �xed k there exists a polynomial-time algorithm for the kvertex-disjoint paths problem for a
y
li
 dire
ted graphs.Proof. Let D = (V;A) be an a
y
li
 digraph and let s1; t1; : : : ; sk; tk be verti
es ofD, all distin
t. In order to solve the vertex-disjoint paths problem we may assumethat ea
h si is a sour
e and ea
h ti is a sink. (Here a sour
e is a vertex with indegree0, and a sink is a vertex with outdegree 0.)Make an auxiliary digraph D0 = (V 0; A0) as follows. The vertex set V 0 
onsists ofall k-tuples (v1; : : : ; vk) of distin
t verti
es of D. In D0 there is an ar
 from (v1; : : : ; vk)to (w1; : : : ; wk) if and only if there exists an i 2 f1; : : : ; kg su
h that:(22) (i) vj = wj for all j 6= i;(ii) (vi; wi) is an ar
 of D;(iii) for ea
h j 6= i there is no dire
ted path in D from vj to vi.Now the following holds:(23) D 
ontains k vertex-disjoint dire
ted paths P1; : : : ; Pk su
h that Pi runsfrom si to ti (i = 1; : : : ; k)() D0 
ontains a dire
ted path P from (s1; : : : ; sk) to (t1; : : : ; tk).To see =), let Pi follow the verti
es vi;0; vi;1; : : : ; vi;pi for i = 1; : : : ; k. So vi;0 = siand vi;pi = ti for ea
h i. Choose j1; : : : ; jk su
h that 0 � ji � pi for ea
h i and su
hthat:(24) (i) D0 
ontains a dire
ted path from (s1; : : : ; sk) to (v1;j1; : : : ; vk;jk),(ii) j1 + � � �+ jk is as large as possible.Let I := fi j ji < pig. If I = ; we are done, so assume I 6= ;. Then by thede�nition of D0 and the maximality of j1+ � � �+ jk there exists for ea
h i 2 I an i0 6= i
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su
h that there is a dire
ted path in D from vi0;ji0 to vi;ji . Sin
e ti0 is a sink we knowthat vi0;ji0 6= si0 and that hen
e i0 belongs to I. So ea
h vertex in fvi;ji j i 2 Ig isend vertex of a dire
ted path in D starting at another vertex in fvi;ji j i 2 Ig. This
ontradi
ts the fa
t that D is a
y
li
.To see (= in (23), let P be a dire
ted path from (s1; : : : ; sk) to (t1; : : : ; tk) in D0.Let P follow the verti
es (v1;j; : : : ; vk;j) for j = 0; : : : ; t. So vi;0 = si and vi;t = tifor i = 1; : : : ; k. For ea
h i = 1; : : : ; k let Pi be the path in D following vi;j forj = 0; : : : ; t, taking repeated verti
es only on
e. So Pi is a dire
ted path from si to ti.Moreover, P1; : : : ; Pk are pairwise disjoint. For suppose that P1 and P2 (say) havea vertex in 
ommon. That is v1;j = v2;j0 for some j 6= j0. Without loss of generality,j < j0 and v1;j 6= v1;j+1. By de�nition of D0, there is no dire
ted path in D from v2;jto v1;j. However, this 
ontradi
ts the fa
ts that v1;j = v2;j0 and that there exists adire
ted path in D from v2;j to v2;j0 .

One 
an derive from this that for �xed k also the k ar
-disjoint paths problem issolvable in polynomial time for a
y
li
 dire
ted graphs (Exer
ise 9.9).Appli
ation 9.4: Routing airplanes. This appli
ation extends Appli
ation 4.1. Thedata are similar, ex
ept that legal rules now pres
ribe the exa
t day of the 
oming week atwhi
h 
ertain airplanes should be at the home basis for maintenan
e.Again at Saturday 18.00h the 
ompany determines the exa
t routing for the next week.One 
an make the same dire
ted graph as in Appli
ation 4.1. Now however it is pres
ribedthat some of the paths Pi should start at a 
ertain (
; t) (where 
 is the 
ity where airplaneai will be �rst after Saturday 18.00h) and that they should traverse the ar
 
orrespondingto maintenan
e on a pres
ribed day of the 
oming week (for instan
e Wednesday).Now if for ea
h airplane ai whi
h should be home for maintenan
e next week we 
an�nd this path Pi su
h that it traverses the for that plane required maintenan
e ar
 and insu
h a way that paths found for di�erent airplanes are ar
 disjoint, then it is easy to seethat these paths 
an be extended to paths P1; : : : ; Pn su
h that ea
h ar
 is traversed exa
tlyon
e.As the dire
ted graph D is a
y
li
, the problem 
an be solved with the algorithmdes
ribed in the proof of Theorem 9.3, provided that the number of airplanes that shouldbe home for maintenan
e the 
oming week is not too large.
Exer
ises9.9. Derive from Theorem 9.3 that for ea
h �xed k the k ar
-disjoint paths problem issolvable in polynomial time for a
y
li
 dire
ted graphs.9.10. Show that for �xed k, the following problem is solvable in polynomial time:

(25) given:an a
y
li
 dire
ted graph D = (V;A), pairs s1; t1; : : : ; sk; tk ofverti
es, and subsets A1; : : : ; Ak of A;�nd:pairwise ar
-disjoint dire
ted paths P1; : : : ; Pk, where Pi runs fromsi to ti and traverses only ar
s in Ai (i = 1; : : : ; k).
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9.4. Vertex-disjoint paths in planar graphsFinding disjoint paths in planar graphs is of interest not only for planar 
ommuni
a-tion or transportation networks, but espe
ially also for the design of VLSI-
ir
uits.The routing of wires should follow 
ertain 
hannels on layers of the 
hip. On ea
hlayer, these 
hannels form a planar graph.Unfortunately, even for planar graphs disjoint paths problems are in general hard.However, for some spe
ial 
ases, polynomial-time algorithms have been found. Su
halgorithms 
an be used, for example, as subroutines when solving any hard problemby de
omposition. In Se
tions 9.4 and 9.5 we dis
uss some of these algorithms.LetG = (V;E) be a planar graph, embedded in the plane R 2 and let fs1; t1g; : : : ; fsk; tkgbe pairwise disjoint pairs of verti
es. Robertson and Seymour [1986℄ observed thatthere is an easy greedy-type algorithm for the vertex-disjoint paths problem if allverti
es s1; t1; : : : ; sk; tk belong to the boundary of one fa
e I of G. That is, thereexists a polynomial-time algorithm for the following problem:19(26) given: a planar graphG = (V;E) embedded in R 2 , a fa
e I ofG, pairs fs1; t1g; : : : ; fsk; tkgof verti
es on bd(I),�nd: pairwise vertex-disjoint paths P1; : : : ; Pk in G, where Pi 
onne
ts si and ti(i = 1; : : : ; k).In fa
t, we may assume without loss of generality that I is the unbounded fa
e.Let us �rst des
ribe the simple intuitive idea of the method, by explaining there
ursive step in the `ideal' 
ase where G is 
onne
ted and where bd(I) is a simple
ir
uit.We say that fs; tg and fs0; t0g 
ross (around I) if s; s0; t; t0 are distin
t and o

urin this order 
y
li
ally around bd(I), 
lo
kwise or anti-
lo
kwise (see Figure 9.6).
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If any fsi; tig and fsj; tjg 
ross around I (for some i 6= j), problem (26) 
learlyhas no solution. So we may assume that no pair of 
ommodities 
rosses. This impliesthat there exists an i so that at least one of the si � ti paths along bd(I) does not
ontain any sj or tj for j 6= i: just 
hoose i so that the shortest si � ti path alongbd(I) is shortest among all i = 1; : : : ; k.19bd(I) denotes the boundary of I.
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Without loss of generality, i = k. Let Q be the shortest sk � tk path along bd(I).Delete from G all verti
es in Q, together with all edges in
ident with them. De-note the new graph by G0. Next solve the vertex-disjoint paths problem for inputG0; fs1; t1g; : : : ; fsk�1; tk�1g. If this gives a solution P1; : : : ; Pk�1, then P1; : : : ; Pk�1; Qforms a solution to the original problem (trivially).If the redu
ed problem turns out to have no solution, then the original problemalso has no solution. This follows from the fa
t that if P1; : : : ; Pk�1; Pk would bea solution to the original problem, we may assume without loss of generality thatPk = Q, sin
e we 
an `push' Pk `against' the border bd(I). Hen
e P1; : : : ; Pk�1 wouldform a solution to the redu
ed problem.Although this might give a suggestive sket
h of the algorithm, it is not 
ompletelya

urate, sin
e the ideal situation need not be preserved throughout the iterationpro
ess. Even if we start with a highly 
onne
ted graph, after some iterations theredu
ed graph might have 
ut verti
es or be dis
onne
ted. So one should be morepre
ise.Let us 
all a sequen
e (v1; : : : ; vn) of verti
es of a 
onne
ted planar graphG a bordersequen
e if it is the sequen
e of verti
es traversed when following the boundary of G
lo
kwise. Thus the graph in Figure 9.7 has border sequen
e (a; b; 
; d; e; 
; f; 
; g; b).
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In fa
t, ea
h 
y
li
 permutation of a border sequen
e is again a border sequen
e.Note that no border sequen
e will 
ontain : : : r : : : s : : : r : : : s : : : for any two dis-tin
t verti
es. Hen
e for any two verti
es s and t on the boundary of G there is aunique sequen
e(27) P (s; t) = (s; w1; : : : ; wt; t)with the properties that P (s; t) is part of a border sequen
e of G and that w1; : : : ; wtall are distin
t from s and t. Trivially, the verti
es in P (s; t) 
ontain an s� t path.We say that two disjoint pairs fs; tg and fs0; t0g 
ross (aroundG) if : : : s : : : s0 : : : t : : : t0 : : :or : : : s : : : t0 : : : t : : : s0 : : : o

ur in some border sequen
e of G. So the following 
ross-freeness 
ondition is a ne
essary 
ondition for (26) to have a solution:
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(28) No two disjoint 
ommodities fsi; tig; fsj; tjg 
ross (around the same 
om-ponent of G).Now the algorithm 
an be des
ribed more pre
isely as follows. First 
he
k the 
ross-freeness 
ondition. If it is violated, (26) has no solution. If it is satis�ed, apply thefollowing iterative step:(29) Che
k for ea
h i = 1; : : : ; k if si and ti belong to the same 
omponent of G.If not, the problem has no solution.If so, 
hoose i 2 f1; : : : ; kg for whi
h the shortest among P (si; ti) andP (ti; si) is as short as possible. Without loss of generality, i = k andP (sk; tk) is shortest. Take for Pk any sk � tk path using the verti
es inP (sk; tk) only.If k = 1, stop. If k > 1, let G0 be the graph obtained from G by deletingall verti
es o

urring in P (sk; tk). Repeat this iterative step for G0 andfs1; t1g; : : : ; fsk�1; tk�1g.If it gives a solution P1; : : : ; Pk�1, then P1; : : : ; Pk�1; Pk is a solution tothe original problem. If it gives no solution, the original problem has nosolution.We leave it as a (te
hni
al) exer
ise to show the 
orre
tness of this algorithm. (The
orre
tness 
an be derived also from the proof of Theorem 9.4 below.) It 
learly isa polynomial-time method. Re
ently, Ripphausen-Lipa, Wagner, and Weihe [1997℄found a linear-time algorithm.Moreover, the method implies a 
hara
terization by means of a 
ut 
ondition forthe existen
e of a solution to (26). A simple 
losed 
urve C in R 2 is by de�nitiona one-to-one 
ontinuous fun
tion from the unit 
ir
le to R 2 . We will identify thefun
tion C with its image.We say that C separates the pair fs; tg if ea
h 
urve 
onne
ting s and t interse
tsC. Now the following 
ut 
ondition 
learly is ne
essary for the existen
e of a solutionto the vertex-disjoint paths problem in planar graphs:(30) ea
h simple 
losed 
urve in R 2 interse
ts G at least as often as it separatespairs fs1; t1g; : : : ; fsk; tkg.Robertson and Seymour [1986℄ showed with this method:Theorem 9.4. Let G = (V;E) be a planar graph embedded in R 2 and let fs1; t1g; : : : ; fsk; tkgbe pairs of verti
es on the boundary of G. Then there exist pairwise vertex-disjointpaths P1; : : : ; Pk where Pi 
onne
ts si and ti (i = 1; : : : ; k) if and only if the 
ross-freeness 
ondition (28) and the 
ut 
ondition (30) hold.Proof. Ne
essity of the 
onditions is trivial. We show suÆ
ien
y by indu
tion on k,
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the 
ase k = 0 being trivial. Let k > 1 and let (28) and (30) be satis�ed. Supposepaths P1; : : : ; Pk as required do not exist. Trivially, fs1; t1g; : : : ; fsk; tkg are pairwisedisjoint (otherwise there would exist a simple 
losed 
urve C with jC \ Gj = 1 andinterse
ting two 
ommodities, thus violating the 
ut 
ondition).The indu
tion is based on the iterative step (29). To simplify the argument, we�rst show that we may assume that G is 2-
onne
ted.First, we may assume that G is 
onne
ted, as we 
an de
ompose G into its 
ompo-nents. (If some si and ti would belong to di�erent 
omponents, there trivially existsa 
losed 
urve C violating the 
ut 
ondition.)Knowing that G is 
onne
ted, the 
ase k = 1 is trivial. So we may assume thatk � 2. Suppose G 
ontains a 
ut vertex v. We may assume that ea
h 
omponentof G � v interse
ts fs1; t1; : : : ; sk; tkg (otherwise we 
ould delete it from G withoutviolating the 
ut 
ondition). This implies that we 
an extend G planarly by an edgee 
onne
ting some verti
es u0 and u00 in di�erent 
omponents of G� v, in su
h a waythat u0 2 fsi0; ti0g and u00 2 fsi00 ; ti00g for some i0 6= i00 and that s1; t1; : : : ; sk; tk are stillon the boundary of G[ e. The 
ut 
ondition holds for G[ e (a fortiori), but pairwisevertex-disjoint si� ti paths (i = 1; : : : ; k) do not exist in G[ e (sin
e we 
annot makeuse of edge e, as i0 6= i00). Repeating this we end up with a 2-
onne
ted graph.If G is 2-
onne
ted, the boundary of G is a simple 
ir
uit. Now we apply the itera-tive step (29). That is, we �nd, without loss of generality, that the path P (sk; tk) fromsk to tk 
lo
kwise along the boundary of G does not 
ontain any s1; t1; : : : ; sk�1; tk�1.Let Pk be the 
orresponding sk � tk path.Again, let G0 be the graph obtained from G by deleting all verti
es in Pk, togetherwith all edges in
ident with them. Let I and I 0 denote the unbounded fa
es of G andG0, respe
tively (we take I and I 0 as open regions). So I � I 0.Now G0 does not 
ontain pairwise vertex-disjoint si � ti paths (i = 1; : : : ; k � 1),sin
e by assumption G does not 
ontain pairwise vertex-disjoint si � ti paths (i =1; : : : ; k). Hen
e, by the indu
tion hypothesis, there exists a simple 
losed 
urve Cwith jC \G0j smaller than the number of pairs fs1; t1g; : : : ; fsk�1; tk�1g separated byC. We may assume that C traverses ea
h of the 
onne
ted regions I 0; I and I 0 n Iat most on
e. That is, ea
h of C \ I 0; C \ I and C \ (I 0 n I) is 
onne
ted (possiblyempty).If C\(I 0nI) is empty, then C\G = C\G0 and hen
e C violates the 
ut 
onditionalso for G. If C \ I is empty, then C does not separate any fsi; tig ex
ept for thoseinterse
ted by C. Then C 
annot violate the 
ut 
ondition for G0.If both C\I and C\(I 0nI) are nonempty, we may assume that jC\Gj = jC\G0j+1and that C separates fsk; tkg (sin
e ea
h fa
e of G 
ontained in I 0 is in
ident with atleast one vertex on Pk). It follows that C violates the 
ut 
ondition for G.Appli
ation 9.5: VLSI-routing. The VLSI-routing problem asks for the routes thatwires should make on a 
hip so as to 
onne
t 
ertain pairs of pins and so that wires 
on-ne
ting di�erent pairs of pins are disjoint.Sin
e the routes that the wires potentially 
an make form a graph, the problem to be
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Figure 9.8
solved 
an be modeled as a disjoint paths problem. Consider an example of su
h a problemas in Figure 9.8 | relatively simple, sin
e generally the number of pins to be 
onne
tedis of the order of several thousands. The grey areas are `modules' on whi
h the pins arelo
ated. Points with the same label should be 
onne
ted.
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Figure 9.9
In the example, the graph is a `grid graph', whi
h is typi
al in VLSI-design sin
e itfa
ilitates the manufa
turing of the 
hip and it ensures a 
ertain minimum distan
e betweendisjoint wires. But even for su
h graphs the disjoint paths problem is NP-
omplete.Now the following two-step approa
h was proposed by Pinter [1983℄. First 
hoose the`homotopies' of the wires; for instan
e like in Figure 9.9. That is, for ea
h i one 
hooses a
urve Ci in the plane 
onne
ting the two verti
es i, in su
h a way that they are pairwisedisjoint, and su
h that the modules are not traversed (Figure 9.9).
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Se
ond, try to �nd disjoint paths P1; : : : ; Pk in the graph su
h that Pi is homotopi
 toCi, in the spa
e obtained from the plane by taking out the re
tangles forming the modules;that is, the paths Pi should be obtained from the 
urves Ci by shifting Ci over the surfa
e,but not over any module, �xing the end points of the 
urve. In Figure 9.10 su
h a solutionis given.
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Figure 9.10
It was shown by Leiserson and Maley [1985℄ that this se
ond step 
an be performedin polynomial time. So the hard part of the problem is the �rst step: �nding the righttopology of the layout.Cole and Siegel [1984℄ proved a Menger-type 
ut theorem 
hara
terizing the existen
e ofa solution in the se
ond step. That is, if there is no solution for the disjoint paths problemgiven the homotopies, there is an `oversaturated' 
ut: a 
urve D 
onne
ting two holes inthe plane and interse
ting the graph less than the number of times D ne
essarily 
rossesthe 
urves Ci.This 
an be used in a heuristi
 pra
ti
al algorithm for the VLSI-routing problem: �rstguess the homotopies of the solution; se
ond try to �nd disjoint paths of the guessed ho-motopies; if you �nd them you 
an stop; if you don't �nd them, the oversaturated 
ut willindi
ate a bottlene
k in the 
hosen homotopies; amend the bottlene
k and repeat.Similar results hold if one wants to pa
k trees instead of paths (whi
h is generallythe 
ase at VLSI-design), and the result 
an be extended to any planar graph (S
hrijver[1991℄). As a theoreti
al 
onsequen
e one has that for ea
h �xed number of modules, theplanar VLSI-routing problem 
an be solved in polynomial time.

Exer
ises9.11. Extend the algorithm and Theorem 9.4 to the dire
ted 
ase.9.12. Extend the algorithm and Theorem 9.4 to the following vertex-disjoint trees problem:
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(31) given:a planar graph G = (V;E), sets R1; : : : ; Rk of verti
es on theboundary of G,�nd:pairwise vertex-disjoint subtrees T1; : : : ; Tk of G so that Ti 
oversRi (i = 1; : : : ; k):9.13. Extend the algorithm and Theorem 9.4 to the following problem:
(32) given:a planar graph G = (V;E), pairs fs1; t1g; : : : ; fsk; tkg of verti
eson the boundary of G, subgraphs G1; : : : ; Gk of G,�nd:pairwise vertex-disjoint paths P1; : : : ; Pk where Pi 
onne
ts si andti and where Pi is in Gi (i = 1; : : : ; k):9.14. (i) Redu
e the edge-disjoint paths problem where all 
ommodities are on the bound-ary of a planar graph so that the 
ross-freeness 
ondition is satis�ed, to thevertex-disjoint paths problem(26).(ii) Show that the 
ut 
ondition (7) is suÆ
ient in this 
ase of the edge-disjointpaths problem.

9.5. Edge-disjoint paths in planar graphsThe trivially ne
essary 
ross-freeness 
ondition for the 
ommodities if they are onthe boundary of a planar graph, turned out to be of great help in handling thevertex-disjoint paths problem: it gives an ordering of the 
ommodities, allowing us tohandling them one by one.As we saw in Exer
ise 9.14, the edge-disjoint analogue 
an be handled in the sameway if the 
ross-freeness 
ondition holds. In that 
ase, the 
ut 
ondition (7) is againsuÆ
ient. However, Figure 9.5 shows that without 
ross-freeness, the 
ut 
onditionis not suÆ
ient. That simple example shows that we may not hope for many otherinteresting 
ases where the 
ut 
ondition is suÆ
ient.In fa
t, the 
omplexity of the edge-disjoint paths problem for planar graphs withall 
ommodities on the boundary, is open. Therefore, we put:Resear
h problem. Is the undire
ted edge-disjoint paths problem polynomiallysolvable for planar graphs with all 
ommodities on the boundary? Is itNP-
omplete?Okamura and Seymour [1981℄ showed that the problem is polynomially solvableif we pose the following Euler 
ondition:(33) the graph (V;E [ ffs1; t1g; : : : ; fsk; tkgg) is Eulerian.(We have parallel edges if some fsi; tig 
oin
ide or form an edge of G.) Moreover,they showed that with the Euler 
ondition, the 
ut 
ondition is a suÆ
ient 
ondition.(Thus we have an analogue to Roths
hild and Whinston's theorem (Theorem 9.2).)
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We here observe that the Euler 
ondition (33) implies that for ea
h U � V :(34) jÆE(U)j � number of i with jU \ fsi; tigj = 1 (mod 2).

Theorem 9.5 (Okamura-Seymour theorem). Let G = (V;E) be a planar graph andlet fs1; t1g; : : : ; fsk; tkg be pairs of verti
es on the boundary of G su
h that the Euler
ondition (33) holds. Then the edge-disjoint paths problem has a solution if and onlyif the 
ut 
ondition holds.Proof. Ne
essity of the 
ut 
ondition being trivial, we show suÆ
ien
y. The 
ut
ondition implies that jRj � jEj (assuming that ea
h r 2 R 
onsists of two distin
tverti
es), sin
e
(35) 2jRj =Xv2V degR(v) �Xv2V degE(v) = 2jEj:
So we 
an 
onsider a 
ounterexample with 2jEj � jRj minimal. Then(36) G is 2-
onne
ted.Indeed, if G is dis
onne
ted, we 
an deal with the 
omponents separately. Supposenext that G is 
onne
ted and has a 
ut vertex v. We may assume that for no r =st 2 R, the verti
es s and t belong to di�erent 
omponents of G� v, sin
e otherwisewe 
an repla
e r by sv and vt, without violating the Euler or 
ut 
ondition. For any
omponent K of G � v 
onsider the graph indu
ed by K [ fvg. Again, the Eulerand 
ut 
onditions hold (with respe
t to those nets 
ontained in K [ fvg). So by theminimality of 2jEj � jRj, we know that paths as required exist in K [ fvg. As this isthe 
ase for ea
h 
omponent of G � v, we have paths as required in G. This proves(36).Let C be the 
ir
uit formed by the outer boundary of G. If some r 2 R has thesame ends as some edge e of G, we 
an delete e from G and r from R, and obtain asmaller 
ounterexample. So no su
h r exists.Call a subset X of V tight if dE(X) = dR(X). Then(37) there exists a tight subsetX of V su
h that ÆE(X) interse
ts EC in pre
iselytwo edges.Indeed, if there is no tight set X with ; 6= X 6= V , we 
an 
hoose an edge e 2 EC,and repla
e E and R by E nfeg and R[feg. This does not violate the 
ut 
ondition,and hen
e would give a smaller 
ounterexample.So there exists a tight proper nonempty subset X of V . Choose X with jÆE(X)jminimal. Then G[X℄ and G�X are 
onne
ted. For suppose that (say) G[X℄ is not
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onne
ted. Let K be a 
omponent of G[X℄. Then(38) jÆE(K)j+ jÆE(X nK)j � jÆR(K)j+ jÆR(X nK)j � jÆR(X)j= jÆE(X)j = jÆE(K)j+ jÆE(X nK)j.So K is tight, while jÆE(K)j < jÆE(X)j, 
ontradi
ting the minimality assumption.Hen
e G[X℄ and G�X are 
onne
ted, implying (37).Choose a set X as in (37) with jXj minimal. Let e be one of the two edges in ECthat belong to ÆE(X). Say e = uw with u 62 X and w 2 X.Sin
e dR(X) = dE(X) � 2, we know ÆR(X) 6= ;. For ea
h r 2 ÆR(X), let sr bethe vertex in r \X, and tr the vertex in r nX. Choose r 2 ÆR(X) su
h that tr is as
lose as possible to u in the graph C �X.Sin
e sr and tr are nonadja
ent, we know that fsr; trg 6= fu;wg. So we 
an
hoose v 2 fu;wg n fsr; trg. Let R0 := (R n frg) [ fsrv; vtrg. Trivially the Euler
ondition is maintained. We show that also the 
ut 
ondition is maintained, yieldinga 
ontradi
tion as 2jEj � jR0j < 2jEj � jRj and as a solution for R0 yields a solutionfor R.To see that the 
ut 
ondition is maintained, suppose to the 
ontrary that there isa Y � V satisfying(39) dE(Y ) < dR0(Y ):By 
hoosing Y under the additional 
ondition that dE(Y ) is as small as possible, wehave that G[Y ℄ and G�Y are 
onne
ted. So ÆE(Y ) has two edges on C. By symmetrywe 
an assume that tr 62 Y . By the Euler 
ondition, (39) implies dE(Y ) � dR0(Y )�2.So(40) dR0(Y ) � dE(Y ) + 2 � dR(Y ) + 2 � dR0(Y ):Hen
e we have equality throughout. So ÆR0(Y ) 
ontains both srv and vtr, that is,sr; tr 62 Y and v 2 Y . Moreover, dE(Y ) = dR(Y ).By the 
hoi
e of r, there is no pair r0 in R 
onne
ting X n Y and Y n X (sin
ethen tr0 2 Y nX, and hen
e tr0 is 
loser than tr to u in C �X). This implies(41) dR(X \ Y ) + dR(X [ Y ) = dR(X) + dR(Y ):Moreover,(42) dE(X \ Y ) + dE(X [ Y ) � dE(X) + dE(Y ):As the 
ut 
ondition holds for X \ Y and X [ Y , we have equality in (42), andtherefore X \ Y is tight. Sin
e sr 2 X n Y , we know jX \ Y j < jXj. So by the
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minimality of X we have X \Y = ;. So w 62 Y , hen
e u = v 2 Y . Then edge e = uw
onne
ts X n Y and Y nX, 
ontradi
ting equality in (42).

Clearly, this method gives a polynomial-time algorithm for �nding the paths,sin
e we 
an determine a minimum-
ardinality 
ut 
ontaining e0 and e00, for any pairof edges e0; e00 on the boundary of G (
f. Exer
ise 9.16).Be
ker and Mehlhorn [1986℄ and Matsumoto, Nishizeki, and Saito [1985℄ gaveimplementations with running time of order O(jEj2). Re
ently, Wagner and Weihe[1995℄ found a linear-time algorithm.
Exer
ises9.15. Let G = (V;E) be a �nite subgraph of the re
tangular grid graph in R 2 , su
h thatea
h bounded fa
e of G is a square of area 1. Let fs1; t1g; : : : ; fsk; tkg be pairs ofverti
es on the boundary of G su
h that ea
h vertex of (V;E\ffs1; t1g; : : : ; fsk; tkgg)has degree even and at most 4. A 
ut is 
alled a 1-bend 
ut if it is the set of edges
rossed by the union of some horizontal and some verti
al half-line with one 
ommonend vertex.Show that the 
ut 
ondition holds whenever it holds for all 1-bend 
uts.9.16. Let G be a planar graph and let e0 and e00 be edges on the boundary of G. Redu
ethe problem of �nding a minimum-
ardinality 
ut 
ontaining e0 and e00 to a shortestpath problem.
9.6. A 
olumn generation te
hnique for multi
om-modity 
owsThe fra
tional multi
ommodity 
ow problem (1) asks for 
ows x1; : : : ; xk of givenvalues d1; : : : ; dk su
h that the total amount of 
ow through any ar
 e does notex
eed the 
apa
ity of e. So it amounts to �nding a solution to the following systemof linear inequalities in the kjEj variables xi(e) (i = 1; : : : ; k; e 2 E):
(43) (i) Xe2Æout(v)xi(e)� Xe2Æin(v)xi(e) = 0 (i = 1; : : : ; k; v 2 V; v 6= si; ti);(ii) Xe2Æout(si)xi(e)� Xe2Æin(si) xi(e) = di (i = 1; : : : ; k);

(iii) kXi=1 xi(e) � 
(e) (e 2 E);(iv) xi(e) � 0 (i = 1; : : : ; k; e 2 E).
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Thus any linear programming method 
an solve the multi
ommodity 
ow problem.In parti
ular, the problem is solvable in polynomial time.Sin
e for ea
h �xed i = 1; : : : ; k, a solution xi to (43) is an si � ti 
ow, we 
ande
ompose xi as a nonnegative 
ombination of si�ti paths. That is, there exist si�tipaths Pi1; : : : ; Pini and nonnegative reals zi1; : : : ; zini satisfying:
(44) (i) niXj=1 zijX Pij (e) = xj(e) (e 2 E);

(ii) niXj=1 zij = di:
Here X P denotes the in
iden
e ve
tor of P in Q E , that is, X P (e) = 1 if P traversese, and = 0 otherwise.Hen
e the multi
ommodity 
ow problem amounts to �nding paths Pij and non-negative reals zij, where Pij is an si � ti path, su
h that:
(45) (i) niXj=1 zij = di (i = 1; : : : ; k);

(ii) kXi=1 niXj=1 zijX Pij (e) � 
(e) (e 2 E):
This formulation applies to both the dire
ted and the undire
ted problems.Solving (45) again amounts to solving a system of linear inequalities, albeit withan enormous number of variables: one variable for ea
h i = 1; : : : ; k and ea
h si � tipath.Ford and Fulkerson [1958℄ showed that this large number of variables 
an beavoided when solving the problem with the simplex method. The variables 
an behandled impli
itly by using a 
olumn generation te
hnique as follows.First 
onvert the problem to a maximization problem. To this end, add, for ea
hi = 1; : : : ; k, a vertex s0i and an ar
 s0isi, with 
apa
ity equal to di. Then we 
andelete the 
onstraint (45)(i), and maximize Pi;j zij over the remaining 
onstraints(repla
ing si by s0i). If the maximum value is equal to Pi di we have a solution to(45). If the maximum value is less, then (45) has no nonnegative solution zij.Having this redu
tion, we see that the problem is equivalent to the following LP-problem. Let P be the 
olle
tion of all si � ti paths for all i = 1; : : : ; k. Then:



170 Chapter 9. Multi
ommodity 
ows and disjoint paths
(46) maximize: XP2P zPsubje
t to: (i) XP2P zPX P (e) � 
(e) (e 2 E);(ii) zP � 0 (P 2 P):
When solving (46) with the simplex method we �rst should add a sla
k variable zefor ea
h e 2 E. Thus if A denotes the E � P matrix with the in
iden
e ve
tors ofall paths in P as its 
olumns (in some order) and w is the ve
tor in R P � R E withwP = 1 (P 2 P) and we = 0 (e 2 E), we solve:
(47) maximize: wT zsubje
t to: [A I℄z = 
;z � 0:Now ea
h simplex tableau is 
ompletely determined by the set of variables in the
urrent basis. So knowing subsets P 0 of P and E 0 of E, giving the indi
es of variablesin the basis, is enough to know impli
itly the whole tableau. Note that jP 0j+jE 0j = E.So although the tableau is exponentially large, it 
an be represented in a 
on
ise way.Let B be the matrix 
onsisting of those 
olumns of [A I℄ 
orresponding to P 0and E 0. So the rows of B are indexed by E and the 
olumns by P 0 [ E 0. The basi
solution 
orresponding to B is easily 
omputed: the ve
tor B�1
 gives the values forzP if P 2 P 0 and for ze if e 2 E 0, while we set zP := 0 if P 62 P 0 and ze := 0 ife 62 E 0. (Initially, B = I, that is P 0 = ; and E 0 = E, so that zP = 0 for all P 2 Pand ze = 
(e) for all e 2 E.)Now we should des
ribe pivoting (that is, �nding variables leaving and enteringthe basis) and 
he
king optimality. Interestingly, it turns out that this 
an be doneby solving a set of shortest path problems.First 
onsider the dual variable 
orresponding to an edge e. It has value (in the
urrent tableau):
(48) wBB�1"e � we = wB(B�1)ewhere as usual wB denotes the part of ve
tor w 
orresponding to B (that is, 
orre-sponding to P 0 and E 0) and where "e denotes the e-th unit basis ve
tor in R E (whi
his the 
olumn 
orresponding to e in [A I℄). Note that the 
olumns of B�1 are in-dexed by E; then (B�1)e is the 
olumn 
orresponding to e. Note also that we = 0 byde�nition.Similarly, the dual variable 
orresponding to a path P in P has value:
(49) wBB�1X P � wP = [Xe2P wB(B�1)e℄� 1:
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(Note that X P is the 
olumn in [A I℄ 
orresponding to P .)In order to pivot, we should identify a negative dual variable. To this end, we�rst 
he
k if (48) is negative for some edge e. If so, we 
hoose su
h an edge e andtake ze as the variable entering the basis. Sele
ting the variable leaving the basis nowbelongs to the standard simplex routine. We only have to 
onsider that part of thetableau 
orresponding to P 0; E 0 and e. We sele
t an element f in P 0 [ E 0 for whi
hthe quotient zf=(B�1)fe has positive denominator and is as small as possible. Thenzf is the variable leaving the basis.Suppose next that (48) is nonnegative for ea
h edge e. We 
onsider wB(B�1)e asthe length l(e) of e. Then for any path P ,(50) Xe2P wB(B�1)e
is equal to the lengthPe2P l(e) of P . Hen
e, �nding a dual variable (49) of negativevalue is the same as �nding a path in P of length less than 1.Su
h a path 
an be found by applying any shortest path algorithm: for ea
hi = 1; : : : ; k, we �nd a shortest si � ti path (with respe
t to l). If ea
h of theseshortest paths has length at least 1, we know that all dual variables have nonnegativevalue, and hen
e the 
urrent basi
 solution is optimum.If we �nd some si � ti path P of length less than 1, we 
hoose zP as variableentering the basis. Again sele
ting a variable leaving the basis is standard: we sele
tan element f in P 0[E 0 for whi
h the quotient zf=(B�1X P )f has positive denominatorand is as small as possible.This des
ribes pivoting. In order to avoid \
y
ling", we apply a lexi
ographi
 rulefor sele
ting the variable leaving the basis. We order the edges of G arbitrarily. Nowin 
ase there is a tie in sele
ting the f 2 P 0[E 0 for whi
h the 
orresponding quotientis as small as possible, we 
hoose the f 2 P 0 [ E 0 for whi
h the ve
tor(B�1)f=(B�1)fe (if e enters the basis);(51) (B�1)f=(B�1X P )f (if P enters the basis);is lexi
ographi
ally as small as possible. In Exer
ise 9.17 we will see that this avoids
y
ling.
Exer
ises9.17. (i) Apply the lexi
ographi
 rule above, and 
onsider a simplex tableau, 
orrespond-ing to P 0 and E0 say. Show that for ea
h f 2 P 0 [ E0: if zf = 0 then the �rstnonzero entry in the ve
tor (B�1)f is positive. (Use indu
tion on the numberof pivot steps performed.)(ii) Derive from (i) that, when applying the lexi
ographi
 rule, at ea
h pivot iter-ation, if the obje
tive value of the solution does not in
rease, then the ve
torwBB�1 in
reases lexi
ographi
ally.
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(iii) Derive that the lexi
ographi
 rule leads to termination of the method.9.18. Modify the 
olumn generation te
hnique to solve the following problem: given adire
ted graph G = (V;E), a 
apa
ity fun
tion 
 : E ! Q + , 
ommodities (s1; t1); : : : ;(sk; tk) and `pro�ts' p1; : : : ; pk 2 Q + , �nd ve
tors x1; : : : ; xk in Q E and rationalsd1; : : : ; dk so that:(52) (i)xi is an si � ti 
ow of value di (i = 1; : : : ; k),(ii) kXi=1 xi(e) � 
(e) (e 2 E),

(iii) kXi=1 pidi is as large as possible.9.19. Let Pij and zij > 0 form a solution to the undire
ted form of (45) and let W � V beso that the 
apa
ity of ÆE(W ) is equal to the demand of ÆR(W ). Show that ea
h Pijinterse
ts ÆE(W ) at most on
e.9.20. Show that if the multi
ommodity 
ow problem has no solution, then Ford and Fulk-erson's 
olumn generation te
hnique yields a length fun
tion l violating (9).



173
10. Matroids

10.1. Matroids and the greedy algorithmLet G = (V;E) be a 
onne
ted undire
ted graph and let w : E ! Z be a `weight'fun
tion on the edges. In Se
tion 1.4 we saw that a minimum-weight spanning tree
an be found quite straightforwardly with Kruskal's so-
alled greedy algorithm.The algorithm 
onsists of sele
ting su

essively edges e1; e2; : : : ; er. If edges e1; : : : ; ekhave been sele
ted, we sele
t an edge e 2 E so that:(1) (i) e 62 fe1; : : : ; ekg and fe1; : : : ; ek; eg is a forest,(ii) w(e) is as small as possible among all edges e satisfying (i).We take ek+1 := e. If no e satisfying (1)(i) exists, that is, if fe1; : : : ; ekg formsa spanning tree, we stop, setting r := k. Then fe1; : : : ; erg is a spanning tree ofminimum weight.By repla
ing `as small as possible' in (1)(ii) by `as large as possible', one obtainsa spanning tree of maximum weight.It is obviously not true that su
h a greedy approa
h would lead to an optimalsolution for any 
ombinatorial optimization problem. We 
ould think of su
h anapproa
h to �nd a mat
hing of maximum weight. Then in (1)(i) we repla
e `forest'by `mat
hing' and `small' by `large'. Appli
ation to the weighted graph in Figure 10.1would give e1 = 
d; e2 = ab.
1

3

a b

cd

3

4

PSfrag repla
ementsedge in Medge not in Mvertex 
overed by Mvertex not 
overed by M
Figure 10.1

However, ab and 
d do not form a mat
hing of maximum weight.It turns out that the stru
tures for whi
h the greedy algorithm does lead to anoptimal solution, are the matroids. It is worth studying them, not only be
ause itenables us to re
ognize when the greedy algorithm applies, but also be
ause thereexist fast algorithms for `interse
tions' of two di�erent matroids.The 
on
ept of matroid is de�ned as follows. Let X be a �nite set and let I be a
olle
tion of subsets of X. Then the pair (X; I) is 
alled a matroid if it satis�es thefollowing 
onditions:
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(2) (i) ; 2 I,(ii) if Y 2 I and Z � Y then Z 2 I,(iii) if Y; Z 2 I and jY j < jZj then Y [ fxg 2 I for some x 2 Z n Y .For any matroid M = (X; I), a subset Y of X is 
alled independent if Y belongsto I, and dependent otherwise.Let Y � X. A subset B of Y is 
alled a basis of Y if B is an in
lusionwise maximalindependent subset of Y . That is, for any set Z 2 I with B � Z � Y one has Z = B.It is not diÆ
ult to see that 
ondition (2)(iii) is equivalent to:(3) for any subset Y of X, any two bases of Y have the same 
ardinality.(Exer
ise 10.1.) The 
ommon 
ardinality of the bases of a subset Y of X is 
alled therank of Y , denoted by rM(Y ).We now show that if G = (V;E) is a graph and I is the 
olle
tion of forests inG, then (E; I) indeed is a matroid. Conditions (2)(i) and (ii) are trivial. To seethat 
ondition (3) holds, let E 0 � E. Then, by de�nition, ea
h basis Y of E 0 is anin
lusionwise maximal forest 
ontained in E 0. Hen
e Y forms a spanning tree in ea
h
omponent of the graph (V;E 0). So Y has jV j � k elements, where k is the numberof 
omponents of (V;E 0). So ea
h basis of E 0 has jV j � k elements, proving (3).A set is 
alled simply a basis if it is a basis of X. The 
ommon 
ardinality of allbases is 
alled the rank of the matroid. If I is the 
olle
tion of forests in a 
onne
tedgraph G = (V;E), then the bases of the matroid (E; I) are exa
tly the spanning treesin G.We next show that the matroids indeed are those stru
tures for whi
h the greedyalgorithm leads to an optimal solution. Let X be some �nite set and let I be a
olle
tion of subsets of X satisfying (2)(i) and (ii).For any weight fun
tion w : X ! R we want to �nd a set Y in I maximizing
(4) w(Y ) :=Xy2Y w(y):The greedy algorithm 
onsists of sele
ting y1; : : : ; yr su

essively as follows. If y1; : : : ; ykhave been sele
ted, 
hoose y 2 X so that:(5) (i) y 62 fy1; : : : ; ykg and fy1; : : : ; yk; yg 2 I,(ii) w(y) is as large as possible among all y satisfying (i).We stop if no y satisfying (5)(i) exist, that is, if fy1; : : : ; ykg is a basis.Now:Theorem 10.1. The pair (X; I) satisfying (2)(i) and (ii) is a matroid if and only if
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the greedy algorithm leads to a set Y in I of maximum weight w(Y ), for ea
h weightfun
tion w : X ! R+.Proof. SuÆ
ien
y. Suppose that the greedy algorithm leads to an independent setof maximum weight for ea
h weight fun
tion w. We show that (X; I) is a matroid.Conditions (2)(i) and (ii) are satis�ed by assumption. To see 
ondition (2)(iii),let Y; Z 2 I with jY j < jZj. Suppose that Y [ fzg 62 I for ea
h z 2 Z n Y .Consider the following weight fun
tion w on X. Let k := jY j. De�ne:(6) w(x) := k + 2 if x 2 Y ,w(x) := k + 1 if x 2 Z n Y ,w(x) := 0 if x 2 X n (Y [ Z).Now in the �rst k iterations of the greedy algorithm we �nd the k elements inY . By assumption, at any further iteration, we 
annot 
hoose any element in Z n Y .Hen
e any further element 
hosen, has weight 0. So the greedy algorithm will yield abasis of weight k(k + 2).However, any basis 
ontaining Z will have weight at least jZ \ Y j(k + 2) + jZ nY j(k+1) � jZj(k+1) � (k+1)(k+1) > k(k+2). Hen
e the greedy algorithm doesnot give a maximum-weight independent set.Ne
essity. Now let (X; I) be a matroid. Let w : X ! R+ be any weight fun
tion onX. Call an independent set Y greedy if it is 
ontained in a maximum-weight basis. ItsuÆ
es to show that if Y is greedy, and x is an element in X nY su
h that Y [fxg 2 Iand su
h that w(x) is as large as possible, then Y [ fxg is greedy.As Y is greedy, there exists a maximum-weight basis B � Y . If x 2 B thenY [ fxg is greedy again. If x 62 B, then there exists a basis B0 
ontaining Y [ fxgand 
ontained in B [ fxg. So B0 = (B n fx0g) [ fxg for some x0 2 B n Y . As w(x)is 
hosen maximum, w(x) � w(x0). Hen
e w(B0) � w(B), and therefore B0 is amaximum-weight basis. So Y [ fxg is greedy.

Note that by repla
ing \as large as possible" in (5) by \as small as possible", oneobtains an algorithm for �nding a minimum-weight basis in a matroid. Moreover,by ignoring elements of negative weight, the algorithm 
an be adapted to yield anindependent set of maximum weight, for any weight fun
tion w : X ! R .
Exer
ises10.1. Show that 
ondition (3) is equivalent to 
ondition (2)(iii) (assuming (2)(i) and (ii)).10.2. Let M = (X; I) be a matroid. Two elements x; y of X are 
alled parallel if fx; yg isa 
ir
uit. Show that if x and y are parallel and Y is an independent set with x 2 Y ,then also (Y n fxg) [ fyg is independent.



176 Chapter 10. Matroids
10.3. Let M = (X; I) be a matroid, with X = fx1; : : : ; xmg. De�ne(7) Y := fxi j rM (fx1; : : : ; xig) > rM (fx1; : : : ; xi�1g)g:Prove that Y belongs to I.
10.2. Equivalent axioms for matroidsThe de�nition of the notion of matroid given in the previous se
tion is given by`axioms' in terms of the independent sets. There are several other axioms that 
har-a
terize matroids. In this se
tion we give a number of them.Let X be a �nite set, and let I be a nonempty down-monotone 
olle
tion ofsubsets of X; that is, if F 2 I and F 0 � F , then F 0 2 I. Let B be the 
olle
tion ofin
lusionwise maximal sets in I, and let C be the 
olle
tion of in
lusionwise minimimalsets that are not in I. Finally, for any subset Y of X, de�ne(8) r(Y ) := maxfjZj j Z � Y; Z 2 Ig:Obviously, knowing one of the obje
ts I, B, C, r, we know all the other. Moreover,any nonempty anti
hain20 B arises in this way from some nonempty down-monotone
olle
tion I of subsets. Similarly, any anti
hain C 
onsisting of nonempty sets arisesin this way. Finally, r arises in this way if and only if(9) (i) r(;) = 0,(ii) if Z � Y � X then r(Z) � r(Y ).We 
an now 
hara
terize when su
h obje
ts arise from a matroid (X; I). That is,we obtain the following equivalent 
hara
terizations of matroids.Theorem 10.2. Let I, B, C, and r be as above. Then the following are equivalent:(i) if F; F 0 2 I and jF 0j > jF j, then F [ fxg 2 I for some x 2 F 0 n F ;(ii) if B;B0 2 B and x 2 B0 nB, then (B0 n fxg) [ fyg 2 B for some y 2 B nB0;(iii) if B;B0 2 B and x 2 B0 nB, then (B n fyg) [ fxg 2 B for some y 2 B nB0;(iv) if C;C 0 2 C with C 6= C 0 and x 2 C \C 0, then (C [C 0) n fxg 
ontains a set inC;(v) if C;C 0 2 C, x 2 C \ C 0, and y 2 C n C 0, then (C [ C 0) n fxg 
ontains a set inC 
ontaining y;(vi) for all Y; Z � X one has20An anti
hain is a 
olle
tion of sets no two of whi
h are 
ontained in ea
h other.



Se
tion 10.2. Equivalent axioms for matroids 177
(10) r(Y \ Z) + r(Y [ Z) � r(Y ) + r(Z):

Proof. (i))(ii): (i) dire
tly implies that all sets in B have the same size. Now letB;B0 2 B and x 2 B0 n B. Sin
e B0 n fxg 2 I, by (i) there exists a y 2 B n B0 su
hthat B00 := (B0 n fxg) [ fyg 2 I. Sin
e jB00j = jB0j, we know B00 2 B.(iii))(i): Let F; F 0 form a 
ounterexample to (i) with jF \F 0j as large as possible.Consider sets B;B0 in B with F � B and F 0 � B0.As F; F 0 is a 
ounterexample, we know F 6� B0. Choose x 2 F n B0. Then by(iii), (B0 n fyg)[ fxg for some y 2 B0 nB. Hen
e repla
ing F 0 by (F 0 n fyg)[ fxg wewould keep a 
ounterexample but in
rease jF \ F 0j, a 
ontradi
tion.(ii))(iii): By the foregoing we know that (iii) implies (ii). Now axioms (ii) and(iii) inter
hange if we repla
e B by the 
olle
tion of 
omplements of sets in B. Hen
ealso the impli
ation (ii))(iii) holds.(i))(v): If (i) holds, then by the foregoing, also (ii) holds. Let C;C 0 2 C andx 2 C \ C 0, y 2 C n C 0. We 
an assume that X = C [ C 0. Let B;B0 2 B withB � C n fyg and B0 � C 0 n fxg. Then y 62 B and x 62 B0 (sin
e C 6� B and C 0 6� B0).We 
an assume that y 62 B0. Otherwise, y 2 B0 nB, and hen
e by (ii), there existsa z 2 B nB0 with B00 := (B0 n fyg) [ fzg 2 B. Then z 6= x, sin
e otherwise C 0 � B00.Hen
e, repla
ing B0 by B00 gives y 62 B0.As y 62 B0, we know B0 [ fyg 62 I, and hen
e there exists a C 00 2 C 
ontained inB0 [ fyg. As C 00 6� B0, we know y 2 C 00. Moreover, as x 62 B0 we know x 62 C 00.(v))(iv): is trivial.(iv))(i): Let F; F 0 form a 
ounterexample to (i) with jF \ F 0j maximal. ThenF 6� F 0, and so we 
an 
hoose y 2 F n F 0. By the maximality of jF \ F 0j, we knowF 0 [ fxg 62 I. So there is a C 2 C 
ontained in F 0 [ fxg. As C 6� F 0 we knowx 2 C. Then C is the unique set in C 
ontained in F 0 [ fxg. For suppose there isanother, C 0 say. Again, x 2 C 0, and hen
e by (iv) there exists a C 00 2 C 
ontained in(C [ C 0) n fxg. But then C 00 � F 0, a 
ontradi
tion.As C 6� F , C interse
ts F 0nF . Choose y 2 C\(F 0nF ). Then F 00 := (F 0[fxg)nfygdoes not 
ontain any set in C (as C is the only set in C 
ontained in F 0 [ fxg).Then repla
ing F 0 by F 00, we would keep a 
ounterexample while in
reasing jF 0 \F j,
ontradi
ting our assumption.(i))(vi): Choose Y; Z � X. Let F be an in
lusionwise maximal set in I withF � Y \ Z, and let F 0 be an in
lusionwise maximal set in I with F � F � Y [ Z.By (i) we know that r(Y \ Z) = jF j and r(Y [ Z) = jF 0j. Then(11) jF 0 \ Y j+ jF 0 \ Zj = jF 0 \ (Y \ Z)j+ jF 0 \ (Y [ Z)j � jF j + jF 0j;and hen
e we have (10).
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(vi))(i): Let F; F 0 2 I with jF j < jF 0j. Let U be the largest subset of F 0 n Fwith r(F [U) = jF j. Then U 6= F 0 n F , sin
e r(F [ F 0) � jF 0j > jF j. So there existsan x 2 F 0 n F [ U . If F [ fxg 2 I we are done, so we 
an assume that F [ fxg 62 I;equivalently, r(F [ fxg) = jF j. Let U 0 := U [ fxg. Then by (10),

(12) r(F [ U 0) � r(F [ U) + r(F [ fxg)� r(F ) = jF j;

ontradi
ting the maximality of U .

Given a matroid M = (X; I), any in B is 
alled a basis and any set in C a 
ir
uitof M . The fun
tion r is 
alled rank fun
tion of M (often denoted by rM), and r(Y )the rank of Y .The symmetry of (ii) and (iii) in Theorem 10.2 immediately implies the following.De�ne
(13) B� := fX nB j B 2 Bg:
ThenCorollary 10.2a. If B is the 
olle
tion of bases of some matroid M , then B� also isthe 
olle
tion of bases of some matroid on X, denoted by M�.Proof. Dire
tly from the equivalen
e of (ii) and (iii) in Theorem 10.2.

The matroid M� is 
alled the dual matroid of M . Sin
e (B�)� = B, we know(M�)� =M .Theorem 10.3. The rank fun
tion rM� of the dual matroid M� satis�es:
(14) rM�(Y ) = jY j+ rM(X n Y )� rM(X):
Proof.
(15) rM�(Y ) = maxfjA \ Y j j A 2 B�g == jY j �minfjB \ Y j j B 2 Bg = jY j � rM(X) + maxfjB n Y j j B 2 Bg =jY j � rM(X) + rM(X n Y ):

Another way of 
onstru
ting matroids from matroids is by `deletion' and `
ontra
-tion'. Let M = (X; I) be a matroid and let Y � X. De�ne
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(16) I 0 := fZ j Z � Y; Z 2 Ig:ThenM 0 = (Y; I 0) is a matroid again, as one easily 
he
ks. M 0 is 
alled the restri
tionof M to Y . If Y = X n Z with Z � X, we say that M 0 arises by deleting Z, anddenote M 0 by M n Z.Contra
ting Z means repla
ing M by (M� n Z)�. This matroid is denoted byM=Z. One may 
he
k that if G is a graph and e is an edge of G, then 
ontra
tingedge feg in the 
y
le matroid M(G) of G 
orresponds to 
ontra
ting e in the graph.That is, M(G)=feg = M(G=feg), where G=feg denotes the graph obtained from Gby 
ontra
ting e.If matroidM 0 arises fromM by a series of deletions and 
ontra
tions,M 0 is 
alleda minor of M .
Exer
ises10.4. (i) LetX be a �nite set and let k be a natural number. Let I := fY � X j jY j � kg.Show that (X; I) is a matroid. Su
h matroids are 
alled k-uniform matroids.(ii) Show that k-uniform matroids are transversal matroids. Give an example of ak-uniform matroid that is neither graphi
 nor 
ographi
.10.5. Let M = (X; I) be a matroid and let k be a natural number. De�ne I 0 := fY 2 I jjY j � kg. Show that (X; I 0) is again a matroid (
alled the k-trun
ation of M).10.6. Let M = (X; I) be a matroid, let U be a set disjoint from X, and let k � 0. De�ne(17) I 0 := fU 0 [ Y j U 0 � U; Y 2 I; jU 0 [ Y j � kg:Show that (U [X; I 0) is again a matroid.10.7. Let M = (X; I) be a matroid and let x 2 X.(i) Show that if x is not a loop, then a subset Y of X n fxg is independent in the
ontra
ted matroid M=fxg if and only if Y [ fxg is independent in M .(ii) Show that if x is a loop, then M=fxg =M n fxg.(iii) Show that for ea
h Y � X : rM=fxg(Y ) = rM (Y [ fxg)� rM (fxg).10.8. Let M = (X; I) be a matroid and let Y � X.(ii) Let B be a basis of Y . Show that a subset U of X n Y is independent in the
ontra
ted matroid M=Y if and only if U [B is independent in M .(ii) Show that for ea
h U � X n Y

(18) rM=Y (U) = rM (U [ Y )� rM (Y ):
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10.9. Let M = (X; I) be a matroid and let Y;Z � X. Show that (M nY )=Z = (M=Z) n Y .(That is, deletion and 
ontra
tion 
ommute.)10.10. Let M = (X; I) be a matroid, and suppose that we 
an test in polynomial time ifany subset Y of X belongs to I. Show that then the same holds for the dual matroidM�.
10.3. Examples of matroidsIn this se
tion we des
ribe some 
lasses of examples of matroids.
I. Graphi
 matroids. As a �rst example we 
onsider the matroids des
ribed inSe
tion 10.1.Let G = (V;E) be a graph. Let I be the 
olle
tion of all forests in G. ThenM = (E; I) is a matroid, as we saw in Se
tion 10.1.The matroid M is 
alled the 
y
le matroid of G, denoted by M(G). Any matroidobtained in this way, or isomorphi
 to su
h a matroid, is 
alled a graphi
 matroid.Note that the bases of M(G) are exa
tly those forests F of G for whi
h the graph(V; F ) has the same number of 
omponents as G. So if G is 
onne
ted, the bases arethe spanning trees.Note also that the 
ir
uits of M(G), in the matroid sense, are exa
tly the 
ir
uitsof G, in the graph sense.
II. Cographi
 matroids. There is an alternative way of obtaining a matroid froma graph G = (V;E). It is in fa
t the matroid dual of the graphi
 matroid.Let B be the set of subsets J of E su
h that E n J is an in
lusionwise maximalforest. By Corollary 10.2a, B forms the 
olle
tion of bases of a matroid. Its 
olle
tionI of independent sets 
onsists of those subsets J of E for whi
h(19) �(V;E n J) = �(V;E):where, for any graph H, let �(H) denote the number of 
omponents of H.The matroid (E; I) is 
alled the 
o
y
le matroid of G, denoted by M�(G). Anymatroid obtained in this way, or isomorphi
 to su
h a matroid, is 
alled a 
ographi
matroid.By de�nition, a subset C of E is a 
ir
uit ofM�(G) if it is an in
lusionwise minimalset with the property that (V;E n C) has more 
omponents than G. Hen
e C is a
ir
uit of M�(G) if and only if C is an in
lusionwise minimal nonempty 
utset in G.
III. Linear matroids. Let A be an m � n matrix. Let X = f1; : : : ; ng and let Ibe the 
olle
tion of all those subsets Y of X so that the 
olumns with index in Y are
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linearly independent. That is, so that the submatrix of A 
onsisting of the 
olumnswith index in Y has rank jY j.Now:Theorem 10.4. (X; I) is a matroid.Proof. Again, 
onditions (2)(i) and (ii) are easy to 
he
k. To see 
ondition (2)(iii), letY and Z be subsets ofX so that the 
olumns with index in Y are linearly independent,and similarly for Z, and so that jY j < jZj.Suppose that Y [fxg 62 I for ea
h x 2 Z n Y . This means that ea
h 
olumn withindex in Z n Y is spanned by the 
olumns with index in Y . Trivially, ea
h 
olumnwith index in Z \ Y is spanned by the 
olumns with index in Y . Hen
e ea
h 
olumnwith index in Z is spanned by the 
olumns with index in Y . This 
ontradi
ts the fa
tthat the 
olumns indexed by Y span an jY j-dimensional spa
e, while the 
olumnsindexed by Z span an jZj-dimensional spa
e, with jZj > jY j.

Any matroid obtained in this way, or isomorphi
 to su
h a matroid, is 
alled alinear matroid.Note that the rank rM(Y ) of any subset Y of X is equal to the rank of the matrixformed by the 
olumns indexed by Y .
IV. Transversal matroids. Let X1; : : : ; Xm be subsets of the �nite set X. A setY = fy1; : : : ; yng is 
alled a partial transversal (of X1; : : : ; Xm), if there exist distin
tindi
es i1; : : : ; in so that yj 2 Xij for j = 1; : : : ; n. A partial transversal of 
ardinalitym is 
alled a transversal (or a system of distin
t representatives, or an SDR).Another way of representing partial transversals is as follows. Let G be the bipar-tite graph with vertex set V := f1; : : : ;mg [ X and with edges all pairs fi; xg withi 2 f1; : : : ;mg and x 2 Xi. (We assume here that f1; : : : ;mg \X = ;.)For any mat
hing M in G, let �(M) denote the set of those elements in X thatbelong to some edge in M . Then it is not diÆ
ult to see that:(20) Y � X is a partial transversal if and only if Y = �(M) for some mat
hingM in G.Now let I be the 
olle
tion of all partial transversals for X1; : : : ; Xm. Then:Theorem 10.5. (X; I) is a matroid.Proof. Again, 
onditions (2)(i) and (ii) are trivial. To see (2)(iii), let Y and Z bepartial transversals with jY j < jZj. Consider the graph G 
onstru
ted above. By(20) there exist mat
hings M and M 0 in G so that Y = �(M) and Z = �(M 0). SojM j = jY j < jZj = jM 0j.Consider the union M [M 0 of M and M 0. Ea
h 
omponent of the graph (V;M [
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M 0) is either a path, or a 
ir
uit, or a singleton vertex. Sin
e jM 0j > jM j, at leastone of these 
omponents is a path P with more edges in M 0 than in M . The path
onsists of edges alternatingly in M 0 and in M , with end edges in M 0.Let N and N 0 denote the edges in P o

urring in M and M 0, respe
tively. SojN 0j = jN j + 1. Sin
e P has odd length, exa
tly one of its end verti
es belongsto X; 
all this end vertex x. Then x 2 �(M 0) = Z and x 62 �(M) = Y . De�neM 00 := (M nN) [N 0. Clearly, M 00 is a mat
hing with �(M 00) = Y [ fxg. So Y [ fxgbelongs to I.

Any matroid obtained in this way, or isomorphi
 to su
h a matroid, is 
alled atransversal matroid. If the sets X1; : : : ; Xm form a partition of X, one speaks of apartition matroid.
These four 
lasses of examples show that the greedy algorithm has a wider appli-
ability than just for �nding minimum-weight spanning trees. There are more 
lassesof matroids (like `algebrai
 matroids', `gammoids'), for whi
h we refer to Welsh [1976℄.

Exer
ises10.11. Show that a partition matroid is graphi
, 
ographi
, and linear.10.12. Let M = (V; I) be the transversal matroid derived from subsets X1; : : : ;Xm of X asin Example IV.(i) Show with K}onig's mat
hing theorem that:(21) rM (X) = minJ�f1;:::;mg(�� [j2JXj��+m� jJ j):
(ii) Derive a formula for rM (Y ) for any Y � X.10.13. Let G = (V;E) be a graph. Let I be the 
olle
tion of those subsets Y of E so that Fhas at most one 
ir
uit. Show that (E; I) is a matroid.10.14. Let G = (V;E) be a graph. Call a 
olle
tion C of 
ir
uits a 
ir
uit basis of G if ea
h
ir
uit of G is a symmetri
 di�eren
e of 
ir
uits in C. (We 
onsider 
ir
uits as edgesets.)Give a polynomial-time algorithm to �nd a 
ir
uit basis C of G that minimizesPC2C jCj.(The running time of the algorithm should be bounded by a polynomial in jV j+ jEj.)10.15. Let G = (V;E) be a 
onne
ted graph. For ea
h subset E0 of E, let �(V;E0) denotethe number of 
omponents of the graph (V;E0). Show that for ea
h E0 � E:(i) rM(G)(E0) = jV j � �(V;E0);
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(ii) rM�(G)(E0) = jE0j � �(V;E nE0) + 1.10.16. Let G be a planar graph and let G� be a planar graph dual to G. Show that the 
y
lematroid M(G�) of G� is isomorphi
 to the 
o
y
le matroid M�(G) of G.10.17. Show that the dual matroid of a linear matroid is again a linear matroid.10.18. Let G = (V;E) be a loopless undire
ted graph. Let A be the matrix obtained fromthe V �E in
iden
e matrix of G by repla
ing in ea
h 
olumn, exa
tly one of the two1's by �1.(i) Show that a subset Y of E is a forest if and only if the 
olumns of A with indexin Y are linearly independent.(ii) Derive that any graphi
 matroid is a linear matroid.(iii) Derive (with the help of Exer
ise 10.17) that any 
ographi
 matroid is a linearmatroid.

10.4. Two te
hni
al lemmasIn this se
tion we prove two te
hni
al lemmas as a preparation to the 
oming se
tionson matroid interse
tion.Let M = (X; I) be a matroid. For any Y 2 I de�ne a bipartite graph H(M;Y )as follows. The graph H(M;Y ) has vertex set X, with 
olour 
lasses Y and X n Y .Elements y 2 Y and x 2 X n Y are adja
ent if and only if(22) (Y n fyg) [ fxg 2 I:Then we have:Lemma 10.1. Let M = (X; I) be a matroid and let Y; Z 2 I with jY j = jZj. ThenH(M;Y ) 
ontains a perfe
t mat
hing on Y4Z.21Proof. Suppose not. By K}onig's mat
hing theorem there exist a subset S of Y n Zand a subset S 0 of Z n Y su
h that for ea
h edge fy; zg of H(M;Y ) satisfying z 2 S 0one has y 2 S and su
h that jSj < jS 0j.As j(Y \ Z) [ Sj < j(Y \ Z) [ S 0j, there exists an element z 2 S 0 su
h thatT := (Y \ Z) [ S [ fzg belongs to I. This implies that there exists an U 2 I su
hthat T � U � T [ Y and jU j = jY j. So U = (Y n fxg) [ fzg for some x 62 S. Asfx; zg is an edge of H(M;Y ) this 
ontradi
ts the 
hoi
e of S and S 0.
The following forms a 
ounterpart:21A perfe
t mat
hing on a vertex set U is a mat
hing M with SM = U .
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Lemma 10.2. Let M = (X; I) be a matroid and let Y 2 I. Let Z � X be su
h thatjY j = jZj and su
h that H(M;Y ) 
ontains a unique perfe
t mat
hing N on Y4Z.Then Z belongs to I.Proof. By indu
tion on k := jZ n Y j, the 
ase k = 0 being trivial. Let k � 1.By the uni
ity of N there exists an edge fy; zg 2 N , with y 2 Y nZ and z 2 Z nY ,with the property that there is no z0 2 Z n Y su
h that z0 6= z and fy; z0g is an edgeof H(M;Y ).Let Z 0 := (Z nfzg)[fyg and N 0 := N nffy; zgg. Then N 0 is the unique mat
hingin H(M;Y ) with union Y4Z 0. Hen
e by indu
tion, Z 0 belongs to I.There exists an S 2 I su
h that Z 0 n fyg � S � (Y n fyg) [ Z and jSj = jY j(sin
e (Y n fyg) [ Z = (Y n fyg) [ fzg [ Z 0 and sin
e (Y n fyg) [ fzg belongs to I).Assuming Z 62 I, we know z 62 S and hen
e r((Y [ Z 0) n fyg) = jY j. Hen
e thereexists an z0 2 Z 0 n Y su
h that (Y n fyg) [ fz0g belongs to I. This 
ontradi
ts the
hoi
e of y.
Exer
ises10.19. Let M = (X; I) be a matroid, let B be a basis of M , and let w : X ! R be a weightfun
tion. Show that B is a basis of maximum weight if and only if w(B0) � w(B) forevery basis B0 with jB0 nBj = 1.10.20. Let M = (X; I) be a matroid and let Y and Z be independent sets with jY j = jZj.For any y 2 Y n Z de�ne Æ(y) as the set of those z 2 Z n Y whi
h are adja
ent to yin the graph H(M;Y ).(i) Show that for ea
h y 2 Y n Z the set (Z n Æ(y)) [ fyg belongs to I.(Hint: Apply inequality (10) to X 0 := (Z n Æ(y)) [ fyg and X 00 := (Z n Æ(y)) [(Y n fyg).)(ii) Derive from (i) that for ea
h y 2 Y n Z there exists an z 2 Z n Y so that fy; zgis an edge both of H(M;Y ) and of H(M;Z).
10.5. Matroid interse
tionEdmonds [1970℄ dis
overed that the 
on
ept of matroid has even more algorithmi
power, by showing that there exist fast algorithms also for interse
tions of matroids.LetM1 = (X; I1) andM2 = (X; I2) be two matroids, on the same set X. Considerthe 
olle
tion I1 \ I2 of 
ommon independent sets. The pair (X; I1 \ I2) is generallynot a matroid again (
f. Exer
ise 10.21).What Edmonds showed is that, for any weight fun
tion w on X, a maximum-weight 
ommon independent set 
an be found in polynomial time. In parti
ular, a
ommon independent set of maximum 
ardinality 
an be found in polynomial time.We 
onsider �rst some appli
ations.
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Example 10.5a. Let G = (V;E) be a bipartite graph, with 
olour 
lasses V1 andV2, say. Let I1 be the 
olle
tion of all subsets F of E so that no two edges in F havea vertex in V1 in 
ommon. Similarly, let I2 be the 
olle
tion of all subsets F of E sothat no two edges in F have a vertex in V2 in 
ommon. So both (X; I1) and (X; I2)are partition matroids.Now I1 \ I2 is the 
olle
tion of mat
hings in G. Finding a maximum-weight
ommon independent set amounts to �nding a maximum-weight mat
hing in G.Example 10.5b. Let X1; : : : ; Xm and Y1; : : : ; Ym be subsets of X. Let M1 = (X; I1)and M2 = (X; I2) be the 
orresponding transversal matroids.Then 
ommon independent sets 
orrespond to 
ommon partial transversals. The
olle
tions (X1; : : : ; Xm) and (Y1; : : : ; Ym) have a 
ommon transversal if and only ifthe maximum 
ardinality of a 
ommon independent set is equal to m.Example 10.5
. Let D = (V;A) be a dire
ted graph. Let M1 = (A; I1) be the 
y
lematroid of the underlying undire
ted graph. Let I2 be the 
olle
tion of subsets Y ofA so that ea
h vertex of D is entered by at most one ar
 in Y . So M2 := (A; I2) is apartition matroid.Now the 
ommon independent sets are those subsets Y of A with the propertythat ea
h 
omponent of (V; Y ) is a rooted tree. Moreover, D has a rooted spanningtree if and only if the maximum 
ardinality of a set in I1 \ I2 is equal to jV j � 1.Example 10.5d. Let G = (V;E) be a 
onne
ted undire
ted graph. Then G hastwo edge-disjoint spanning trees if and only if the maximum 
ardinality of a 
ommonindependent set in the 
y
le matroid M(G) of G and the 
o
y
le matroid M�(G) ofG is equal to jV j � 1.

In this se
tion we des
ribe an algorithm for �nding a maximum-
ardinality 
om-mon independent sets in two given matroids. In the next se
tion we 
onsider themore general maximum-weight problem.For any two matroids M1 = (X; I1) and M2 = (X; I2) and any Y 2 I1 \ I2, wede�ne a dire
ted graph H(M1;M2; Y ) as follows. Its vertex set is X, while for anyy 2 Y; x 2 X n Y ,(23) (y; x) is an ar
 of H(M1;M2; Y ) if and only if (Y n fyg) [ fxg 2 I1,(x; y) is an ar
 of H(M1;M2; Y ) if and only if (Y n fyg) [ fxg 2 I2.These are all ar
s of H(M1;M2; Y ). In fa
t, this graph 
an be 
onsidered as the unionof dire
ted versions of the graphs H(M1; Y ) and H(M2; Y ) de�ned in Se
tion 10.4.The following is the basis for �nding a maximum-
ardinality 
ommon independentset in two matroids.Cardinality 
ommon independent set augmenting algorithm
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input: matroids M1 = (X; I1) and M2 = (X; I2) and a set Y 2 I1 \ I2;output: a set Y 0 2 I1 \ I2 with jY 0j > jY j, if it exists.des
ription of the algorithm: We assume thatM1 andM2 are given in su
h a waythat for any subset Z of X we 
an 
he
k in polynomial time if Z 2 I1 and if Z 2 I2.Consider the sets(24) X1 := fy 2 X n Y j Y [ fyg 2 I1g,X2 := fy 2 X n Y j Y [ fyg 2 I2g.Moreover, 
onsider the dire
ted graph H(M1;M2; Y ) de�ned above. There are two
ases.Case 1. There exists a dire
ted path P in H(M1;M2; Y ) from some vertex in X1 tosome vertex in X2. (Possibly of length 0 if X1 \X2 6= ;.)We take a shortest su
h path P (that is, with a minimum number of ar
s). Let Ptraverse the verti
es y0; z1; y1; : : : ; zm; ym of H(M1;M2; Y ), in this order. By 
onstru
-tion of the graph H(M1;M2; Y ) and the sets X1 and X2, this implies that y0; : : : ; ymbelong to X n Y and z1; : : : ; zm belong to Y .Now output(25) Y 0 := (Y n fz1; : : : ; zmg) [ fy0; : : : ; ymg.
Case 2. There is no dire
ted path in H(M1;M2; Y ) from any vertex in X1 to anyvertex vertex in X2. Then Y is a maximum-
ardinality 
ommon independent set.

This �nishes the des
ription of the algorithm. The 
orre
tness of the algorithm isgiven in the following two theorems.Theorem 10.6. If Case 1 applies, then Y 0 2 I1 \ I2.Proof. Assume that Case 1 applies. By symmetry it suÆ
es to show that Y 0 belongsto I1.To see that Y 0nfy0g belongs to I1, 
onsider the graph H(M1; Y ) de�ned in Se
tion10.4. Observe that the edges fzj; yjg form the only mat
hing in H(M1; Y ) with unionequal to fz1; : : : ; zm; y1; : : : ; ymg (otherwise P would have a short
ut). So by Lemma10.2, Y 0 n fy0g = (Y n fz1; : : : ; zmg) [ fy1; : : : ; ymg belongs to I1.To show that Y 0 belongs to I1, observe that rM1(Y [Y 0) � rM1(Y [fy0g) = jY j+1,and that, as (Y 0 n fy0g) \X1 = ;, rM1((Y [ Y 0) n fy0g) = jY j. As Y 0 n fy0g 2 I1, weknow Y 0 2 I1.Theorem 10.7. If Case 2 applies, then Y is a maximum-
ardinality 
ommon inde-
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pendent set.Proof. As Case 2 applies, there is no dire
ted X1�X2 path in H(M1;M2; Y ). Hen
ethere is a subset U of X 
ontaining X2 su
h that U \X1 = ; and su
h that no ar
 ofH(M1;M2; Y ) enters U . (We 
an take for U the set of verti
es that are not rea
hableby a dire
ted path from X1.)We show(26) rM1(U) + rM2(X n U) = jY j:To this end, we �rst show(27) rM1(U) = jY \ U j:Clearly, as Y \U 2 I1, we know rM1(U) � jY \U j. Suppose rM1(U) > jY \U j. Thenthere exists an x in U nY so that (Y \U)[fxg 2 I1. Sin
e Y 2 I1, this implies thatthere exists a set Z 2 I1 with jZj � jY j and (Y \ U) [ fxg � Z � Y [ fxg. ThenZ = Y [ fxg or Z = (Y n fyg) [ fxg for some y 2 Y n U .In the �rst alternative, x 2 X1, 
ontradi
ting the fa
t that x belongs to U . In these
ond alternative, (y; x) is an ar
 of H(M1;M2; Y ) entering U . This 
ontradi
ts thede�nition of U (as y 62 U and x 2 U).This shows (27). Similarly we have that rM2(X n U) = jY n U j. Hen
e we have(26).Now (26) implies that for any set Z in I1 \ I2 one has(28) jZj = jZ \ U j+ jZ n U j � rM1(U) + rM2(X n U) = jY j:So Y is a 
ommon independent set of maximum 
ardinality.

The algorithm 
learly has polynomially bounded running time, sin
e we 
an 
on-stru
t the auxiliary dire
ted graph H(M1;M2; Y ) and �nd the path P (if it exists),in polynomial time.It implies the result of Edmonds [1970℄:Theorem 10.8. A maximum-
ardinality 
ommon independent set in two matroids
an be found in polynomial time.Proof. Dire
tly from the above, as we 
an �nd a maximum-
ardinality 
ommon inde-pendent set after applying at most jXj times the 
ommon independent set augmentingalgorithm.
The algorithm also yields a min-max relation for the maximum 
ardinality of a
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ommon independent set, as was shown again by Edmonds [1970℄.Theorem 10.9 (Edmonds' matroid interse
tion theorem). Let M1 = (X; I1) andM2 = (X; I2) be matroids. Then(29) maxY 2I1\I2 jY j = minU�X(rM1(U) + rM2(X n U)):
Proof. The inequality � follows similarly as in (28). The reverse inequality followsfrom the fa
t that if the algorithm stops with set Y , we obtain a set U for whi
h (26)holds. Therefore, the maximum in (29) is at least as large as the minimum.
Exer
ises10.21. Give an example of two matroidsM1 = (X; I1) andM2 = (X; I2) so that (X; I1\I2)is not a matroid.10.22. Derive K}onig's mat
hing theorem from Edmonds' matroid interse
tion theorem.10.23. Let (X1; : : : ;Xm) and (Y1; : : : ; Ym) be subsets of the �nite set X. Derive from Ed-monds' matroid interse
tion theorem: (X1; : : : ;Xm) and (Y1; : : : ; Ym) have a 
ommontransversal if and only if

(30) ��([i2IXi) \ ([j2J Yj)�� � jIj+ jJ j �m
for all subsets I and J of f1; : : : ;mg.10.24. Redu
e the problem of �nding a Hamiltonian 
y
le in a dire
ted graph to the problemof �nding a maximum-
ardinality 
ommon independent set in three matroids.10.25. Let G = (V;E) be a graph and let the edges of G be 
oloured with jV j � 1 
olours.That is, we have partitioned E into 
lasses X1; : : : ;XjV j�1, 
alled 
olours. Show thatthere exists a spanning tree with all edges 
oloured di�erently if and only if (V;E0)has at most jV j � t 
omponents, for any union E0 of t 
olours, for any t � 0.10.26. LetM = (X; I) be a matroid and letX1; : : : ;Xm be subsets ofX. Then (X1; : : : ;Xm)has an independent transversal if and only if the rank of the union of any t sets amongX1; : : : ;Xm is at least t, for any t � 0. (Rado [1942℄.)10.27. Let M1 = (X; I1) and M2 = (X; I2) be matroids. De�ne
(31) I1 _ I2 := fY1 [ Y2 j Y1 2 I1; Y2 2 I2g:(i) Show that the maximum 
ardinality of a set in I1 _ I2 is equal to



Se
tion 10.5. Matroid interse
tion 189
(32) minU�X(rM1(U) + rM2(U) + jX n U j):
(Hint: Apply the matroid interse
tion theorem to M1 and M�2 .)(ii) Derive that for ea
h Y � X:maxfjZj j Z � Y;Z 2 I1 _ I2g =(33) minU�Y (rM1(U) + rM2(U) + jY n U j):(iii) Derive that (X; I1 _ I2) is again a matroid.(Hint: Use axiom (vi) in Theorem 10.2.)This matroid is 
alled the union ofM1 andM2, denoted byM1_M2. (Edmondsand Fulkerson [1965℄, Nash-Williams [1967℄.)(iv) Let M1 = (X; I1); : : : ;Mk = (X; Ik) be matroids and let(34) I1 _ : : : _ Ik := fY1 [ : : : [ Yk j Y1 2 I1; : : : ; Yk 2 Ikg:Derive from (iii) that M1 _ : : :_Mk := (X; I1 _ : : :_Ik) is again a matroid andgive a formula for its rank fun
tion.10.28. (i) Let M = (X; I) be a matroid and let k � 0. Show that X 
an be 
overed by kindependent sets if and only if jU j � k � rM (U) for ea
h subset U of X.(Hint: Use Exer
ise 10.27.) (Edmonds [1965b℄.)(ii) Show that the problem of �nding a minimum number of independent sets 
ov-ering X in a given matroid M = (X; I), is solvable in polynomial time.10.29. Let G = (V;E) be a graph and let k � 0. Show that E 
an be partitioned into kforests if and only if ea
h nonempty subset W of V 
ontains at most k(jW j�1) edgesof G.(Hint: Use Exer
ise 10.28.) (Nash-Williams [1964℄.)10.30. Let X1; : : : ;Xm be subsets of X and let k � 0.(i) Show that X 
an be partitioned into k partial transversals of (X1; : : : ;Xm) ifand only if
(35) k(m� jIj) � ��X n[i2IXi��
for ea
h subset I of f1; : : : ;mg.(ii) Derive from (i) that f1; : : : ;mg 
an be partitioned into 
lasses I1; : : : ; Ik so that(Xi j i 2 Ij) has a transversal, for ea
h j = 1; : : : ; k if and only if Y 
ontains atmost kjY j of the Xi as a subset, for ea
h Y � X.(Hint: Inter
hange the roles of f1; : : : ;mg and X.) (Edmonds and Fulkerson[1965℄.)
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10.31. (i) Let M = (X; I) be a matroid and let k � 0. Show that there exist k pairwisedisjoint bases of M if and only if k(rM(X)� rM (U)) � jX n U j for ea
h subsetU of X.(Hint: Use Exer
ise 10.27.) (Edmonds [1965b℄.)(ii) Show that the problem of �nding a maximum number of pairwise disjoint basesin a given matroid, is solvable in polynomial time.10.32. Let G = (V;E) be a 
onne
ted graph and let k � 0. Show that there exist k pairwiseedge-disjoint spanning trees if and only if for ea
h t, for ea
h partition (V1; : : : ; Vt) ofV into t 
lasses, there are at least k(t � 1) edges 
onne
ting di�erent 
lasses of thispartition.(Hint: Use Exer
ise 10.31.) (Nash-Williams [1961℄, Tutte [1961℄.)10.33. Let M1 and M2 be matroids so that, for i = 1; 2, we 
an test in polynomial time if agiven set is independent in Mi. Show that the same holds for the union M1 _M2.10.34. Let M = (X; I) be a matroid and let B and B0 be two disjoint bases. Let B bepartitioned into sets Y1 and Y2. Show that there exists a partition of B0 into sets Z1and Z2 so that both Y1 [ Z1 [ Z2 and Z1 [ Y2 are bases of M .(Hint: Assume without loss of generality that X = B [ B0. Apply the matroidinterse
tion theorem to the matroids (M n Y1)=Y2 and (M� n Y1)=Y2.)10.35. The following is a spe
ial 
ase of a theorem of Nash-Williams [1985℄:Let G = (V;E) be a simple, 
onne
ted graph and let b : V ! Z+ . Call a graph~G = (~V ; ~E) a b-deta
hment of G if there is a fun
tion � : ~V ! V su
h that j��1(v)j =b(v) for ea
h v 2 V , and su
h that there is a one-to-one fun
tion  : ~E ! E with (e) = f�(v); �(w)g for ea
h edge e = fv; wg of ~G.Then there exists a 
onne
ted b-deta
hment if and only if for ea
h U � V the numberof 
omponents of the graph indu
ed by V n U is at most jEU j � b(U) + 1.Here EU denotes the set of edges interse
ting U .
10.6. Weighted matroid interse
tionWe next 
onsider the problem of �nding a maximum-weight 
ommon independentset, in two given matroids, with a given weight fun
tion. The algorithm, again dueto Edmonds [1970℄, is an extension of the algorithm given in Se
tion 10.5. In ea
hiteration, instead of �nding a path P with a minimum number of ar
s in H, we willnow require P to have minimum length with respe
t to some length fun
tion de�nedon H.To des
ribe the algorithm, if matroidM1 = (S; I1) andM2 = (S; I2) and a weightfun
tion w : S ! R are given, 
all a set Y 2 I1\I2 extreme if w(Z) � w(Y ) for ea
hZ 2 I1 \ I2 satisfying jZj = jY j.
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Weighted 
ommon independent set augmenting algorithminput: matroids M1 = (S; I1) and M2 = (S; I2), a weight fun
tion w : S ! Q , andan extreme 
ommon independent set Y ;output: an extreme 
ommon independent set Y 0 with jY 0j = jY j+ 1, if it existsdes
ription of the algorithm: Consider again the sets X1 and X2 and the dire
tedgraph H(M1;M2; Y ) on S as in the 
ardinality 
ase.For any x 2 S de�ne the `length' l(x) of x by:(36) l(x) := w(x) if x 2 Y ,l(x) := �w(x) if x 62 Y:The length of a path P , denoted by l(P ), is equal to the sum of the lengths of theverti
es traversed by P , 
ounting multipli
ities.We 
onsider two 
ases.Case 1. H(M1;M2; Y ) has an X1�X2 path P . We 
hoose P so that l(P ) is minimaland so that it has a minimum number of ar
s among all minimum-length X1 � X2paths. Set Y 0 := Y4V P .Case 2. H(M1;M2; Y ) has no X1 � X2 path. Then Y is a maximum-size 
ommonindependent set.

This �nishes the des
ription of the algorithm. The 
orre
tness of the algorithm ifCase 2 applies follows dire
tly from Theorem 10.7. In order to show the 
orre
tnessif Case 1 applies, we �rst prove the following basi
 property of the length fun
tion l.Theorem 10.10. Let C be a dire
ted 
ir
uit in H(M1;M2; Y ), and let t 2 V C.De�ne Z := Y4V C. If Z 62 I1 \ I2 then there exists a dire
ted 
y
le C 0 withV C 0 � V C su
h that l(C 0) < 0, or l(C 0) � l(C) and t 2 V C 0.Proof. By symmetry we 
an assume that Z 62 I1. Let N1 and N2 be the sets ofar
s in C belonging to H(M1; Y ) and H(M2; Y ) respe
tively. If Z 62 I1, there is, byLemma 10.2 a mat
hing N 01 in H(M1; Y ) on V C with N 01 6= N1. Consider the dire
tedgraph D = (V C;A) formed by the ar
s in N1, N 01 (taking ar
s in N1 \N 01 multiple),and by the ar
s in N2 taking ea
h of them twi
e (parallel). Now ea
h vertex in V Cis entered and left by exa
tly two ar
s of D. Moreover, sin
e N 01 6= N1, D 
ontainsa dire
ted 
ir
uit C1 with V C1 � V C. We 
an extend this to a de
omposition of Ainto dire
ted 
ir
uits C1; : : : ; Ck. Then(37) �V C1 + � � � + �V Ck = 2 � �V C .Sin
e V C1 6= V C we know that V Cj = V C for at most one j. If, say V Ck = V C,
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then (37) implies that either l(V Cj) < 0 for some j < k or l(V Cj) � l(V C) for allj < k, implying the proposition.If V Cj 6= V C for all j, then l(V Cj) < 0 for some j � k or l(V Cj) � l(V C) for allj � k, again implying the proposition.

This implies:Theorem 10.11. Let Y 2 I1 \ I2. Then Y is extreme if and only if H(M1;M2; Y )has no dire
ted 
y
le of negative length.Proof. To see ne
essity, suppose H(M1;M2; Y ) has a 
y
le C of negative length.Choose C with jV Cj minimal. Consider Z := Y4V C. Sin
e w(Z) = w(Y )� l(C) >w(Y ), while jZj = jY j, we know that Z 62 I1 \ I2. Hen
e by Proposition 10.10,H(M1;M2; Y ) has a negative-length dire
ted 
y
le 
overing fewer than jV Cj verti
es,
ontradi
ting our assumption.To see suÆ
ien
y, 
onsider a Z 2 I1 \ I2 with jZj = jY j. By Lemma 10.1, bothH(M1; Y ) and H(M2; Y ) have a perfe
t mat
hing on Y4Z. These two mat
hingstogether form a disjoint union of a number of dire
ted 
y
les C1; : : : ; Ct. Then
(38) w(Y )� w(Z) = tXj=1 l(Cj) � 0;
implying w(Z) � w(Y ). So Y is extreme.

This theorem implies that we 
an �nd in the algorithm a shortest path P inpolynomial time (with the Bellman-Ford method).This also gives:Theorem 10.12. If Case 1 applies, Y 0 is an extreme 
ommon independent set.Proof. We �rst show that Y 0 2 I1 \ I2. To this end, let t be a new element, andextend (for ea
h i = 1; 2), Mi to a matroidM 0i = (S+ t; I 0i), where for ea
h T � S+ t:
(39) T 2 I 0i if and only if T � t 2 I i.Note that H(M 01;M 02; Y + t) arises from H(M1;M2; Y ) by extending it with a newvertex t and adding ar
s from ea
h vertex in X1 to t, and from t to ea
h vertex inX2.Let P be the path found in the algorithm. De�ne(40) w(t) := l(t) := �l(P ):
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As P is a shortest X1 �X2 path, this makes that H(M 01;M 02; Y + t) has no negative-length dire
ted 
y
le. Hen
e, by Theorem 10.11, Y + t is an extreme 
ommon inde-pendent set in M 01 and M 02.Let P run from z1 2 X1 to z2 2 X2. Extend P by the ar
s (t; z1) and (z2; t) to adire
ted 
y
le C. So Z = (Y + t)4V C. As P has a minimum number of ar
s amongall shortest X1 �X2 paths, and as H(M 01;M 02; Y + t) has no negative-length dire
ted
ir
uits, by Proposition 10.10 we know that Z 2 I1 \ I2.Moreover, Z is extreme, sin
e Y + t is extreme and w(Z) = w(Y + t).

So the weighted 
ommon independent set augmenting algorithm is 
orre
t. Itobviously has polynomially bounded running time. Therefore:Theorem 10.13. A maximum-weight 
ommon independent set in two matroids 
anbe found in polynomial time.Proof. Starting with the extreme 
ommon independent set Y0 := ; we 
an �nditeratively extreme 
ommon independent sets Y0; Y1; : : : ; Yk, where jYij = i for i =0; : : : ; k and where Yk is a maximum-size 
ommon independent set. Taking one amongY0; : : : ; Yk of maximum weight, we have an extreme 
ommon independent set.
Exer
ises10.36. Give an example of two matroids M1 = (X; I1) and M2 = (X; I2) and a weightfun
tion w : X ! Z+ so that there is no maximum-weight 
ommon independent setwhi
h is also a maximum-
ardinality 
ommon independent set.10.37. Redu
e the problem of �nding a maximum-weight 
ommon basis in two matroids tothe problem of �nding a maximum-weight 
ommon independent set.10.38. Let D = (V;A) be a dire
ted graph, let r 2 V , and let l : A ! Z+ be a lengthfun
tion. Redu
e the problem of �nding a minimum-length rooted tree with rootr, to the problem of �nding a maximum-weight 
ommon independent set in twomatroids.10.39. Let B be a 
ommon basis of the matroids M1 = (X; I1) and M2 = (X; I2) and letw : X ! Z be a weight fun
tion. De�ne length fun
tion l : X ! Z by l(x) := w(x) ifx 2 B and l(x) := �w(x) if x 62 B.Show that B has maximum-weight among all 
ommon bases of M1 and M2 if andonly if H(M1;M2; B) has no dire
ted 
ir
uit of negative length.
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10.7. Matroids and polyhedraThe algorithmi
 results obtained in the previous se
tions have interesting 
onse-quen
es for polyhedra asso
iated with matroids.Let M = (X; I) be a matroid. The matroid polytope P (M) of M is, by de�nition,the 
onvex hull of the in
iden
e ve
tors of the independent sets of M . So P (M) is apolytope in RX .Ea
h ve
tor z in P (M) satis�es the following linear inequalities:
(41) z(x) � 0 for x 2 X,z(Y ) � rM(Y ) for Y � X.This follows from the fa
t that the in
iden
e ve
tor �Y of any independent set Y ofM satis�es (41).Note that if z is an integer ve
tor satisfying (41), then z is the in
iden
e ve
tor ofsome independent set of M .Edmonds [1970℄ showed that system (41) in fa
t fully determines the matroidpolytope P (M). It means that for ea
h weight fun
tion w : X ! R , the linearprogramming problem(42) maximize wT z;subje
t to z(x) � 0 (x 2 X)z(Y ) � rM(Y ) (Y � X)has an integer optimum solution z. This optimum solution ne
essarily is the in
iden
eve
tor of some independent set of M . In order to prove this, we also 
onsider theLP-problem dual to (42):
(43) minimize XY�X yY rM(Y );subje
t to yY � 0 (Y � X)XY�X;x2Y yY � w(x) (x 2 X).
We show:Theorem 10.14. If w is integer, then (42) and (43) have integer optimum solutions.Proof. Order the elements of X as y1; : : : ; ym in su
h a way that w(y1) � w(y2) �: : : w(ym). Let n be the largest index for whi
h w(yn) � 0. De�ne Xi := fy1; : : : ; yigfor i = 0; : : : ;m and(44) Y := fyi j i � n; rM(Xi) > rM(Xi�1)g:
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Then Y belongs to I (
f. Exer
ise 10.3). So z := �Y is an integer feasible solution of(42).Moreover, de�ne a ve
tor y in R P(X) by:
(45) yY := w(yi)� w(yi+1) if Y = Xi for some i = 1; : : : ; n� 1;yY := w(yn) if Y = Xn;yY := 0 for all other Y � XThen y is an integer feasible solution of (43).We show that z and y have the same obje
tive value, thus proving the theorem:

wT z = w(Y ) =Xx2Y w(x) = nXi=1 w(yi) � (rM(Xi)� rM(Xi�1))(46)
= w(yn) � rM(Xn) + n�1Xi=1 (w(yi)� w(yi+1)) � rM(Xi) = XY�X yY rM(Y ):

So system (41) is totally dual integral. This dire
tly implies:Corollary 10.14a. The matroid polytope P (M) is determined by (41).Proof. Immediately from Theorem 10.14.
An even stronger phenomenon o

urs at interse
tions of matroid polytopes. Itturns out that the interse
tion of two matroid polytopes gives exa
tly the 
onvex hullof the 
ommon independent sets, as was shown again by Edmonds [1970℄.To see this, we �rst derive a basi
 property:Theorem 10.15. Let M1 = (X; I1) and M2 = (X; I2) be matroids, let w : X ! Zbe a weight fun
tion and let B be a 
ommon basis of maximum weight w(B). Thenthere exist fun
tions w1; w2 : X ! Z so that w = w1 + w2, and so that B is both amaximum-weight basis of M1 with respe
t to w1 and a maximum-weight basis of M2with respe
t to w2.Proof. Consider the dire
ted graph H(M1;M2; B) with length fun
tion l as de�nedin Exer
ise 10.39. Sin
e B is a maximum-weight basis, H(M1;M2; B) has no dire
ted
ir
uits of negative length. Hen
e there exists a fun
tion � : X ! Z so that �(y) ��(x) � l(y) for ea
h ar
 (x; y) of H(M1;M2; B). Using the de�nition of H(M1;M2; B)and l, this implies that for y 2 B; x 2 X nB:

(47) �(x)� �(y) � �w(x) if (B n fyg) [ fxg 2 I1,�(y)� �(x) � w(x) if (B n fyg) [ fxg 2 I2.
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Now de�ne
(48) w1(y) := �(y); w2(y) := w(y)� �(y) for y 2 Bw1(x) := w(x) + �(x); w2(x) := ��(x) for x 2 X nB.Then w1(x) � w1(y) whenever (B n fyg) [ fxg 2 I1. So by Exer
ise 10.19, B is amaximum-weight basis of M1 with respe
t to w1. Similarly, B is a maximum-weightbasis of M2 with respe
t to w2.

Note that if B is a maximum-weight basis of M1 with respe
t to some weightfun
tion w, then also after adding a 
onstant fun
tion to w this remains the 
ase.This observation will be used in showing that a theorem similar to Theorem 10.15holds for independent sets instead of bases.Theorem 10.16. Let M1 = (X; I1) and M2 = (X; I2) be matroids, let w : X ! Zbe a weight fun
tion, and let Y be a maximum-weight 
ommon independent set. Thenthere exist weight fun
tions w1; w2 : X ! Z so that w = w1+w2 and so that Y is botha maximum-weight independent set of M1 with respe
t to w1 and a maximum-weightindependent set of M2 with respe
t to w2.Proof. Let U be a set of 
ardinality jXj+ 2 disjoint from X. De�ne(49) J1 := fY [W j Y 2 I1;W � U; jY [W j � jXj+ 1g;J2 := fY [W j Y 2 I2;W � U; jY [W j � jXj+ 1g:ThenM 01 := (X[U;J1) andM2 := (X[U;J2) are matroids again. De�ne ~w : X ! Zby
(50) ~w(x) := w(x) if x 2 X,~w(x) := 0 if x 2 U .Let W be a subset of U of 
ardinality jX nY j+1. Then Y [W is a 
ommon basisof M 01 and M 02. In fa
t, Y [W is a maximum-weight 
ommon basis with respe
t tothe weight fun
tion ~w. (Any basis B of larger weight would interse
t X in a 
ommonindependent set of M1 and M2 of larger weight than Y .)So by Theorem 10.15, there exist fun
tions ~w1; ~w2 : X ! Z so that ~w1 + ~w2 = ~wand so that Y [W is both a maximum-weight basis of M 01 with respe
t to ~w1 and amaximum-weight basis of M 02 with respe
t to ~w2.Now, ~w1(u00) � ~w1(u0) whenever u0 2W;u00 2 U nW . Otherwise we 
an repla
e u0in Y [W by u00 to obtain a basis ofM 01 of larger ~w1-weight. Similarly, ~w2(u00) � ~w2(u0)whenever u0 2W;u00 2 U nW .Sin
e ~w1(u) + ~w2(u) = ~w(u) = 0 for all u 2 U , this implies that ~w1(u00) = ~w1(u0)whenever u0 2W;u00 2 U nW . As ; 6=W 6= U , it follows that ~w1 and ~w2 are 
onstant
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on U . Sin
e we 
an add a 
onstant fun
tion to ~w1 and subtra
ting the same fun
tionfrom ~w2 without spoiling the required properties, we may assume that ~w1 and ~w2 are0 on U .Now de�ne w1(x) := ~w1(x) and w2(x) := ~w2(x) for ea
h x 2 X. Then Y is both amaximum-weight independent set of M1 with respe
t to w1 and a maximum-weightindependent set of M2 with respe
t to w2.

Having this theorem, it is quite easy to derive that the interse
tion of two matroidpolytopes has integer verti
es, being in
iden
e ve
tors of 
ommon independent sets.By Theorem 10.14 the interse
tion P (M1) \ P (M2) of the matroid polytopes as-so
iated with the matroids M1 = (X; I1) and M2 = (X; I2) is determined by:(51) z(x) � 0 (x 2 X);z(Y ) � rM1(Y ) (Y � X);z(Y ) � rM2(Y ) (Y � X);The 
orresponding linear programming problem is, for any w : X ! R :(52) maximize wT z,subje
t to z(x) � 0 (x 2 X);z(Y ) � rM1(Y ) (Y � X);z(Y ) � rM2(Y ) (Y � X):Again we 
onsider the dual linear programming problem:
(53) minimize XY�X(y0Y rM1(Y ) + y00Y rM2(Y ))subje
t to y0Y � 0 (Y � X);y00Y � 0 (Y � X);XY�X;x2Y (y0Y + y00Y ) � w(x) (x 2 X):
NowTheorem 10.17. If w is integer, then (52) and (53) have integer optimum solutions.Proof. Let Y be a 
ommon independent set of maximum weight w(Y ). By Theorem10.15, there exist fun
tions w1; w2 : X ! Z so that w1 + w2 = w and so that Y is amaximum-weight independent set in Mi with respe
t to wi (i = 1; 2).Applying Theorem 10.14 to w1 and w2, respe
tively, we know that there existinteger optimum solutions y0 and y00, respe
tively, for problem (43) with respe
t toM1; w1 andM2; w2, respe
tively. One easily 
he
ks that y0; y00 forms a feasible solutionof (53). Optimality follows from:
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(54) w(Z) = w1(Z) + w2(Z) = XY�X y0Y rM1(Y ) + XY�X y00Y rM2(Y )= XY�X(y0Y rM1(Y ) + y00Y rM2(Y )):

So system (51) is totally dual integral. Again, this dire
tly implies:Corollary 10.17a. The 
onvex hull of the 
ommon independent sets of two matroidsM1 and M2 is determined by (51).Proof. Dire
tly from Theorem 10.17.
Exer
ises10.40. Give an example of three matroids M1, M2, and M3 on the same set X so that theinterse
tion P (M1)\P (M2)\P (M3) is not the 
onvex hull of the 
ommon independentsets.10.41. Derive Edmonds' matroid interse
tion theorem (Theorem 10.9) from Theorem 10.17.
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