1. Let G be an unbounded open set in $(0, \infty)$, and let

 $D = \{x : nx \in G \text{ for infinitely many natural numbers } n\}.$

Prove that D is dense in $(0, \infty)$.

2. Suppose S is a linear subspace of $\mathbf{C}[0,1]$ such that for all $f \in S$,

$$\|f\|_{\infty} \le \lambda \|f\|_2$$

where $||f||_{\infty}$ and $||f||_2$ are the \mathcal{L}^{∞} (or sup) norm and the \mathcal{L}^2 norm, respectively. Let v_1, v_2, \ldots, v_n be orthonormal functions in S.

(a) For every x, show that there are numbers $a_i(x)$ $(1 \le i \le n)$ such that $\sum |a_k(x)|^2 = 1$ and such that

$$\sum a_k(x)v_k(x) = \left(\sum |v_k(x)|^2\right)^{1/2}$$

- (b) Show that $\sum |v_k(x)|^2 \leq \lambda^2$. (c) Show that dim $S \leq \lambda^2$.

3. Let $f \in \mathbf{C}^1(\mathbf{R})$ and suppose that f(x+1) = f(x) for all x. Prove that

$$||f||_{\infty} \le \int_0^1 |f(t)| \, dt + \int_0^1 |f'(t)| \, dt.$$

4. Let μ be a non-negative Borel measure on \mathbf{R}^2 with $\mu(\mathbf{R}^2) = 1$. Suppose that every set consisting of a single point has μ measure 0. Show that for every $\lambda \in (0, 1)$, there is Borel set E such that $\mu(E) = \lambda$.

5(a). Let f be a function in $\mathcal{L}^1(\mathbf{R})$ such that f = f * f, where * denotes convolution. Prove that f = 0 almost everywhere.

5(b). Find all functions f on **T** (the reals mod 1) such that f = f * f.

1. Let $f : \mathbf{R} \to \mathbf{R}$ be a function that is continuous except at a countable set of points. Prove that there is a sequence g_n of continuous functions such that $g_n(x) \to f(x)$ for all x.

Hint: Use piecewise linear functions.

2. Let $f : \mathbf{R} \to \mathbf{R}$ be a C^{∞} function with compact support. Suppose there is an infinite set S of positive integers such that

$$|f^{(n)}(x)| \le n!$$

for all $n \in S$ and for all $x \in \mathbf{R}$. Prove that $f \equiv 0$.

3. Let $g: \mathbf{R} \to \mathbf{R}$ be a C^1 function such that g(x+1) = g(x) for all x. Let

$$f(x) = \sum_{k=1}^{\infty} 2^{-k} g(2^k x).$$

Show that there is a number $A < \infty$ such that

$$|f(x) - f(y)| \le A |x - y| \cdot |\log |x - y||$$

for all x, y with $|x - y| \le \frac{1}{2}$.

Hint: Assume $2^{-n-1} \leq |x-y| \leq 2^{-n}$ and divide the series for f into two parts.

4(a). For every $\epsilon > 0$, show that there is function $f \in \mathcal{L}^1[0,1]$ such that: $f(x) \ge 0$, f(x) = 0 on a set of measure $\ge 1 - \epsilon$, and

$$\int_{a}^{b} f(x) \, dx > 0$$

for every interval 0 < a < b < 1.

4(b). Show that there is an absolutely continuous, strictly increasing function h on [0, 1] such that h'(x) = 0 on a set of measure $\geq 1 - \epsilon$.

5. Let $f \in C_0^{\infty}(\mathbf{R})$ be a function and let $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i x\xi} dx$ be its Fourier transform. Assume that $\hat{f}(\xi) = 0$ if $|\xi| \ge 1/2$. Show that

(i)
$$\hat{f}(\xi) = \sum_{n} f(n)e^{-2\pi i n\xi}$$

for $|\xi| \leq \frac{1}{2}$ and that

(ii)
$$f(x) = \sum_{n} f(n) \frac{\sin \pi (x-n)}{\pi (x-n)}$$