1. Let $K(x,y) \in \mathcal{C}^0([0,1] \times [0,1])$. Prove that the mapping

$$g(x) \mapsto f(x) = (Kg)(x) = \int_0^1 K(x, y)g(y) \, dy$$

is a compact mapping from C([0, 1]) to C([0, 1]).

2. Prove the Poisson summation formula:

$$\sum_{n=-\infty}^{\infty} f(x+2\pi n) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \hat{f}(k) e^{ikx}$$

for all f in the Schwartz space

$$S \equiv \{f : (1+x^2)^m | f^{(n)}(x) | \le C_{m,n} \text{ for all } m, n \ge 0\}.$$

Here $\hat{f}(\xi) = \int_{\mathbf{R}} f(x) e^{-ix\xi} dx.$

3. Let p be a number with $1 \le p < \infty$. Assume that f and f_n , $n = 1, 2, \ldots$ are functions in $L^p(\mathbf{R}^n)$ (with respect to standard Lebesgue measure), and that $f_n \to f$ almost everywhere. Prove that $||f_n - f||_{L^p} \to 0$ if and only if $||f_n||_{L^p} \to ||f||_{L^p}$.

4. Suppose that the real-valued function f(x) is nondecreasing on the interval [0, 1]. Prove that there exists a sequence of continuous functions $f_n(x)$ such that $f_n \to f$ pointwise on this interval.

5. Suppose $f \in L^1([0,1])$ but $f \notin L^2([0,1])$. Prove that there exists a complete orthonormal basis ϕ_n for $L^2([0,1])$ such that for each n, ϕ_n is continuous and moreover

$$\int_0^1 f(x)\phi_n(x)\,dx = 0.$$

6. Let λ_n be an arbitrary discrete sequence in **R**. Define

$$f(x) = \sum_{n=1}^{\infty} \frac{e^{i\lambda_n x}}{n^2}.$$

Prove that $f \in \mathcal{C}^0(\mathbf{R})$, and that

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x) \, dx$$

exists.

1. Does there exist a function $f \in \mathcal{C}^0([0,1])$ such that

$$\int_{0}^{1} xf(x) \, dx = 1, \text{ and}$$
$$\int_{0}^{1} x^{n} f(x) \, dx = 0 \quad \text{for } n = 0, 2, 3, \dots?$$

2. Let $\{U_n\}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Let $\{V_n\} \subset \mathcal{H}$ be such that $\sum ||V_n - U_n||^2 = S < \infty$. Show that the linear span of $\{V_n\}$ is a subspace of finite codimension. Prove in fact that when S < 1, then $\{V_n\}$ is a basis for \mathcal{H} .

3. Let $f_n \in L^p([0,1])$, $||f_n||_p \leq 1$ and assume that $f_n(x) \to 0$ almost everywhere. Prove that $f_n \to 0$ weakly.

4. Let (X_j, d_j) be metric spaces, j = 1, 2. Let $f : (X_1, d_1) \to (X_2, d_2)$ be distance nondecreasing, i.e. $d_2(f(y), f(z)) \ge d_1(y, z)$ for all $y, z \in X_1$. Are either of the following two implications true? Prove or give a counterexample.

- (a) If (X_1, d_1) is complete, then (X_2, d_2) is complete.
- (b) If (X_2, d_2) is complete, then (X_1, d_1) is complete.

5. Assume f real-valued and measurable on a probability measure space (e.g., on [0, 1] with Lebesgue measure) and write

$$\Phi(\lambda) = \mu(\{x : f(x) < \lambda\}).$$

Prove that for any continuous function g on \mathbf{R} ,

(a) $g \circ f$ is measurable.

(b) $g \circ f$ is integrable if and only if g is integrable with respect to the measure $d\Phi$, and

$$\int g \circ f \, d\mu = \int_{\mathbf{R}} g(\lambda) \, d\Phi(\lambda) \, .$$

6. Prove that for almost all $x \in [0, 1]$, there are at most finitely many rational numbers with reduced form p/q such that $q \ge 2$ and $|x - p/q| < 1/(q \log q)^2$.

Hint: Consider intervals of length $2/(q \log q)^2$ centered at rational points p/q.