Spring 2002 Ph.D. Qualifying Examination Algebra Part I

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

1. Let p and q be primes, q > 2. Let $G = SL(2, \mathbb{F}_p)$. (Here \mathbb{F}_p is the finite field with p elements.) Suppose that q divides $|G| = p(p^2 - 1)$. Show that a q-Sylow subgroup of G is cyclic. (**Hint:** first show that G has cyclic subgroups of orders p, p - 1 and p + 1.)

2. Let R be a commutative ring with unit.

(i) Let S be a saturated multiplicative set of R. This means that $1 \in S, 0 \notin S$, and $xy \in S$ if and only if $x \in S$ and $y \in S$. Show that R - S is a union of prime ideals. [Hint: If $a \in R - S$ consider ideals J with $a \in J \subset R - S$.]

(ii) An element $a \in R$ is a zero divisor if ab = 0 for some $b \neq 0$. Apply (i) to show that the set of zero divisors is a union of prime ideals of R.

3. Let p be prime. Show that there exists $\alpha \in \mathbb{C}$ such that $K = \mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and that $\operatorname{Gal}(K/\mathbb{Q})$ is cyclic of order p. Exhibit such an α when p = 5.

4. Let G be a finite group and let $H \subset G$ be an abelian subgroup of prime index p. Let χ be an irreducible character of G such that $\chi(1) = p$. Prove that there exists a character ψ of H such that χ is the character of G induced from ψ .

5. (i) Let R be a principal ideal domain, and let $f, g \in R$ be coprime elements. Show that

$$R/(fg) \cong R/(f) \oplus R/(g)$$

as R-modules.

(ii) Let F be a field, and let $f(X) = X^2 + aX + b$, $g(X) = X^2 + cX + d$ be distinct irreducible polynomials over F. Let $fg = X^4 + tX^3 + uX^2 + vX + w$. Show that the matrices

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -b & -a & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -d & -c \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -w & -v & -u & -t \end{pmatrix}$$

are conjugate in GL(4, F), the group of 4×4 invertible matrices with coefficients in F.

Spring 2002 Ph.D. Qualifying Examination Algebra Part II

General Directions: Work all problems in separate bluebooks. Give reasons for your assertions and state precisely any theorems that you quote.

Notation: Here \mathbb{F}_p denotes the finite field with p elements, and S_n denotes the symmetric group of degree n.

1. Let H be the subgroup of S_6 generated by (16425) and (16)(25)(34). Let H act on S_6 by conjugation. Show that the set

$$\Sigma = \{ (12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45) \}$$

is invariant under *H*. Hence obtain a homomorphism $\phi : H \to S_5$. Show that ϕ is an isomorphism.

2. Let Q be the group of order 8 having generators x and y such that $x^4 = y^4 = 1$, $x^2 = y^2$ and $xyx^{-1} = y^3$. Find the conjugacy classes of Q and compute its character table.

3. Let p and q be distinct primes. Show that the polynomial

$$\Phi(X) = X^{p-1} + X^{p-2} + \ldots + 1$$

has a root in \mathbb{F}_{q^2} if and only if $q \equiv \pm 1$ modulo p.

4. Let V be a finite dimensional complex vector space endowed with an inner product, that is, a positive definite Hermitian form \langle , \rangle . Let $T: V \to V$ be a linear transformation which commutes with its adjoint T^* , defined by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle \,.$$

Prove that V has a basis consisting of eigenvectors of T.

5. Let A be a commutative Noetherian ring with unit. An ideal $J \subset A$ is called a *radical ideal* if $x^n \in J$ implies that $x \in J$. Show that every proper radical ideal is a finite intersection of prime ideals. [Hint: Among counterexamples, a maximal one couldn't be prime.]