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SKOLIAD nNo. 102
Robert Bilinski

Please send solutions to the problems in this edition by November 1,
2007. A copy of MATHEMATICAL MAYHEM Vol. 4 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_——— N r——— S ——— ——

Nos questions proviennent ce mois-ci du Concours 2006 de Mathé-
matique du secondaire de Colombie Britannique. Nous remercions Clint Lee,
Okanagan College, Vernon, BC, qui s’occupe de ces concours.

Concours 2006 de Mathématique

du secondaire de Colombie Britannique
Ronde Finale Sénior partie B, vendredi 5 mai 2006

1. Déterminer le nombre de séquences d’entiers consécutifs dont la somme
est 100.

2. Un réservoir vitré cubique de c6té un meétre est placé sur une table
horizontale et est rempli 2 moitié d’eau. Ainsi, la profondeur de I'’eau dans
le réservoir (la distance entre la surface de I’eau et la surface de la table) est
un demi-meétre. Le réservoir est tourné autour d’une des arétes sur la table
afin qu'une des faces du réservoir ait un angle de 30° avec la table. Trouver
la profondeur de I’eau aprés la rotation.

3. Les longueurs des c6tés d’'un triangle sont 13, 13 et 10. Le
cercle inscrit de ce triangle est un cercle ayant son centre a I'in-
trieur du triangle qui est tangent a chacun des c6tés du triangle.
(Voir le diagramme.) Trouver le rayon du cercle inscrit.

4. Cinq entiers positifs a, b, ¢, d et e supérieurs 3 un remplissent les condi-
tions suivantes :

a(lb+c+d+e) = 128,
bla+c+d+e) = 155,
cla+b+d+e) = 203,

dla+b+c+e) 243,
e(a+b+c+d) = 275.

Trouver ces cing entiers.

5. Un arbre binaire entier consiste en un noeud racine qui a deux enfants,
un noeud droit et un noeud gauche, et chacun des noeuds enfants a deux en-
fants, jusqu’a ce que le haut de I’arbre soit atteint, ot chaque noeud n’a pas
d’enfants. Dans un certain arbre binaire entier, chaque noeud est numéroté,
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en commencant par 1 a la racine et en numérotant de la gauche vers la droite
a travers chaque niveau. Le diagramme montre les quatre premiers niveaux
d’un tel arbre. La racine d’un tel arbre est placé a l'origine d’un systéme
de coordonnées xy, I’axe = étant a I'horizontal et I’axe y étant a la verti-
cale, comme illustré. Si I’espace entre les niveaux de I’arbre est de 2 unités
dans la direction y et I’espacement entre les noeuds du niveau supérieur qui
contient le noeud numéroté 2006 est de 2 unités dans la direction x, trouver
les coordonnées du noeud numéroté 2006.

British Columbia Secondary School

Mathematics Contest 2006
Senior Final Round, Part B, Friday, May 5, 2006

1. Determine the number of sequences of consecutive integers whose sum
is 100.

2. Acubical glass tank with sides of length one metre is placed on a horizontal
table and half filled with water. Thus, the depth of the water in the tank (the
distance of the surface of the water from the surface of the table) is one half
metre. The tank is rotated about one of the edges that is on the table so that
one face of the tank makes a 30° angle with the table. Find the depth of the
water in the tank after the rotation.

3. The lengths of the sides of a triangle are 13, 13, and 10. The
inscribed circle of this triangle is the circle with centre inside the
circle that is tangent to each of the three sides of the triangle.
(See the diagram.) Find the radius of the inscribed circle.

4. Five positive integers a, b, ¢, d, and e greater than one make the following
conditions true:

alb+c+d+e) = 128,
bla+c+d+e) = 155,
cla+b+d+e) = 203,
dla+b+c+e) = 243,
e(a+b+c+d) = 275.

Find the five integers.
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5. A full binary tree consists of a root node which has two children, a right
child node and a left child node, and each child node has two children, until
the top of the tree is reached, where each node has no children. In a certain
full binary tree each node is numbered, starting with 1 at the root, numbering
from left to right across each level. The diagram shows the first four levels of
such a tree. The root of the tree is placed at the origin of an xzy—coordinate
system, with the z—axis horizontal and the y—-axis vertical, as shown. If the
spacing between the levels of the tree is 2 units in the y—direction and the
spacing between the nodes at the top level that contains the node numbered
2006 is 2 units in the z—direction, find the coordinates of the node numbered
2006.

Next we give the solutions to the National Bank of New Zealand
Competition 2000 [2006 : 417-421].

1. Grade 9 only. In this problem we’ll be placing various
arrangements of 10¢ and 20¢ coins on the nine squares
of a 3 x 3 grid. Exactly one coin will be placed in each
of the nine squares. The grid has four 2 x 2 subsquares
each containing a corner, the centre, and the two squares
adjacent to these. One example is shown in the diagram.

(a) Find an arrangement where the totals of the four 2 x 2 subsquares are
40¢, 60¢, 60¢, and 70¢ in any order. (Draw a diagram showing your
arrangement.)

(b) Find an arrangement where the totals of the four 2 x 2 subsquares are
50¢, 60¢, 70¢, and 80¢ in any order. (Draw a diagram showing your
arrangement.)

For each part of the problem below, illustrate your answer with a suit-
able arrangement and an explanation of why no other suitable arrange-
ment contains a larger (part (c)) or a smaller (part (d)) amount of money.

(c) What is the maximum amount of money which can be placed on the grid
so that each of the 2 x 2 subsquares contains exactly 50¢?
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(d) What is the minimum amount of money which can be placed on the
grid so that the average of the amount of money in each of the 2 x 2
subsquares is exactly 60¢?

Solution by the editor.

(a) Since one 2 x 2 subsquare contains only 404, all of its entries must
be 10¢ coins. In particular, the centre square must contain a 10¢ coin. Since
another of the 2 x 2 subsquares contains 70¢ and it must also contain the 10¢
coin in the centre square, its remaining entries must be 204. It is then easy
to complete the square as in Figure 1 below. Other squares are possible by
rotation.

(b) Since one 2 x 2 subsquare contains 80¢, all of its entries must be 20¢
coins. In particular, the centre square must contain a 20¢ coin. Since another
of the 2 x 2 subsquares contains only 50¢ and it must also contain the 20¢
coin in the centre square, its remaining entries must be 104. It is then easy
to complete the square as in Figure 2 below. Other squares are possible by
rotation.

(c) The amount of money will be maximized when the number of 20¢
coins on the grid is maximized. If we place a 20¢ coin in the centre square,
then all the remaining coins have to be 10¢ coins. If we place a 20¢ coin along
one side of the grid, in the middle square of that side, then at most two more
20¢ coins may be placed on the grid (in the corners on the opposite side). But
we can use four 20¢ coins if they are placed in the four corners of the grid as
in Figure 3 below. Thus, the maximum number of 20¢ coins that can be used
is four, giving a total of $1.30.

(d) The distribution in Figure 4 below satisfies the conditions and uses
$1.30, which includes only three 20¢ coins. If we are to lower that total at all,
we must use at most two 20¢ coins. But then none of the 2 x 2 subsquares
could contain more than two 20¢ coins, and therefore none could contain
more than 604. Since the average across all four 2 x 2 subsquares must be
60¢, each of the four would then have to contain exactly 60¢, which means
that each would have to contain two 20¢ coins. The same two 204 coins would
then have to be in all four 2 x 2 subsquares, which is impossible. Thus, the
minimum is $1.30.
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2. Humankind was recently contacted by three alien races: the Kweens,
the Ozdaks, and the Merkuns. Little is known about these races except that
Kweens always speak the truth while Ozdaks always lie. In any group of
aliens a Merkun will never speak first. When it does speak, it tells the truth
if the previous statement was a lie, and lies if the previous statement was
truthful. Although the aliens can readily tell one another apart, of course to
humans all aliens look the same.

A high-level delegation of three aliens has been sent to Earth to nego-
tiate our fate. Among them is at least one Kween. On arrival they make the
following statements (in order):

First Alien: The second alien is a Merkun.
Second Alien: The third alien is not a Merkun.
Third Alien: The first alien is a Merkun.

Which alien or aliens can you be certain are Kweens?

Official solution, expanded by the editor.

The first alien cannot be a Merkun, since a Merkun never speaks first.
Thus, the third statement must be a lie, which means that the third alien
cannot be a Kween.

Suppose that the third alien is a Merkun (who is lying). Since Merkuns
only lie when the previous statement is true, the second statement must be
true. But then we have a contradiction. Hence, the third alien is an Ozdak.

Since there is a Kween among the three aliens, it must be one of the first
two aliens. Suppose that the first is a Kween. Then the second is a Merkun
and its statement is a lie. But this implies that the third alien is a Merkun,
which we have already ruled out. Therefore, the first alien is not a Kween,
which means that the first alien is an Ozdak and the second is a Kween.

Thus, only the second alien is 2 Kween (and the others are both Ozdaks).

3. (Note: In this question an “equal division” is one where the total weight
of the two parts is the same.)

(a) Belinda and Charles are burglars. Among the loot from their latest caper
is a set of 12 gold weights of 1g, 2g, 3g, and so on, through to 12g. Can
they divide the weights equally between them? If so, explain how they
can do it, and if not, why not?

(b) When Belinda and Charles take the remainder of the loot to Freddy the
fence, he demands the 12g weight as his payment. Can Belinda and
Charles divide the remaining 11 weights equally between them? If so,
explain how they can do it, and if not, why not?

(c) Belinda and Charles also have a set of 150 silver weights of 1g, 2g, 3g,
and so on, through to 150g. Can they divide these weights equally
between them? If so, explain how they can do it, and if not, why not?
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Official solution.

(a) Yes, it can be done. One way is to pair them from the “extremes”:
1+12,2+11,..., 6+ 7. Each person then takes three of the pairs. There
are other posibilities.

(b) Yes, it can still be done. Belinda gets 6 + 1 and Charles gets 7. The
rest can be paired from the “extremes” (2 + 11, 3 + 10, 4 + 9, 5 + 8), with
each person taking two of the pairs.

(c) No, it cannot be done. There are 75 even and 75 odd weights, which
implies that the total is odd and cannot be split equally.

L4 A chesshoard is an 8 x 8 grid of squares. One of the chess pieces, the
king, moves one square at a time in any direction, including diagonally.

(a) A king (denoted by K in the diagram) stands
on the lower left corner of a chessboard. It |[&
has to reach the square marked F in exactly
three moves. Show that the king can do this
in exactly four different ways.

(b) Assume that the king is placed back on the
bottom left corner. In how many ways can
it reach the upper left corner (marked G) in  [f¢
exactly seven moves?

Official solution.

(a) Since each move must find the king one row higher, the following
four diagrams illustrate all possible routes.

(b) The king must move one
row higher on each move. In each
square that could be part of
the king’s seven-move path from
bottom left to upper left corner,
we place the number of ways
the king can reach that square.
(Each number may be obtained by
adding the numbers in the squares
below it and having an edge or
corner in common with it.) We
find that there are 127 ways the
king can reach the upper left
corner in seven moves.
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5. (Note: For this question answers containing expressions such as % are
acceptable. If you have a calculator you may use the button for = if you like.)

@)

(b)

Official solution.

N
(a) The part of the lawn in which Dolly V ‘
can graze consists of a semicircle of radius 15

and two quarter circles of radius 10. Its area
is therefore 7152 4+ 2. 17102 = 3257,

can graze is made up from one semicircle and Daisy
four other quarter circles, as shown. Its areais

The Jones family lives in a perfectly square house, 10m by 10m, which
is placed exactly in the middle of a 40m by 40m lot, entirely covered
(except for the house) in grass. They keep the family pet, Dolly the
sheep, tethered to the middle of one side of the house on a 15m rope.
What is the area of the part of the lawn (in m?) in which Dolly is able
to graze? (See shaded area.)

f—— 40m —
N
40m
Dolly Daisy
The Jones The Smiths

The Jones’ neighbours, the Smiths, have an identical lot to the Jones
but their house is located five metres to the North of the centre. Their
pet sheep, Daisy, is tethered to the middle of the southern side of the
house on a 20m rope. What is the area of the part of the lawn (in m?)
in which Daisy is able to graze?

2
(b) The part of the lawn in which Daisy

1 2 1 2 1 2 __
therefore ;720 +2-77w15% 42 775% = 3257, The Smiths

That brings us to the end of another issue. Please send in solutions!

——— | NS
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Monika
Khbeis (Father Michael Goetz Secondary School, Mississauga), Eric Robert
(Leo Hayes High School, Fredericton), Larry Rice (University of Waterloo),
and Ron Lancaster (University of Toronto).

_—_— NS —————

Mayhem Problems

Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le premier septembre 2007. Les solutions recues aprés cette date ne seront
prises en compte que s’il nous reste du temps avant la publication des solutions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein, de
I’Université de Montréal, d’avoir traduit les problémes.

—_—_— N~ S O ————

M294. Proposé par Bruce Shawyer, Université
Memorial de Terre-Neuve, St. John’s, NL.

On dessine neuf cercles contigus de rayon
1/2 et tangents 3 un cercle de rayon 1.

Trouver la distance entre les centres du
premier et du dernier de ces cercles.

M295. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Un carré ABCD est inscrit dans un sec-
teur circulaire couvrant le huitiéme d'un disque
de rayon 1. Deux des sommets du carré sont sur
les rayons du bord et les deux autres sont sur le
cercle.

Trouver I'aire du carré. On exige une réponse

exacte de la forme %WE

entiers.

,ola,b, cetdsontdes
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M296. Proposé par Daniel Tsai, étudiant, Taipei American School, Taipei,
Taiwan.

Pour k¥ = 1, 2, ..., n, soit les points a, = (k,n) et by = (k,0)
et supposons que chaque couple ay, by est relié par un segment de droite
vertical. Supposons qu’on dessine un nombre arbitraire fini de segments ho-
rizontaux reliant deux verticales adjacentes de sorte qu’aucun point d’une
verticale quelconque soit une extrémité de deux segments horizontaux.

On définit une application de I'’ensemble A = {aq, a2, ..., a,} dans
I’ensemble B = {by, b2, ..., b,} de la maniére suivante : partant de a;, on
descend en suivant le segment jusqu’a ce qu’on rencontre I'extrémité d’un
segment horizontal, qu’on suit alors jusqu’a son autre extrémité, on descend
ensuite le long du nouveau segment vertical et ainsi de suite, pour arriver
finalement a b; pour un certain j. Montrer que deux points d’ A n’arrivent
pas au méme point de B.

M297. Proposé par John Grant McLoughlin, Université du Nouveau-
Brunswick, Fredericton, NB.

Les nombres 34543 et 713317 sont des nombres palindromes puisque
leurs chiffres apparaissent dans le méme ordre, quel que soit le sens de lec-
ture. Montrer que tous les nombres palimdromes de quatre chiffres sont des
multiples de 11.

M298. Proposé par John Grant McLoughlin, Université du Nouveau-
Brunswick, Fredericton, NB.

(a) Etant donné un nombre palindrome de quatre chiffres, quelle est la
probabilité qu’il soit un multiple de 99?

(b) Etant donné un multiple de 99, quelle est la probabilité qu'il soit un
nombre palindrome ?

M299. Proposé par Titu Zvonaru, Comanesti, Roumanie.

Soit a, b et c trois nombres réels positifs tels que ab + bec + ca = 3.
Montrer que
ab " bc n ca > 3
c2+1 a?2+1 b2+1 — 2

M300. proposé par Geoffrey A. Kandall, Hamden, CT, E-U.

Dans un triangle quelconque ABC, soit D un point sur le c6té AC,
E un point sur AB, et soit P le point d’intersection de BD et CE.
Si AE : EB = r et AD : DC = s, trouver le rapport des aires
[ABC] : [PBC] en fonction de r et de s.
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M294. Proposed by Bruce Shawyer, Memorial
University of Newfoundland, St. John’s, NL.

Nine circles of radius 1/2 are externally tan-
gent to a circle of radius 1 and are tangent to one
another, as shown.

Determine the distance between the centres
of the first and last of the circles of radius 1/2.

M295. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Square ABCD is inscribed in one-eighth of
a circle of radius 1 so that there is one vertex on
each radius and two vertices on the arc.

Determine the exact area of the square in the

form %WE, where a, b, ¢, and d are integers.

M296. Proposed by Daniel Tsai, student, Taipei American School, Taipei,
Taiwan.

Let n be a positive integer. In the Cartesian plane, consider the points
ar = (k,n) and by = (k,0) for k = 1, 2, ..., n. We connect each pair
ay, by, by a straight (vertical) line segment. Then we draw an arbitrary finite
number of horizontal line segments, each connecting two adjacent vertical
line segments, such that no one point on any vertical segment is the end-
point of two horizontal segments.

Let A = {a1, a2, ..., a,} and B = {by, bs, ..., b,}. Define a map
from A to B as follows: starting from a;, travel down the segment until
you meet the end-point of a horizontal segment, go to the other end-point
of that segment, and continue on down the new vertical line, repeating this
until there are no more horizontal segments to meet, finally ending at b; for
some j. Show that no two points of A map to the same point of B.

M297. Proposed by John Grant McLoughlin, University of New Brunswick,
Fredericton, NB.

Numbers such as 34543 and 713317 whose digits can be reversed with-
out changing the number are called palindromes. Show that all four-digit
palindromes are multiples of 11.

M298. proposed by John Grant McLoughlin, University of New Brunswick,
Fredericton, NB.

(a) Given that a number is a four-digit palindrome, what is the probability
that the number is a multiple of 99?

(b) Given that a four-digit number is a multiple of 99, what is the proba-
bility that the number is a palindrome?
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M299. Proposed by Titu Zvonaru, Comanesti, Romania.

Let a, b, and ¢ be positive real numbers with ab + bec + ca = 3. Prove

that
ab " be n ca > 3
c2+1 a241 b241 — 2°

M300. Proposed by Geoffrey A. Kandall, Hamden, CT, USA.

Let ABC be an arbitrary triangle. Let D and E be points on the sides
AC and AB, respectively, and let P be the point of intersection of BD
and CE. If AE : EB = r and AD : DC = s, determine the ratio of areas
[ABC] : [PBC] in terms of r and s.

—_— e r———— ——

Mayhem Solutions

M244. Proposed by Mohammed Aassila, Strasbourg, France.

Let ABC D be a convex quadrilateral, and let P, Q, R, S be the mid-
points of AB, BC, CD, DA, respectively. Suppose that four distinct lines
each passing through one of P, Q, R, S concur at a point O. Draw lines
parallel to these four lines but passing through the mid-points of the opposite
sides. Prove that these four lines are also concurrent.

A combination of solutions by Hasan Denker, Istanbul, Turkey; and Titu
Zvonaru, Comanesti, Romania.

The points P, Q, R, S form a parallelogram, since they are the mid-
points of the sides of a quadrilateral. Therefore, the diagonals of PQRS
bisect each other at a point M.

Let O; be the point of intersection of the parallel to OR through P
and the parallel to OP through R. Since OR is parallel to PO; and OP is
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parallel to RO;, quadrilateral ORO, P is a parallelogram. Similarly, if O, is
the point of intersection of the parallel to OS through @ and the parallel to
0Q through S, then OS0-Q is a parallelogram.

Now, the diagonals of parallelogram ORO; P bisect at point M and
|OM| = |O1 M|, whereas the diagonals of parallelogram OSO,Q bisect at
point M resulting in |[OM| = |O2M|.

Consequently, O; = O, and the four lines are concurrent.

Also solved by RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; GEOFFREY

A. KANDALL, Hamden, CT, USA; ANDREA MUNARO, student, Liceo Scientifico “N. Tron”,
Schio, Italy; and DANIEL TSAI, student, Taipei American School, Taipei, Taiwan.

M245. Proposed by Ray Killgrove, Vista, CA, USA.

Given isosceles triangle ABC with AB = AC, let the points D and E
trisect the third side BC; that is, BD = DE = EC. For small angles A,
it appears as if ZA is trisected by the segments AD and AE. Prove that, to
the contrary, ZBAC is never trisected by the segments AD and AE.

Solution by Hasan Denker, Istanbul, Turkey.

Let AB = AC = bandlet AD = AE = y. Clearly, AABD is
congruent to AACE. Let /BAD = /EAC = a and let /DAFE = 3. Now
triangles ABD, ADE and ACE all have the same area, since they each have
the same altitude and base. Therefore,

%by sina = %yz sin 3,

which simplifies to sina = (y/b)sin 3. Since y/b < 1, we conclude that
a < (.

Also solved by RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; GEOFFREY A.
KANDALL, Hamden, CT, USA; ANDREA MUNARO, student, Liceo Scientifico “N. Tron”, Schio,
Italy; DANIEL TSAI, student, Taipei American School, Taipei, Taiwan; and TITU ZVONARU,
Comanesti, Romania (two solutions).

Both Kandall and Zvonaru showed that the triangle need not be isosceles to make their
arguments work.

M246. Proposed by the Mayhem Staff.

Ten points are arranged in a plane so that no three are collinear. What
is the maximum number of segments that can be drawn joining two of the
points such that no three of these points are all joined to form a triangle?

Solution by Gabriel Krimker, student, and Gustavo Krimker, Universidad
CAECE, Buenos Aires, Argentina.

We use the terminology of graph theory. Let G be a graph on n vertices.
The sets V and E represent the set of vertices and the set of edges of G,
respectively. Let d(v) be the degree of the vertex v in G; that is, d(v) is the
number of edges at the vertex v.

Let v, be any of the n vertices of G. Suppose that d(v;) = m. Since
the maximum degree of any vertex is n — 1, we have m < n. If we consider
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the m vertices connected to v; by an edge, we know that there can be no edge
connecting any pair of them (otherwise, we would have a triangle among the
two of them and v;). Then the number of edges will be a maximum if each
of these vertices is connected to all the other vertices of G. Since there are
n—m other vertices, the maximum degree possible for each of the m vertices
joined to vy is n — m. This also means that those other n — m vertices are
only joined to the m vertices which are joined to v;. Therefore, if we have
the maximum number of edges with no triangles, then

Z dv) = mn—mym+mn—m) = 2m(n —m).
veV

Since we also have the well-known identity 2|E| = >  d(v) (where
vE

|E| is the number of edges), we see that |E| = m(n — m). This value is a
maximum at the integer value of m which is nearest to %n Therefore, if n

is even, then m = 1in; if n is odd, then m = 1(n — 1). This yields

n2

— if n is even,
E| =< 4

n?—-1 . .
if n is odd.

For ten points, the maximum number of segments is 25.

[Ed.: To see that this maximum can be achieved, we simply take the n
vertices and split them into two sets of %n vertices if n is even, or a set of
3(n—1) vertices and a set of 2 (n+ 1) vertices if n is odd. Then construct all
possible edges between the vertices of different sets and no edges between
vertices from the same set. In graph theory, these are called complete bi-
partite graphs; the graph for ten vertices which gives the maximum number
of edges is denoted Ki 5. |

Also solved by HASAN DENKER, Istanbul, Turkey; and DANIEL TSAl, student, Taipei
American School, Taipei, Taiwan. There was one incomplete solution.

M247. Proposed by Vedula N. Murty, Dover, PA, USA.

Let a, b, c be positive real numbers with a + b 4+ ¢ = 1. Given that
ab + bc + ca = %, find the values of:
a b c a b c
(a)g+z+gy (b)b+1+c+1+a+1'

1. Solution by Titu Zvonaru, Comanesti, Romania.

The given conditions a + b+ ¢ = 1 and ab + bc + ca = % imply that
a=0b=c= 3, because

(a —b)2+ (b—¢)? + (c — a)?

2(a2—|—b2—|—c2—ab—bc—ca)
= 2[(a+ b+ c)?> — 3(ab + bc + ca)]
= 2(1-3-3) =o0.
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w

a b c a b c
Therefore,E+E+E_3andb+1+c+1+a+1_Z.

II. Solution by Gustavo Krimker, Universidad CAECE, Buenos Aires,
Argentina.

Substituting a = 1 — b — cinto ab + bc + ca = 3, we get
1—-b—c)b+bc+c(l—b—c) = %,
or 2+ (b—1)c+ (5 —b(1—0)) 0.

We compute the discriminant for this quadratic in c:
(b—1)2—4(1—b1—-b) = 302 +2b-1) = —3(b—1)*.
Since c is real, we require the discriminant to be non-negative. Therefore,
b = i. Similarly, we can show that ¢ = ; and @ = ;. Then we have
a b c a b c 3
ptete=3ad gt ot =1

Also solved by HASAN DENKER, Istanbul, Turkey; and RICHARD 1. HESS, Rancho Palos
Verdes, CA, USA.

M248. Proposed by K.R.S. Sastry, D c
Bangalore, India. 20 2

In the convex quadrilateral
ABCD, the diagonals AC and BD
bisect and trisect the opposite angles
as shown.

(a) Find the (acute) angle between
AC and BD.

(b) Show that * < o < 37
7 7

Solution by Hasan Denker, Istanbul, Turkey.
(a) The sum of the angles in quadrilateral ABCD is
2(a+B8)+3(y+9) = 27.

Summing the angles in AEAB and AECD vyields a + 8 = 2(6 + 7).
From the above equations, we get

a+ﬁ:47". )

Hence, the acute angle between AC and BD is ® — (e + 3) = 377T
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(b) Summing the angles in ADAB gives the equation 2a+ 3+ 6 = «.

Using (1), we get o + 6 = 377r Since § > 0, we see that a < 3%

On the other hand, summing the angles of AC AB yields the equation

a+28+~v =m. Using (1), weget B+~ = 37”; hence, (47” - a) +~v = 37”,

or*y:a—; Since v > 0, we see that o > ;

Also solved by RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; VEDULA N. MURTY,
Dover, PA, USA; DANIEL TSAI, student, Taipei American School, Taipei, Taiwan; and TITU
ZVONARU, Comanesti, Romania.

M249. Proposed by K.R.S. Sastry, Bangalore, India.

Determine the real numbers a, b, ¢, d, given that the roots of the
equation 2 4+ ax — b = 0 are a and ¢, and the roots of the equation
22+ cx+d=0arebandd.

Essentially the same solution by Andrea Munaro, student, Liceo Scientifico
“N. Tron”, Schio, Italy; and Titu Zvonaru, Comanesti, Romania.

Since the roots of the equation ? + ax — b = 0 are a and ¢, we must
have z2+axz—b = (z—a)(z—c) = z?— (a+c)z+ac; therefore, a+c = —a
and ac = —b. Similarly, since the roots of the equation 22 + cx +d = 0 are
b and d, we find that b + d = —c and bd = d. Thus, we obtain the following
system of equations:

at+c = -—a,
ac = -—b,
b+d = -—c,
bd = d.
If d # 0, then b = 1, and consequently, 2a = —¢, ac = —1, and
¢+ d = —1, which yields a = :I:?, c=TFv2andd =+v2 1.
If d = 0, then
2a = -—c,
ac = -—b,
b = —c,

from which we can conclude that ac = c¢. Hence, if ¢ # 0, thena =1, b = 2,
and ¢ = —2. However, if c = 0, thena = 0 and b = 0.
Therefore, the solution is

(a'a b7c, d) € {(07 0,0, O)v (1727 -2, O)r (igala:‘:ﬁaiﬁ_ 1)} .

There were two incomplete solutions submitted.
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M250. Proposed by Vedula N. Murty, Dover, PA, USA.

n
Let zy, x2, ..., T, be non-negative real numbers satisfying > x; = n.

=1

n
Let x,41 = z1. Show that > =z;z;41 < nifn € {1, 2, 3, 4}, but not

1=1

necessarily if n > 5.

Solution by Titu Zvonaru, Comanesti, Romania.

When n = 1, we have z; = 1. Then z? < 1.

Let n = 2. Then ;1 + =5 = 2.

VEixs < % = 1. Hence,

2

By the AM-GM Inequality, we obtain

Z$i$i+1 =z 4+x2 < 2.

=1

Equality holds if and only if ; = x»

= 1.

Now let n = 3. Then z; + =5 + 3 = 3. By the well-known (and easy

to prove) inequality

3(z1x2 + T23 + T3x1) < (1 + T2 + T3)?,

we see that
3
2
Z TiTip1 = T1T2 + T2x3 + Tzxy < (1 + w; + zs) 3.
2=1
Equality holds if and only if £; = 5 = 3 = 1.

Next consider n = 4. Then =,
Inequality, we deduce that

VX1 + T2z + 3T + Tax

+ xo + 3 + x4 = 4. By the AM-GM

V(z1 + z3) (22 + z4)
(z1 + x3) + (2 + x4) _

< 2.
- 2
Hence,
4
Z TiLi41 — T1T2 + 23 —+ L3y —+ L4q S 22 = 4.
=1
Equality holds if and only if ;1 = x2 = 23 = 4 = 1.
Finally, let n > 5. Wesetz; = 22 = inand s = --- = @, = 0.

Then ©q1 + 2 + -+ - + z,, = n. Since n > 4,

" n
Zwiwi+1 = 3

1=1

V|3

4

n > ‘m=n.

4

Also solved by HASAN DENKER, Istanbul, Turkey; RICHARD I. HESS, Rancho Palos

Verdes, CA, USA; and DANIEL TSAI, student,

Taipei American School, Taipei, Taiwan.
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Problem of the Month

Ian VanderBurgh

Here is a problem that requires only some careful reasoning (albeit
pretty tricky careful reasoning) and the ability to add.

Problem (2006 Grade 8 Gauss Contest)

In the diagram, the numbers from 1 to 25 are to be arranged in the 5 x 5
grid so that each number, except 1 and 2, is the sum of two of its neighbours.

(Numbers in the grid are neighbours if their 20 | 21
squares touch along a side or at a corner. For 6 5 4
example, the “1” has 8 neighbours.) Some

. 23 7 1 3 ?
of the numbers have already been filled in. 9 T8 2
Which number must replace the “?” when the 25 124 23

grid is completed?

This is not another Sudoku—honest! It looks a bit like one, though.
That is part of the reason why this problem was included on the Contest—it
is nice to have problems that look familiar but, upon closer examination, are
a bit different.

Solution: We could just fiddle around by trial and error until we get some
numbers that work. But we will walk through the solution in a logical way.

It’s tough to know exactly where to start. First, it makes sense to check
which numbers are missing. The grid already includes the numbers 1 to 9
and 20 to 25; so those missing are 10 to 19.

Next, we could figure out which numbers in the grid are already the sum
of two neighbours. For example, 9 has neighbours 1 and 8 (and 9 = 1 + 8);
8 has neighbours 1 and 7 (and 8 = 1 + 7), and so on. Let's italicize every
number which is already the sum of two of its neighbours, as well as the
entries 1 and 2.

20 | 21
6 5 4

23| 7 1 3 ?
9 8 2

25 | 24 22

Now what? It's probably time for that tried and true problem-solving
technique—panic. After we get that out of our system, we might try looking
at some of the numbers that have almost all of their neighbours already filled
in. Also, we might as well focus on the part of the grid near the “?”.
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For example, consider 21. Since 21 already has neighbours 20 and 4, we
must write 21 as either 20 + 1 or 4 4+ 17. But the number 1 already appears
elsewhere in the grid; thus, the empty space below 21 must be 17.

20 | 21

6 5 4 |17

23| 7 | 1 3 ?
9 8 2

25 | 24 22

Looking at 17 as we did with 21, we see that 17 must be 3 + 14 or 4 + 13;
thus, the “?” must represent either 13 or 14. But we can’t say for sure yet
which one it is.

How about 22? It cannot be 2 + 20, as 20 is already accounted for.
What two numbers add to 22 and are not yet in the grid? The only possibility
is 10 and 12, in some order. But can we tell which of 10 and 12 is placed
where? If 10 was above 22, we could not get 10 as the sum of two neighbours,
since 2 + 8 and 3 4 7 are not possible. If 12 is above 22, then 12 = 10 + 2
and 10 = 8 + 2, which can work.

20 | 21
6 | 5| 4 |17
23| 7 | 1 3 ?
9| 8| 2|12
25 | 24 10 | 22

We know that the “?” is either 13 or 14. Could it be 13? Are there two
neighbours of “?” that add to 13? No. So the “?” must be 14, which solves
the problem.

But wait! We can’t stop now! Let’s carry on a bit further.

Looking at 25, we see that 25 must be 24 + 1 (not a possibility) or

9 4+ 16. Hence, the number in the space above 25 must be 16. This now
allows us to italicize 23, 24, 25, and 16. (Why?)

20 | 21

6 | 5| 4|17

23| 7 | 1 3 | 14
16| 9 | 8 | 2 | 12
25 | 24 10 | 22

Try completing the rest of the grid on your own!

_—_— N~ S ——
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Cyclical Diversions from Kirkman’s
Schoolgirl Problem

Amar Sodhi

A famous example of a recreational mathematics problem is Kirkman’s
Schoolgirl Problem [3]. This problem, which dates from the mid-nineteenth
century, can be phrased as follows:

A school-teacher wishes to provide a walking schedule for 15 girls
so that, over a period of a week, each girl walks daily with two
companions but no two girls appear together in a threesome twice.
Can you help the teacher find such a schedule?

Any such schedule will allow each girl to walk with 14 different com-
panions over the course of a week. In other words, each girl will walk with
every other girl exactly once.

It does not take long to discover that finding such a schedule is not
a trivial matter. By trial and error, with perseverance, one may possibly
be successful. Another approach is to find an appropriate generalization of
the problem and discover insights by solving simpler cases. This method
sometimes leads to distractions.

Let us look at the case where we vary the number of girls and adjust the
number of days to ensure that each girl walks with every other girl exactly
once.

A school-teacher wishes to provide a walking schedule for v girls
so that, over a period of (v — 1) /2 days, each girl walks daily with
two companions but no two girls walk together in a threesome
twice. For what values of v can this be done?

For v = 9, there is a geometric way of visualizing a solution. Denote
the girls by the numbers 1 through 9. Spread the numbers 1 to 8 uniformly
along the circumference of a circle and label the centre of the circle as 9. In
the circle, draw the triangles (2,7, 8) and (3, 4, 6) and the diagonal (1,9, 5)
(the diagonal can be viewed as a degenerate triangle). This gives a walking

1 8 7 6
8 2 7 1 6 8 5 7
7 9 3 6 9 2 5 9 1 4 9 8
6 4 5 3 4 2 3 1
5 4 3 2
Day 1 Day 2 Day 3 Day 4

Copyright © 2007 Canadian Mathematical Society
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arrangement for the first day. By rotating the circle, 45 degrees at a time,
but keeping the triangles fixed, we obtain a walking schedule where each girl
walks with two different companions for each of 4 successive days.

Buoyed by this success, one spreads the numbers 1 to 14 along the
circumference of a circle, labels the centre of the circle 15 and draws the
diagonal (1,15,8). The next hour is cheerfully spent placing four triangles
within the circle and applying the rotational technique which worked well
for v = 9. Frustration sinks in as no solution is forthcoming. Finally, one
looks at the case v = 9 to see what “went right” and analyzes one’s recent
scribbling to see what “went wrong” for 15. The problem is left alone for a
day or two, then a sudden idea leads to a solution for v = 27.

26 1 2

3
4
5
22 6
21 7
27
20 8
19 9
10
11
16 12

15 14 13

The diagram shows part of the first day’s arrangement; namely the di-
agonal (1,27, 14) and a congruent pair of triangles (5, 13,15) and (2, 26, 18).
By adding three pairs of congruent ‘twin’ triangles (3,4, 9) and (16,17, 22),
(6,10,25) and (12,19,23), as well as (7,21,24) and (8,11,20), one
completes the arrangement for the first day. Rotating the numbers on the
circle, one step at a time, gives the arrangements for the next 12 days. The
significant feature of this arrangement is that each pair of congruent trian-
gles can be associated to a triplet {a, b, ¢ = a + b}, where a, b, and ¢
are the lengths of the shortest arcs between the vertices of the triangle. The
triangle (2,26,18) corresponds to {2, 8, 10}; (3,4,9) corresponds to
{1, 5, 6}; (10,6, 25) corresponds to {4, 7, 11}; and (21,24, 7) corresponds
to {3, 9, 12}. These four triplets form a partition of the set {1, 2, ..., 12}. It
is not possible to find such a partition of {1, 2, 3, 4, 5, 6}; thus, this method
cannot be used to solve Kirkman’s original problem.

What have we gained? More problems than answers, but we do have
a strategy to solve Kirkman’s Schoolgirl Problem for certain cases. Here are
some new challenges that you may like to tackle yourself.

Challenge 1. Show that if the set of integers A = {1, 2, ..., 3n} can be
partitioned into n disjoint subsets A; = {a;, b;, ¢;} (fori =1, 2, ..., n)
such that a; 4+ b; = c; for each 7, then either n = 4k or n = 4k + 1 for some
integer k.
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Skolem [5] has shown that if n = 4k or n = 4k + 1 for some integer
k, then such a partition of A = {1, 2, ..., 3n} exists. Your next challenge is
more modest than this.

Challenge 2. Find all partitions of the set of integers A = {1, 2, ..., 3n}
into n disjoint subsets A; = {a;, b;, ¢;} (fori = 1, 2, ..., n), such that
a; + b; = ¢; for each ¢. Do this forn = 4, 5, 8, and 9.

Challenge 3. Find a partition from Challenge 2 to solve Kirkman’s Schoolgirl
Problem. Do this for v = 27, 33, 51, and 57.

Challenge 3 can be quite frustrating, since not all partitions lead to a
solution to the Schoolgirl Problem. Hence, if one partition is troublesome,
then try another. There will be at least one partition that works!

Finally, we should not forget the motivation for this article:

Challenge 4. Solve Kirkman's original problem.

Hopefully you can find some revolutionary idea which can be used to
solve other cases! Now, how about arranging those girls in groups of four?

Comment. An expository article, Kirkman’s Schoolgirl and Related Problems,
can be found in the May 1980 edition of Scientific American (see also [2]). For
a more detailed discussion of cyclical solutions, see [1]. Ray-Chaudhuri and
Wilson [4] solved the generalized Kirkman’s Schoolgirl Problem by showing
that a schedule exists for every odd multiple of 3.
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THE OLYMPIAD CORNER
No. 262
R.E. Woodrow

We begin this number with problems from the two days of the Final
Round of the 18" Korean Mathematical Olympiad written in April 2004. My
thanks go to Christopher Small, Canadian Team Leader to the IMO in Athens,
for collecting them for our use.

18" KOREAN MATHEMATICAL OLYMPIAD

Final Round
April 10-11, 2004

1. The incircle O of an isosceles triangle ABC with AB = AC meets BC,
CA, and AB at K, L, and M, respectively. Let N be the intersection of the
lines OL and KM, and let Q be the intersection of the lines BN and CA.
Let P be the foot of the perpendicular from A to BQ. If we assume that
BP = AP + 2PQ, what are the possible values of AB/BC?

2. Show that no pair of positive integers = and y satisfies 3y? = 2% + x.
p p g Yy Yy

3.A computer network is formed by connecting 2004 computers by cables.
A set S of these 2004 computers is said to be independent if no pair of com-
puters of S is connected by a cable. Suppose that the number of cables used
is the minimum under the condition that the size of any independent set does
not exceed 50.

(a) Denote by ¢(L) the number of cables used to connect the computer L
with other computers. Show that, for any pair of computers A and B,
c(A) = c(B) if they are connected by a cable and |c(A) — ¢(B)| < 1
otherwise.

(b) Find the number of cables used for the network.

4 There are n points on a circle, numbered from 1 to n. Let S be the set
of these points. Let G be the family of all k—element subsets A of S which
have the property that, between any two distinct points < and j in A, there
are at least 3 points of S which are not in A.

For n, k > 2, find the number of elements of G.

5. Let R and r be the circumradius and the inradius of AABC, respectively.
Suppose that ZA is the largest of the three angles of AABC. Let M be the
mid-point of BC and X be the intersection of the tangents to the circumcircle
of AABC at B and C. Show that

LI AM

R = AX -
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6. Let p be a prime, and define fp@) =aPt+aP24... 4+ +1.

(a) Show that, for any positive integer m divisible by p, there exists a prime
q that divides f,(m) and is relatively prime to m(m — 1).

(b) Show that there are infinitely many positive integers n such that pn +1
is a prime.

%

Next we give the problems of the 215t Balkan Mathematical Olympiad
2004. Thanks again go to Christopher Small for collecting them.

21 BALKAN MATHEMATICAL OLYMPIAD
Pleven 2004

1. The sequence ag, a1, az, ... satisfies the relation

Am4n +am—pn—m+n—1 = %(aZm +a2n)

for all non-negative integers m and n with m > n. If a; = 3, find azgo4.
2. Find all prime number solutions to the equation ¥ — y* = zy? — 19.

3. Let O be the circumcentre of the acute triangle ABC'. The circles centred
at the mid-points of the triangle’s sides and passing through O intersect one
another at the points K, L, and M. Prove that O is the incentre of triangle
KLM.

4. The plane is divided into parts by a finite number of lines. Two parts
are called “neighbouring” if they have a common segment, half-line, or line.
Each part is to be assigned a real number such that:

(i) the product of the assigned numbers in each pair of neighbouring parts
is less than the sum of those two numbers;

(i) the sum of all numbers assigned to parts lying on the same side of any
of the given lines is equal to 0.

Prove that this is possible if and only if the lines are not all parallel.
—_—_— N~ S O ————

The remaining set for your problem pleasures are from the 14" Japanese
Mathematical Olympiad, Final round, written February 2004. Thanks again
go to Christopher Small for obtaining them for our use.

14™ JAPANESE MATHEMATICAL OLYMPIAD
Final Round, February 11, 2004 (Time: 4 hours)

1. Prove that there is no positive integer n for which 2n% 41, 3n%? 4+ 1, and
6n2? 4 1 are all perfect squares.
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2. Find all functions f : R — R such that, for all real numbers = and v,

Flzf(@) + f) = (f(2)* +y.

3. Let ABC be a triangle. Let S be the circle that is perpendicular to the
plane ABC and has diameter AB. Let D and E be points on S, and suppose
that DE meets AB at P. Show that if CP bisects ZACB, then CP also
bisects /DCE.

4 For positive real numbers a, b, and c with a + b + ¢ = 1, show that

1+a 1+0b 1+c¢ b c a
T—a1-bT1-¢ < 2(E+E+2)‘

You need not state when equality holds.

5. On the island which Mika toured last year, each village is linked by a road
to exactly three other villages. So she set out from a village, visited every
village exactly once, and returned to the first village.

This year, she is planning to go on a round trip again, starting from
the same village, visiting every village exactly once and returning to the first
village. But she does not want to follow the identical course as last year, nor
just the reverse route. Show that there is an itinerary that makes her happy.

—_—_—— S ———

In December 2006, when we gave readers’ solutions to problems of
the October 2005 Corner, we missed citing the solution of Michel Bataille to
problem 1 of the Second Round of the 2002 Yugoslav Qualification for IMO
2002 given in [2005 : 373-374, 2006 : 507]. We also overlooked Bataille’s
solution to problem 4 of the Vingt-Septiéme Olympiade Mathématique Belge
(Midi Finale) which appeared in [2005 : 374-375; 2006 : 509]. My apologies
to Michel Bataille.

—_— e
Next we present a solution to problem #2 of the 8" Macedonian
Mathematical Olympiad. This solution is shorter than the one that was given
in [2006 : 218-219].
2. Does there exist a function f : N — N such that for every n > 2,
f(f(n—-1)) = f(n+1)— f(n)?
Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Suppose that f is such a function. Then, for all n > 2,

fn+1)—f(n) = f(f(n—-1)) > 1.
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Thus, f is increasing for n > 2. By induction, we have f(n) > n — 1 for all
n > 2. If f(8) <9, then

3=19-62> f(8)—f(7) = f(£(6)) > f(5) = 4,
which is a contradiction. Hence, f(8) > 10. Then

£(10) > f£(10) — f(9) = f(£(8)) = f(10),

which is again a contradiction.

—_—_—mmmme N, ———

Next we turn to solutions to problems of the British Mathematical
Olympiad 2002/2003, Round 1, given at [2006 : 215].

1 . Given that 34! = 295232799 cd9 603 140 847 618 609 643 5ab 000 000,
determine the digits a, b, c, d.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

For any positive integer n and any prime p, it is well known that the
exponent of p in the prime decomposition of n! is

n
Vp(n!) = Z {kJ ,
k>1 P
where |.| denotes the integer part. Hence, v2(34!) = 32 and v5(34!) = 7.
It follows that 34! is divisible by 107, which forces b = 0.

Since v,(34!) = 32, it follows that 34!/107 is divisible by 8. Then the
3-digit number 35a whose digits are the 3 right-most digits of 34!/107 is
divisible by 8. Thus, 300+ 50 + a is divisible by 8. Thena+6 = 0 (mod 8),
with 6 < a 4+ 6 < 15. Therefore, a + 6 = 8 and a = 2.

k ,
For any positive integer n, let n = Y a;10* be the decimal expansion

1=0
of n, and let S.(n) = > az; and S,(n) = > az;y1. It is well known that
i>0 i>0

n = Se(n) + So(n) (mod 9) and n = Se(n) — Sp(n) (mod 11). From the
given decimal expansion for 34!, we find that S.(34!)+S,(34!) = c+d+140
and S.(34!) — S,(34!) = ¢ — d — 18. On the other hand, since 9 and 11 are
both factors of 34!, we have 34! = 0 (mod 9) and 34! = 0 (mod 11). Thus,
c+d+ 140 = 0 (mod 9) and ¢ — d — 18 = 0 (mod 11). This leads to
c+d=4 (mod9)andc—d = 7 (mod 11). Since 0 < ¢+ d < 18 and
—9 < c¢—d <9, it follows that

c+d =4 or c+d = 13,
and
c—d = —4 or c—d =T17.
Now, since ¢ — d and ¢ + d have the same parity and ¢ € {0, 1, ..., 9},

we easily deduce that ¢ = 0 and d = 4.
Then (a,b,c,d) = (2,0,0,4).
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Remark. The problem statement is erroneous. Maple gives
34! = 295232799 cd9 604 140847 618 609 643 5ab 000 000 .

The reasoning above can be adapted word for word to prove that, in that
case, (a,b,c,d) = (2,0,0,3).

2. The triangle ABC, where AB < AC, has circumcircle S. The perpendic-
ular from A to BC meets S again at P. The point X lies on the line segment
AC, and BX meets S again at Q.

Show that BX = CX if and only if PQ is a diameter of S.

Solved by Geoffrey A. Kandall, Hamden, CT, USA; and D.]. Smeenk,
Zaltbommel, the Netherlands. We give Kandall’s solution.

Suppose that BX = CX. Then A Q
/XCB = /XBC
/QBC = /QAC: X
whence, AQ || BC. It follows that
/ZPAQ = 90°, which means that PQ u
is a diameter of S. B DL/C
The argument is reversible. P

3. Let 2, y, = be positive real numbers such that z2 + y2 + 22 = 1. Prove
that

wzyz + :Byzz —+ :Byzz < % .

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain; Geoffrey A. Kandall, Hamden, CT, USA; Vedula N. Murty,
Dover, PA, USA; and Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON. We first give the solution of Bataille.

From the Cauchy-Schwarz Inequality and the hypothesis, we have

22yz + xy’z + xyz? = zyz(z+y+ 2)
< alr:yz(l2 +12 4+ 12)%(az2 +y2 4 zz)% = \/ga;yz.

On the other hand, 1 = 1(x? + y? + 22) > ¢/x2y?22, using the AM-GM
Inequality; hence, zyz < % The desired inequality follows immediately
by combining the two results.
Next we give the solution of Diaz-Barrero.

From the identity (a + b + ¢)? = a? + b% + c? + 2(ab + bc + ca) and
the well-known inequality a? + b2 + c2 > ab + bc + ca, it follows that

3(ab+bc+ca) < (a+b+c)?. @
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Setting a = zy, b = yz, and ¢ = zz in (1) yields

3(x’yz + xy’z + wyz?) < (vy+yz+22)? < (®+9y*+2%)% =1,
from which we get z2yz + zy?z + zyz? < %

Notice that equality holds when x =y = z = %

4. Let m and n be integers greater than 1. Consider an m x n rectangular
grid of points in the plane. Some k of these points are coloured red in such
a way that no three red points are the vertices of a right-angled triangle two
of whose sides are parallel to the sides of the grid. Determine the greatest
possible value of k.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

We will prove, by induction on p = m + n, that the greatest possible
value of kis m + n — 2.

Casel. p = 4.
The grid is 2 x 2, and the maximum number of red points is clearly
2 = 2 + 2 — 2. Thus, the result holds for p = 2.

Case 2. p > 4.

Assume that the result holds for all m, n > 1 such that p = m + n.
Let us consider a grid with p + 1 = m + n.

With no loss of generality, we may assume that the grid is formed by
m rows and n columns with m > n. Then m > 3. Consider a colouring
with no red right-angled triangle two of whose sides are parallel to the sides
of the grid (abbreviated no red RAT). Since m > n, if each line contains at
least two red points, then at least two of them would have a red point on the
same column, which would give a red RAT, a contradiction.

Thus, there exists a line with no more than one red point. Deleting this
line, we obtain a coloured (m — 1) x n rectangular grid with no red RAT,
and with p = (m — 1) + n. The induction hypothesis ensures that there are
at most (m — 1) + n — 2 red points in this grid. Thus, there are at most
(m—1)4+n—241=m+ n — 2red points in the initial grid.

Conversely, by colouring red all the points in the first row and the first
column except the point which is in both the first row and the first column,
we get a colouring with exactly m + n — 2 red points and no red RAT.

Therefore the maximum number of red points is m + n — 2, which ends
the induction and the proof.

5. Find all solutions in positive integers a, b, c to the equation
ald! = a!+ b+ ¢!

Solved by Mohammed Aassila, Strasbourg, France; Houda Anoun, Bordeaux,
France; and Pierre Bornsztein, Maisons-Laffitte, France. We give the
solution of Aassila.

If a # b, then without loss of generality, @ > b. Then a! does not
divide b!. Hence, ¢! = a!b! — a! — b! is not divisible by a!. Then a > ¢, and
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alb! = a! + b! + ¢! < 2a! + b!, which implies that (a! — 1)(b! — 2) < 2.
It is easy to check that this gives no solutions.

Therefore, we must have a = b. Our equation becomes a!? = 2a! +c!;
hence a! | ¢! and thus a < ¢. Write ¢ = a + k where k& > 0 is an integer.
Division by a! now yieldsa! =2+ (a+1)(a+2)---(a + k). Then a! > 2,
which implies that @ > 2 and 3 | a!. Hence, we must have

(a+1)(a+2):---(a+k) = 1 (mod 3) .

Then k& < 3 (otherwise (a + 1)(a + 2) - - - (a + k) is divisible by 3). If k = 1,
we get a! = a + 3, which yields a = 3; then (a,b,c) = (3,3,4). If k = 2,
we get a! = a? + 3a + 4, which implies that a | 4; hence, a = 1, a = 2, or
a = 4. It is easy to check that these cases fail.

Thus, the only solution is (a, b, c) = (3, 3,4).

—_—_—mmmm N, ———

Now we look at solutions from our readers to Round 2 of the British
Mathematical Olympiad 2002-2003 given at [2006 : 215-216].

1. For each integer n > 1, let p(n) denote the largest prime factor of n.
Determine all triples z, y, z of distinct positive integers satisfying

(i) x, y, z are in arithmetic progression, and
(ii) p(zyz) < 3.

Solved by Pierre Bornsztein, Maisons-Laffitte, France.

Let z, y, and z be distinct positive integers satisfying (i) and (ii). We
deduce from (ii) that £ = 22 x 3%, y = 2¢ x 3¢, and z = 2¢ x 37 where a, b,
¢, d, e, and f are non-negative integers. Without loss of generality, we may
assume that x < y < z. Then (i) is equivalent to

r+z = 2y. ¢))
Let § = ged(x,y, z). Note that %, % Z) satisfies (1) and

Tw¥Yxz

Thus, (%, %, %) is a solution. Moreover, (mx, my, mz) is a solution for
each m = 2P x 39, where p and g are non-negative integers. Therefore, we
may assume that § = 1. Then ace = 0 = bdf.

From (1), we deduce that = and z have the same parity.

Case 1. x and z are odd.
Then (1) reduces to 3° 4+ 3f = 21 x 3¢ with f > b (since x < 2). If
b > 0, then the left side of this equation is divisible by 3, which forces d > 0.



221

Then § > 3, which contradicts our assumption that § = 1. Thus b = 0,
from which we deduce that d = 0. It follows that (1) may be rewritten as
2¢+1 — 3f = 1. But it is well-known (see [1]) that the only integer solution
of 2™ — 3™ =1is (m,n) = (2,1). This leads to (z,y, z) = (1,2, 3).

Case 2. x and z are even.

Then y must be odd and d > 1 (otherwise 1 = y > x). From (1), we
deduce that b = f = 0. Thus, (1) reduces to 2% + 2¢ = 2 x 39. Note that
z >y > 3, so that e > 2. Since the right side of (1) is divisible by 2 but not
by 4, this forces a = 1. Then (1) is 3¢ — 2¢~! = 1. But it is well known (see
[1]) that the only integer solutions of 3™ — 2™ = 1 are (m,n) = (1,1) or
(m,n) = (2,3). This leads to (z,y, z) = (2,3,4) or (x,y,z) = (2,9, 16).

According to the initial remark, the desired triples are those which have
one of the following forms (or their permutations):

(2P x 39,2PT1 x 39 2P x 3911),
(2P x 39,2P x 3912 2P12 x 39)
(2P x 39,2P x 3912 2P+  31),
where p and g are non-negative integers.
References

[1] W. Sierpinski, “250 problémes de théorie élémentaire des nombres”,
pb. #5-154 et pb. #5-155.

2. Let ABChea triangle, and let D be a point on AB suchthat4AD = AB.
The half-line £ is drawn on the same side of AB as C, starting from D and
making an angle of § with DA, where 8 = ZACB. 1f the circumcircle of
ABC meets the half-line ¢ at P, show that PB = 2PD.

Solved by Michel Bataille, Rouen, France; and Geoffrey A. Kandall, Hamden,
CT, USA. We give Bataille’s solution.

Let @Q be the second point of intersection of the line DP with the
circumcircle (see figure). Then

/ADQ = /BDP = n— /ADP = n— /ACB = /AQB

and ZQAD = /BAQ. Therefore,
ANADQ and AAQB are similar.

AD  AQ .. B
Then A0 = AB’ Since AB = 4AD,
it follows that AB = 2AQ. But
APDB and AAQB are also similar,
since /BDP = /AQB (from above)
and /DPB = ZQPB = /ZQAB.
From this similarity and the rela-
tion AB = 2AQ, we conclude that
PB =2PD.
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3. Let f :IN — IN be a permutation of the set IN of all positive integers.

(a) Show that there is an arithmetic progression a, a + d, a 4+ 2d, where
d > 0, such that f(a) < f(a +d) < f(a + 2d).

(b) Must there be an arithmetic progression a, a+d, ..., a+2003d, where
d > 0, such that f(a) < f(a+d) < --- < f(a+ 2003d)?

[A permutation of IN is a one-to-one function whose image is the whole of
IN; that is, a function from IN to IN such that for all m € IN there is a unique
n € IN such that f(n) = m.]

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Li Zhou, Polk
Community College, Winter Haven, FL, USA. We give Zhou’s write-up.

(@) Leta = f~1(1) and m = f(a+1). Then m > 2. By the pigeonhole
principle, the sequence {f(a+ 2")}?;31 cannot be monotonically decreasing.
Hence, there exists k with 0 < k < m—2 such that f(a+2F) < f(a+2%+1).
Let d = 2*. Then f(a) < f(a +d) < f(a + 2d).

(b) No. 1In fact, there does not necessarily exist such an arithmetic
progression of length 4. Define f(n) = 4(3%) —n — 1if 3* < n < 3¥t1,
Then f is decreasing on the interval [3¢, 3¢+1) for any integer ¢ > 0. Suppose
that f(a) < f(a+d) < f(a+ 2d) < f(a + 3d) for some a, d € N.
Hence, 37 < a < 3711, 3 < a+d < 3¢+, 3 < a4+ 2d < 31!, and
3™ < a4 3d < 3™, with0 < j < k <1 < m. Therefore,

2d = (a+3d) — (a+d) > 3™ —3ktl > gk+2 _ghtl _— g(3k+l),
Thus, d > 3**1, which contradicts the fact that d < a + d < 3++1.

4. Let f be a function from the set of non-negative integers into itself such
that, for all n > 0,

@ (f(2n+1))° = (£(2n))* = 6£(n) + 1, and
(i) f(2n) > f(n).
How many numbers less than 2003 are there in the image of f?

Solved by Mohammed Aassila, Strasbourg, France; and Li Zhou, Polk
Community College, Winter Haven, FL, USA. We give the solution of Zhou.

Since 6 f(n) + 1 is odd, both f(2n+1) — f(2n) and f(2n+1) + f(2n)
must be odd, by (i). If f(2n + 1) — f(2n) > 3, then

f2n+1)+ f(2n) < 1(6f(n)+1) = 2f(n)+
and

2f(2n) = (f(2n+1)+f(2n)) — (f(2n+1)—f(2n)) < 2f(2n)+3-3,
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which is a contradiction. Therefore, f(2n+1)— f(2n) = 1, and (i) reduces to
f(2n+1)+ f(2n) = 6f(n) + 1. Solving the system, we get f(2n) = 3f(n)
and f(2n + 1) =3f(n) + 1foralln > 0.

Now we show, by induction on n, that if the base-2 representation of
n is a2® + -+ + a12 + ag, then f(n) = ar3* + --- + a13 + ao. Since
f(0) = 0, the claim is true for n = 0. Assume that n > 1 and the claim is
true up to n — 1. Write n = ax2* 4+ --- + a12 + ao. Then

f(n) = f(2(ax2*7' 4+ +a1) + ao)
= 3f(ax2* '+ +a1)+ao = ax3*+ -+ a13+ao,

where the last step is by the induction hypothesis. Finally, since 37 > 2003,
it follows that 3% 4-- .- +341 = 1093 is the largest number less than 2003 in
the image of f. So there are 27 = 128 numbers less than 2003 in the image

of f.
—_—— N r——— S ————

Next we turn to solutions from our readers to problems of the Kazakh
National Mathematical Olympiad 2002-2003 given in [2006 : 216-217].

2. (S. Mukhanbetkaliev) Angles B and C of triangle ABC are acute. Side
KN of rectangle KLM N belongs to segment BC, points L and M belong
to segments AB and AC, respectively. Let O be the intersection point of
the diagonals of KLM N. Let C; be the intersection point of lines BO and
M N, and let B; be the intersection point of lines CO and LK. Prove that
lines AO, BB;, and CC, are concurrent.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

A
B
p
L M
<—P Cl
u Bl v
q
(0
u 4+ v
B T K s Nt C

Let line BB; meet LN and OA at P and B-, respectively. Let C» (not
shown in the diagram) be the point of intersection of line CC; and OA. We
use the following notation: AL = p, LB = q; BK =r, KN = LM = s,
NC =t; LP = u, PO = v.
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Since AALM ~ AABC, we have 2 = _P+t4 _ _4d
] r+s+4+t r +
p__S
q r4t
Now we apply Menelaus’ Theorem to the triangle-transversal pairs
(ALKN;B;C) and (ALKN; PB) to get

; that is,
t

ON.S—Ft o B K - u+2v. r

LO t LB, u r—+s

Consequently, v _‘;2” =T j: 5.3 :_ t; that is,

]

_ 1<(r+s)(s+t)_1) _ s(r+s+1t)
2 rt N 27t '

Applying Menelaus’ Theorem to the pair (AOAL; B3B), we obtain
OB, v q _ s(r+s+t) r+t _ s(r+1t)

By A u p+q 2rt r+s+t 2rt
By symmetry, C- divides O A in the same ratio; that is, the points B,
and C; coincide. Thus, AO, BB;, and CC4 concur at B (= C3).

3. (U. Mukashev) Find the maximal and minimal values of the sum a+ b+ ¢
ifa?+b2<c<1.

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s solution.

The maximal value is 1 + +/2 and the minimal value is —3.
Suppose that a?+4b% < ¢ < 1,andletr = v/a? + b2. Then0 < r < /c
and a = r cos 0, b = rsin 8, for some real number 0. It follows that

a+b = r(cosf +sinf) = rv2sin (Z—i—B) .

Since —1 < sin(%Z +6) < 1and r > 0, we have —rv/2 < a+ b < rv2.
Then
a+b+c < c-{-rx/i < 1—|—\/§,

since c < 1and r < 4/c < 1. Also,

1\? 1 1
a+b+ec>c—rV2 > c—V2ve = <\/E—\/§> —3 > —5-
Thus, -1 <a+b+c<1+V2
Moreover, ifwetakea:b:‘/iiandczl, thena? + 2 <c<1
and a + b+ ¢ = 1+ 2, while witha = b = —1 and ¢ = %, we obtain

a?+b?> <c<1landa+ b+ c= —1. The proof is complete.
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4. (U. Mukashev) Let two sequences of real numbers {a,,} and {b,,} be such
that ag = by = 0 and for each positive integer n,

a, = ai_1—|—3 and b, = bfL_1—|—2".

Compare the numbers azg93 and bzgo3.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

For n > 1, we have a2 > 22". This follows by induction on n, since
a; = 3 and a,, > a’i—l for n > 1. Another easy induction shows that
2™ > n + 3 for n > 3. Thus, for n > 3, we have

a? > 22" > ont3, 1)

n

We claim that 2b,, < a,, for all n > 3. The claim is true for n = 3,
since ag = 147 and by = 72. Proceeding by induction, we assume that the
claim holds for some given n > 3. Using the induction hypothesis and (1),
we obtain

Wnir = 2(02+2"Y) = 3((26n)% +2779)
< 3(a2+a2) < a2 +3 = any1,
which ends the induction.
By using the claim and checking the first few cases, we deduce that

b, < a, for all n > 0, with equality if and only if n = 0. In particular,
a2003 > b2003-

—_—— N r—— S ———

To complete this number, we look at readers’ solutions to problems of
the Ukrainian Mathematical Olympiad 11t Form given in [2006 : 217-218].

1. Find all real k such that the following system of equations has a unique
solution:

o +y* = 27,

kx—y = 2k.

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s write-up.

The system has a unique solution if and only if the line £ with equation
kx — y = 2k is tangent to the circle v with equation 2 + y? = 2k2. This
condition can be stated equivalently as follows: the radius v/2|k| of 7 is equal

to the distance from £ to the origin, which is %. Thus, we obtain
the following condition on k:
4k?
2k = — .
1+ k2

Solving for k, we find that & € {0, 1, —1}.
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2. Prove that for any triangle, if S denotes its area and r denotes the radius
of its inscribed circle, then

S
> 3vV3.

T_2 =
Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-

Laffitte, France; and Vedula N. Murty, Dover, PA, USA. We give Murty’s
solution, modified by the editor.

Denote the side lengths of the triangle by a, b, and ¢ and the semi-
perimeter by s. Applying the AM-GM Inequality to the positive numbers
s—a,s—b,and s — ¢, we obtain ¥/(s —a)(s —b)(s —c) < %s; that is,

g3

(s—a)s—b)(s—0) < .

M

Using Heron’s Formula along with (1) and the known formula S = rs, we

obtain
2 st S4
S° = — —b)(s — < — < —.
s(s—a)(s J(s—¢c) < o7 S omd

SZ

Then, =, > 27, and hence, % > 34/3.
r r

4 Let o be a real number such that five consecutive terms of the infinite
sequence sin «, sin2q, sin3q, ..., sinna, ... are rational. Prove that all
the terms of the sequence are rational.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Lemma. Let p be an integer satisfying any of the following four conditions:
@) sin(pa) = sin((p + 1)a) = 0;
(i) sin(pa) = sin((p + 2)a) = 0;
(iii) cos(per) = cos((p + L)a) = 0;
(iv) cos(pa) = cos((p + 2)a) = 0.
Thensina € {—1, 0, 1}.

Proof. (i) Suppose that sin(pa) = sin((p + 1)a) = 0. Then cos(pa) = +1
and

0 = sin((p+ 1)a) = sin(pa) cos a + cos(pa) sina = *sina.

Thus, sina = 0.

(ii) Suppose that sin(pa) = sin((p + 2)a) = 0. Then cos(pa) = +1
and

0 = sin((p+2)a) = sin(pa) cos(2a) + cos(pa) sin(2a) = +sin(20).



227

Thus, sin(2a)) = 0, which implies that sina € {—1, 0, 1}.
(iii) and (iv) are considered in a similar way. |
Suppose sin(pa) is rational forp € {n, n+ 1, n + 2, n + 3, n + 4},
for some integer n > 0.

Case 1. There exists p € {n + 1,n + 2,n + 3} such that sin(pa) # 0 and

cos((p — 1)a) # 0.
Then
sin((p — 1)a) + sin((p + 1))

2 sin(pa)

CoOsx =

is rational. Since cos((p — 1)) can be expressed as a polynomial in cos
with rational coefficients, it follows that cos((p — 1)a) is rational (and is
non-zero, by hypothesis). Therefore,

sin(pa) — sin((p — 1)a) cos a

sina = cos((p — 1)a)

is rational.
Let k be a positive integer. Since sin(ka) can be expressed as a poly-
nomial in sin « with rational coefficients, it follows that sin(kq) is rational.

Case 2. Foreachp € {n+1, n+2, n+3}, we have sin(pa) cos((p—1)a) = 0.
Then, by the pigeonhole principle, either sin(pa) = 0 for two values
ofpe {n+1,n+2 n+3}orcos((p—1)a) = 0 for two such values of p.
In either case, we may use the lemma to deduce that sina € {—1, 0, 1}. In
particular, sin « is rational, and the conclusion follows as in Case 1.

5. Does there exist a number ¢ € N and a prime number p € N such that

3P 4 7P = 2.59?

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s version.

There is no such pair (p, q).
Assume such numbers p and q exist. Then p # 2, since 32 + 72 = 58
is not of the form 2 - 59. Thus, p is odd. Then

2.59 = 3P 47" = (347)-A =2-5-A4,
where
A = 3p~1 _3p=2.7 433,72 _ ... _3.7P2 4 7p-1

It follows that A = 59—1 with ¢ > 1 (since A > 1). Furthermore, since
3 = —2 (mod 5) and 7 = 2 (mod 5), we have

A = 2p7t pop=tpop-l 4 4 2Pl = 5. 2P~ (mod 5) .
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As a result, p- 2P~1 = 0 (mod 5), and the only possibility is p = 5. Since
3% 4 75 = 2 .52 . 341 is not of the form 2 - 59, the proof is complete.

6. Find all functions f : R — R such that
flzf(z) + f(y) = 2* +y
forallz € Rand y € R.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; and Li Zhou, Polk Community College, Winter Haven, FL,
USA. We give Zhou’s solution.

It is easy to verify that both f(x) = z and f(x) = —=z satisfy the
functional equation. We will prove that these are the only solutions.

Let f be a solution. Setting x = 0 in the functional equation gives
f(f(y)) = yforally € R. Hence, for all z, y € R,

2?+y = f(2f(@) + 1) = F(F@F(f@)+FW) = F@)*+y.

Thus, f(x)? = x2 for all z € R. If f£(1) = 1, then

1+2z+22 = f(l4+x)? = f(lf(l) + f(f(a:)))2
= (124 f(2)° = 1+2f(z) + 22,
and thus f(x) = =z for all z € R.. Similarly, if f(1) = —1, then

12w 4a? = f(-1+2)° = F(1FQ) + F(F(2)))’
= (1P+f@)° = 142f(z) +27,
and thus f(x) = —z for all x € R.
—_—_— N~ S O ————

That completes this number of the Corner. 1 will be working on the
September Corner beginning in May, so send me your nice solutions and
generalizations soon!
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BOOK REVIEWS

John Grant McLoughlin

International Mathematics Tournament of Towns 1997-2002 Book 5
By A.M. Storozhev, AMT Publishing, 2006

ISBN 978-1-876420-19-2, paperbound, 214 pages, AUS$40.00.
Reviewed by Clint Lee, Okanagan College, Vernon, BC

The International Tournament of Towns is a mathematical problem-
solving competition for high school students from towns throughout the
world. The first Tournament of Towns took place in Russia in 1979-1980,
and it has grown to the point where towns from all regions of the world
participate. The Tournament takes place each year and consists of two stages:
Autumn and Spring. Each stage has two papers: an “0O” level, less difficult
but less points; and an “A” level, more difficult and more points. There are
two versions of each paper, Junior and Senior. The Senior paper is intended
for students from the last two years of high school (in Canada, grades 11
and 12), and the Junior paper is intended for students from lower grades.
Individual scores are based on the best of the four papers submitted using
the points from the top three problems on each paper, and are scaled based
on the student’s grade level. A town’s score is based on the scores from the
best papers from the town, where the number of papers used to determine
the score is based on the town’s population. Students who exceed a certain
minimum score are awarded a diploma by the Russian Academy of Sciences.

This book consists of 5 sections, each containing the eight papers from
one Tournament, for the Tournaments 19 through 23, covering the years 1997
to 2002. Each section contains solutions to all of the problems from that
Tournament. There is a small amount of duplication of problems, since a few
problems appear on both the Junior and Senior versions of a paper. There are
212 different problems altogether in the book. A list of 62 general references
is given at the end of the book; however, nowhere in the book is this material
cited.

The problems in this book are not for the mathematically faint at heart.
Though elementary (in that they do not require knowledge of calculus, linear
algebra, or other areas of advanced mathematics), they all require a certain
degree of mathematical sophistication. Even the easiest problems require
some ingenuity. The more difficult problems require a high level of insight
and imagination to solve. Almost every paper contains at least one geometry
problem, none of which includes a diagram. Other problems cover areas such
as number theory, algebra, counting (but not standard combinatorics), and
logic. Some problems are difficult to classify, as they combine one or more
standard problem types. Many require the proof of a result rather than a
simple calculation. Several problems assume knowledge of standard games
such as chess, checkers, and cards.
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The following three problems should give some feel for the style of
problems encountered in this book:

Tournament 21, Junior, Autumn 1999 (O Level) #1
A right-angled triangle made of paper is folded along a straight line so
that the vertex at the right angle coincides with one of the other vertices
of the triangle and a quadrilateral is obtained.

(a) What is the ratio into which the diagonals of this quadrilateral
divide each other? (2 points)

(b) This quadrilateral is cut along its longest diagonal. Find the area
of the smallest piece of paper that is obtained if the area of the
original triangle is 1. (2 points)

Tournament 22, Senior, Autumn 2000 (O Level) #4
Among a set of 2N coins, all identical in appearance, 2IN — 2 are real
and 2 are fake. Any two real coins have the same weight. The fake coins
have the same weight, which is different from the weight of a real coin.
How can one divide the coins into two groups of equal total weight by
using a balance at most 4 times, if

(@) N =1s6; (3 points)
(b) N =11? (2 points)

Tournament 20, Senior, Spring 1999 (A Level) #6
Arookis allowed to move one cell either horizontally or vertically. After
64 moves the rook visited all cells of the 8 x 8 chessboard and returned
back to the initial cell. Prove that the number of moves in the vertical
direction and the number of moves in the horizontal direction cannot
be equal. (8 points)

The solutions in this book are elegant and well crafted. The majority
were prepared by Andy Liu of the University of Alberta. All of the solutions
are terse, with extraneous or elementary justifications left to the reader.
Many solutions refer to areas of mathematics that high school students would
not normally be familiar with, or to results from more familiar areas that high
school students would not have encountered. For example, some concepts
and results from graph theory are used in several solutions. This aspect of
the solutions could certainly stimulate the interested reader to delve into an
unfamiliar topic, but might discourage the more casual reader.

This book would be a valuable resource for anyone interested in
mathematical problem-solving. Mathematicians involved in preparing
mathematics competitions would find in it inspiration for creating their own
problems. High school or university mathematics students would find it
useful as preparation for any mathematics competition. The Australian
Mathematics Trust should be congratulated for publication of problems of
this quality and level.



231

Tribute to a Mathemagician

Edited by Barry Cipra, Erik D. Demaine, Martin L. Demaine, & Tom Rodgers,
published by AK Peters, Wellesley, MA, 2005

ISBN 1-56881-204-3, hardcover, xli+262 pages, US$38.00.

Reviewed by John Grant McLoughlin, University of New Brunswick,
Fredericton, NB.

The Mathemagician is Martin Gardner, for whom the Gathering for
Gardner (G4G) is named. The fifth gathering (G4G5) in 2004 led to this book,
an edited collection of thirty articles contributed by participants. The articles
are preceded by In Memoriam, four pieces dedicated to the lives and
contributions of Edward Hordern and Nobuyuki Yoshigahara. The title of
the book is fitting, as “Tribute” sets the tone for the whole book, which not
only provides intellectual amusement but also displays the human side of the
mathematical community.

Articles from popular authors such as Raymond Smullyan, Peter
Winkler, Jerry Slocum, and Dennis Shasha appear amidst the diversity, which
is challenging to summarize here. A few examples are offered. First, from
Chris Manlanka’s “bouquet of brainteasers”:

A bouquet contains red roses, white roses, and blue roses. Accord-
ing to the florist, the number of red roses and white roses comes
to 100; the number of white roses and blue roses comes to 53.
The number of blue roses and red roses comes to less than that.
How many roses of each color are there?

Sliding-coin puzzles, a cryptic crossword, tiling problems, and various
other challenges appear. Among the challenges are polyomino activities, in-
cluding an unusual article entitled Polyomino Number Theory (I1I) by Uldis
Barbans, Andris Cibulis, Gilbert Lee, Andy Liu, and Robert Wainwright, in
which the focus is the compatibility of pentominoes (as in pentominoes that
share common multiples). Principles of number theory are integrated through
definitions such as, “A polyomino A is said to divide another polyomino B
if a copy of B may be assembled from copies of A.” The article provides a
fine example of how mathematical thinking, language, and playfulness meet
in this field of recreational mathematics.

Norman L. Sandfield writes on “Chinese Ceramic Puzzle Vessels”. Ross
Eckler shifts the focus to wordplay with “A History of the Ten-Square”, as
he examines the development of those alphabetical arrangements in which
all columns and rows correspond to English words. Bill Cutler’'s “Designing
Puzzles with a Computer” offers another view on the history and cultural
place of puzzles.

The unusual blend of contributions is high calibre, as one expects when
keen mathematicians step forth to honour someone they respect. Readers
will enjoy the material, as will casual browsers. Indeed the book offers some-
thing new on each viewing!

NN —
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The Locker Problem

Bruce Torrence and Stan Wagon

The locker problem appears frequently in both the secondary and uni-
versity curriculum [2, 3]. In November 2005, it appeared on National Public
Radio’s Car Talk as a “Puzzler” and so attained even wider circulation [1].
The problem goes like this: A school corridor is lined with 1000 lockers, all
closed. There are 1000 students who are sent marching down the hall in
turn according to the following rules. The first student opens every locker.
The second student closes every second locker, beginning with the second.
The third student changes the state of every third locker, beginning with the
third, closing it if it is open and opening it if it is closed. This continues, with
the n' student changing the state of every n'" locker, until all the students
have walked the hallway. The problem is: Which lockers remain open after
all the students have marched?

The answer is well known: The lockers whose numbers are perfect
squares remain open, as only the squares have an odd number of divisors
[4]. We note that this is true whether the corridor contains 1000 or any
other number of lockers.

In this note we present some simple techniques for dealing with an
extension of this problem. At the outset, we wish to extend our thanks to
Joe Buhler for lending his attention and sharing his insights.

If we agree that the students are numbered and that, when sent march-
ing, student n will change the state of every n'? locker beginning with locker
n, then it is known that we can leave any collection of lockers open by dis-
patching precisely the right subset of students [4]. This leads to some inter-
esting problems. For instance, we know that sending all the students leaves
the square lockers open. Which subset of students must be sent to leave
precisely the cube lockers open? How about the fourth powers? We will
show shortly that there is a simple solution to these questions. In the mean-
time, we state in full generality the extended locker problem: Given a subset
of the lockers, which students should be dispatched to keep those lockers
open? Conversely, given a subset of the students, which lockers will be left
open after they march?

We note that there are several problems interspersed throughout the
remainder of this discourse. The impatient reader may wish to attempt these
without reading the more general results that fill the space between them.
While success is certainly possible, the general results provide a means for
tackling most of the specific questions with greater efficiency.

Problem 1. Show that there can be no two distinct sets of students who will
leave open the same set of lockers. Hint: Given two sets of students, consider
the locker whose number is the smallest where the sets differ.

Copyright © 2007 Canadian Mathematical Society
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Returning to our main topic, it is shown in [4] that either version of
the extended problem amounts to solving an m X m non-singular system
of linear equations modulo 2, where m is the total number of lockers in the
corridor. While the system has a unique solution for any subset of the lockers
(or any subset of the students), finding it this way is tedious, to say the least.

Henceforth, we will assume that both the number of lockers and the
number of students are infinite. The results in Theorems 1, 2, and 3 hold
for the case of any finite number m of lockers and students; simply ignore
any numbers exceeding m in any of the sets we discuss. We adhere to the
convention that the set IN of natural numbers does not include 0, so that it
corresponds precisely to the complete student and locker sets.

For certain special subsets of the lockers, there is 2a much more elegant
way to approach the problem than by solving a large linear system. Toward
this end, define the signature of a natural number to be the set of all positive
exponents appearing in that number’s prime factorization. For our purposes
it will be convenient to write members of the signature of a number in as-
cending order. For example, 12 = 2231 and has signature {1, 2}; 15 = 35!
and has signature {1}. Note that the signature of 1 is the empty set, 0.

It is evident that the squarefree numbers are precisely the numbers
whose signature is contained in the set {1}. The squares are those numbers
whose signature is contained in the set {2, 4, 6, ... }, and the cubes are those
numbers whose signature is contained in the set {3, 6, 9, ... }. In general,
given a subset A of IN, we let o (A) denote the set of all numbers whose
signature is contained in A. The set of squarefree numbers is o-({1}), the set
of squares is o ({2, 4, 6, ...}), the set of cubesis o({3, 6,9, ...}), and so
on. Of course, many subsets of IN are not o of anything. For example, the
powers of 2 (or of any specific prime) are not of the form o(A) for any A.

Suppose the set of students is of the form o (A) for some subset A of IN.
Is there an elegant way to characterize the set of lockers that will be left open
by these students? Indeed there is! We need one more definition in order
to state the result. Given a set A of natural numbers, let e(A) be all natural
numbers that are greater than or equal to an even number (including 0) of
the elements of A. For example, if A = {3, 6,9, ...}, then

e(A) = {1,267, 8, 12, 13, 14, 18, 19, 20, ...}
= {neN|n=0,1,2 (mod 6)}.

Theorem 1. Let A C IN. If students o(A) are dispatched, then lockers
o(e(A)) remain open.

Proof: Locker m will remain open if and only if an odd number of students
touch it; that is, if m has an odd number of divisors among the numbers
in the student set. Suppose that the students o(A) are sent marching, and
suppose that locker m has prime factorization m = p7*p5?---pp*. Note
that the divisors of p{** in o(A) are all numbers of the form p], where v € A
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and 1 < v < «;, together with the number 1 = p° (since 1 € o(A) for all
sets A). Now m € o(e(A)) if and only if each a; € e(A); that is, if each o;
is greater than or equal to 2a; members of A, for some a; > 0. If this is the
case, then the number of divisors of ™ among the students who will march
is (2a1 +1)(2a2+1) --- (2a, +1), an odd number. Hence locker m remains
open.

To complete the proof, suppose that some «; ¢ e(A), say «; is greater
than or equal to 2a; — 1 members of A. Then the number of divisors of m
among the students who march contains the factor 2a; —1+1 = 2a;, making
it even. Thus, locker m will be closed. ]

We note that the proof of this result is a straightforward generalization
of the standard formal proof of the solution to the original locker problem
(see, for example, [4]). This result makes easy work of several interesting
problems (among them the original).

Problem 2. If all the students are sent down the hall, which lockers remain
open?

Problem 3. If the squares are sent down the hall, which lockers remain open?

Problem 4. If the n'™™ powers are sent down the hall, which lockers remain
open?

Problem 5. If one wishes to keep only locker number 1 open, which students
should be sent marching?

The last problem leads to a natural question: Is there an inverse oper-
ation to the e function? It is not difficult to see that there is. For a subset
A of the natural numbers, let A + 1 betheset {1} U{n+ 1| n € A}, and
define f(A) to be the symmetric difference of A and A + 1; that is, members
of the union A U (A + 1) that are not members of both.

Problem 6. Show that e and f are inverse operations. That is, show that
e(f(A)) = f(e(A)) = A for any set A of natural numbers.

Problem 6 together with Theorem 1 establish the following (which makes
Problem 5 a snap):

Theorem 2. Let A C IN. If lockers o(A) are to remain open, students

o(f(A)) must be dispatched.

Corollary. The set of marching students is in the image of o if and only if the
set of lockers left open is in the image of o.

Theorem 2 makes light work of these problems:

Problem 7. If one wishes to keep only the cube lockers open, which students
should be sent marching?

Problem 8. If one wishes to keep only the nt" powers open, which students
should be sent marching?
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We see now that the extended locker problem is easily solved for any
student or locker set that is determined completely by a signature-containing
set A; that is, for sets of students or lockers of the form o (A) for some A.
However, this is absolutely no help in cases where the student or locker set
is not of this form. A different technique can often be brought to bear for
such cases.

Problems 5 and 8 provide us with a necessary insight. Note that the
answer to Problem 5 can be stated: To keep open only locker number 1,
send only the squarefree students. Likewise, the answer to Problem 8 can be
stated: To keep open only the lockers that are nt" powers, send all students
whose number is the product of a squarefree number with an n" power.
The squarefree numbers clearly play a crucial role. We let S denote the set
of squarefree numbers; S = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ... }. And for
any natural number m, we let mS = {ms | s € S}.

Problem 9. If one wishes to keep only locker m open, show that one should
dispatch students mS. Hint: See Problem 5.

Theorem 3. Let L C IN be the collection of lockers to be kept open. Then
student n should be included in the set of marching students if and only if
n € 1S for an odd number of members ! € L.

Proof: Let L = {ly, l3, ...} with l; < Iz < ---. Note that L may be finite
or infinite. One way to keep exactly the lockers in L open is as follows: first
send students 1;.S. After they have marched, only locker I, is open. Then
send students 1,S. Note that none of the students in I,S will touch any of
the first I, — 1 lockers. Since I; < l,, after this second cadre of students has
marched, only lockers I; and I, will be open. If one were to continue in the
fashion, precisely the lockers in L would be open. Now let n € IN. Then
n € 1S for only finitely many I € L. Suppose n is an element of precisely
k of the sets 1S, for I € L. If k is even, then in the above scenario student
n will have marched an even number of times. This has the same effect as
student n not marching at all. If k is odd, then student n will have marched
an odd number of times, and this has the same effect as student n marching
just once. [

As several people pointed out to us, one can formulate Theorem 3 quite
naturally in terms of Mdbius inversion. But we have chosen here to present
a totally elementary approach. With Theorem 3 in hand, several other cases
of the extended locker problem are within reach.

Problem 10. Let p be prime. If one wishes to keep open only those lockers
whose numbers are powers of p, which students must be dispatched? Try
this both with 1 = p° included in the locker set, and with it not included.

Problem 11. Which students must be dispatched to keep only the prime
lockers open?
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As a final observation, we note that there can be no non-empty subset
A of the students that keeps precisely the lockers A open when the hallway
is infinite.

Theorem 4. Let A C IN be any non-empty subset of students. Then the set
of lockers left open by these students is not A.

Proof: Let A = {nq, na, ...} With ny < na < ---. Consider locker 2n;.
The only proper divisor of 2n; in A is n;. If 2n; € A and the students in A
march, then only students n; and 2n, will touch locker 2n,, and so it will be
closed. Conversely, if 2n; ¢ A, then only student n; will touch locker 274,
and so it will remain open. In either case, the student set does not match
the locker set. ]

Problem 12. The above proof fails in a corridor with a finite number of lock-
ers. Show that there is a set A in any finite corridor where students A will
leave open lockers A. If there are more than two lockers in the hallway,
there will be many such sets.

We leave the reader with one final problem. For any subset A of the
natural numbers, denote by A? the set {n? | n € A}.

Problem 13. The solution to the original locker problem shows there is a set
A with the property that when students A march, lockers A2 remain open
(just take A = IN). Find a non-empty set A so that when students A2 march,
lockers A remain open.
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PROBLEMS

Toutes solutions aux problémes dans ce numéro doivent nous parvenir au plus
tard le 1er novembre 2007. Une étoile (x) aprés le numéro indique que le probléme
a été soumis sans solution.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais. Dans la section des
solutions, le probléme sera publié dans Ia langue de Ia principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein, de
I’Université de Montréal, d’avoir traduit les problémes.

—_—— S ———

3239. Proposé par Mihily Bencze, Brasov, Roumanie.

Soit n un entier positif. Sia =1 + m, montrer que
1
(n 4 1)2n+1) o
T )

3240. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit n un nombre entier positif. Montrer que

{\/ﬁ+\/n+2\3/ﬁ+1J = { 4n+4€/ﬁ+2J,

ol |x] désigne la partie entiére de x.

3241. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit a, b et c trois nombres réels arbitraires tels que a? + b% + ¢? = 9.
Montrer que
3 -min{a, b, c} < 1+ abe.

3242. Proposé par Virgil Nicula, Bucarest, Roumanie.
Soit A = {z eC*: ‘z + %‘ < 2}. Soit » > 2 un entier. Montrer que
sia™ € A, alors a € A.

3243. Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit P un point intérieur d’un triangle isocéle ABC avec AB = AC.
Soit D et E les points d’intersection respectifs des droites BP et C P avec
les cotés opposés. Trouver le lieu des points P si

PD+ DC = PE + EB.
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3244 Proposé par George Tsintsifas, Thessalonique, Gréce.

Soit P un point intérieur d’'un triangle isocéle ABC avec AB = AC.
Soit D et E les points d’intersection respectifs des droites BP et C P avec
les cotés opposés. Trouver le lieu des points P si

BD + DC = BE + EC.

3245. Proposé par Paul Yiu, Florida Atlantic University, Boca Raton, FL,
USA.

On suppose que le centre du cercle des neuf points d’un triangle se
trouve sur le cercle inscrit du triangle. Montrer que son antipode est le point
de Feuerbach, c’est-a-dire le point de tangence des deux cercles.

3246. Proposé par Marian Tetiva, Birlad, Roumanie.

Soit a, b, ¢ et d des nombres réels positifs arbitraires tels que
d = min{a, b,c, d}. Montrer que
at + b* + ¢* + d* — 4abed

> 4d[(a—d)?+ (b—d)®+ (c—d)® —3(a—d)(b—d)(c—d)].

3247. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Soit aq, as, ..., a, des nombres réels, tous plus grands que 1. Montrer
que

Z (1 +log,, (ak+1))2 > 4n,
k=1

ol an41 = 0ajg.

3248. Proposé par Titu Zvonaru, Comanesti, Roumanie, et Bogdan Ionit3,

Bucarest, Roumanie.

Si a, b et c sont des nombres réels positifs, montrer que
a’(b+c—a) b (c+a—->b) c2a+b—2c) < ab + bc + ca
b+ c c+a a-+b - 2 '

3249, Proposé par Titu Zvonaru, Comanesti, Roumanie, et Bogdan Ionit3,
Bucarest, Roumanie.

Soit a, b et c les longueurs des c6tés d’un triangle. Montrer que

(b+¢)?  (c+a)? (a+b)?
a? 4+ be b2 + ca c2+ab
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3250. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Soit ABC un triangle isocéle avec AB = AC et tel que l'angle
BAC = 100°. Soit D le point sur le prolongement de AB au-dela de A
et tel que AD = BC. Trouver I’angle ADC.

3239. Proposed by Mihaly Bencze, Brasov, Romania.

_ . 1
Let n be a positive integer. If « = 1 + ITICESE prove that
(n + 1)2n+1 n
T ) <

3240. Proposed by Mihaly Bencze, Brasov, Romania.

Let n be a positive integer. Prove that

{\/ﬁ+\/n+2€/ﬁ+1J = { 4n+4<"/ﬁ+2J,

where |z | denotes the integer part of x.

3241. Proposed by Virgil Nicula, Bucharest, Romania.

Let a, b, c be any real numbers such that a? 4+ b% + ¢? = 9. Prove that

3-min{a, b, ¢} < 1+ abe.

3242. Proposed by Virgil Nicula, Bucharest, Romania.

Let A= {z € C*: ‘z + %‘ < 2}. Let n > 2 be an integer. Prove that,
if a™ € A, then o € A.

3243. Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let ABC be an isosceles triangle with AB = AC, and let P be an
interior point. Let the lines BP and C P intersect the opposite sides at the
points D and E, respectively. Find the locus of P if

PD+ DC = PE+ EB.

3244 . Proposed by G. Tsintsifas, Thessaloniki, Greece.

Let ABC be an isosceles triangle with AB = AC, and let P be an
interior point. Let the lines BP and C P intersect the opposite sides at the
points D and E, respectively. Find the locus of P if

BD + DC = BE + EC.
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3245. Proposed by Paul Yiu, Florida Atlantic University, Boca Raton, FL,
USA.

Suppose that the centre of the nine-point circle of a triangle lies on the
incircle of the triangle. Show that its antipodal point is the Feuerbach Point;
that is, the point where the nine-point circle and the incircle are tangent to
each other.

3246. Proposed by Marian Tetiva, Birlad, Romania.

Let a, b, ¢, d be any positive real numbers with d = min{a, b, ¢, d}.
Prove that
at + b* + ¢* + d* — 4abed

> 4d[(a—d)®+ (b—d)®+ (c—d)® —3(a—d)(b—d)(c—d)].

3247. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Let a4, as, ..., a, be real numbers, each greater than 1. Prove that

n
Z(l —|—10ga’c(ak+1))2 > 4n,
k=1

where a,,+1 = a;.
3248. Proposed by Titu Zvonaru, Comanesti, Romania, and Bogdan Ionit3,
Bucharest, Romania.
If a, b, and c are positive real numbers, prove that
a’(b+c—a) b (c+a—->b) c2a+b—2c) < ab + bc + ca
b+ c c+a a-+b - 2 '

3249. proposed by Titu Zvonaru, Comanesti, Romania, and Bogdan Ionit3,
Bucharest, Romania.

Let a, b, and c be the lengths of the sides of a triangle. Prove that

(b+¢)?  (c+a)? (a+b)?
a? + be b2 + ca c2 + ab

3250. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

Let ABC be an isosceles triangle with AB = AC and ZBAC = 100°.
Let D be the point on the production of AB such that AD = BC. Find
ZADC.

——— | NS
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

_—_—m NS ——————

3138. [2006 : 173, 176] Proposed by Paul Bracken, University of Texas,
Edinburg, TX, USA.

Let a; be a non-zero real number, and define the sequence {a,}2° ,
by an+1 = n?/a, for n > 1. Prove that

s (o + 75 mi) + 01

Solution by Joel Schlosberg, Bayside, NY, USA, modified by the editor.

It is straightforward to prove by induction that for n > 0,

22nn!2 2
a2n+1 = W aj .

According to Stirling’s Formula, n! = v/27n (%)n [1 + O (%)] for n — oo.
Therefore, for n > 1,

2(2:73!!2 — \/2:7;:%%)1)2” [1+o<1>] - \/ﬁ[1+o<l>] .

Then, forn > 1,

1 1 1 1 1 1
= a0 = mn o ()]
a2n41 T™najx n ™ay; |n n

and

1 a2n41 Tnay

1
A2n+2 (Zn + 1)2 4n?2 (1 + i)z [ n
2n

- o)) - o3
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Therefore, for N > 4,

A T e A &
— = —+—+ +
T;lan ax az ngl A2n+1 ,;1 A2n+2
1% %52
1 1 Ta, 1
= - — —_— —+0|— o@1
e 2 o) v (e row
1
— (— ﬂ) In— 4+ 0(1)
mTaq 4

Noting that In(IN/2) = In N —In2 = In N + O(1), we arrive at the desired
result.

Also solved by MICHEL BATAILLE, Rouen, France; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; and the proposer.

B WSS L W

3139. [2006 : 238, 240] Proposed by Michel Bataille, Rouen, France.

2 2
Let € be the ellipse % + 7;—2 —1 = 0. Two parallel tangents to ¢ intersect
a third tangent at M; (1, y1) and Mz (x2,y=2). Show that the value of

B\ (L v
a? b2 a? b2

is independent of the chosen tangents.

A combination of similar solutions by Apostolis K. Demis, Varvakeio High
School, Athens, Greece; and Peter Y. Woo, Biola University, La Mirada, CA,
USA.

We shall see that for all choices of the three tangents, the product in
question is always 1. We denote by O the centre of the given ellipse, and by
C,, C2, and M the points of tangency of the three tangents C, M;, Cy M,
and MM M,.

The affine transformation (z,y) — (a;, %y) transforms the given
ellipse to the circle with centre O and radius a. It also transforms the points

M;(x1,y1), Ma(x2,y2), C1, C2, and M to the points M] (mla%yl),

M (wz, %yz), Ci, C;, and M’, respectively, and it transforms the tangents
C1M;, C2 M, and M, M, of the ellipse to the tangents C; M, C; M., and
M M}, respectively, of the circle.

Consequently, M;O0 1 MO (bisectors of ZC{OM’ and ZM'OC,
where Z/C;OM’ + ZM'OC}, = =), and OM’ L MM} (since MM, is
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tangent to the circle and OM’ is aradius). Because AM{M’'O ~ AOM'M},
it follows that M’M;? - M’'M}?> = M’O*. Then

(M;0* — M'O?) - (M,0*> - M'0O*) = a*,
az a2
(e 5ant) =) - (s34 5omt) - o7) = ot
2 2 2 2
Ty Y1 Ty Ys _
<§+b_2_1>'(§+b_2_1> = b

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; RICHARD 1. HESS, Rancho
Palos Verdes, CA, USA; JOEL SCHLOSBERG, Bayside, NY, USA; D.]. SMEENK, Zaltbommel,
the Netherlands; and the proposer.

—— | NS
3140. [2006 : 238, 240] Proposed by Michel Bataille, Rouen, France.
Let a4, az, ..., a, be n distinct positive real numbers, where n > 2.
n 1
Fori=1,2,...,n, letp; = [][(a; —a;). Show that [] a;* < 1.
j#i i=1

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria,
modified by the editor.

We will apply the following theorem on convex functions of higher order
(see [1, pp. 4-5)).
Theorem. Let I be an open interval, and let f : I — R be a function which
is n-times differentiable. The following statements are equivalent:
(i) fxg, 1, ..., , are any n+ 1 distinct points in I, then > % > 0,
1=0 i

where w(z) = .]i[o(w — ;).

(i) f™)(x) >0forallxz € I.

A function f satisfying the above conditions is said to be strictly n-convex.

For our problem, we take I = (0,00) and f(z) = (—1)"Inx. Then
Fr=Y(x) = (n — 2)!/z”~ 1 > 0 for all z > 0. Therefore, f is strictly
(n — 1)-convex.

Using the n distinct numbers a4, as, ..., a, given in the problem, we

n

let w(z) = [[ (¢ — a;). Thenforeachi=1,2,..., n, we have

Jj=1

w'(a;) = [[(ai—a;) = (-1)" " 'pi.
i
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According to condition (i) in the theorem, i f ,((‘“)) > 0. Then

~Ina; (-1)"Ina; f(as)
Z . Z( 1)n 1 Z /(az)

i—1 Pi

n 1
Taking exponentials, we obtain [] a;* < 1.

=1
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Also solved by JOEL SCHLOSBERG, Bayside, NY, USA; and the proposer.
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3141. [2006 : 238, 240] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let a, b, and c be the sides of a scalene triangle ABC. Prove that

(a + 1)be at+b* 4+ c*
S Va-VBla-va ~  abe

Solution by Michel Bataille, Rouen, France, modified by the editor.
Write the left side as S; + Sz, where

abc bc
&_%QWFﬁNﬁ—m'&_gﬂf>ﬁﬂf—m'

Observe that

S1 = abc- <\/E_\/B)+(\/__\/E)+(\/E_ﬁ) =0

(ve—vB) (va-—ve) (Vb - va)

We can simplify S, by making use of the identity

o?y? (y—x)+y’2% (z—y)+2°2% (z—2) = (z—y)(y—2)(z—x)(zy+yz+2zT).

Dividing both sides by (z — y)(y — z)(z — «) and setting z = v/a, y = Vb,
and z = 4/c, we obtain

= Vab+ Vbc + vea.

Thus, the given inequality turns out to be equivalent to

abc(\/ab—i-\/%—i— \/ca) < a*+4+bvr+c2. ¢))
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Now, from the Weighted AM—GM Inequality, we have
afbic = (a*)3(b")3(cH)F < fa*+ b* + fet

(Where the inequality is strict because a, b, and c are distinct). Similarly, we
have a2bc? < %a‘l + %b‘l + gc‘l and ab%c? < %a“ + %b‘l + gc‘l. If we add
all three inequalities, we obtain (1).

Note that the result actually holds whenever a, b, and ¢ are distinct
positive real numbers.

Also solved by ARKADY ALT, San Jose, CA, USA; CHIP CURTIS, Missouri Southern State
University, Joplin, MO, USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; WALTHER
JANOUS, Ursulinengymnasium, Innsbruck, Austria; JOEL SCHLOSBERG, Bayside, NY, USA;
PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Several solvers mentioned that the result is true for any three distinct positive real num-
bers. Most solvers began, like Bataille, by showing that the given inequality is equivalent to
abc(Vab 4+ vVbe + v/ca) < a* + b* + c*. At that point, there were several ways to complete
the solution. Janous provided several such ways himself.

3142. [2006 : 238, 241] Proposed by Mihaly Bencze, Brasov, Romania.

If zp, >0fork =1, 2,...,n, prove that
n n n
- 1 1 1
a n ool n > - s _ .
(a) cos 3 o sin | s~ ] 25 Z <cos o sin in)’
k=1 k=1 k=1
n
> sin mi n
by #=1 "F > tan | &
®) i cos — 2
k=1 Tk =t

Editor’s comment.

Unfortunately, the inequalities are incorrect as stated. Both Walther
Janous, Ursulinengymnasium, Innsbruck, Austria and Peter Y. Woo, Biola
University, La Mirada, CA, USA gave counterexamples and then attempted
to impose additional restrictions on the variables to make the inequalities
correct. Janous succeeded in repairing part (a). Woo’s counterexample for
part (a)is n = 2, £y = 0.4, and x> = 0.3, and Janous’ counterexample for
part (b)isn =2, x; = 1/7, and 2 = 3/7.

Solution to adjusted part (a) by Walther Janous, Ursulinengymnasium,
Innsbruck, Austria.

Let f(x) = cos % — sin % Inequality (a) can now be written as

23 flaw) < f(%Z%) :
k=1 k=1

This is Jensen’s Inequality characterizing the concavity of the function f.
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Using a computer algebra system, we can show that

. (1 — 2z) sin 1_ (2 + 1) cos 1
f(z) = = £ <0

x4

for z € (0.601451551, co). (The editor verified Janous’ result using Maple.)
Thus, inequality (a) is true if z; € (0.601451551,00) fork =1, 2, ..., n.

Solution to adjusted part (b) by the editor using ideas of the proposer.
Let g(x) = sini and h(x) = cos % Then
"p) = 2 1 _1gnl Mgy = — (2 sint o+ L cosk
g’ (x) = —5 Cos — — —sin — and A'(z) = (waslnw+w4cosw).

For z € (0.928613759, co), we have g”(z) > 0 and h”(x) < 0. In fact,
h"(x) < 0 if x € (0.436885409, co). Since 0.928613759 > 2/, we have

n
0< & <= d 0< - < T
— an —_— — .
kZ_IIwk 2 T 2

Now, Jensen’s Inequality applied to the functions g(x) and h(x) yields

1w 1 "
EZsina > sin ifﬂk > 0
k=1 k=1
n n
and 0<%Zcosml—k<cos iwk ,
k=1 k=1

from which the inequality in part (b) follows immediately.

3143. [2006 : 239, 241] Proposed by Mihaly Bencze, Brasov, Romania.
Forn >1lleta, =1+ +v2+ v/3+ .-+ /n. Prove that

" ¥k 2n + 1+ (Inn)?

Z — < il :
a; n+1-|—§(lnn)2

k=1
Solution by Richard I. Hess, Rancho Palos Verdes, CA, USA, modified by the
editor.
Define

" Vk 2 1+ (Inn)?
L, = E Lz_ and R, = nt +1(nn)2.
—1 Ok n+1—|—§(1nn)

By direct computation, we seethat L; = 1, L, =~ 1.2426, L3 ~ 1.3396,
Ly =~ 1.3905, R; = 1.5, R, ~ 1.6914, R3 ~ 1.7828, and R, ~ 1.8322.
Hence, L, < R, forn =1, 2, 3, 4.
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Now assume that n > 5. Since the function f(z) = x'/® is decreasing
on (e,o0), we have, for each k& > 5,1 < k'/* < 51/5 =~ 1.3797. Note also
that a;, > k for all £ > 1. Hence,

n

L, = Z <L4+(13797)Z <L4+(14)/
=5
= L,+(1.4) (i E) < (14)+(14)( ) — 1.75.
. 1 .
SlnceRn_z—n+1+§(lnn)2> + > 2 —E>1.8,1tfollows
that L,, < R,,.

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria.

Janous’ solutwn which is based on computer verifications, actually establishes the
stronger inequality Z 2" < R,,. Both Janous and Hess believe that the minimum of
R, — L, is attamed when n = 8; thus, L, < R, — 0.4409 where 0.4409 =~ Rg — Lsg,
but they gave no proof. The solution by the proposer applied simple telescoping together with
the inequality an, < n+ 1+ %(ln n)2, which he claimed can be shown by induction but did
not supply any proof.

NN —

3144. [2006 : 239, 241] Proposed by Mihaly Bencze, Brasov, Romania.
Let A, B € M,,(C), and let w = €2™/™. Prove that

> det(A+w*'B) + > det(B+ w* 'A) = 2n(det A+ detB).
k=1 k=1

[Ed. The problem has been corrected to state that w = 2%/, as the
proposer intended, rather than w = e27/™. This correction was made by the
solvers.]

Solution by Michel Bataille, Rouen, France.

For M € M,(C), we denote by M M@ . . M™ the columns
of M. Let = be an indeterminate. Since an n X n determinant is an n—linear
function of its columns, we can expand det(A + xB) as follows:

det(A+xB) = det (A(l) + mB(l),A(Z) + a:B(Z), cees A :L'B("))
n—1
— det (A<1>,A<2>,...,A(">) +Y aje

+ x™ det (B(1>, B®, ..., B(”))
n—1
= detA+ » oa;a’ +z™det B,
j:l
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where a4, a3, ..., a,_1 are complex numbers (independent of x). Taking
r=1,w, w? ..., w" 1in succession and adding the results, we obtain
n—1 n—1n—1 n—1
Z det(A + ka) = ndetA + Z Z ajwkj + Z w*" det B
k=0 k=0 j=1 k=0
n—1 n—1 n—1
= ndet A+ Z o Z wki 4+ Z w*™ det B .
j=1 k=0 k=0
. n—1 . 1— ™ .
Now, since w™ = 1 and Y whi = _ =0forj=1,2 ..., n—1,
=0 1— w?
we have
n—1
Z det(A 4+ w®*B) = n(det A + det B).
k=0

n—1
Then Y det(B + w*A) = n(det B + det A), and the result follows.
k=0

Also solved by PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

B SN D W

3145%. [2006 : 239, 241] Proposed by Yuming Chen, Wilfrid Laurier
University, Waterloo, ON.

Let f(z) = = — c®tanhx, where ¢ > 1 is an arbitrary constant. It
is not hard to show that f(x) is decreasing on the interval [—xo, o], Where
xo = In(c 4+ v/c2 — 1) is the positive root of the equation coshax = c. For
each ¢ € (—xo, o), the horizontal line passing through (z, f(x)) intersects
the graph of f at two other points with abscissas 1 (z) and x2(x). Define a
function g : (—xo, o) — R as follows:

g(z) = z + c®tanh (z1(z)) + ? tanh(za(z)) .
Prove or disprove that g(z) > 0 for all z € (0, x).

Editor’s note: No solutions were received for this problem; hence, it remains
open. The proposer believes that the conjecture is true, since there is ample
empirical evidence.

B e W
3146. [2006 : 239, 242] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania.

Letp > 1,andleta, b, ¢, d € [1/,/P, /P|. Prove that

p 2 a b c 1 2,/p
a < < ;
@ 1+p+1+ﬁ S arotbre T era S 1+p+1+\/5’

p 3 a b c d 1 3Yp
(b) 1—|—p+1+\3/ﬁ < a+b+b+c+c+d+d+a < 1—|—p+1+{75'
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Solution by Arkady Alt, San Jose, CA, USA, modified by the editor.

(a) The transposition (a, b, c) — (b, a, c) in the inequality

a b c 1 2,/p
a+b+b—{—c+c—|—a S 1—|—p+1—{—\/ﬁ (1)

gives the equivalent inequality

b a c 1 2,/p
b+a+a+c+c+b < 1+p+1+\/ﬁ'

Since

a b c b a c
a+b+b+c+c+a =3- (b+a+a+c+c+b) '

we see that (1) is satisfied if and only if

a b c 1 2,/p P 2Vp
> 3 - = .
a+b+b+c+c+a - <1+p+1+\/ﬁ) 1+p+1+\/17

Thus, to prove (a), it is sufficient to prove (1).
Let x = b/a, y = ¢/b, and z = a/c. Then (1) becomes
1 1 1 1 2./P @

< .
Tte T1ty " 1+z = T4p T 1+vp

Note that zyz = 1 and =z, y, 2 € [1/p,p]. To prove (1), it is sufficient to
prove (2) for all such z, y, and =.

By the symmetry in (2), we may assume that z = max{z, y, z}. Then,
since zyz = 1and z < p, wemust have 1 < z < pand 1/p < zy < 1. Let
t = /xy. Thent?2 =1and1/,/p <t < 1. Since z + y > 2,/zy = 2t,
we have

1 1 24+ x+y 1—¢2
+ = —4—F =1+ —F—0
1+  1+y l+xz+y+zy 1+z+y+t
1—¢? 1—t 2
< 1+1+2t+t2 - 1+1+t T 14t ®)
Hence,
1 1 1 2 1 2 t?
1+a:+1+y+1-|-z < 1+t+1+z B 1—|—t+1+t'~"
2 t? ) rren . —2(1—8) (1 —t3) .
Let h(t) = i+t + ire Since h/(t) = EDEESOEE it follows

that h is decreasing on (0, 1]. Consequently, for1/,/p <t <1,

h(t) < h(/VD) = 155+ T

This proves inequality (2) and completes the proof of (a).
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(b) This is treated similarly. The transposition (a, b, ¢, d) — (b, a,d,c)
in the inequality

a b c d < 1 n 3Yp 0

a—}—b+b+c+c+d+d+a - 14+p 14+ p

yields the equivalent inequality

b a d c 1 3Yp
b+a+a+d+d+c+c—|—b = 14p 14+ p°
Since
a b c d b a d c
a+b+b+c+c+d+d+a - _(b+a+a+d+d+c+c+b)'

we see that (4) is satisfied if and only if
a b c d _ D 3Yp
a+b+b+c+c+d+d+a = 4 <p+1+1+\3/5>
p 3

= vl i

Thus, to prove (b), it is sufficient to prove (4).
Letx = b/a, y = ¢/b, u = ¢/d, and v = d/a. Then (4) becomes

1 1 1 1 1 39/P
1+m+1+y+1+u+1+v < 1+p+1+\3/5' ®)

Note that zyuv = 1 and =, y, u, v € [1/p, p]. To prove (4), it is sufficient to
prove (5) for all such z, y, u, and v.

Lett = /zy and s = {/uv. By the symmetry in (5), we may assume
that ¢ < s. Then, since ts = 1, we see that ¢t < 1 < s. Furthermore, since
s2/u = v < p, we have s2/p < u, and thus, s?/p < u < p.

Now, for fixed s,

2
max{u—l—v‘uv:sz,;gugp}
2 2 2
= max{u—|—s Sgugp} =p+
u p p
Thus,
1 i 1 . 24+u+wv — 1 s2 -1
14+u  14+v ~ 14+utvduv 1+u+v+s?
2
21 2+p+ >
< 1- 2 = 2p
T+p+2ts2  1+p+ > 452
P P
1
= 2+ ©)

s2+p 1+p
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Using inequalities (6) and (3), we get

1 1 1 1 2s p 1
1—}—w+1—{—y+1+u+1—}—v < 1+s+s2+p+1+p‘

_ 2 P 2 =p)(s® = p)
et 9(s) = 735 T @15 G+ D27 T p)r’ S

function has a local maximum at s = {/p, which is in the interval (1,p).
We have g(1) = -1+ -2 < 0and g(p) = — 2 +

Since g’(s) =

< 0; whence,

1+p p+1 p+1
mes g(s) = g(¥/p), and therefore,
SELP
1 1 1 1 2yp p 1
<
1+m+1+y+1+u+1+'v - 1+ p 13/p2_|_p+1+p

3yp_ 1
1+¢Yp  14+p°
This proves (4) and completes the proof of (b).

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria (part (a));
PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

——— | NS

3147. [2006 : 239, 242] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania; and Gabriel Dospinescu, Paris, France.

Let n > 3, and let xy, x5, ..., x,, be positive real numbers such that
x1x3---x, = 1. For n = 3 and n = 4, prove that

1 1 1

+ e ———— >
2 + 1T TE2+ T2T3 x2 + xpxy

w3

Solution by the proposer.

. . . a a a
Using the substitutions z; = /=2, &2 = /=2, ..., p = ,/—, the
a1 a2 Qn
given inequality becomes

a; + a + + Ay > n
az + /atas asz + \/azas az + /anaz ~— 2
Since /aja; < & ;%, cev, Vanaz < a"?w, it suffices to show that
a; az an

3

_|_ _|_ eee _|_ - @@
a1 + 2az +a3 az + 2a3 + aa an +2a; +az
By the Cauchy-Schwarz Inequality, we have

(@14 -+ an)® < [ai(ar +2a2 +as) + -+ + an(an + 2a1 + az)]

iAo A
a1 + 2az + as an +2a1+az/)
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Thus, it suffices to show that
4(a; + -+ an)? > nlai(ar +2as + az) + -+ + an(an + 2a;1 + az)] .
This inequality is an identity for n = 4. Forn = 3, it is
a?+a2+a2 > aiaz + aza;s + asaq,
which is true, because
2(af + ag + ag — ajaz — azaz — azai)
= (a1 —az2)®*+ (az —a3)®* + (a3 —a1)? > 0.

This completes the proof. Equality holds when x; = 1 for all z.

The case n = 3 was also solved by MOHAMMED AASSILA, Strasbourg, France. There
was one incorrect submission.

NN —

3148. [2006 : 240, 242] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania.

Let0 < m < 1, and let a, b, c € [\/m,1/y/m]|. Prove that

a3 + b3 + c® + 3(1 + m)abe S 1+m
ab(a +b) +be(b+c) +calc+a) — 2

Solution by Joel Schlosberg, Bayside, NY, USA.
Let f(z) = —222 + (m2 —|—3m):c+ (m3 —3m2—-2m+ 2). Forz > m,

fl(x) = —4x+m?*+3m < —4a4m+m?>+3m = m(m—-1) < 0,

which implies that f(x) is decreasing.
Suppose thata =m, b € [m,1],andc=1. Thenm =a <b<c=1
and
2[a3 +b63 4%+ 3(1 + m)abc]
—(m+ 2)[a2b + ab? + b2%c + be? + c2a + ca2]
= 2[m® 4+ 5%+ 14 3(1 + m)mb]
— (m 4+ 2)[m?b+ mb® + b2 + b+ m + m?]
= 2b% — (m? 4+ 3m + 2)b® + (—m> +4m? + 5m — 2)b
—|—(Tn3—37n2 —2m + 2)
= (1 —=0b)[-2b*> + (m? 4+ 3m)b + (m3 — 3m? — 2m + 2)]
L-b)f() > L-bFf(1) = 1 —bmm—1)> > 0,

which yields

a® + b2+ ¢+ 3(1 +m)abe S 1_l_m
a?b + ab? 4+ b%2¢c + be?2 4+ c2a + ca?2 — 2
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Suppose that a, b, ¢ € [/m,1//m]. Without loss of generality, we
can assume that a < b < ¢. Then
m <

<2 <.

ole

(eI~

Hence, for (m/,a’,b’,c’) = (%, %, g, 1), we have
< !

m m =d <V < =1,

and therefore,

a® +b3+¢3+301+m)ab'c S m’
a’?b! + a’b’? + b'2¢! + b'c’? + c?a’ + c'a’? 1+ 9
which can be written as

a® + b3 4¢3 +301+m)a'b'c
alel + alblz + blzcl + blcl2 + C'2CL, + cla12

’

S , (1 3a’b’c’
- m 2 - a/2b/ _|_ a/b/Z + b/2cl + b/C/2 _|_ Clza/ + Cla/2 )

By the AM-GM Inequality,

2 2 2 2 ? >
a2b + ab +bc—(|;bc +c“a+ca ZW:CLIJC.

Hence,
1 3abe

2 a?b + ab? + b2¢c + be? + c2a + ca?
Sincea:b:c=a’:b":c', we have
a® 4+ b3 + ¢ + 3abc
a?b + ab? + b2¢c + be2 + c2a + ca?
a13 + b/3 + C/3 +3a'b'c’
al2b/ + a/bl2 _|_ b/2cl _+_ blcl2 + cl2al _+_ clal2

1 3a’b'c
> m'| - —
- 2 a/2bl + alblZ + blch + blcl2 + c’2a' + C,CL,2

, <1 3abce )
= m' |- —
2  a?b-+ ab? 4+ b%2¢c 4+ be? + c2a + ca?

v

1 3abc
m (2 B a?b + ab? + b2c + be? +c2a+ca2> '
and therefore,
a® + b2+ ¢+ 3(1 +m)abe
a?b + ab? + b%2¢c + be? + c2a + ca?

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and the proposer. There was
also one incorrect solution submitted.

> 142
—_— 2.
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3149. Replacement. [2006 : 303, 306] Proposed by David Martinez
Ramirez, student, Universidad Nacional Autonoma de Mexico, Mexico.

Let P(z) be any non-constant complex monic polynomial. Show that
there is a complex number w such that |w| < 1 and |P(w)| > 1.
1. Solution by Michel Bataille, Rouen, France.

Let P(z) = 2" 4+a,_12" "1 +---+ai1z+ag. Suppose, to the contrary,
that |P(z)| < 1 for all complex numbers z such that |z|] < 1. Consider

Q(2) = apz" +a;z" ' +---+a,_12+ 1. Note that Q(z) = 2"P (%) for
2 # 0. Thus, if |2| = 1, then |Q(2)| = ‘P (%)‘ <1.
2
It follows that [ |Q(e®*)|dt < 2m. However,
0
27

27
Q(eit) dt = / (aoei”t 4+ a1 e Dt L g, et + 1) dt = 2w,
0 0
2w 1 .
since [ ekt dt = - (e2*m —1) =0forallk=1,2,...,n.
0

Hence, 27 =

T Qi) at
0

27
< [ 1Q(e)| dt < 2m, a contradiction.

0
I1. Solution by Bin Zhao, student, YunYuan HuaZhong University of
Technology and Science, Wuhan, Hubei, China, modified by the editor.

Let P(z2) = 2" + an_12"" 1 +---+ a1z + ap- Let{ = e/ Then
¢("=-1,¢*"=1,and |[¢¥|=1fork=0,1,2,...,2n — 1. Now,

2n—1

STIPEH)| > [(PQ) + P(¢?) + -+ + P(P72)
k=0

— (P(C) + P(¢3) +--- + P

— z_: (P(Czk) _ P(C2k+1)) (1)
k=0
and
D (P(E) = PCHH) = (™)™ = (¢*+hH)")
k=0 k=0
+ i a; 2_: ((€**) — (¢**)) . @
j=1 k=0

Note that (C2k)n _ (C2k+1)n — (Cn)Zk _ (Cn)2k+1 =1 — (_1) — 2,
and hence,

n—1

> ()™ = () = 2n. 3)

k=0
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On the other hand, foreach j =1, 2, ..., n — 1, we have
n—1 n—1
DY — (YY) = (=) Y (¢PHF
k=0 k=0
1= 2j\n
- - —0 @

since (¢%)" = (¢2")7 = 1.
Substituting (3) and (4) into (2) and using (1), we then have

2n—1

Y |PEH)| = 2n,

k=0

from which we deduce that there must be some k, with 0 < k < 2n — 1, for
which |P(¢*)| > 1, completing the proof.

Also solved by KEE-WAI LAU, Hong Kong, China; and the proposer. There was also one
incorrect solution.

The proof given by Lau used Rouché’s Theorem from complex analysis. Both solutions
featured above show that w can be chosen so that |w| = 1 and |P(w)| > 1. But this is not
surprising, in view of the well-known Maximum Modulus Principle.

Y WSS L W

3150. [2006 : 240, 242; corrected 2006 : 303, 306] Proposed by Zhang Yun,

High School attached to Xi ’ An Jiao Tong University, Xi ’ An City, Shan Xi,
China.

Let a, b, c be the three sides of a triangle, and let h,, h, h. be the
altitudes to the sides a, b, c, respectively. Prove that

h2 h? A (3)3
b2 +c2 c2+a?2 a?2+b2 — \8 )

Essentially the same solution by D. Kipp Johnson, Beaverton, OR, USA;
Joel Schlosberg, Bayside, NY, USA; and D.]. Smeenk, Zaltbommel, the
Netherlands.

Using the formula h, = bsin C, the Law of Sines, and the AM-GM
Inequality, we obtain

h?2 b?sin’ C sin? Bsin®? C
b2+c2  b2+c¢2  sin?B+sin?C
sin? Bsin? C . .
< —— = —sinBsinC,
— 2sinBsinC 2

and similarly,

h? 1 . h?
< —sinCsin A and €

1
—_— ——— < —sinAsinB.
c2+a%? — 2 a?+4+b2 —
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Multiplying these and using the well-known inequality

3v3
sin Asin BsinC < T\/_

(see [1, p. 18]), we obtain
m o om
b24+c?2 c2+a? a?+4+b2 —
2
1/3 3
< (ﬁ) _ (é) .
- 8 8 8

Equality holds if and only if the triangle is equilateral.

1
g(sinAsinB sin C)?
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