
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2007

• 4930: Proposed by Kenneth Korbin, New York, NY.

Find an acute angle y such that cos(y) + cos(3y)− cos(5y) =
√

7
2

.

• 4931: Proposed by Kenneth Korbin, New York, NY.
A Pythagorean triangle and an isosceles triangle with integer length sides both have the
same length perimeter P = 864. Find the dimensions of these triangles if they both have
the same area too.

• 4932: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let ABC be a triangle with semi-perimeter s, in-radius r and circum-radius R. Prove
that

3
√

r2 + 3
√

s2 ≤ 2 3
√

2R2

and determine when equality holds.

• 4933: Proposed by José Luis Dı́az-Barrero and Juan José Egozcue, Barcelona, Spain.
Let n be a positive integer. Prove that

1
n

n∑
k=1

k

(
n

k

)1/2

≤ 1
2

√
(n + 1)2n.

• 4934: Proposed by Michael Brozinsky, Central Islip, NY.
Mrs. Moriaty had two sets of twins who were always getting lost. She insisted that one
set must chose an arbitrary non-horizontal chord of the circle x2 + y2 = 4 as long as the



chord went through (1, 0) and they were to remain at the opposite endpoints. The other
set of twins was similarly instructed to choose an arbitrary non-vertical chord of the same
circle as long as the chord went through (0, 1) and they too were to remain at the opposite
endpoints. The four kids escaped and went off on a tangent (to the circle, of course). All
that is known is that the first set of twins met at some point and the second set met at
another point. Mrs. Moriaty did not know where to look for them but Sherlock Holmes
deduced that she should confine her search to two lines. What are their equations?

• 4935: Proposed by Xuan Liang, Queens, NY and Michael Brozinsky, Central Islip, NY.
Without using the converse of the Pythagorean Theorem nor the concepts of slope, similar
triangles or trigonometry, show that the triangle with vertices A(−1, 0), B(m2, 0) and
C(0,m) is a right triangle.

Solutions

• 4894: Proposed by Kenneth Korbin, New York, NY.
Find the dimensions of a triangle with integer length sides, and with integer area, and
with perimeter 2006.
Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

There are three such triangles. Let (a, b, c) be the sides of the triangle; then

{(a, b, c, )} = {(493, 885, 628), (442, 649, 915), (697, 531, 778)}.

Let s be the semi-perimeter. Then s = 1003 = (17)(59). By Heron’s formula

area =
√

s(s− a)(s− b)(s− c) =
√

(17)(59)(1003− a)(1003− b)(1003− c).

As a, b, c are interchangeable and the area is an integer, we may write

s− a = 1003− a = 17k, 1 ≤ k ≤ 59,⇒ a = 1003− 17k

s− b = 1003− b = 59n, 1 ≤ n ≤ 17,⇒ b = 1003− 59n

s−c = 1003−c = 1003−(2006−a−b) = a+b−1003 = 1003−17k−59n ⇒ c = 17k+59n.

Then area =
√

(17)(59)(17k)(59n)(1003− 17k − 59n) = (17)(59)
√

kn(1003− 17k − 59n),
must be an integer. A spreadsheet search gives (k, n) = {(30, 2), (33, 6)(18, 8)} which gives
the above values for a, b, and c.

Also solved by Dionne Bailey, Elsie Campbell,& Charles Diminnie (jointly),
San Angelo, TX; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Harry Sedinger, St. Bonaventure, NY; David Stone & John
Hawkins, Statesboro, GA, and the proposer.

• 4895: Proposed by Kenneth Korbin, New York, NY.
The roots of x3 + 10x2 + 17x + 8 = 0 are the cubes of the roots of x3 + 4x2 + 5x + 2 = 0.
Find a cubic equation with roots that are the cubes of the roots of x3 + 5x2 + 4x + 2 = 0.
Solution by David C. Wilson, Winston-Salem, NC.

Consider the cubic equation x3 + ax2 + bx+ c = 0 with roots r, s, and t. Then r + s+ t =
−a, rs + rt + st = b, and rst = −c. Let x3 + Ax2 + Bx + C = 0 be the cubic equation
whose roots are r3, s3, and t3. Then

−a3 = (r + s + t)3 = r3 + s3 + t3 + 3(r2s + r2t + rs2 + s2t + rt2 + st2) + 6rst, and



−ab = (r + s + t)(rs + rt + st) ⇒ r2s + r2t + rs2 + s2t + rt2 + st2 = 3c− ab. Thus

r3 + s3 + t3 = −a3 − 3c + 3ab, r3s3 + r3t3 + s3t3 = b3 + 3c2 − 3abc, and r3 s3 t3 = −c3 .

Therefore the cubic equation x3+Ax2+Bx+C = 0 with roots r3, s3, and t3 has A = −r3−
s3− t3 = a3 +3c− 3ab, B = r3s3 + r3t3 + s3t3 = b3 +3c2− 3abc, andC = −r3 s3 t3 = c3 .
Thus, if a = 5, b = 4, and c = 2, then A = 53 + 3(2)− 3(5)(4) = 71, B = −44, and C = 8.
Therefore, the roots of the cubic equation x3 + 71x2 − 44x + 8 = 0 are the cubes of the
roots of the cubic equation x3 + 5x2 + 4x + 2 = 0.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, & Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Tom Leong, Scotrun, PA; Peter E. Liley, Lafayette, IN;
David E. Manes, Oneonta, NY; John Nord, Spokane, WA; David Stone &
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4896: Proposed by José Luis Dı́az-Barrero and Miquel Grau, Barcelona, Spain.
Let n be a positive integer. Prove that

n∏
k=1

k
√

k ! ≤
(
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4

)n

.

Solution by Ovidiu Furdui, Kalamazoo, MI.

The above inequality is equivalent to:
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k
√
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4

We notice that in view of A-G-M inequality we get that:
k
√

k! ≤ 1 + 2 + · · ·+ k

k
=

k + 1
2

Therefore we have in view of the A-G-M and of the above inequality that:
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=
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4

Also solved by Elsie M. Campbell, Dionne T. Bailey, & Charles Diminnie
(jointly), San Angelo, TX; Jahangeer Kholdi & Boris Rays (jointly), Portsmouth,
VA & Landover, MD; Tom Leong, Scotrun, PA; David E. Manes, Oneonta,
NY; Charles McCracken, Dayton, OH: David Stone & John Hawkins (jointly),
Statesboro, GA, and the proposers.

• 4897: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
Let α, β and γ be the angles of triangle ABC. Prove that

(csc2 α + csc2 β + csc2γ)(1 + cos α cos β cos γ) ≥ 9
2
.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo,
TX.



Since α + β + γ = π, we have

cos α cos β cos γ = (1/2) cos α [cos (β + γ) + cos (β − γ)]
= (1/2) cos α [cos (π − α) + cos (β − γ)]
= (1/2)

[
cos α cos (β − γ)− cos2 α

]
= (1/4)

[
cos (α + β − γ) + cos (α− β + γ)− 2 cos2 α

]
= (1/4)

[
cos (π − 2γ) + cos (π − 2β)− 2 cos2 α

]
= −(1/4)

[
cos (2γ) + cos (2β) + 2 cos2 α

]
= −(1/4)

[
1− 2 sin2 γ + 1− 2 sin2 β + 2− 2 sin2 α

]
= (1/2)

(
sin2 α + sin2 β + sin2 γ

)
− 1, and hence,

1 + cos α cos β cos γ =
1
2

(
sin2 α + sin2 β + sin2 γ

)
.

Therefore, by the Arithmetic-Geometric Mean Inequality,

(csc2 α + csc2 β + csc2 γ)(1 + cos α cos β cos γ)
= (1/2)(csc2 α + csc2 β + csc2 γ)(sin2 α + sin2 β + sin2 γ)

≥ (9/2) 3

√
csc2 α csc2 β csc2 γ

3
√

sin2 α sin2 β sin2 γ =
9
2
.

Further, equality is achieved if and only if sin2 α = sin2 β = sin2 γ. Since 0 < α, β, γ < π
and α + β + γ = π, equality occurs if and only if α = β = γ, i.e., if and only if 4ABC is
equilateral.

Also solved by Scott H. Brown, Montgomery, AL; Ovidiu Furdui, Kalamazoo,
MI; Tom Leong, Scotrun, PA; Peter E. Liley, Lafayette, IN; David E. Manes,
Oneonta, NY, and the proposer.

• 4898: Proposed by Michael Brozinsky, Central Islip, NY.
a) Suppose we have 2n people seated around a table. In how many ways can they shake
hands so that each person shakes hands with exactly one other person?
b) Find the probability that no two of these handshakes in part a) “cross” each other.
Solution by Paul M. Harms, North Newton, KS.

Consider a circle with integers 1 through 2n placed in an increasing clockwise fashion
around the circle with a person at each integer. The person at the 2n position has 2n− 1
possibilities for a handshake. After this person’s pick take one of the other 2n− 2 people.
There are 2n− 3 possibilities for a handshake. Continuing in this fashion there should be
(2n− 1)(2n− 3)(2n− 5) · · · (3)(1) possibilities for part a)
For part b) consider a handshake on the circle mentioned above as a chord of the circle.
We do not want chords to intersect. Consider (1, 2) as a handshake with person at 1
and 2. Let L2n be the number of ways non-intersecting chords are involved with a circle
of 2n points. Clearly L2 = 1 and L4 = 2, which are the sets of pairs {(1, 4)(3, 2)} and
{(3, 4)(1, 2)}. To find L6 note that with chords (6, 1) or (6, 5) there are 4 points which have
L4 non-intersecting chords. Also (6, 2) cannot be used since any chord with 1 intersects
chord (6, 2). In general, no odd number of points should be between the numbers of a
chord. With (6, 3) there are 2 integers on each side of the chord. Thus there are L2L2

non-intersecting chords. Then L6 = 2L4 + 1(L2)2 = 5. We have L8 = 2L6 + 2L2L4 =
10+4 = 14. The 2 with L6 can be considered for chords (8, 1) and (8, 5). The 2 with L2L4



can be considered for chords (8, 3) and (8, 5). Using this pattern we can find L2nfrom L
with smaller subscripts. We have

L2 = 1, L4 = 2, L6 = 5, L8 = 14,

L10 = 2L8 + 2L2L6 + 1(L4)2 = 42

L12 = 2L10 + 2L2L8 + 2L4L6 = 132, etc.

Let the probability of part b) be denoted by P2n. Then

P2 =
L2

1
= 1, P4 =

L4

3
=

2
3
, P6 =

L6

5(3)
=

1
3
, P8 =

L8

7(5)(3)
=

2
15

, · · ·, P2n =
2n

(n + 1)!
.

Also solved by N. J. Kuenzi, Oshkosh, WI; Tom Leong, Scotrun, PA; R.
P. Sealy, Sackville, New Brunswick, Canada; David Stone & John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 4899: Proposed by Laszlo Szuecs, Durango, CO.

Construct two externally tangent circles C1, C3 having radius R > 0. Let
R

4
< r < R and

construct two circles C2, C4 having radius r, such that each of C2, C4 is externally tangent
to both C1 and C2. Construct a “framing rectangle” ABCD such that AB is tangent to
C1 (only), BC is tangent to C1 and C2, CD is tangent to C3 (only), and DA is tangent
to C3 and C4. Express the dimensions of the framing rectangle in terms or R and r.
Solution by Tom Leong, Scotrun, PA.

Let Ok denote the center of Ck, k = 1, 2, 3, 4; P denote the point of tangency between
C1 and C3; and Q and S denote the projections of O4 and O1 respectively onto the line
through O3 and parallel to AB. If we find ϑ = 6 O3O1S, we can find the dimensions

AB = CD = 2R + O3S = 2R + O1O3 sinϑ = 2R + 2R sin ϑ and
BC = DA = 2R + O1S = 2R + O1O3 cos ϑ = 2R + 2R cos ϑ. (∗)

Since 6 QO3P is exterior to triangle O3O1S, we have 6 QO3P = ϑ + 90◦. Hence, looking
at triangles QO3O4 and PO3O4, we find

ϑ = 6 QO3P − 90◦ = 6 QO3O4 + 6 PO3O4 − 90◦

= cos−1 R− r

R + r
+ cos−1 R

R + r
− 90◦.

Substitution into (∗) and some straightforward trigonometry give

AB = CD = 2R + 2R
2r
√

2R2 + Rr −R(R− r)
(R + r)2

and

BC = DA = 2R + 2R
2R
√

Rr + (R− r)
√

r2 + 2Rr

(R + r)2

Comment. A calculation shows that, in fact, we require R/4 < r < (3 +
√

2 −
2
√

2 +
√

2)R, (note (3+
√

2−2
√

2 +
√

2) ≈ 0.7187) otherwise rectangle ABCD no longer
“frames” the four circles with AB tangent to C1 only (and CD tangent to C3 only).

When r = (3 +
√

2− 2
√

2 +
√

2)R the framing rectangle is a square, each of whose sides
is tangent to two of the circles.

Also solved by Jahangeer Kholdi & Boris Rays (jointly), Portsmouth, VA and
Landover, MD, and by the proposer.
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Solutions to the problems stated in this issue should be posted before
February 15, 2007

• 4936: Proposed by Kenneth Korbin, New York, NY.
Find all prime numbers P and all positive integers a such that P − 4 = a4.

• 4937: Proposed by Kenneth Korbin, New York, NY.
Find the smallest and the largest possible perimeter of all the triangles with integer-length
sides which can be inscribed in a circle with diameter 1105.

• 4938: Proposed by Luis Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b and c be the sides of an acute triangle ABC. Prove that

csc2 A

2
+ csc2 B

2
+ csc2 C

2
≥ 6

 ∏
cyclic

(
1 +

b2

a2

)1/3

• 4939: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
For any positive integer n, prove that{

4n +
[ n−1∑

k=0

3k+1/2

(
2n

2k + 1

)]2}1/2

is a whole number.

• 4940: Proposed by Michael Brozinsky, Central Islip, NY and Leo Levine, Queens, NY .
Let S = {n ∈ N |n ≥ 5}. Let G(x) be the fractional part of x, i.e., G(x) = x− [x] where
[x] is the greatest integer function. Characterize those elements T of S for which the



function
f(n) = n2

(
G
((n− 2)!

n

))
= n.

• 4941: Proposed by Tom Leong, Brooklyn, NY.
The numbers 1, 2, · · ·, 2006 are randomly arranged around a circle.
(a) Show that we can select 1000 adjacent numbers consisting of 500 even and 500 odd
numbers.
(b) Show that part (a) need not hold if the numbers were randomly arranged in a line.

Solutions

• 4900: Proposed by Kenneth Korbin, New York, NY.
Find three pairs of positive integers (a, b) with a < b such that triangles with sides (a, b, 25)
can be inscribed in a circle with diameter 65.
Solution by David E. Manes, Oneonta, NY.

Five such pairs of positive integers are (16, 39), (33, 52), (39, 56), (52, 63), and (60, 65). As-
sume the triangle has vertices A,B, and C with opposite sides a, b, and c respectively.
Then one can argue geometrically that sin(6 ACB) =

c

2R
, where R is the radius of the

circumscribed circle. Thus, sin( 6 ACB) =
25
65

=
5
13

so that cos(6 ACB) = ±12
13

. If

cos(6 ACB) =
12
13

, then by the law of cosines,

615 = a2 + b2 − 24ab

13
or 13a2 − 24ab + 13b2 − 625 · 13 = 0.

Note that the quadratic equation is symmetric in a and b. Solving for a, one obtains

a =
24b± 10

√
4225− b2

26
. (1)

Since a is an integer, it follows that 4225−b2 = x2 for some integer x. This equation has a
finite number of solutions for b; namely b = 16, 25, 33, 39, 52, 56, 60, 63, or 65. Substituting
the values 39, 52, 56, 63, and 65 for b in (1) and using the negative sign for the square

root yields the five stated solutions. Finally, if cos(6 ACB) =
−12
13

, then no solutions for
triangles are obtained.

Also solved by Dionne Bailey, Elsie Campbell,& Charles Diminnie (jointly),
San Angelo, TX; Paul M. Harms, North Newton, KS; Tom Leong, Brooklyn,
NY; Peter E. Liley, Lafayette, IN, and the proposer.

• 4901: Proposed by Kenneth Korbin, New York, NY.
Given pentagon ABCDE with sides AB = 468, BC = 580, CD = 1183, and DE = 3640.
Find the length of side AE so that the area of the pentagon is maximum.

Solution by Tom Leong, Brooklyn, NY.

Pentagon ABCDE along with its reflection about line AE yield an octagon all of whose
sides are given. Pentagon ABCDE has maximum area if and only if the octagon has
maximum area. It is well-known that the maximum area of a polygon with prescribed sides
occurs when the polygon is inscribed in a circle (see, for example, G. Polya, Mathematics



and Plausible Reasoning, Princeton University Press, 1990). Hence pentagon ABCDE
has maximum area when it is inscribed in a (semi)circle with AE as diameter.
Let O denote the center of this circle and put a = AB, b = BC, c = CD, d = DE, x =
AE and ϑa = 6 AEB, ϑb = 6 BEC, ϑc = 6 CAD,ϑd = 6 DAE. The (extended) Law of
Sines in triangle AEB gives sinϑa = a/x and consequently cos ϑa =

√
x2 − a2/x. We

obtain similar formulas for ϑb, ϑc, ϑd by looking at triangles BEC, CAD,DAE. Since
(ϑa + ϑb) + (ϑc + ϑd) = 1

2
6 AOC + 1

2
6 EOC = 90◦, we have sin(ϑa + ϑb) = cos(ϑc + ϑd).

Thus sinϑa cos ϑb + cos ϑa sinϑb = cos ϑc cos ϑd − sin ϑc sinϑd

a

x
·
√

x2 − b2

x
+
√

x2 − a2

x
· b

x
=
√

x2 − c2

x
·
√

x2 − d2

x
− c

x
· d

x

a
√

x2 − b2 + b
√

x2 − a2 =
√

(x2 − c2)(x2 − d2) − cd. Clearing radicals, we would obtain
a quartic equation in x2 which in theory is solvable. However, using a computer algebra
system is quicker and easier. Using the obvious bounds 3640 = d < x < a+b+c+d = 5871,
we obtain x = 4225 which can be verified as the exact answer.

Also solved by the proposer.

• 4902: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Prove that

FnFn+1 ≤
2

n + 1

n∑
k=1

kF 2
k

where Fk is the kth Fibonacci number defined by F0 = 0, F1 = 1 and for k ≥ 2, Fk =
Fk−1 + Fk−2.

Solution by Brian D. Beasely, Clinton, SC.

It is straightforward to show that the given inequality holds for n ∈ {1, 2, 3, 4}. For n ≥ 5,
we prove the stronger inequality

FnFn+1 ≤
2

n + 1
(nF 2

n), or equivalently Fn+1 ≤
2n

n + 1
Fn.

Since 5/3 ≤ 2n/(n + 1) for n ≥ 5, it suffices to show that Fn+1 ≤ (5/3)Fn for n ≥ 5.
We use the Binet formula Fn = (αn − βn)/

√
5 for n ≥ 0, where α = (1 +

√
5)/2 and

β = (1−
√

5)/2. Then

3Fn+1 ≤ 5Fn ⇐⇒ 3(αn+1 − βn+1)√
5

≤ 5(αn − βn)√
5

⇐⇒ (5− 3β)βn ≤ (5− 3α)αn,

where we note that both 5 − 3β and 5 − 3α are positive. Since β < 0 < α, this last
inequality holds for odd n. For even n, it holds when

n ≥ log((5− 3β)/(5− 3α))
log(α/|β|)

= 4,

so we are done.

Addendum. Using the Binet formula again and noting that α > 1 while |β| < 1, we have
the corresponding asymptotic result Fn+1 ∼

αn

n + 1
Fn.



Also solved by the proposer Dionne Bailey, Elsie Campbell & Charles Dimin-
nie, San Angelo, TX; N. J. Kuenzi, Oshkosh, WI; Tom Leong, Brooklyn, NY;
Carl Libis, Kingston, RI; Charles McCracken, Dayton, OH, and the proposer.

• 4903: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let n be a nonnegative integer. Prove that

(n!)4(n2 + 6n + 11)n ≥ 2n+232n+1(n + 1)n−3(n + 2)n−2(n + 3)n−1

Solution by Paul M. Harms, North Newton, KS.

When n is a positive integer an inequality from a Stirling Formula is n! >
√

2nπ(n/e)n.
Replacing the factorial in the problem by this (Stirling) inequality, it is shown below that
for large enough n,

22n2π2n4ne−4n(n2 + 6n + 11)n ≥ 2n2232n3(n + 1)n[(n + 2)(n + 3)]n

(n + 1)3(n + 2)2(n + 3)
.

Multiplying by positive numbers, simplifying and using n2 + 6n + 11 = (n + 3)2 + 2, the
last inequality is equivalent to the following inequality:

(n+1)3(n+2)2(n+3)n2π ≥ [2e432/n3]n[3/π][(n+1)/n]n[(n+2)(n+3)/{(n+3)2 +2}]n.

Note that 2e432 < 1000, 3/π < 1, (n + 2)(n + 3)/{n + 3)2 + 2} < 1 and [(n + 1)/n]n

approaches e from below as n increases.

When n is a positive integer greater than 9,

(n + 1)3(n + 2)2(n + 3)n2π > [1000/n3]n(1)(3)1n

> [2e432/n3]n[3/π][(n + 1)/n]n[(n + 2)(n + 3)/{(n + 3)2 + 2}]n.

This means that the original problem inequality holds when n is an integer greater than
9, To complete the problem show that the original problem inequality holds for n =
0, 1, 2, ··, 9.

Also solved by Tom Leong, Brooklyn, NY, and the proposer.

• 4904: Proposed by Richard L. Francis, Cape Girardeau, MO.
Let S be a set of positive integers such that for any element p in S which is sufficiently
large, either p−1 or p+1 is composite. Such a set is called an UP-DOWN set. The set of
primes is obviously in this category. Show that the set of perfect numbers, whether even
or odd, is an UP-DOWN set.
Solution by Charles McCracken, Dayton, OH.

If n is odd, then n− 1 and n + 1 are even and hence composite.
If n is even, n = 2p−1(2p − 1) where p is prime. Now

n = 2p−1(2p − 1) = 22p−1 − 2p−1 = 2odd − 2even

≡ 2− 1 ≡ 1 ≡ 1(mod3).

Therefore n− 1 ≡ 0(mod3) and hence composite.



Note we exclude the case where p = 2 and n = 6 which is the one exception to the general
statement.

Also solved by Charles Ashbacher, Cedar Rapids, IA; Brian D. Beasley, Clin-
ton, SC; Elsie M. Campbell, Dionne T. Bailey, & Charles Diminnie (jointly),
San Angelo, TX; Paul M. Harms, North Newton, KS; Jahangeer Kholdi,
Portsmouth, VA; Kenneth Korbin, New York, NY; N. J. Kuenzi, Oshkosh,
WI; Tom Leong, Brooklyn, NY; David E. Manes, Oneonta, NY; Boris Rays,
Landover, MD; R. P. Sealy, Sackville, New Brunswick, Canada, and the pro-
poser.

• 4905: Proposed by Richard L. Francis, Cape Girardeau, MO.
Consider a set S of positive integers in which the elements range over all possible numbers
of digits (such as the set of repunit numbers). Such a set S is called digitally complete.
Which of the following are digitally complete?

1. The set of factorials? 2. The set of primes?

Solution by N. J. Kuenzi, Oshkosh, WI.

1. Consider the set of factorials. For any positive integer n, let L(n) be the length of the
digital representation of n!
Examples: 3! = 6 so L(3) = 1, 5! = 120 so L(5) = 3, and 10! = 3, 628, 800 so L(10) = 7.
For n > 10, if m > n then L(m) > L(n). Now 100! = 100(99!) and so L(100) =
L(99) + 2. It follows that there isn’t any positive integer n for which the length of the
digital representation of n! is L(99) + 1.
If you are willing to do some multiplications you can numerically verify that L(14) = 11
and L(15) = 13. So there isn’t any positive integer n for which the length of the digital
representation of n! is 12. The set of factorials is not digitally complete.

2. Consider the set of primes. Primes less than 10 have a single digit representation.
Primes between 10 and 100 have a two digit representation. In general, any prime number
p between 10n−1 and 10n will have a digital representation of length n.
It is known that for x > 3 there is at least one prime number between x and 2x − 2.
(See Beiler, Albert H. Recreations in the Theory of Numbers: The Queen of Mathematics
Entertains, Dover Publications, Inc. 1964, p.227).
It follows from this result that there is at least one prime number between 10n−1 and 10n

and so there is a prime number which has digital representation of length n. The set of
primes is digitally complete.

Also solved by Brian D. Beasley, Clinton, SC; Russell Euler & Jawad Sadek
(jointly), Maryville, MO; Kenneth Korbin, New York, NY; Tom Leong, Brook-
lyn, NY; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH;
R. P. Sealy, Sackville, New Brunswick, Canada, and the proposer.

Late Solutions

Late solutions were received from R.P. Sealy of Sackville, New Brunswick, Canada
to problem 4889, and from David C. Wilson of Winston-Salem, NC to problem
4891.
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• 4942: Proposed by Kenneth Korbin, New York, NY.
Given positive integers a and b. Find the minimum and the maximum possible values of

the sum (a + b) if
ab− 1
a + b

= 2007.

• 4943: Proposed by Kenneth Korbin, New York, NY.
Given quadrilateral ABCD with AB = 19, BC = 8, CD = 6, and AD = 17. Find the
area of the quadrilateral if both AC and BD also have integer lengths.

• 4944: Proposed by James Bush, Waynesburg, PA.
Independent random numbers a and b are generated from the interval [−1, 1] to fill the

matrix A =
(

a2 a2 + b
a2 − b a2

)
. Find the probability that the matrix A has two real

eigenvalues.

• 4945: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Prove that

17 +
√

2
n∑

k=1

(
L4

k + L4
k+1 + L4

k+2

)1/2
= L2

n + 3L2
n+1 + 5LnLn+1

where Ln is the nth Lucas number defined by L0 = 2, L1 = 1 and for all n ≥ 2, Ln =
Ln−1 + Ln−2.

• 4946: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.



Let z1, z2 be nonzero complex numbers. Prove that
( 1
|z1|

+
1

|z2|

) (∣∣∣∣
z1 + z2

2
+
√

z1z2

∣∣∣∣ +
∣∣∣∣
z1 + z2

2
−
√

z1z2

∣∣∣∣

)
≥ 4.

• 4947: Proposed by Tom Leong, Brooklyn, NY.
Define a set S of positive integers to be among composites if for any positive integer n,
there exists an x ∈ S such that all of the 2n integers x± 1, x± 2, . . . , x±n are composite.
Which of the following sets are among composites? (a) The set {a + dk|k ∈ N} of terms
of any given arithmetic progression with a, d ∈ N, d > 0. (b) The set of squares. (c) The
set of primes. (d)∗ The set of factorials.

Solutions

• 4906: Proposed by Kenneth Korbin, New York, NY.
Given hexagon ABCDEF with sides AB = BC = CD = DE = EF = 1.
Find the length of side AF so that the area is maximum.

Solution by Harry Sedinger, St. Bonaventure, NY.
It is well known that a polygon with sides of equal length has maximum area when it is
also regular. In this case, the hexagon is half of a ten sided polygon P with sides of length
one. Thus the area of the hexagon is maximum when P is regular. In this case, the side
from A to F is the diameter of P and is well known to be equal to 1/sin 18o.

Comment by David E. Manes, Oneonta, NY. The solution follows from a more
general result; namely, given an n−gon with n−1 sides of unit length, then the length of
the remaining side that maximizes the area of the n− gon is csc(π/(2n− 2)). A beautiful
proof of this result attributed to Murray Klamkin is given in In Polya’s Footsteps, (R.
Honsberger, MAA, 1997, p. 30). Note that n=6 yields the stated result.

Also solved by Tom Leong, Brooklyn, NY; Boris Rays & Jahangeer, Kholdi
(jointly), Landover, MD & Portsmouth, MD (respectively), and the proposer.

• 4907: Proposed by Kenneth Korbin, New York, NY.
(a) Find the dimensions of all integer sided triangles with perimeter P > 200 and with
area K = 2P .
(b) Find the dimensions of all integer sided triangles with perimeter P > 2000 and with
area K = 3P .

Solution by David Stone and John Hawkins (jointly), Statesboro,GA.
Surprisingly, there don’t seem to be many solutions. Triangles with integer sides and
integer area are known as integer Heronian triangles (see Math Wold at wolfram.com).
There are infinitely many such triangles, but the given conditions place severe restrictions
on their size.
If a, b, c are the sides of such a triangle, with perimeter a + b + c and semiperimeter
s = (a+b+c)/2, then the area is given by Heron’s Formula as K =

√
s(s− a)(s− b)(s− c).

For (a) we believe there are three solutions:

(18, 289, 305) P = 612 K = 1224
(19, 153, 170) P = 342 K = 684
(21, 85, 104) P = 210 K = 420.



And for (b) there is exactly one solution:

(38, 1369, 1405) P = 2812 K = 8436.

We have much supporting evidence, but no conclusive proof, that these are all of the
solutions. We also have a general conjecture.
Conjecture: For any fixed scaling fctor r, there are only finitely many integer Heronian
triangles with K = rP . The largest such triangle is:

(4r2 + 2, (4r2 + 1)2, 16r4 + 12r2 + 1) P = 4(2r2 + 1)(4r2 + 1) K = 4r(2r2 + 1)(4r2 + 1).

Here is the method: Noting that each side of the triangle must be less than the semiperime-
ter s, we introduce a new parameter: Let s = c + e. where e ≥ 1. That is, (a +
b + c)/2 = c + e, so c = a + b − 2e, P = 2(a + b − e) and s = a + b − e. Moreover,
K2 = s(s− a)(s− b)(s− c) = (a + b− e)(b− e)(a− e)e.

Now, imposing the condition K = rP or K 2 = r2P2 we have (a + b− e)(b− e)(a− e)e =

r222(a + b − e)2 and solving for b, we find that b = e +
4r2a

ae− e2 − 4r2
. Because b and e

are integers, this implies that ae − e2 − 4r2 must be a divisor of 4r2a. There are many
such divisors, but the simplest is 1: set ae− e2 − 4r2 = 1, so e(a− e) = 4r2 + 1.

Again there may be many ways for e and a− e to achieve a factorization of 4r2 + 1, but
we select a simple factorization: set e = 4r2 + 1 and a − e = 1. This forces a = e + 1 =
4r2 + 2. We can then compute b = 16r4 + 12r2 + 1, and c = (4r2 + 1)2, and finally
P = 4(2r2 + 1)(4r2 + 1) and K = 4r(2r2 + 1)(4r2 + 1) which indeed equals rP .

By choosing other divisors and factorizations, we find other solutions (with much dupli-
cation!). However they all seem to be smaller than the one just demonstrated–thus our
conjecture.

For instance,with r = 2, we can make another easy choice for the divisor: let ae−e2−4r2 =
2, so we have e(a−e) = 18. Letting e = 18 and a−e = 1 produces the triangle (19, 153, 170)
noted earlier. Or by selecting ae−e2−16 = 4 and e = 20 we find the triangle (21, 85, 104).
All other choices we have made lead to triangles with perimeter < 200. Likewise with
r = 3, all other choices lead to triangles with perimeter< 2000,(except for the one noted
above (38,1369,1405)). If we want to put our trust in a machine, a computer search found
no other K = 3P triangles with P > 2000.

A connection to the Golden Ratio: Assuming the truth of our conjecture, the longest side
of the largest K = rP triangle is 16r4 +12r2 +1, which factors, not nicely using integers,
but nicely using the Golden Ratio: 16r4 + 12r2 + 1 = (4r2 + α2)(4r2 + β2), where α and
β are the roots of x2 − x− 1.

Comment by editor: Charles Diminnie of San Angelo, TX calls our attention to the
article “Pythagorean Triples and the Problem A=mP for Triangles” in the April 06 issue
of the Mathematics Magazine by Lubomir P. Markov. This article shows the degree of
complexity which is inherent in this problem. The problem though, was built by Ken
Korbin from formulas in an article by K. R. S. Sastry entitled “Heron Problems” (Journal
of Mathematics and Computer Education, 29(2), Spring, 1995).

Also solved by Dionne Bailey, Elsie Campbell, & and Charles Diminnie (jointly),
San Angelo, TX; David E. Manes, Oneonta, NY, and the proposer.



• 4908: Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Barcelona, Spain.

Evaluate
∫ 1

0
ex2

dx +
∫ e

1

√
lnx dx.

Solution I by N. J. Kuenzi, Oshkosh, WI.

The rectangle with corners at (0, 0), (1, 0), (1, e), and (0, e) has area of e square units. The
curve y = ex2 (or x =

√
ln y) splits the rectangle into two regions. The area of the lower

region is given by
∫ 1
0 ex2

dx and the area of the upper region is given by
∫ e
1

√
ln(y)dy. The

sum of the areas of the two regions is the area of the given rectangle which is e.
∫ 1

0
ex2

dx +
∫ e

1

√
ln(y)dy =

∫ 1

0
ex2

dx +
∫ e

1

√
ln(x)dx = e.

Solution II by R. P. Sealy, Sackville, New Brunswick, Canada.
The answer is e. Making the substitution x = et2 in the second integral and then inte-
grating by parts

∫ e
1

√
lnxdx =

∫ 1
0 2t2et2dt = e−

∫ 1
0 et2dt = e−

∫ 1
0 ex2

dt.

Also solved by Brain D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Michael Bronzinsky, Central Islip, NY; Elsie M. Campbell, Dionne T.
Bailey, & Charles Diminnie (jointly), San Angelo, TX; Ben Diener & Neil
Long (jointly), Upland, IN; Paul M. Harms, North Newton, KS; Karl Havlak,
San Angelo, TX; Daryl Henry, David Kasper, & Rebekah Bergens (jointly),
Upland, IN; Julia Hess, Cassandra Johnston, & Peter Schweitzer (jointly),
Upland, IN; Jahangeer Kholdi, Portsmouth, VA; William R. Klinger, Upland,
IN; Tom Leong (two solutions), Brooklyn, NY; Kevin Little, Jonas Herum, &
Aaron Hoesli (jointly), Upland, IN; Brian Lucarelli, Waynesburg, PA; David
E. Manes, Oneonta, NY; Boris Rays, Landover, MD; Harry Sedinger, St.
Bonaventure, NY; David Stone & John Hawkins (jointly), Statesboro, GA;
Aziz Zahraoui, Portsmouth, VA, and the proposers.

• 4909: Proposed by José Luis Dı́az-Barrero Barcelona, Spain.
Prove that

(a2b + b2a)(a2c + c2a)(b2c + c2b) >
1
8

for any a, b, c ∈ (0, 1).

Solution by Michael Brozinsky, Central Islip, NY.

Let (x, y) be interior to the square S bounded by x = 0, x = 1, y = 0, and y = 1. Let
C denote an arbitrary constant in [0, 1). The function F (x, y) = x2y + y2x is symmetric
about the line y = x and F (x, x + C) > F (x, x) if C > 0 since x2(x+C) > x2x and
(x + C)2x > x2x. Hence, in determining the greatest lower bound to F (x, y) on S, it
suffices to consider C=0; i.e., the function g(x) = F (x, x) = 2x2x.
Now g′(x) = 2x2x(2 ln(x) + 2) and so (by the first derivative test), g(x) has an absolute
minimum on (0, 1) when ln(x) = −1; i.e., when x = 1/e, g(x)= 2(1/2)2/e = A. The
expression in the problem is merely F (a, b) · F (a, c) · F (b, c) and its absolute minimum is
thus A3 which is approximately 0.88, which is greater than 7/8.

Also solved by Tom Leong (two solutions), Brooklyn, NY; David E. Manes,
Oneonta, NY; David Stone & John Hawkins (jointly), Statesboro, GA, and
the proposer.



• 4910: Proposed by Karl Havlak, San Angelo, TX.
A man began an evening with $10. He visited 10 casinos and doubled his money at each
casino. Upon exiting one of the casinos, he found a couple of paper bills on the ground
of U.S. currency ($1, $2, $5, $10, $20, $50, $100). If he left the last casino with $10,656,
can we determine exactly how much money he found on the ground and when he found
it?

Solution by Carl Libis, Kingston, RI.
$10 doubled 10 times is 10(210) = $10, 240. The difference between $10,240 and $10,656 is
$416. Keep dividing $416 by 2 until the value is not an integer. These values are 416, 208,
104, 52, 26, 13, and 6.5. The only value that is the sum of U.S. currency is $52=$50+$2.
Therefore the man found $52 on the ground after leaving the seventh casino.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, & Charles Diminnie (jointly) ,
San Angelo, TX; Ben Diener & Neil Long (jointly), Upland, IN; Paul M.
Harms, North Newton, KS; Tom Leong, Brooklyn, NY; Julia Hess, Cassandra
Johnston, & Peter Schweitzer (jointly), Upland, IN; David Kasper, Rebekah
Bergens, & Daryl Henry (jointly), Upland, IN; Kevin Little, Aaron Hoesli,
& Jonas Herum (jointly), Upland, IN; Jahangeer Kholdi, Portsmouth, VA;
William R. Klinger, Upland, IN; Kenneth Korbin, NY, NY; N. J. Kuenzi,
Oshkosh, WI; Peter E. Liley, Lafayette, IN; Susan Malkowski, Richmond,
KY; David E. Manes, Oneonta, NY; Melfried Olson, Honolulu, HI; Jennifer
Pevley, Richmond, KY; Boris Rays, Landover, MD; R. P. Sealy, Sackville, New
Brunswick, Canada; Harry Sedinger, St. Bonaventure, NY; Tonya Simmons,
Montgomery, AL, and the proposer.

• 4911: Proposed by Richard L. Francis, Cape Girardeau, MO.
It is easy to show, if zero factors are ignored, that the product of the squares of the six
trigonometric functions is 1. Is it possible for the sum of these squares also to equal 1?

Solution by Brian D. Beasley, Clinton, SC.
Yes, provided that we define the trigonometric functions for complex variables. We seek z

such that sin2 z +cos2 z +tan2 z +cot2 z +sec2 z +csc2 z = 1, or
sin2 z

cos2 z
+

cos2 z

sin2 z
+

1
cos2 z

+
1

sin2 z
= 0. This is equivalent to sin4 z + (1 − sin2 z)2 + 1 = 0, so we need a solution of

the equation sin z = ±
√

1
2
(1 ± i

√
3) = ±1

2
(
√

3 ± i). Since sin z = (eiz − e−iz)/(2i), we

have eiz = ±1
2
± i
√

3
2

±

√
1
2
± i
√

3
2

, where the second and fourth plus/minus signs are

the same. Focusing on only one solution for z, we find z =
π

4
− i ln

(√
2(1 +

√
3)

2

)

.

For this value of z, it is straightforward to verify that sin z = (
√

3− i)/2, and hence the
sum of the squares of the six trigonometric functions at z will equal 1.

Comment by editor: R. P. Sealy of Sackville, New Brunswick, Canada is the only
other individual of the 26 who submitted a solution to this problem that considered
complex values for the argument. When restricted to the real domain, it is easily shown
that the sum of the squares cannot be equal to one.
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• 4948: Proposed by Kenneth Korbin, New York, NY.
The sides of a triangle have lengths x1, x2, and x3 respectively. Find the area of the
triangle if

(x− x1)(x− x2)(x− x3) = x3 − 12x2 + 47x− 60.

• 4949: Proposed by Kenneth Korbin, New York, NY.
A convex pentagon is inscribed in a circle with diameter d. Find positive integers a, b,
and d if the sides of the pentagon have lengths a, a, a, b, and b respectively and if a > b.
Express the area of the pentagon in terms of a, b, and d.

• 4950: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

a + b
4
√

a3 + 4
√

b3
+

b + c
4
√

b3 + 4
√

c3
+

c + a
4
√

c3 + 4
√

a3
≥ 3.

• 4951: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let α, β, and γ be the angles of an acute triangle ABC. Prove that

π sin

√
α2 + β2 + γ2

π
≥ α sin

√
α + β sin

√
β + γ sin

√
γ.



• 4952: Proposed by Michael Brozinsky, Central Islip, NY & Robert Holt, Scotch Plains,
NJ.
An archeological expedition discovered all dwellings in an ancient civilization had 1, 2, or
3 of each of k independent features. Each plot of land contained three of these houses
such that the k sums of the number of each of these features were all divisible by 3.
Furthermore, no plot contained two houses with identical configurations of features and
no two plots had the same configurations of three houses. Find a) the maximum number
of plots that a house with a given configuration might be located on, and b) the maximum
number of distinct possible plots.

• 4953: Proposed by Tom Leong, Brooklyn, NY.
Letπ(x) denote the number of primes not exceeding x. Fix a positive integer n and define
sequences by a1 = b1 = n and

ak+1 = ak − π(ak) + n, bk+1 = π(bk) + n + 1 for k ≥ 1.

a) Show that lim
k→∞

ak is the nth prime.

b) Show that lim
k→∞

bk is the nth composite.

Solutions

• 4912: Proposed by Kenneth Korbin, New York, NY.
Find an explicit formula for the N th term for the sequence

2, 15, 88, 475, 2472, · · ·, tN , · · ·

where tN = 10tN−1 − 31tN−2 + 30tN−3.
Solution by Bryce Duncan (student), Auburn University-Montgomery, AL.

The characteristic equation for the linear recurrence is

λ3 − 10λ2 + 31λ− 30 = (λ− 2)(λ− 3)(λ− 5) = 0.

The general formula for tN will be given by tN = α1(2N ) + α2(3N ) + α3(5N ) for some αi.
Using the initial conditions with 2, 15, and 88 corresponding to N = 0, 1, 2 respectively,
we arrive at the linear system:

2 = α1 + α2 + α3

15 = 2α1 + 3α2 + 5α3

88 = 4α1 + 9α2 + 25α3.

Solving this yields α1 = −2/3, α2 = −3/2, +α3 = 25/6. And so

tN = −2
3
(2N )− 3

2
(3N ) +

25
6

(5N ). tN =
−2N+2 − 3N+2 + 5N+2

6
.

Also solved by Brian D. Beasley, Clinton, SC; Dionne Bailey, Elsie Camp-
bell, & Charles Diminnie (jointly), San Angelo, TX; José Luis Dı́az-Barrero,
Barcelona, Spain; Rebecca Duff (student), Waynesburg College, PA; Paul M.
Harms, North Newton, KS; N. J. Kuenzi, Oshkosh, WI; David E. Manes,



Oneonta, NY; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone
& John Hawkins (jointly), Statesboro, GA; David C. Wilson, Winston-Salem,
NC, and the proposer.

• 4913: Proposed by Kenneth Korbin, New York, NY.
The number 256 = 28 has 9 positive integer divisors which are 1, 2, 4, 8, 16, 32, 64, 128, 256.
Find the smallest number with 256 positive integer divisors.
Solution by Paul M. Harms, North Newton, KS.

Each prime number has two positive integer divisors. We also see that any prime factor
raised to the power n has n + 1 positive integer divisors. If we multiply prime factors,
the quantity of positive integer divisors is the product of the number of positive integer
divisors of each prime factor. For example, 23(3)(5) has 24positive integer divisors. For
this problem we need prime factors raised to powers which have 2n positive integer divisors
where n is a positive integer. A number like 23 has 4 = 22 positive integer divisors and
27 has 8 = 23 positive integer divisors.
To find the number satisfying the problem, I will start with all prime numbers raised
to the first power and then decrease the number by changing powers of the smaller
primes and excluding the large primes. The numbers 2(3)(5)(7)(11)(13)(17)(19) has
28 positive integer divisors. The following number have 28 positive integers divisors:
23(3)(5)(7)(11)(13)(17) and N = 23(3)(5)(7)(11)(13). The next highest power of 2 or
3 that we need is the power of 7. Clearly, numbers like 2733(5)(7)(11), 2337(5)(11) or
233355(7)(11) are all greater than N . The smallest number which satisfies the problem is
N = 2333(5)(7)(11)(13) = 1, 081, 080.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Bryce Duncan, Montgomery, AL; Jeff Herrin, Richmond, KY; Bryan Howard,
Wetumpka, AL; N. J. Kuenzi, Oshkosh, WI; Carl Libis, Kingston, RI; David
E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Yair Mulian, Beer-
Sheva, Israel; R. P. Sealy, Sackville, New Brunswick, Canada; April Spears,
Richmond, KY; David Stone & John Hawkins (jointly), Statesboro, GA;David
C. Wilson, Winston-Salem, NC, and the proposer.

• 4914: Proposed by Kenneth Korbin, New York, NY.
Find three primitive Pythagorean triangles which all have the same length perimeter
14280.
Solution by David C. Wilson, Winston-Salem, NC.

The three sides of a PPT are m2 − n2, 2mn, m2 + n2 where(m,n) = 1 and m and n
have different parity. Since the perimeter must be 14280, (m2 − n2) + 2mn + (m2 +

n2) = 14280 =⇒ m2 + mn = 7140 =⇒ n =
7140
m

− m. Thus, m must be a divisor of

7140 = 22 · 3 · 5 · 7 · 17. There are 48 divisors of 7140, but we need to check only the
24 divisors between 1 and 85.The only three that work are m = 60, 68, 84. If m = 60,
then n = 59 and the sides are 119, 7080, 7081; if m = 68, then n = 37 and the sides are
3255, 5032, 5993; and if m = 84, then n = 1 and the sides are 7055, 168, 7057.

Also solved by Charles Ashbacher, Cedar Rapids, IA; Brian D. Beasley, Clin-
ton, SC; Elsie M. Campbell, Dionne T. Bailey, & Charles Diminnie (jointly),
San Angelo, TX; Pat Costello, Richmond, KY; William R. Klinger, Up-



land, IN; N. J. Kuenzi, Oshkosh, WI; Peter E. Liley, Lafayette, IN; David
E. Manes,Oneonta, NY; Charles McCracken, Dayton, OH; Amihai Menuhin,
Beer-Sheva, Israel; John Nord, Spokane, WA; R. P. Sealy, Sackville, New
Brunswick, Canada; Harry Sedinger, St. Bonaventure, NY; Boris Rays &
Jahangeer Kholdi (jointly), Landover, MD & Portsmouth, VA (respectively);
David Stone & John Hawkins (jointly), Statesboro, GA; and the proposer.
This problem was also solved by the following students at Taylor University:
Ben Diener & Neil Long (jointly), Kevin Little, Aaron Hoesli, & Jonas Herum
(jointly), David Kasper, Rebekah Bergens & Daryl Henry (jointly); and by the
following students at Eastern Kentucky University: Charles Groce, Ceyhun
Ferik &Yongbok Lee (jointly); April Spears, and Martina Bray.

• 4915: Proposed by Isabel Dı́az Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Find the following sums:

(a)
∞∑

n=1

1003n2n+1

(n + 2)!
, (b)

∞∑

n=1

n

n4 + 4n2 + 16
.

Solution by Brian D. Beasley, Clinton, SC.

(a) We have
∞∑

n=1

1003n2n+1

(n + 2)!
= 1003

∞∑

n=1

(
1− 2

n + 2

) 2n+1

(n + 1)!
= 1003

∞∑

n=1

(
2n+1

(n + 1)!
− 2n+2

(n + 2)!

)

,

so the series telescopes to the sum 1003(2) = 2006.

(b) We have

∞∑

n=1

n

n4 + 4n2 + 16
=

∞∑

n=1

( 1/4
n2 − 2n + 4

− 1/4
n2 + 2n + 4

)

=
∞∑

n=1

( 1/4
(n− 2)2 + 2(n− 2) + 4

− 1/4
n2 + 2n + 4

)
,

so the series telescopes to the sum
1
4

(1
3

+
1
4

)
=

7
48

.

Also solved by Chris Boucher, Salem, MA; Elsie M. Campbell, Dionne T.
Bailey, & Charles Diminnie, San Angelo, TX; Paul M. Harms, North Newton,
KS; David E. Manes, Oneonta, NY; David Stone & John Hawkins, Statesboro,
GA; Jon Welch, Pensacola, FL; David C. Wilson, Winston-Salem, NC, and
the proposers.

• 4916: Proposed by Isabel Dı́az Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let n be a positive integer. Prove that

ln(1 + F 2
n) ln(1 + L2

n) ≤ ln2(1 + F2n)

where Fn is the nth Fibonacci number and Ln is the nth Lucas number.
Solution by Charles R. Diminnie, San Angelo, TX.



To begin, let f (x) = ln (1 + ex)− ex. Since, lim
x→−∞

f (x) = 0 and

f ′ (x) = − e2x

1 + ex
< 0

for all x, we have f (x) < 0 for all x. Next, if g (x) = ln [ln (1 + ex)], then for all x,

g′ (x) =
ex

(1 + ex) ln (1 + ex)
and g′′ (x) =

ex [ln (1 + ex)− ex]
(1 + ex)2 ln2 (1 + ex)

=
exf (x)

(1 + ex)2 ln2 (1 + ex)
< 0.

Hence, g (x) is concave down for all x and we get

g
(

x + y

2

)
≥ g (x) + g (y)

2

=⇒ ln
[
ln

(
1 + e

x+y
2

)]
≥ ln [ln (1 + ex)] + ln [ln (1 + ey)]

2
(1)

=⇒ ln
[
ln2

(
1 + e

x
2 e

y
2

)]
≥ ln [ln (1 + ex) ln (1 + ey)]

=⇒ ln2
(
1 + e

x
2 e

y
2

)
≥ ln (1 + ex) ln (1 + ey)

for all x, y. If α, β > 0, substituting x = 2 lnα and y = 2 lnβ in (1) yields

ln2 (1 + αβ) ≥ ln
(
1 + α2

)
ln

(
1 + β2

)
. (2)

Since F2n = FnLn and Fn, Ln > 0 for all n ≥ 1, it follows by (2) that

ln
(
1 + F 2

n

)
ln

(
1 + L2

n

)
≤ ln2 (1 + FnLn) = ln2 (1 + F2n) .

Remark. Statement (2) is a special case of Problem 3099 in the December, 2005 issue
of Crux Mathematicorum.

Also solved by David Stone & John Hawkins (jointly), Statesboro, GA, and
the proposers.

• 4917: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let n be a positive integer. Prove that
n∑

k=0

{ 1
n

n∑

j=0
j !=k

(
n

j

)2}1/2

≥ 2n.

Solution by Dionne Bailey, Elsie Campbell & Charles Diminnie, San Angelo,
TX.

We will use the well-known result
n∑

i=0

(
n

i

)

= 2n. By the Arithmetic Mean - Root Mean

Square Inequality, we have





1
n

n∑

j=0
j !=k

(
n

j

)2





1
2

≥ 1
n

n∑

j=0
j !=k

(
n

j

)

=
2n −

(n)

n
for k = 0, 1, . . . ,n.

Therefore,

n∑

k=0





1
n

n∑

j=0
j !=k

(
n

j

)2





1
2

≥ 1
n

n∑

k=0

[

2n −
(

n

k

)]

=
1
n

[(n + 1) 2n − 2n] = 2n.

Also solved by David E. Manes, Oneonta, NY; David Stone & John Hawkins,
two solutions, (jointly), Statesboro, GA, and the proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 1, 2007

• 4954: Proposed by Kenneth Korbin, New York, NY.
Find four pairs of positive integers (a, b) that satisfy

a + i

a− i
· b + i

b− i
=

111 + i

111− i

with a < b.

• 4955: Proposed by Kenneth Korbin, New York, NY.
Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

• 4956: Proposed by Kenneth Korbin, New York, NY.
A circle with radius 3

√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [a, b] → R ( 0 < a < b) be a continuous function on [a, b] and derivable in (a, b).



Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√

ab
· ln(ab/c2)
ln(c/a) · ln(c/b)

.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.
Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solutions

• 4918: Proposed by Kenneth Korbin, New York, NY.
Find the dimensions of an isosceles triangle that has integer length inradius and sides and
which can be inscribed in a circle with diameter 50.

Solution by Paul M. Harms, North Newton, KS.
Put the circle on a coordinate system with center at (0, 0) and the vertex associated with
the two equal sides at (0, 25). Also make the side opposite the (0, 25) vertex parallel to
the x-axis. Using (x, y) as the vertex on the right side of the circle, we have x2 + y2 =
252 = 625. Let d be the length of the equal sides. Using the right triangle with vertices
at (0, 25), (0, y), and (x, y) we have (25− y)2 + x2 = d2.

Then d2 = (25 − y)2 + (252 − y2) = 1250 − 50y; the semi-perimeter s = x + d and the

inradius r =

√
x2(d− x)

d + x
. Using x2 + y2 = 252, we will check to see if x = 24 and y = 7

satisfies the problem. The number d2 = 900, so d = 30. The inradius r =

√
242(6)

54
= 8.

Thus the isosceles triangle with side lengths 30, 30, 48 and r = 8 satisfies the problem. If
x = 24 and y = −7, then d = 40 and r = 12. The isosceles triangle with side lengths
40, 40, 48 and r = 12 also satisfies the problem.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX; Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta, NY;
David Stone and John Hawkins, Statesboro, GA; David C. Wilson, Winston-
Salem, NC, and the proposer.

• 4919: Proposed by Kenneth Korbin, New York, NY.
Let x be any even positive integer. Find the value of

x/2∑

k=0

(
x− k

k

)

2k.



Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX.

To simplify matters, let x = 2n and

S (n) =
n∑

k=0

(
2n− k

k

)

2k.

Since (
m

i

)

=
(

m− 1
i− 1

)

+
(

m− 1
i

)

for m ≥ 2 and 1 ≤ i ≤ m− 1, we have
(

2n + 4− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 2− k

k − 1

)

+
(

2n + 2− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

+
(

2n + 2− k

k

)

=
(

2n + 2− k

k

)

+ 2
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

for n ≥ 1 and 2 ≤ k ≤ n + 1.
Therefore, for n ≥ 1,

S (n + 2) =
n+2∑

k=0

(
2n + 4− k

k

)

2k

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 4− k

k

)

2k + 2n+2

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 2− k

k

)

2k + 2
n+1∑

k=2

(
2n + 3− k

k − 1

)

2k

−
n+1∑

k=2

(
2n + 2− k

k − 2

)

2k + 2n+2

= 4 +
n+1∑

k=0

(
2n + 2− k

k

)

2k + 2
n∑

k=1

(
2n + 2− k

k

)

2k+1 −
n−1∑

k=0

(
2n− k

k

)

2k+2 + 2n+2

= S (n + 1) + 4
n+1∑

k=0

(
2n + 2− k

k

)

2k −
n−1∑

k=0

(
2n− k

k

)

2k+2 − 2n+2

= 5S (n + 1)− 4
n∑

k=0

(
2n− k

k

)

2k

= 5S (n + 1)− 4S (n) .

To solve for S (n), we use the usual techniques for solving homogeneous linear difference
equations with constant coefficients. If we look for a solution of the form S (n) = tn,
with t '= 0, then



S (n + 2) = 5S (n + 1)− 4S (n)

becomes
t2 = 5t− 4,

whose solutions are t = 1, 4. This implies that the general solution for S (n) is

S (n) = A · 4n + B · 1n = A · 4n + B,

for some constants A and B. The initial conditions S (1) = 3 and S (2) = 11 yield A =
2
3

and B =
1
3
. Hence,

S (n) =
2
3

· 4n +
1
3

=
22n+1 + 1

3
for all n ≥ 1. The final solution is

x/2∑

k=0

(
x− k

k

)

2k =
2x+1 + 1

3

for all even positive integers x.

Also solved by David E. Manes, Oneonta, NY, David Stone, John Hawkins,
and Scott Kersey (jointly), Statesboro, GA, and the proposer.

• 4920: Proposed by Stanley Rabinowitz, Chelmsford, MA.
Find positive integers a, b, and c (each less than 12) such that

sin
aπ

24
+ sin

bπ

24
= sin

cπ

24
.

Solution by John Boncek, Montgomery, AL.

Recall the standard trigonometric identity:

sin(x + y) + sin(x− y) = 2 sinx cos y.

Let x + y =
aπ

24
and x− y =

bπ

24
. Then

sin
aπ

24
+ sin

bπ

24
= 2 sin

(a + b)π
48

cos
(a− b)π

48
.

We can make the right hand side of this equation equal to sin
cπ

24
if we let a− b = 16 and

a + b = 2c, or in other words, by choosing a value for c and then taking a = 8 + c and
b = c− 8.
Since we want positive solutions, we start by taking c = 9. This gives us a = 17 and b = 1.

Since sin
17π

24
= sin

7π

24
, replace a = 17 by a = 7 and we have a solution a = 7, b = 1 and

c = 9.
By taking c = 10 and c = 11 and using the same analysis, we obtain two additional triples
that solve the problem, namely: a = 6, b = 2, c = 10 and a = 5, b = 3, c = 11.



Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Kenneth Korbin, NY, NY; Peter, E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4921: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Evaluate
∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx.

Solution by Michael C. Faleski, Midland, MI.

Call this integral I. Now, substitute sin2 x = 1 − cos2 x and add to the numerator
sin2006 x− sin2006 x to give

I =
∫ π/2

0

2006 + sin2006 x + cos2006 x− (2006 cos2 x + sin2006 x)
2006 + sin2006 x + cos2006x

dx

=
∫ π/2

0
dx−

∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx.

The second integral can be transformed with u = π/2− x to give
∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx = −

∫ 0

π/2

cos2006 u + 2006 sin2 u

2006 + sin2006 u + cos2006 u
du = I.

Hence, I =
∫ π/2
0 dx− I =⇒ 2I =

π

2
=⇒ I =

π

4
.

∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx =

π

4
.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Ovidiu Furdui, Kala-
mazoo, MI; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the pro-
poser.

• 4922: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b be real numbers such that 0 < a < b and let f : [a, b] → R be a continuous
function in [a, b] and derivable in (a, b). Prove that there exists c ∈ (a, b) such that

cf(c) =
1

ln b− ln a

∫ b

a
f(t) dt.

Solution by David E. Manes, Oneonta, NY.

For each x ∈ [a, b], define the function F (x) so that F (x) =
∫ x
a f(t)dt. Then F (b) =∫ b

a f(t)dt, F (a) = 0 and, by the Fundamental Theorem of Calculus, F ′(x) = f(x) for each
x ∈ (a, b).
Let g(x) = ln(x) be defined on [a, b]. Then both functions F and g are continuous on

the closed interval [a, b] and differentiable on the open interval (a, b) and g′(x) =
1
x
'= 0



for each x ∈ (a, b). By the Extended Mean-Value Theorem, there is at least one number
c ∈ (a, b) such that

F ′(c)
g′(c)

=
F (b)− F (a)
g(b)− g(a)

=

∫ b

a
f(t)dt

ln b− ln a
.

Since
F ′(c)
g′(c)

= cf(c), the result follows.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M.
Harms, North Newton, KS; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4923: Proposed by Michael Brozinsky, Central Islip, NY.
Show that if n ≥ 6 and is composite, then n divides (n− 2)!.
Solution by Brian D. Beasley, Clinton, SC.

Let n be a composite integer with n ≥ 6. We consider two cases:
(i) Assume n is not the square of a prime. Then we may write n = ab for integers a and
b with 1 < a < b < n− 1. Thus a and b are distinct and are in {2, 3, . . . , n− 2}, so n = ab
divides (n− 2)!.
(ii) Assume n = p2 for some odd prime p. Then n− 2 = p2 − 2 ≥ 2p, since p > 2. Hence
both p and 2p are in {3, 4, . . . , n− 2}, so n = p2 divides (n− 2)!.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Luke Drylie (student, Old Dominion U.), Chesa-
peake, VA; Kenneth Korbin, NY, NY; Paul M. Harms, North Newton, KS;
Jahangeer Kholdi, Portsmouth, VA; N. J. Kuenzi, Oshkosh, WI; David E.
Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays, Chesa-
peake, VA; Harry Sedinger, St. Bonaventure, NY; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4924: Proposed by Kenneth Korbin, New York, NY.

Given
∞∑

N=1

FN

KN
= 3 where FN is the N th Fibonacci number. Find the value of the positive

number K.
Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

The ratio test along with the fact that lim
n→∞

Fn+1

Fn
=

1 +
√

5
2

implies
∞∑

n=1

Fn

Kn
converges

for K >
1 +

√
5

2
. Then

3 =
∞∑

n=1

Fn

Kn
=

1
K

+
1

K2
+

∞∑

n=3

Fn

Kn

=
1
K

+
1

K2
+

∞∑

n=3

Fn−1 + Fn−2

Kn

=
1
K

+
1

K2
+

1
K

∞∑

n=3

Fn−1

Kn−1
+

1
K2

∞∑

n=3

Fn−2

Kn−2



=
1
K

+
1

K2
+

1
K

(
3− 1

K

)
+

3
K2

=
4
K

+
3

K2
⇒ K =

2 +
√

13
3

.

Also solved by Brian D. Beasley, Clinton, SC; Sam Brotherton (student,
Rockdale Magnet School For Science and Technology), Conyers, GA; Elsie
M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo,
TX; José Luis Dı́az-Barrero, Barcelona, Spain; Luke Drylie (student, Old Do-
minion U.), Chesapeake, VA; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi and Boris Rays (jointly), Portsmouth, VA & Chesapeake,VA (respec-
tively); N. J. Kuenzi, Oshkosh, WI; Tom Leong, Scotrun, PA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4925: Proposed by Kenneth Korbin, New York, NY.
In the expansion of

x4

(1− x)3(1− x2)
= x4 + 3x5 + 7x6 + 13x7 + · · ·

find the coefficient of the term with x20 and with x21.
Solution 1 by Brian D. Beasley, Clinton, SC.

We have

1
(1− x)3(1− x2)

=
1

(1− x)4(1 + x)

= (1− x + x2 − x3 + · · ·)(1 + x + x2 + x3 + · · ·)4

= (1− x + x2 − x3 + · · ·)(1 + 2x + 3x2 + 4x3 + · · ·)2

= (1− x + x2 − x3 + · · ·)(1 + 4x + 10x2 + 20x3 + · · ·),

where the coefficients of the second factor in the last line are the binomial coefficients
C(k, 3) for k = 3, 4, 5, . . .. Hence, allowing for the x4 in the original numerator, the
desired coefficient of x20 is

19∑

k=3

C(k, 3)(−1)19−k = 525.

Similarly, the desired coefficient of x21 is
20∑

k=3

C(k, 3)(−1)20−k = 615.

Solution 2 by Tom Leong, Scotrun, PA.

Equivalently, we find the coefficients of x16 and x17 in

1
(1− x)3(1− x2)

. (1)



We use the following well-known generating functions:

1
1− x2

= 1 + x2 + x4 + x6 + · · ·

1
(1− x)m+1

=
(

m

m

)

+
(

m + 1
m

)

x +
(

m + 2
m

)

x2 +
(

m + 3
m

)

x3 + · · ·.

A decomposition of (1) is

1
(1− x)3(1− x2)

=
1
2

1
(1− x)4

+
1
4

1
(1− x)3

+
1
8

1
(1− x)2

+
1
8

1
(1− x)

.

Thus the coefficient of xn is

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

+
1
8

=
(n + 2)(n + 4)(2n + 3)

24
if n is even

or

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

=
(n + 1)(n + 3)(2n + 7)

24
if n is odd.

So the coefficient of x16 is
18 · 20 · · · 35

24
= 525 and the coefficient of x17 is

18 · 20 · · · 41
24

=
615.

Solution 3 by Paul M. Harms, North Newton, KS.

When
−1 < x < 1,

1
1− x

= 1 + x + x2 + · · ·.

Taking two derivatives, we obtain for

−1 < x < 1,
2

(1− x)3
= 2 + 3(2)x + 4(3)x2 + · · ·.

When

−1 < x < 1,
x4

1− x2
= x4 + x6 + x8 + · · ·.

The series for
x4

(1− x)3(1− x2)
can be found by multiplying

1
2
· 2
(1− x)3

· x4

(1− x2)
=

1
2

[
2+3(2)x+4(3)x2+···+18(17)x16+19(18)x17+···

][
x4+x6+x8+···

]
.

The coefficient of x20 is

1
2

[
18(17) + 16(15) + 14(13) + · · ·4(3) + 2

]
= 525.

The coefficient of x21 is

1
2

[
19(18) + 17(16) + 15(14) + · · ·5(4) + 3(2)

]
= 615.

Comment: Jahangeer Kholdi and Boris Rays noticed that the coefficients in x4 +
3x5+7x6+13x7+22x8+34x9+50x10+ · · ·, are the partial sums of the alternate triangular



numbers. I.e., 1, 3, 1 + 6, 3 + 10, 1 + 6 + 15, 3 + 10 + 21, · · ·, which leads to the coefficients
of x20 and x21 being 525 and 615 respectively.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José Luis
Dı́az-Barrero, Barcelona, Spain; Jahangeer Kholdi and Boris Rays (jointly),
Portsmouth, VA & Chesapeake,VA (respectively); Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Harry Sedinger, St. Bonaventure, NY; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4926: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate ∞∑

n=1

nF 2
n

3n

where Fn is the nth Fibonacci number defined by F1 = F2 = 1 and for n ≥ 3, Fn =
Fn−1 + Fn−2.
Solution by David Stone and John Hawkins, Statesboro, GA.

By Binet’s Formula, Fn =
αn − βn

√
5

, where α and β are the solutions of the quadratic

equation x2 − x− 1 = 0; α =
1 +

√
5

2
, β =

1−
√

5
2

.

Note that a − b =
√

5, α · β = −1, α2 + β2 = 3, and α6 + β6 = 18. Also recall from

calculus that
∞∑

n=1

nxn =
x

(1− x)2
for |x| < 1. Thus we have

∞∑

n=1

nF 2
n

3n
=

∞∑

n=1

n

3n

α2n − 2αnβn + β2n

5

=
∞∑

n=1

n

3n

α2n − 2(−1)n + β2n

5

=
1
5

{ ∞∑

n=1

n
(

α2

3

)n

− 2
∞∑

n=1

n
(−1

3

)n

+
∞∑

n=1

n
(

β2

3

)n
}

=
1
5

{ α2

3[
1− α2

3

]2 − 2
−1
3[

1 + 1
3

]2 +
β2

3[
1− β2

3

]2

}
, valid because

β2

3
<

α2

3
< 1;

=
1
5

{ 3α2

[3− α2]2
+

3
8

+
3β2

[3− β2]2

}

=
3
5

{
α2

[β2]2
+

1
8

+
β2

[α2]2

}
because α2 + β2 = 3,

=
3
5

{1
8

+
α6 + β6

α4β4

}
by algebra,



=
3
5

{1
8

+
18
1

}
=

87
8

.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Tom Leong, Scotrun, PA, and the proposer.

• 4927: Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Barcelona, Spain.
Let k be a positive integer and let

A =
∞∑

n=0

(−1)n

2k(2n + 1)
and B =

∞∑

n=0

(−1)n

{
2k∑

m=0

(−1)m

(4k + 2)n + 2m + 1

}

.

Prove that
B

A
is an even integer for all k ≥ 1.

Solution by Tom Leong, Scotrun, PA.
Note that inside the curly braces in the expression for B, the terms of the (alternating) sum
are the reciprocals of the consecutive odd numbers from (4k+2)n+1 to (4k+2)n+(4k+1).
As n = 0, 1, 2, . . ., the reciprocal of every positive odd number appears exactly once in
this sum (disregarding its sign). Thus

B =
∞∑

n=0

{
2k∑

m=0

(−1)m+n

(4k + 2)n + 2m + 1

}

=
∞∑

i=0

(−1)i

2i + 1

from which we find
B

A
= 2k. (In fact, it is well-known that B = π/4.)

Comment by Editor: This problem was incorrectly stated when it was initially posted
in the May, 06 issue of SSM. The authors reformulated it, and the correct statement of
the problem and its solution are listed above. The corrected version was also solved by
Paul M. Harms of North Newton, KS.

• 4928: Proposed by Yair Mulian, Beer-Sheva, Israel.
Prove that for all natural numbers n

∫ 1

0

2x2n+1

x2 − 1
dx =

∫ 1

0

xn

x− 1
+

1
x + 1

dx.

Comment by Editor: The integrals in their present form do not exist, and I did not
see this when I accepted this problem for publication. Some of the readers rewrote
the problem in what they described as “its more common form;” i.e., to show that∫ 1

0

2x2n+1

x2 − 1
−

(
xn

x− 1
+

1
x + 1

)
dx = 0. But I believe that one cannot legitimately recast

the problem in this manner, because the
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx +

∫ b
a g(x)dx if,

and only if, f(x) and g(x) is each integrable over these limits. So as I see it, the problem
as it was originally stated is not solvable. Mea culpa, once again.



• 4929: Proposed by Michael Brozinsky, Central Islip, NY.
An archaeological expedition uncovered 85 houses. The floor of each of these houses was a
rectangular area covered by mn tiles where m ≤ n. Each tile was a 1 unit by 1 unit square.
The tiles in each house were all white, except for a (non-empty) square configuration of
blue tiles. Among the 85 houses, all possible square configurations of blue tiles appeared
once and only once. Find all possible values of m and n.
Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo,
TX.

Assume that each configuration of blue tiles is a k × k square. Since m ≤ n and each
such configuration was non-empty, it follows that k = 1, 2, . . . ,m. For each value of k,
there are (m− k + 1) (n− k + 1) possible locations for the k × k configuration of blue
tiles. Since each arrangement appeared once and only once among the 85 houses, we have

85 =
m∑

k=1

(m− k + 1) (n− k + 1)

=
m∑

k=1

(m + 1) (n + 1)− (m + n + 2)
m∑

k=1

k +
m∑

k=1

k2

= m (m + 1) (n + 1)− (m + n + 2)
m (m + 1)

2
+

m (m + 1) (2m + 1)
6

=
m (m + 1)

6
[3n− (m− 1)]

or
m (m + 1) [3n− (m− 1)] = 510. (1)

This implies that m and m + 1 must be consecutive factors of 510. By checking all 16
factors of 510, we see that the only possible values of m are 1, 2, 5. If m = 2, (1) does
not produce an integral solution for n. If m = 1 or 5, equation (1) yields n = 85 or 7
(respectively). Therefore, the only solutions are (m,n) = (1, 85) or (5, 7).

Also solved by Tom Leong, Scotrun, PA; Paul M. Harms, North Newton,
KS; Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 1, 2007

• 4960: Proposed by Kenneth Korbin, New York, NY.
Equilateral triangle ABC has an interior point P such that

AP =
√

5, BP =
√

12, and CP =
√

17.

Find the area of "APB.

• 4961: Proposed by Kenneth Korbin, New York, NY.
A convex hexagon is inscribed in a circle with diameter d. Find the area of the hexagon
if its sides are 3, 3, 3, 4, 4 and 4.

• 4962: Proposed by Kenneth Korbin, New York, NY.
Find the area of quadrilateral ABCD if the midpoints of the sides are the vertices of a
square and if AB =

√
29 and CD =

√
65.

• 4963: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

∑

1≤i<j≤n

1
3i+j

.

• 4964: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let x, y be real numbers and we define the law of composition

x ⊥ y = x
√

1 + y2 + y
√

1 + x2.



Prove that (R,+) and (R,⊥) are isomorphic and solve the equation x ⊥ a = b.

• 4965: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let ha, hb, hc be the heights of triangle ABC. Let P be any point inside "ABC. Prove
that

(a)
ha

da
+

hb

db
+

hc

dc
≥ 9, (b)

d2
a

h2
a

+
d2

b

h2
b

+
d2

c

h2
c
≥ 1

3
,

where da, db, dc are the distances from P to the sides BC, CA and AB respectively.

Solutions

• 4930: Proposed by Kenneth Korbin, New York, NY.

Find an acute angle y such that cos(y) + cos(3y)− cos(5y) =
√

7
2

.

Solution by Brian D. Beasley, Clinton, SC.

Given an acute angle y, let c = cos(y) > 0. We use cos(3y) = 4c3 − 3c and cos(5y) =
16c5 − 20c3 + 5c to transform the given equation into

−16c5 + 24c3 − 7c =
√

7
2

.

Since this equation in turn is equivalent to

32c5 − 48c3 + 14c +
√

7 = (8c3 − 4
√

7c2 +
√

7)(4c2 + 2
√

7c + 1) = 0,

we need only determine the positive zeros of f(x) = 8x3−4
√

7x2+
√

7. Applying cos(7y) =
64c7 − 112c5 + 56c3 − 7c, we note that the six zeros of

64x6 − 112x4 + 56x2 − 7 = f(x)(8x3 + 4
√

7x2 −
√

7)

are cos(kπ/14) for k ∈ {1, 3, 5, 9, 11, 13}. We let g(x) = 8x3 + 4
√

7x2 −
√

7 and use
g′(x) = 24x2 + 8

√
7x to conclude that g is increasing on (0,∞), and hence has at most

one positive zero. But g(1/2) > 0, cos(π/14) > 1/2, and cos(3π/14) > 1/2, so cos(π/14)
and cos(3π/14) must be zeros of f(x) instead. Thus we may take y = π/14 or y = 3π/14
in the original equation.

Also solved by: Dionne Bailey, Elsie Campbell, and Charles Dimminnie (jointly),
San Angelo, TX; Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayete,
IN; Charles McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Satesboro, GA, and the proposer.

• 4931: Proposed by Kenneth Korbin, New York, NY.
A Pythagorean triangle and an isosceles triangle with integer length sides both have the
same length perimeter P = 864. Find the dimensions of these triangles if they both have
the same area too.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA.

Surprisingly, there exists only one such pair of triangles: the (primitive) Pythagorean
tiangle (135, 352, 377) and the isosceles triangle (366, 366, 132). Each has a perimeter 864
and area 23, 760.
By Heron’s Formula (or geometry), an isosceles triangle with given perimeter P and sides



(a, a, b) has area

A =
b

4

√
4a2 − b2 =

P − 2a

4

√
P (4a− P ), where

P
4
≤ a ≤ P

2
.

In our problem, P = 864. We can analyze possibilities to reduce the number of cases to
check or we can use a calculator or computer to check all possibilities. In any case, there
are only a few such triangles with integer length sides:






a b A
222 420 15, 120
240 384 27, 648
270 324 34, 992
312 240 34, 560
366 132 23, 760






Now, if (a, b, c) is a Pythaorean triangle with given perimeter P and given area A, we can
solve the equations

P = a + b + c
c2 = a2 + b2

A =
ab

2

to obtain a =
(P 2 + 4A) ±

√
P 4 − 24P 2A + 16A2

4P
, b =

2A

a
, c = P − a− 2A

a
.

We substitute P = 864 and the values for A from the above table. Only with A = 23, 760
do we find a solutions (135, 352, 377). (Note that the two large values of A each produce a
negative under the radical because those values of A are too large to be hemmed up by a
perimeter of 864, while the first two values of A produce right triangles with non-integer
sides.)

Also solved by Brain D. Beasley, Clinton, SC; Paul M. Harms, North Newton,
KS; Peter E. Liley, Lafayette, IN; Amihai Menuhin, Beer-Sheva, Israel, Harry
Sedinger, St. Bonaventure, NY, and the proposer.

• 4932: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let ABC be a triangle with semi-perimeter s, in-radius r and circum-radius R. Prove
that

3
√

r2 + 3
√

s2 ≤ 2 3
√

2R2

and determine when equality holds.

Solution by the proposer.

From Euler’s inequality for the triangle 2r ≤ R, we have r/R ≤ 1/2 and
(

r

R

)2/3

≤
(1

2

)2/3

(1)

Next, we will see that
s

R
≤ 3

√
3

2
(2)



In fact, from Sine’s Law
a

sin A
=

b

sinB
=

c

sinC
= 2R,

we have
a + b + c

sinA + sinB + sinC
= 2R

or
s

R
=

a + b + c

2R
= sinA + sinB + sinC ≤ 3

√
3

2
as claimed. Notice that the last inequality is an immediate consequence of Jensen’s
inequality applied to the function f(x) = sin x that is concave in [0, π].

Finally, from (1) and (2), we have
(

r

R

)2/3

+
(

s

R

)2/3

≤
(1

2

)2/3

+
(

3
√

3
2

)2/3

= 2 3
√

2

from which the statement immediately follows as desired. Note that equality holds when
"ABC is equilateral, as immediately follows from (1) and (2).

• 4933: Proposed by José Luis Dı́az-Barrero and Juan José Egozcue, Barcelona, Spain.
Let n be a positive integer. Prove that

1
n

n∑

k=1

k

(
n

k

)1/2

≤ 1
2

√
(n + 1)2n.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX .

By the Binomial Theorem,
n∑

k=0

(
n

k

)

xk = (1 + x)n

d

dx

n∑

k=0

(
n

k

)

xk =
d

dx
(1 + x)n

n∑

k=1

k

(
n

k

)

xk−1 = n(1 + x)n−1

n∑

k=1

k

(
n

k

)

xk = nx(1 + x)n−1

d

dx

n∑

k=1

k

(
n

k

)

xk =
d

dx

[
nx(1 + x)n−1

]

n∑

k=1

k2

(
n

k

)

xk−1 = n(1 + x)n−2(nx + 1) (1).

Evaluating (1) when x = 1,
n∑

k=1

k2

(
n

k

)

= n(n + 1)2n−2

1
n

n∑

k=1

k2

(
n

k

)

=
(n + 1)2n

4
(2).



By the Root Mean Square Inequality and (2),

1
n

n∑

k=1

k

(
n

k

)1/2

≤

√√√√√
n∑

k=1
k2

(n
k

)

n

=

√
(n + 1)2n

4

=
1
2

√
(n + 1)2n.

Also solved by the proposer.

• 4934: Proposed by Michael Brozinsky, Central Islip, NY.
Mrs. Moriaty had two sets of twins who were always getting lost. She insisted that one
set must chose an arbitrary non-horizontal chord of the circle x2 + y2 = 4 as long as the
chord went through (1, 0) and they were to remain at the opposite endpoints. The other
set of twins was similarly instructed to choose an arbitrary non-vertical chord of the same
circle as long as the chord went through (0, 1) and they too were to remain at the opposite
endpoints. The four kids escaped and went off on a tangent (to the circle, of course). All
that is known is that the first set of twins met at some point and the second set met at
another point. Mrs. Moriaty did not know where to look for them but Sherlock Holmes
deduced that she should confine her search to two lines. What are their equations?

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

The equations of the two lines are x = 4 for the first set of twins and y = 4 for the second
set of twins.

The vertical chord through the point (1,0) meets the circle at points (1,
√

3) and (1,−
√

3).

The slopes of the tangent lines are − 1√
3

and
1√
3
. So the equations of the tangent lines

are
y = − 1√

3
x +

4√
3

and y =
1√
3
x − 4√

3
.

These tangent lines meet at the point (4,0). Otherwise, a non-vertical (and non-horizontal)
chord through the point (1,0) intersects the circle at points (a, b) and (c, d), bd )= 0, b )= d.
The slopes of the tangent lines are −a

b
and − c

d
. So the equations of the tangent lines are

y = −a

b
x +

4
b

and y = − c
d

x +
4
d

.

The x-coordinate of the point of intersection of the tangent lines is
4(d− b)
ad− bc

. And since

the points (a, b), (c, d) and (1,0) are on the chord, we have

b− 0
a− 1

=
d− 0
c− 1

or
d− b = ad− bc.

Therefore, the x-coordinate of the point of intersection of the tangent lines is 4.



Similar calculations apply to position of the second set of twins.

Also solve by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4935: Proposed by Xuan Liang, Queens, NY and Michael Brozinsky, Central Islip, NY.
Without using the converse of the Pythagorean Theorem nor the concepts of slope, similar
triangles or trigonometry, show that the triangle with vertices A(−1, 0), B(m2, 0) and
C(0,m) is a right triangle.
Solution by Harry Sedinger, St. Bonaventure, NY.

Let O = (0, 0). The area of "ABC is

1
2

(
|OB|

)(
|AC|

)
=

1
2
m(m2 + 1) =

1
2
m

√
m2 + 1

√
m2 + 1

=
1
2

√
m4 + m2

√
m2 + 1 =

1
2

(
|BC|

)(
|AB|

)
.

Thus if AB is considered the base of "ABC, its height is |BC|, so AB ⊥ BC and "ABC
is a right triangle.

Also solved by Charles Ashbacher, Cedar Rapis, IA; Brian D. Beasley, Clinton,
SC; Grant Evans (student, Saint George’s School), Spokane, WA; Paul M.
Harms, North Newton, KS; Jahangeer Kholdi, Portsmouth, VA; John Nord,
Spokane, WA; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA; William Weirich (student Virginia Commonwealth
University), Richmond, VA, and the proposers.

Editor’s comment: Several readers used the distance formula or the law of cosines,
or the dot product of vectors in their solutions; but to the best of my knowledge, these
notions are obtained with the use of the Pythagorean Theorem.
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Solutions to the problems stated in this issue should be posted before
July 1, 2007

• 4966: Proposed by Kenneth Korbin, New York, NY.
Solve:

16x + 30
√

1− x2 = 17
√

1 + x + 17
√

1− x

with 0 < x < 1.

• 4967: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with an interior point P such that AP2 + BP2 = CP2,
and with an exterior point Q such that AQ2 + BQ2 = CQ2, where points C, P, and Q are
in a line. Find the lengths of AQ and BQ if AP =

√
21 and BP =

√
28.

• 4968: Proposed by Kenneth Korbin, New York, NY.

Find two quadruples of positive integers (a, b, c, d) such that

a + i

a− i
· b + i

b− i
· c + i

c− i
· d + i

d− i
=

a− i

a + i
· b− i

b + i
· c− i

c + i
· d− i

d + i

with a < b < c < d and i =
√
−1.

• 4969: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

1

a2

(
1
a

+
1
c

) +
1

b2

(
1
b

+
1
a

) +
1

c2

(
1
c

+
1
b

) ≥ 3
2



• 4970: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [0, 1] −→ R be a contintuous convex function. Prove that

3
4

∫ 1/5

0
f(t)dt +

1
8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt.

• 4971: Proposed by Howard Sporn, Great Neck, NY and Michael Brozinsky, Central Islip,
NY.
Let m ≥ 2 be a positive integer and let 1 ≤ x < y. Prove:

xm − (x− 1)m < ym − (y − 1)m.

Solutions

• 4936: Proposed by Kenneth Korbin, New York, NY.
Find all prime numbers P and all positive integers a such that P − 4 = a4.

Solution 1 by Daniel Copeland (student, Saint George’s School), Spokane,
WA.

P = a4 + 4
= (a2 + 2)2 − 4a2

= (a2 − 2a + 2)(a2 + 2a + 2).

Since P is a prime, one of the factors of P must be 1. Since a is a positive integer,
a2 − 2a + 2 = 1 which yields the only positive solution a = 1, P = 5.

Solution 2 by Timothy Bowen (student, Waynesburg College), Waynesburg,
PA.

The only solution is P = 5 and a = 1.
Case 1: Integer a is an even integer. For a = 2n, note P = a4+4 = (2n)4+4 = 4·(4n4+1).
Clearly, P is a composite for all natural numbers n.

Case 2: Integer a is an odd integer. For a = 2n+1, note that P = a4+4 = (2n+1)4+4 =
(4n2 + 8n + 5)(4n2 + 1). P is prime only for n = 0 (corresponding to a = 1 and P = 5).
Otherwise, P is a composite number for all natural numbers n.

Solution 3 by Jahangeer Kholdi & Robert Anderson (jointly), Portsmouth,
VA.

The only prime is P = 5 when a = 1. Consider P = a4 + 4. If a is an even positive
integer, then clearly P is even and hence a composite integer. Moreover, if a is a positive
integer ending in digits {1, 3, 7 or 9}, then P is a positive integer ending with the digit of
5. This also implies P is divisible by 5 and hence a composite. Lastly, assume a = 10k+5
where k = 0 or k > 0; that is a is a positive integer ending with a digit of 5. Then
P = (10k + 5)4 + 4. But

P = (10k + 5)4 + 4 = (100k2 + 80k + 17)(100k2 + 120k + 37).

Hence, for all positive integers a > 1 the positive integer P is composite.

Also solved by Brian D. Beasley, Clinton, SC; Dionne Bailey, Elsie Campbell
and Charles Diminnie (jointly), San Angelo, TX; Pat Costello, Richmond, KY;



Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Boris
Rays, Chesapeake, VA; Vicki Schell, Pensacola, FL; R. P. Sealy, Sackville,
New Brunswick, Canada; Harry Sedinger, St. Bonaventure, NY; David Stone
and John Hawkins of Statesboro, GA jointly with Chris Caldwell of Martin,
TN, and the proposer.

• 4937: Proposed by Kenneth Korbin, New York, NY.
Find the smallest and the largest possible perimeter of all the triangles with integer-length
sides which can be inscribed in a circle with diameter 1105.

Solution by Paul M. Harms, North Newton, KS.

Consider a radius line from the circle’s center to one vertex of an inscribed triangle.
Assume at this vertex one side has a length a and subtends a central angle of 2A and the
other side making this vertex has a length b and subtends a central angle of 2B.

Using the perpendicular bisector of chords, we have sinA =
a/2

1105/2
=

a

1105
and sinB =

b

1105
. Also, the central angle of the third side is related to 2A+2B and the perpendicular

bisector to the third side gives

sin(A + B) =
c

1105
= sin A cos B + sinB cos A

=
a

1105

√
11052 − b2

1105
+

b

1105

√
11052 − a2

1105

Thus c =
1

1105

(
a
√

11052 − b2 + b
√

11052 − a2

)
.

From this equation we find integers a and b which make integer square roots. Some
numbers which do this are {47,1104 105, 1100, 169, 1092, etc. }. Checking the smaller
numbers for the smallest perimeter we see that a triangle with side lengths {105,169,272}
gives a perimeter of 546 which seems to be the smallest perimeter.
To find the largest perimeter we look for side lengths close to the lengths of an inscribed
equilateral triangle. An inscribed equilateral triangle for this circle has side length close
to 957. Integers such as 884, 943, 952, 975, and 1001 make integer square roots in the
equation for c. The maximum perimeter appears to be 2870 with a triangle of side
lengths {943,952,975}.

Comment: David Stone and John Hawkins of Statesboro, GA used a slightly
different approach in solving this problem. Letting the side lengths be a, b, and c and
noting that the circumradius is 552.5 they obtained

1105
2

=
abc

4
√

a + b + c)(a + b− c)(a− b + c)(b + c− a)

which can be rewritten as√
a + b + c)(a + b− c)(a− b + c)(b + c− a) =

abc

(2)(5)(13)(17)
.

They then used that part of the law of sines that connects in any triangle ABC, side
length a, 6 A and the circumradius R;

a

sinA
= 2R. This allowed them to find that c2 =



a2 + b2∓ 2ab
√

11052 − c2

1105
. Noting that the factors of a,b, and c had to include the primes

2,5,13 and 17 and that 11052 − c2 had to be a perfect square, (and similarly for 11052−b2

and 11052 − a2) they put EXCEL to work and proved that {105, 272, 169} gives the
smallest perimeter and that {952, 975, 943} gives the largest. All in all they found 101
triangles with integer side lengths that can be inscribed in a circle with diameter 1105.

Also solved by the proposer.

• 4938: Proposed by Luis Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b and c be the sides of an acute triangle ABC. Prove that

csc2 A

2
+ csc2 B

2
+ csc2 C

2
≥ 6

 ∏
cyclic

(
1 +

b2

a2

)1/3

Solution by proposers.

First, we claim that a2 ≥ 2(b2+c2) sin2(A/2). In fact, the preceding inequality is equivalent
to a2 ≥ (b2 + c2)(1− cos A) and

a2 − (b2 + c2)(1− cos A) = b2 + c2 − 2bc cos A− (b2 + c2) + (b2 + c2) cos A

= (b− c)2 cos A ≥ 0.

Similar inequalities can be obtained for b and c. Multiplying them up, we have

a2b2c2 ≥ 8(a2 + b2)(b2 + c2)(c2 + a2) sin2(A/2) sin2(B/2) sin2(C/2). (1)

On the other hand, from GM-HM inequality we have

sin2(A/2) sin2(B/2) sin2(C/2) ≥
(

3
1/ sin2(A/2) + 1/ sin2(B/2) + 1/ sin2(C/2)

)3

=
(

3
csc2(A/2) + csc2(B/2) + csc2(C/2)

)3

.

Substituting into the statement of the problem yields(
csc2 A

2
+ csc2 B

2
+ csc2 C

2

)3

≥ 216

(
a2 + b2

c2

)(
b2 + c2

a2

)(
c2 + a2

b2

)

= 216
∏

cyclic

(
1 +

b2

a2

)
.

Notice that equality holds when A = B = C = π/3. That is, when 4ABC is equilateral
and we are done.

• 4939: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
For any positive integer n, prove that{

4n +
[ n−1∑

k=0

3k+1/2

(
2n

2k + 1

)]2}1/2



is a whole number.

Solution by David E. Manes, Oneonta, NY.

Let W = 4n +
[ n−1∑

k=0

3k+1/2

(
2n

2k + 1

)]2
and notice that it suffices to show that

√
W is a

whole number. Expanding (
√

3 + 1)2n and (
√

3 − 1)2n using the Binomial Theorem and
subtracting the second expansion from the first, one obtains

n−1∑
k=0

3k+1/2

(
2n

2k + 1

)
=

(
√

3 + 1)2n − (
√

3− 1)2n

2
.

Therefore,

W = 4n +
[
(
√

3 + 1)2n − (
√

3− 1)2n

2

]2
= 4n +

(
√

3 + 1)4n − 22n+1 + (
√

3− 1)4n

4

=
22n+2 + (

√
3 + 1)4n − 22n+1 + (

√
3− 1)4n

4

=
(
√

3 + 1)4n + 22n+1 + (
√

3− 1)4n

4

=
[
(
√

3 + 1)2n − (
√

3− 1)2n

2

]2
.

Consequently,

√
W =

(
√

3 + 1)2n − (
√

3− 1)2n

2
=

n∑
k=0

(
2n

2k

)
(
√

3)2k

=
n∑

k=0

(
2n

2k

)
3k, a whole number.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Dimin-
nie (jointly), San Angelo, TX; Paul H. Harms, North Newton, KS, and the
proposer.

• 4940: Proposed by Michael Brozinsky, Central Islip, NY and Leo Levine, Queens, NY .
Let S = {n ∈ N |n ≥ 5}. Let G(x) be the fractional part of x, i.e., G(x) = x− [x] where
[x] is the greatest integer function. Characterize those elements T of S for which the
function

f(n) = n2
(

G
((n− 2)!

n

))
= n.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

T is the set of primes in S. One form of Wilson’s Theorem states: A necessary and sufficient
condition that n be prime is that (n − 1)! ≡ −1(mod n). But (n − 1)! = (n − 1)(n − 2)!
with n − 1 ≡ −1(mod n). Therefore (n − 2)! ≡ 1(mod n) if, and only if, n is prime.
Therefore

f(n) = n2
(

G

(
(n− 2)!

n

))
= n2 · 1

n
= n if, and only if, n ≥ 5 is prime.



Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie, San Angelo, TX; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4941: Proposed by Tom Leong, Brooklyn, NY.
The numbers 1, 2, · · ·, 2006 are randomly arranged around a circle.
(a) Show that we can select 1000 adjacent numbers consisting of 500 even and 500 odd
numbers.
(b) Show that part (a) need not hold if the numbers were randomly arranged in a line.

Solution 1 by Paul Zorn, Northfield, MN.

Claim: Suppose we have 1003 0’s and 1003 1’s arranged in a circle, like a 2006-hour clock.
Then there must be a stretch of length of 1000 containing 500 of each.

Proof: Call the clock positions 1, 2, · · ·, 2006 as on an ordinary clock, and let a(n) be 0
or 1, depending on what’s at position n. Let S(n) = a(n) + a(n + 1) + · · ·+ a(n + 999),
where addition in the arguments is mod 2006.
Note that S(n) is just the number of 1’s in the 1000-hour stretch starting at n, and we’re
done if S(n) = 500 for some n.
Now S(n) has two key properties, both easy to show:
i) S(n + 1) differs from S(n) by at most 1
ii) S(1) + S(2) + S(3) + · · ·S(2006) = 1000·(sum of all the 1’s around the circle)
=1000(1003).

From i) and ii) it follows that if S(j) > 500 and S(k) < 500 for some j and k, then
S(n) = 500 for some n between j and k. So suppose, toward contradiction, that (say)
S(n) > 500 for all n. Then

S(1) + S(2) + S(3) + · · ·+ S(2006) > 2006 · 501 = 1003(1002),

which contradicts ii) above.

Solution 2 by Harry Sedinger, St. Bonaventure, NY.

Denote the numbers going around the circle in a given direction as n1, n2, · · ·, n206 where
ni and ni+1 are adjacent for each i and n2006 and n1 are also adjacent. Let Si be the set
of 1,000 adjacent numbers going in the same direction and starting with ni. Let E(Si) be
the number of even numbers in Si. It is easily seen that each number occurs in exactly
1000 such sets. Thus the sum S of occurring even numbers in all such sets is 1,003 (the
number of even numbers) times 1000 which is equal to 1,003,000.
a) Suppose that E(Si) 6= 500 for every i. Clearly E(Si) and E(Si+1) differ by at most
one, (as do E(S2006) and E(S1)), so either E(Si) ≤ 499 for every i or E(Si) ≥ 501 for
every i. In the first case S ≤ 499 · 2, 006 < 1003, 000, a contradiction, and in the second
case S ≥ 501 · 2006 > 1, 003, 000, also a contradiction. Hence E(Si) = 500 for some k and
the number of odd numbers in Sk is also 500.
b) It is easily seen that a) does not hold if the numbers are sequenced by 499 odd, followed
by 499 even, followed by 499 odd, followed by 499 even, followed by 4 odd, and followed
by 4 even.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.



Apologies Once Again

I inadvertently forgot to mention that David Stone and John Hawkins of Statesboro, GA
jointly solved problems 4910 and 4911. But worse, in my comments on 4911 (Is is possible for
the sums of the squares of the six trigonometric functions to equal one), I mentioned that only
two of the 26 solutions that were submitted considered the problem with respect to complex
arguments. (For real arguments the answer is no; but for complex arguments it is yes.) David
and John’s solution considered both arguments–which makes my omission of their name all
the more embarrassing. So once again, mea-culpa.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 1, 2007

• 4972: Proposed by Kenneth Korbin, New York, NY.
Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x + 1 CD =
√

y

where x and y are positive integers with 20 < x < 120.

• 4973: Proposed by Kenneth Korbin, New York, NY.
Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.

• 4974: Proposed by Kenneth Korbin, New York, NY.
A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the circumradius
and the area of the hexagon in terms of a and b.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Solve in R the following system of equations

2x1 = 3x2

√
1 + x2

3

2x2 = 3x3

√
1 + x2

4

. . . . . .

2xn = 3x1

√
1 + x2

2





• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 27.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solutions

• 4942: Proposed by Kenneth Korbin, New York, NY.
Given positive integers a and b. Find the minimum and the maximum possible values of

the sum (a + b) if
ab− 1
a + b

= 2007.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

If
ab− 1
a + b

= 2007, then

ab− 1 = 2007(a + b)
ab− 2007a− 2007b = 1

ab− 2007a− 2007b + 20072 = 1 + 20072

(a− 2007)(b− 2007) = 2 · 52 · 13 · 6197 (1).

Since (1) and the sum (a + b) are symmetric in a and b, then we will assume that a < b.
By the prime factorization in (1), there are exactly 12 distinct values for (a− 2007) and
(b− 2007) which are summarized below.

a− 2007 b− 2007 a b a + b

1 4, 028, 050 2, 008 4, 030, 057 4, 032, 065
2 2, 014, 025 2, 009 2, 016, 032 2, 018, 041
5 805, 610 2, 012 807, 617 809, 629
10 402, 805 2, 017 404, 812 406, 829
13 309, 850 2, 020 311, 857 313, 877
25 161, 122 2, 032 163, 129 165, 161
26 154, 925 2, 033 156, 932 158, 965
50 80, 561 2, 057 82, 568 84, 625
65 61, 970 2, 072 63, 977 66, 049
130 30, 985 2, 137 32, 992 35, 129
325 12, 394 2, 332 14, 401 16, 733
650 6, 197 2, 657 8, 204 10, 861

Thus, the minimum value is 10, 861, and the maximum value is 4, 032, 065.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; John Nord, Spokane, WA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.



• 4943: Proposed by Kenneth Korbin, New York, NY.
Given quadrilateral ABCD with AB = 19, BC = 8, CD = 6, and AD = 17. Find the
area of the quadrilateral if both AC and BD also have integer lengths.
Solution by Brian D. Beasley, Clinton, SC.

Let x = AC and y = BD, where both x and y are positive integers. Let A1 be the area
of triangle ABC, A2 be the area of triangle of ADC, A3 be the area of triangle BAD,
and A4 be the area of triangle BCD. Then by Heron’s formula, we have

A1 =
√

s(s− 19)(s− 8)(s− x) A2 =
√

t(t− 17)(t− 6)(t− x),

where s = (19 + 8 + x)/2 and t = (17 + 6 + x)/2. Similarly,

A3 =
√

u(u− 19)(u− 17)(u− y) A4 =
√

v(v − 8)(v − 6)(v − y),

where u = (19+17+ y)/2 and v = (8+6+ y)/2. Also, the lengths of the various triangle
sides imply x ∈ {12, 13, · · · , 22} and y ∈ {3, 4, · · · , 13}. We consider three cases for the
area T of ABCD:
Case 1: Assume ABCD is convex. Then T = A1 + A2 = A3 + A4. But a search among
the possible values for x and y yields no solutions in this case.
Case 2: Assume ABCD is not convex, with triangle BAD containing triangle BCD (i.e.,
C is interior to ABD). Then T = A1 +A2 = A3−A4. Again, a search among the possible
values for x and y yields no solutions in this case.
Case 3: Assume ABCD is not convex, with triangle ABC containing triangle ADC (i.e.,
D is interior to ABC ). Then T = A1 −A2 = A3 + A4. In this case, a search among the
possible values for x and y yields the unique solution x = 22 and y = 4; this produces
T =

√
1815 = 11

√
15.

Due to the lengths of the quadrilateral, these are the only three cases for ABCD. Thus
the unique value for its area is 11

√
15.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins, Statesboro, GA, and the proposer.

• 4944: Proposed by James Bush, Waynesburg, PA.
Independent random numbers a and b are generated from the interval [−1, 1] to fill the

matrix A =
(

a2 a2 + b
a2 − b a2

)
. Find the probability that the matrix A has two real

eigenvalues.
Solution by Paul M. Harms, North Newton, KS.

The characteristic equation is (a2−λ)2−(a4−b2) = 0. The solutions for λ are a2+
√

a4 − b2

and a2−
√

a4 − b2. There are two real eigenvalues when a4−b2 > 0 or a2 > |b|. The region
in the ab coordinate system which satisfies the inequality is between the parabolas b = a2

and b = −a2 and inside the square where a and b are both in [−1, 1]. From the symmetry
of the region we see that the probability is the area in the first quadrant between the

a-axis and b = a2 from a = 0 to a = 1. Integrating gives a probability of
1
3
.

Also solved by Tom Leong, Scotrun, PA; John Nord, Spokane, WA; David
Stone and John Hawkins (jointly), Statesboro, GA; Boris Rays, Chesapeake,
VA, and the proposer.



• 4945: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Prove that

17 +
√

2
n∑

k=1

(
L4

k + L4
k+1 + L4

k+2

)1/2
= L2

n + 3L2
n+1 + 5LnLn+1

where Ln is the nth Lucas number defined by L0 = 2, L1 = 1 and for all n ≥ 2, Ln =
Ln−1 + Ln−2.

Solution by Tom Leong, Scotrun, PA.

Using the identity a4 + b4 + (a + b)4 = 2(a2 + ab + b2)2 we have

17 +
√

2
n∑

k=1

(
L4

k + L4
k+1 + L4

k+2

)1/2
= 17 +

√
2

n∑
k=1

(
L4

k + L4
k+1 + (Lk + Lk+1)4

)1/2

= 17 + 2
n∑

k=1

(
L2

k + LkLk+1 + L2
k+1

)
= 17 +

n∑
k=1

L2
k +

n∑
k=1

L2
k+1 +

n∑
k=1

(Lk + Lk+1)
2

= 17 +
n∑

k=1

L2
k +

n∑
k=1

L2
k+1 +

n∑
k=1

L2
k+2

= 17 + L2
n+2 + 2L2

n+1 − L2
2 − 2L2

1 + 3
n∑

k=1

L2
k

= 17 + (Ln + Ln+1)
2 + 2L2

n+1 − 32 − 2 · 12 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3 (LnLn+1 − 2)
= L2

n + 3L2
n+1 + 5LnLn+1

where we used the identity
n∑

k=1

L2
k = LnLn+1 − 2 which is easily proved via induction.

Comment: Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie started
off their solution with

2(L4
k + L4

k+1 + L4
k+2) = (L2

k + L2
k+1 + L2

k+2)
2

and noted that this is a special case of Candido’s Identity 2(x4+y4+(x+y)4) = (x2+y2+
(x + y)2)2, for which Roger Nelsen gave a proof without words in Mathematics Magazine
(vol. 78,no. 2). Candido used this identity to establish that 2(F 4

n + F 4
n+1 + F 4

n+2) =
(F 2

n + F 2
n+1 + F 2

n+2), where Fn denotes the nth Fibonacci number.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS, and the proposer.

• 4946: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.



Let z1, z2 be nonzero complex numbers. Prove that(
1
|z1|

+
1
|z2|

) (∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣) ≥ 4.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA.

We note that for a, b > 0,

a2 − 2ab + b2 = (a− b)2 ≥ 0
so a2 + 2ab + b2 ≥ 4ab
so (a + b)(a + b) ≥ 4ab

so
(a + b)

ab
(a + b) ≥ 4

or
(

1
a

+
1
b

)
(a + b) ≥ 4

Therefore, (1)
(

1
|z1|

+
1
|z2|

)
(|z1|+ |z2|) ≥ 4.

For two complex numbers w = a + bi and v = c + di, we have

|(w − v)2|+ |(w + v)2| = |w − v|2 + |w + v|2 = (a− c)2 + (b− d)2 + (a + c)2 + (b + d)2

= 2(a2 + b2 + c2 + d2) = 2(|w|2 + |v|2)

so, (2) |(w − v)2|+ |(w + v)|2 = 2(|w2|+ |v2|).
Let w be such that w2 = z1 and v be such that v2 = z2. Substituting this into (2), we
get |w2 − 2wv + v2|+ |w2 + 2wv + v2| = 2(|z1|+ |z2|), hence∣∣∣∣z1 + z2

2
− wv

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+ wv

∣∣∣∣ = |z1|+ |z2|.

Since (wv)2 = z1z2, wv must equal
√

z1z2 or −√z1z2. Thus the preceding equation
becomes ∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣ = |z1|+ |z2|.

Multiplying by
1
|z1|

+
1
|z2|

, we get

(
1
|z1|

+
1
|z2|

)(∣∣∣∣z1 + z2

2
−
√

z1z2

∣∣∣∣ +
∣∣∣∣z1 + z2

2
+
√

z1z2

∣∣∣∣) =
(

1
|z1|

+
1
|z2|

)
(|z1|+ |z2|) ≥ 4

by inequality (1).

Also solved by Tom Leong Scotrun, PA, and the proposers.

• 4947: Proposed by Tom Leong, Brooklyn, NY.
Define a set S of positive integers to be among composites if for any positive integer n,
there exists an x ∈ S such that all of the 2n integers x± 1, x± 2, . . . , x±n are composite.
Which of the following sets are among composites? (a) The set {a + dk|k ∈ N} of terms
of any given arithmetic progression with a, d ∈ N, d > 0. (b) The set of squares. (c) The
set of primes. (d)∗ The set of factorials.
Remarks and solution by the proposer, (with a few slight changes made in the
comments by the editor).



This proposal arose after working Richard L. Francis’s problems 4904 and 4905; it can be
considered a variation on the idea in problem 4904. My original intention was to propose
parts (c) and (d) only; however, I couldn’t solve part (d) and, after searching the MAA
journals, I later found that the question posed by part (c) is not original at all. An article
in (The Two-Year College Mathematics Journal, Vol. 12, No. 1, Jan 1981, p. 36) solves
part (c). However it appears that the appealing result of part (c) is not well-known and
the solution I offer differs from the published one. Parts (a) and (b), as far as I know, are
original.

Solution. The sets in (a), (b) and (c) are all among composites. In the solutions below,
let n be any positive integer.

(a) Choose m ≥ n and m > d. Clearly the consecutive integers (3m)! + 2, (3m)! +
3, . . . , (3m)! + 3m are all composite. Furthermore since d ≤ m − 1, one of the integers
(3m)! + m + 2, (3m)! + m + 3, . . . , (3m)! + 2m belongs to the arithmetic progression and
we are done.

(b) By Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many
primes congruent to 1 mod 4. Let p > n be prime with p ≡ 1 (mod 4). From the
theory of quadratic residues, we know −1 is a quadratic residue mod p, that is, there is a
positive integer r such that r2 ≡ −1 (mod p). Also by Wilson’s theorem, (p− 1)! ≡ −1
(mod p). Put x = [r(p − 1)!]2. Then x ± 2, x ± 3, . . . , x ± (p − 1) are all composite.
Furthermore, x − 1 = [r(p − 1)!]2 − 1 = [r(p − 1)! + 1][r(p − 1)! − 1] is composite and
x ≡ r2[(p− 1)!]2 ≡ −1(−1)2 ≡ −1 (mod p), that is, x + 1 is composite.

(c) Let p > n + 1 be an odd prime. First note p! and (p − 1)! − 1 are relatively prime.
Indeed, the prime divisors of p! are all primes not exceeding p while none of those primes
divide (p−1)!−1 (clearly primes less than p do not divide (p−1)!−1, while (p−1)!−1 ≡ −2
(mod p) by Wilson’s theorem). Appealing to Dirichlet’s theorem again, there are infinitely
many primes x of the form x = kp! + (p − 1)! − 1. So x − 1, x − 2, . . . , x − (p − 2) and
x+1, x+3, x+4, . . . , x+p are all composite. By Wilson’s theorem, (p−1)!+1 is divisible
by p; hence x + 2 is divisible by p, that is, composite.

Remarks. (b) In fact, it can similarly be shown that the set of nth powers for any
positive integer n is among composites.

(d) For any prime p, let x = (p− 1)!. Then x± 2, x± 3, . . . , x± (p− 1) are all composite
and by Wilson’s theorem, x + 1 is also composite. It remains: is x − 1 = (p − 1)! − 1
composite? I don’t know; however it’s unlikely to be prime for all primes p.
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Solutions to the problems stated in this issue should be posted before
December 15, 2007

• 4978: Proposed by Kenneth Korbin, New York, NY.
Given equilateral triangle ABC with side AB = 9 and with cevian CD. Find the length
of AD if 4ADC can be inscribed in a circle with diameter equal to 10.

• 4979: Proposed by Kenneth Korbin, New York, NY.
Part I: Find two pairs of positive numbers (x, y) such that

x√
1 + y −

√
1− y

=
√

65
2

,

where x is an integer.

Part II: Find four pairs of positive numbers (x, y) such that

x√
1 + y −

√
1− y

=
65
2

,

where x is an integer.

• 4980: J.P. Shiwalkar and M.N. Deshpande, Nagpur, India.
An unbiased coin is sequentially tossed until (r + 1) heads are obtained. The resulting
sequence of heads (H) and tails (T) is observed in a linear array. Let the random variable
X denote the number of double heads (HH’s, where overlapping is allowed) in the resulting
sequence. For example: Let r = 6 so the unbiased coin is tossed till 7 heads are obtained
and suppose the resulting sequence of H’s and T’s is as follows:

HHTTTHTTTTHHHTTH



Now in the above sequence, there are three double heads (HH’s) at toss number (1, 2), (11, 12)
and (12, 13). So the random variable X takes the value 3 for the above observed sequence.
In general, what is the expected value of X?

• 4981: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

5x + 3x + 2x − 28x + 18 = 0.

• 4982: Proposed by Juan José Egozcue and José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

1
n + 1

 ∑
1≤i1≤n+1

1
i1

+
∑

1≤i1<i2≤n+1

1
i1i2

+ · · ·+
∑

1≤i1<...<in≤n+1

1
i1i2 . . . in

 .

• 4983: Proposed by Ovidiu Furdui, Kalamazoo, MI.
Let k be a positive integer. Evaluate

1∫
0

{
k

x

}
dx,

where {a} is the fractional part of a.

Solutions

• 4948: Proposed by Kenneth Korbin, New York, NY.
The sides of a triangle have lengths x1, x2, and x3 respectively. Find the area of the
triangle if

(x− x1)(x− x2)(x− x3) = x3 − 12x2 + 47x− 60.

Solution by Jahangeer Kholdi and Robert Anderson (jointly), Portsmouth,
VA.

The given equation implies that

x1 + x2 + x3 = 12
x1x2 + x1x3 + x2x3 = 47

x1x2x3 = 60

from which by inspection, x1 = 3, x2 = 4 and x3 = 5.

Editor’s comment: At the time this problem was sent to the technical editor, the
Journal was in a state of transition. A new editor- in-chief was coming on board and there
was some question as to the future of the problem solving column. As such, I sent an
advanced copy of the problem solving column to many of the regular contributors. In that
advanced copy this polynomial was listed as (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59,
and not with the constant term as listed above. Well, many of those who sent in solutions
solved the problem in one of two ways: as above, obtaining the perimeter x1 + x2 + x3 =
12; and then finding the area with Heron’s formula. A =

√
6(6− x1)(6− x2)(6− x3).



Substituting 6 into (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59 gives (6−x1)(6−x2)(6−
x3) = 7. So, A =

√
(6)(7) =

√
42. But others noted that the equation x3−12x2+47x−59

has only one real root, and this gives the impossible situation of having a triangle with
the lengths of two of its sides being complex numbers. The intention of the problem was
that a solution should exist, and so the version of this problem that was posted on the
internet had a constant term of -60. In the end I counted a solution as being correct if
the solution path was correct, with special kudos going to those who recognized that the
advanced copy version of this problem was not solvable.

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell (student, St.
George’s School), Spokane, WA; Pat Costello, Richmond, KY; Elsie M. Camp-
bell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José
Luis Dı́az-Barrero, Barcelona, Spain; Grant Evans (student, St. George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley,
Lafayette, IN; David E. Manes, Oneonta, NY; Charles McCracken (two solu-
tions as outlined above), Dayton, OH; John Nord (two solutions as outlined
above), Spokane, WA; Boris Rays, Chesapeake, VA; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4949: Proposed by Kenneth Korbin, New York, NY.
A convex pentagon is inscribed in a circle with diameter d. Find positive integers a, b,
and d if the sides of the pentagon have lengths a, a, a, b, and b respectively and if a > b.
Express the area of the pentagon in terms of a, b, and d.

Solution by David Stone and John Hawkins, Statesboro, GA.

Note, that any solution can be scaled upward by any integer factor to produce infinitely
many similar solutions.

We have three isosceles triangles with base a and equal sides
d

2
, and two isosceles triangles

with base b and equal sides
d

2
. Let α be the measure of the angle opposite base a, and let

β be the measure of the angle opposite the base b. Then 3α + 2β = 2π.

For each triangle with base a, the perimeter is d + a, and Heron’s formula gives

An =

√(
d + a

2

)(
d− a

2

)(
a

2

)
=

a

4

√
d2 − a2.

We can also use the Law of Cosines to express the cosine of α as cos α =
a2 − 2

(
d

2

)2

−2
(

d

2

)2 =
d2 − 2a2

d2
.

From the Pythagorean Identity, it follows that

sinα =

√
1−

(
d2 − 2a2

d2

)2

=
1
d2

√
d4 − d4 + 4a2d2 − 4a4 =

2a

d2

√
d2 − a2.

Because the triangle is isosceles, with equal sides forming the angle α, an altitude through

angle α divides the triangle into two equal right triangles. Therefore, cos
α

2
=

1
d

√
d2 − a2

and sin
α

2
=

a

d
.



For the triangles with base b, we can similarly obtain Ab =
b

4

√
d2 − b2 and cos β =

d2 − 2b2

d2
.

The area for the convex polygon is then

Apolygon = 3Aa + 2Ab

=
3a

4

√
d2 − a2 +

b

2

√
d2 − b2

=
1
4

(
3a
√

d2 − a2 + 2b
√

d2 − b2

)
in terms of a, b, and d.

Solving 3α + 2β = 2π, we find β =
2π − 3α

2
= π − 3α

2
.

Therefore,

cos β = cos
(

π − 3α

2

)
= − cos

(
3α

2

)
= − cos

(
α +

α

2

)
= − cos

α

2
cos α + sin

α

2
sinα.

Replacing the trig functions in this formula with the values computed above gives

d2 − 2b2

d2
= −

√
d2 − a2

d

(
d2 − 2a2

d2

)
+

a

d

(
2a

d2

)√
d2 − a2 =

√
d2 − a2

d

(
4a2 − d2

)
.

Solving for b2 in terms of a and d gives

b2 =
d3 −

√
d2 − a2

(
4a2 − d2

)
2d

, or b =

√√√√√d3 −
√

d2 − a2

(
4a2 − d2

)
2d

.

Note also that (1) 2b2 = d2 −

√
d2 − a2

(
4a2 − d2

)
d

.

We can use this expression for b to compute the area of the polygon solely in terms of a
and d.

Apolygon =
3a

4

√
d2 − a2 +

b

2

√
d2 − b2 =

3a

4

√
d2 − a2 +

a|3d2 − 4a2|
4d

.

To find specific values which satisfy the problem, we use equation (1).

If d2 − a2 = m2, then (1) becomes (2) 2b2 = d2 −
m

(
4a2 − d2

)
d

= d2 −
m

(
3a2 −m2

)
d

.

Then(a,m, d) is a Pythagorean triple, and thus a scalar multiple of a primitive Pythagorean
triple (A,B, C). Using the standard technique, this triple is generated by two parameters,
s and t: 

A = 2st
B = s2 − t2

C = s2 + t2
,



where s > t, s and t are relatively prime and have opposite parity. There are the two
possibilities, where k is some scalar:

a = kA = 2kst, m = kB = k

(
s2 − t2

)
, and d = kC = k

(
s2 + t2

)
or

m = kA = 2kst, a = kB = k

(
s2 − t2

)
, and d = kC = d

(
s2 + t2

)
.

We’ll find solutions satisfying the first set of conditions, recognizing that this will probably
not produce all solutions of the problem. Substituting these in (2),we find

2b2 = d2 − m(3a2 −m2)
d

= k

(
s2 + t2

)2

−
k(s2 − t2)

(
3(2ks)2 − k2

(
s2 − t2

)2)
k(s2 + t2)

.

Simplifying, we find that b2 =
k2s2

(
s2 − 3t2

)2

s2 + t2
, and we want this b to be an integer.

The simplest possible choice is to let k2 = s2 + t2 (so that (s, t, k) is itself a Pythagorean

triple); this forces b = s

(
s2 − 3t2

)
. We then have

a = 2kst = 2st
√

s2 + t2, m =
√

s2 + t2
(

s2−t2
)

, d = k(s2+t2) = k3 =
(

s2+t2
)3/2

and

b = s

(
s2 − 3t2

)
.

That is, if (s, t, k) is a Pythagorean triple with s2 − 3t2 > 0, we have
a = 2kst

b = s

(
s2 − 3t2

)
d = k3.

The restriction that a > b imposes further conditions on s and t (roughly, s < 3.08t).

Some results, due to Excel:

s t k b a d Area
12 5 13 828 1, 560 2, 197 1, 024, 576
15 8 17 495 4, 080 4, 913 3, 396, 630
35 12 37 27, 755 31, 080 50, 653 604, 785, 405
80 39 89 146, 960 555, 360 704, 969 85, 620, 163, 980
140 51 149 1, 651, 580 2, 127, 720 3, 307, 949 2, 530, 718, 023, 785
117 44 125 922, 077 1, 287, 000 1, 953, 125 829, 590, 714, 707
168 95 193 193, 032 6, 160, 560 7, 189, 057 6, 053, 649, 964, 950
208 105 233 2, 119, 312 10, 177, 440 12, 649, 337 25, 719, 674, 553, 300
187 84 205 2, 580, 787 6, 440, 280 8, 615, 125 14, 516, 270, 565, 027
252 115 277 6, 004, 908 16, 054, 920 21, 253, 933 86, 507, 377, 177, 725
209 120 241 100, 529 12, 088, 560 13, 997, 521 21, 678, 178, 927, 350
247 96 265 8, 240, 167 12, 567, 360 18, 609, 625 77, 495, 769, 561, 288
352 135 377 24, 368, 608 35, 830, 080 53, 582, 633 647, 598, 434, 135, 400

Also solved by the proposer



• 4950: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

a + b
4
√

a3 + 4
√

b3
+

b + c
4
√

b3 + 4
√

c3
+

c + a
4
√

c3 + 4
√

a3
≥ 3.

Solution by Kee-Wai Lau, Hong Kong, China

Since

a + b =
( 4
√

a + 4
√

b)( 4
√

a3 + 4
√

b3) + ( 4
√

a− 4
√

b)2(
√

a + 4
√

a 4
√

b +
√

b)
2

≥ ( 4
√

a + 4
√

b)( 4
√

a3 + 4
√

b3)
2

with similar results for b+c and c+a, so by the arithmetic mean-geometric mean inequality,
we have

a + b
4
√

a3 + 4
√

b3
+

b + c
4
√

b3 + 4
√

c3
+

c + a
4
√

c3 + 4
√

a3

≥ 4
√

a + 4
√

b + 4
√

c

≥ 3 12
√

abc

= 3 as required.

Also solved by Michael Brozinsky (two solutions), Central Islip, NY; Dionne
Bailey, Elsie Campbell, and Charles Diminnie (jointly), San Angelo, TX, and
the proposer.

• 4951: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let α, β, and γ be the angles of an acute triangle ABC. Prove that

π sin

√
α2 + β2 + γ2

π
≥ α sin

√
α + β sin

√
β + γ sin

√
γ.

Solution by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie (jointly),
San Angelo, TX.

Since α, β, and γ are the angles of an acute triangle,

α, β, γ ∈ (0,
π

2
) and

α

π
+

β

π
+

γ

π
= 1

Let f(x) = sin
√

x on (0,
π

2
). Then, since

f ′′(x) = −
√

x sin
√

x + cos
√

x

4x3/2
< 0

on (0,
π

2
) , it follows that f(x) is concave down on (0,

π

2
). Hence, by Jensen’s Inequality

and (1)

α

π
sin

√
α +

β

π
sin
√

β +
γ

π
sin

√
γ ≤ sin

√
α

π
· α +

β

π
· β +

γ

π
· γ



= sin

√
α2 + β2 + γ2

π
,

with equality if and only if α = β = γ =
π

3
.

Also solved by the proposer

• 4952: Proposed by Michael Brozinsky, Central Islip, NY & Robert Holt, Scotch Plains,
NJ.
An archeological expedition discovered all dwellings in an ancient civilization had 1, 2, or
3 of each of k independent features. Each plot of land contained three of these houses
such that the k sums of the number of each of these features were all divisible by 3.
Furthermore, no plot contained two houses with identical configurations of features and
no two plots had the same configurations of three houses. Find a) the maximum number
of plots that a house with a given configuration might be located on, and b) the maximum
number of distinct possible plots.

Solution by Paul M. Harms, North Newton, KS

Let

(
n

r

)
be the combination of n things taken r at a time. With k independent features

there are

(
k

1

)
= k number of different “groups” containing one feature,

(
k

2

)
different

“groups” containing two features, etc. To have the sum of independent features in a plot
of three houses be divisible by three, there are four possibilities. I. Each house in a plot
has one feature. II. Each house in a plot has two features. III. Each house in a plot has
three features. IV. One house in a plot has one feature, another house has two features,
and the third house has three features.

The maximum number of distinct plots can be found by summing the number of plots for
each of the four possibilities above. The sum is((k

1

)
3

)
+

((k
2

)
3

)
+

((k
3

)
3

)
+

(
k

1

)(
k

2

)(
k

3

)

This is the result for part b).

For part a), first consider a house with one fixed feature. There are plots in possibilities
I and IV. In possibility I the other two houses can have any combination of the other

(k − 1) single features so there are

(
k − 1

2

)
plots. In possibility IV the number of plots

with a house with one fixed feature is

(
k

1

)(
k

2

)(
k

3

)
. The number of plots with houses

with different features is the following: For a house with one fixed feature there are(
k − 1

2

)
+

(
k

2

)(
k

3

)
plots. For a house with two fixed features there are

((k
2)−1
2

)
+
(k
1

)(k
3

)
plots. For a house with three fixed features there are

((k
2

)
− 1
2

)
+

(
k

1

)(
k

2

)
plots.

Also solved by the proposer.



• 4953: Proposed by Tom Leong, Brooklyn, NY.
Letπ(x) denote the number of primes not exceeding x. Fix a positive integer n and define
sequences by a1 = b1 = n and

ak+1 = ak − π(ak) + n, bk+1 = π(bk) + n + 1 for k ≥ 1.

a) Show that lim
k→∞

ak is the nth prime.

b) Show that lim
k→∞

bk is the nth composite.

Solution by Paul M. Harms, North Newton, KS.

Any positive integer m is less than the mth prime since 1 is not a prime. In part a)
with a1 = n, we have π(n) primes less than or equal to n. We need n − π(n) more
primes than n has in order to get to the nth prime. Note that a2 is greater than a1 by
n − π(n). If all of the integers from a1 + 1 to a2 are prime, then a2 is the nth prime. If
not all of the integers indicated in the last sentence are primes, we see that a3 is greater
than a2 by the number of non-primes from a1 + 1 to a2. This is true in general from
ak to ak+1 since ak+1 = ak + (n − π(ak)). If ak is not the nth prime, then ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak + 1,to
ak+1. We see that the sequence increases until some am = N , the nth prime. Then
am+1 = am + (n − π(am)) = am + 0 = am. In this same way it is seen that ak = am for
all k greater that m. Thus the limit for the sequence in part a) is the nth prime.

For part b) note that n is less than the nth composite. Since the integer 1 and integers
π(n) are not composite, the nth composite must be at least 1+π(n) greater than n. With
b1 = n we see that b2 = n + (1 + π(n)). Then b2 will be the nth composte provided all
integers n + 1, n + 2, · · · , n + 1 + π(n) are composites. If some of the integers in the last
sentence are prime, then b3 is greater than b2 by the number of primes in the integers
from b1 + 1 to b2. In general, bk+1 is greater than bk by the number of primes in the
integers from bk−1 + 1 to bk and the sequence will be an increasing sequence until the nth

composite is reached. If bm = N , the nth composite, then all integers from bm−1 + 1 to
bm are composite. Then π(bm−1) = π(bm) and bm+1 = π(bm−1) + 1 + n = bm = N . We
see that bk = N for all k at least as great as m. Thus the limit of the sequence in part
b) is the nth composite.

Also solved by David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 4954: Proposed by Kenneth Korbin, New York, NY.
Find four pairs of positive integers (a, b) that satisfy

a + i

a− i
· b + i

b− i
=

111 + i

111− i

with a < b.

Solution by David E. Manes, Oneonta, NY.

The only solutions (a, b) with a < b are (112, 12433), (113, 6272), (172, 313), and (212, 233).

Expanding the given equation and clearing fractions, one obtains [2(111)(a + b)− 2(ab−

1)]i = 0. Therefore,
ab− 1
a + b

= 111. Let b = a + k for some positive integer k. Then the



above equation reduces to a quadratic in a; namely a2 + (k− 222)a− (111k + 1) = 0 with
roots given by

a =
(222− k)±

√
k2 + 49288

2
.

Since a is a positive integer, it follows that k2 + 49288 = n2 or

n2 − k2 = (n + k)(n− k) = 49288 = 23 · 61 · 101.

Therefore, n + k and n− k are positive divisors of 49288. The only such divisors yielding
solutions are

n + k n− k
24644 2
12322 4
404 122
244 202

Solving these equations simultaneously gives the following values for(n, k) :

(12323, 12321), (6163, 6159), (263, 141), and (223, 21)

from which the above cited solutions for a and b are found.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Jeremy Erickson, Matthew Rus-
sell, and Chad Mangum (jointly; students at Taylor University), Upland, IN;
Grant Evans (student at St. George’s School), Spokane, WA; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; John Nord, Spokane, WA;
Homeira Pajoohesh, David Stone, and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 4955: Proposed by Kenneth Korbin, New York, NY.
Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

Solution by Brian D. Beasley, Clinton, SC.

Let R be the number of pairs of red sox and B be the number of pairs of blue sox. Then
200 ≤ R + B ≤ 400 and

2R(2R− 1)(2R− 2) + 2B(2B − 1)(2B − 2)
(2R + 2B)(2R + 2B − 1)(2R + 2B − 2)

=
1
4
.

Thus 4[R(2R − 1)(R − 1) + B(2B − 1)(B − 1)] = (R + B)(2R + 2B − 1)(R + B − 1), or
equivalently

4(2R2 + 2B2 −R−B − 2RB)(R + B − 1) = (2R2 + 2B2 −R−B + 4RB)(R + B − 1).

This yields 6R2 + 6B2 − 3R − 3B − 12RB = 0 and hence 2(R − B)2 = R + B. Letting
x = R−B, we obtain R = x2 + 1

2x and B = x2− 1
2x, so x is even. In addition, the size of

R + B forces |x| ∈ {10, 12, 14}. A quick check shows that only |x| = 12 produces values
for R and B between 100 and 200, giving the unique solution {R,B} = {138, 150}. Thus
R + B = 288.



Also solved by Pat Costello, Richmond, KY; Paul M. Harms, North Newton,
KS, and the proposer.

• 4956: Proposed by Kenneth Korbin, New York, NY.
A circle with radius 3

√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

Solution by Eric Malm, Stanford, CA.

There are two different solutions: one when the trapezoid is shaped like /O\, and the
other when it is configured like /O/. In fact, by reflecting the right-hand half of the plane
about the x-axis, we can interchange between these two cases. Anyway, in the first case,
the lengths of the bases are 7−

√
7 and 14 +

√
7, and in the second case they are 7 +

√
7

and 14−
√

7.

Also solved by Michael Brozinsky, Central Islip, NY; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Paul M. Harms, North Newton,
KS; Peter E. Liley, Lafayette, IN; Charles McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; Nate Wynn (student at St. George’s School), Spokane,
WA, and the proposer.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

Solution by Michael Brozinsky, Central Islip, NY.

If we write an = 2bn we have bn =
bn−1 + bn−2 + bn−3

3
where b0 = 0, b1 = 1, and b2 = 0.

The characteristic equation is

x3 =
x2

3
+

x

3
+

1
3

with roots

r1 = 1, r2 =
−1 + i

√
2

3
, and r3 =

−1− i
√

2
3

.

The generating function f(n) for {bn} is (using the initial conditions) found to be

f(n) = A + B

(−1 + i
√

2
3

)n

+ C

(−1− i
√

2
3

)n

where

A =
1
3
, B = −1

6
− 5i

√
2

12
, and C = −1

6
+

5i
√

2
12

.

Since |r2| = |r3| =
√

6
4

< 1 we have the last two terms in the expression for f(n) approach

0 as n approaches infinity, and hence lim
n→∞

bn =
1
3

and so lim
n→∞

an = 3
√

2.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays and Jahangeer Khold
(jointly), Chesapeake, VA & Portsmouth, VA; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.



Let f : [a, b] → R (0 < a < b) be a continuous function on [a, b] and derivable in (a, b).
Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√

ab
· ln(ab/c2)
ln(c/a) · ln(c/b)

.

Solution by the proposer.
Consider the function F : [a, b] → R defined by

F (x) = (lnx− ln a)(lnx− ln b) exp
[√

ab f(x)
]

Since F is continuous function on [a, b], derivable in (a, b) and F (a) = F (b) = 0, then by
Rolle’s theorem there exists c ∈ (a, b) such that F ′(c) = 0. We have

F ′(x) =
[
1
x

(lnx− ln b) +
1
x

(lnx− ln a)

+
√

ab(lnx− ln a)(lnx− ln b)f ′(x)
]
exp

[√
ab f(x)

]
and

1
c

ln

(
c2

ab

)
+
√

ab ln
(

c

a

)
ln
(

c

b

)
f ′(c) = 0

From the preceding immediately follows

√
ab ln(c/a) ln(c/b) f ′(c) =

1
c

ln(ab/c2)

and we are done.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.
Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solution by Jeremy Erickson, Matthew Russell, and Chad Mangum (jointly,
students at Taylor University), Upland, IN.

We start by considering the possibilities that exist for N . Since there are 10 possibilities
for a and for b, there are 100 possibilities for N . It would not be incorrect to check all
100 cases, however we need not do so.
We can eliminate the majority of these 100 cases without directly checking them. If we
assume that S(N) ≥ 6, then [S(N)] ≥ 36, which means that for the property to hold,
S(N2) ≥ 36 as well. This would require N2 ≥ 9999. However, this leads us to a contradic-
tion because the largest possible value for N by our definition is 99, andN2 in that case is
only N2 = 992 = 9801 < 9999. Therefore, we need not check any number N such S(N) >
6. More precisely, any number N in the intervals[6, 9]; [15, 19]; [24, 29]; [33, 39]; [42, 49]; [51, 99]
need not be checked. This leaves us with 21 cases that can easily be checked.



After checking each of these cases separately, we find that for 13 of them, the property
[S(N)]2 = S(N2) does in fact hold. These 13 solutions are

N = 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 30, 31.

We show the computation for N = 31 as an example:

N = 31 N2 = 312 = 961
S(N) = 3 + 1 = 4 S(N2) = 9 + 6 + 1 = 16

[S(N)]2 = 42 = 16
[S(N)]2 = S(N2) = 16 for N = 31.

The other 12 solutions can be checked similarly.

Also solved by Paul M. Harms, North Newton, KS; Jahangeer Kholdi, Robert
Anderson and Boris Rays (jointly), Portsmouth, Portsmouth, & Chesapeake,
VA; Peter E. Liley, Lafayette, IN; Jim Moore, Seth Bird and Jonathan Schrock
(jointly, students at Taylor University), Upland, IN; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

Late Solutions

Late solutions by David E. Manes of Oneonta, NY were received for problems 4942
and 4944.
—————-
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Solutions to the problems stated in this issue should be posted before
January 15, 2008

• 4984: Proposed by Kenneth Korbin, New York, NY.
Prove that

1√
1 +

√
3

+
1√

5 +
√

7
+ · · ·+ 1√

2009 +
√

2011
>
√

120.

• 4985: Proposed by Kenneth Korbin, New York, NY.
A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

• 4986: Michael Brozinsky, Central Islip, NY.
Show that if 0 < a < b and c > 0, that√

(a + c)2 + d2 +
√

(b− c)2 + d2 ≤
√

(a− c)2 + d2 +
√

(b + c)2 + d2.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.



• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

3x2−x−z + 3y2−y−x + 3z2−z−y = 1.

• 4989: Proposed by Tom Leong, Scotrun, PA.
The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.

Solutions

• 4960: Proposed by Kenneth Korbin, New York, NY.

Equilateral triangle ABC has an interior point P such that

AP =
√

5, BP =
√

12, and CP =
√

17.

Find the area of 4APB.

Solution by Scott H. Brown, Montgomery, AL.

First rotate 4ABC about point C through a counter clockwise angle of 60o. This will
create equilateral triangle CBB′ and interior point P ′. Since triangle ABC is equialteral
and m6 ACB = 60o, AC falls on BC, and CP ′ =

√
17, B′P ′ =

√
12, BP ′ =

√
5. Now

4CPA ∼= 4CP ′B and m6 ACP = m6 BCP ′, so m6 PCP ′ = 60o.

Second, draw PP ′, forming isosceles triangle PCP ′. Since m6 PCP ′ = 60o, triangle
PCP ′ is equilateral. We find PP ′ =

√
17, PA = P ′B =

√
5 and PB =

√
12. So triangle

PBP ′ is a right triangle.

Third, m6 APB′ = 120o and m6 PBP ′ = 90o. We find m6 PBA + m6 P ′BB′ = 30o.
Since m6 P ′BB′ = m6 PAB, then by substitution, m6 PBA + m6 PAB = 30o. Thus
m6 APB = 150o.

Finally, we find the area of triangle APB=
1
2
(
√

5)(
√

12) sin(150o) =
√

15
2

square units.

(Reference: Challenging Problems in Geometry 2, Posamentier & Salkind, p. 39.)

Also solved by Mark Cassell (student, Saint George’s School), Spokane, WA;
Matt DeLong, Upland, IN; Grant Evans (student, Saint George’s School),
Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; John Nord, Spokane, WA; Boris Rays
and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4961: Proposed by Kenneth Korbin, New York, NY.
A convex hexagon is inscribed in a circle with diameter d. Find the area of the hexagon
if its sides are 3, 3, 3, 4, 4 and 4.

Solution 1 by John Nord, Spokane, WA.



For cyclic quadrilateral ABCD with sides a, b, c, and d, two different formulations of the
area are given, Brahmagupta’s formula and Bretschneider’s formula.

A =
√

(s− a)(s− b)(s− c)(s− d) where s =
a + b + c + d

2
(1)

A =
√

(ac + bd)(ad + bc)(ab + cd)
4R

where R is the circumradius (2)

In order to employ the cyclic quadrilateral theorems, place a diagonal into the hexagon
to obtain two inscribed quadrilaterals. The first has side lengths of 3,3,3, and x and the
second has side lengths of 4,4,4 and x.

Equating (1) and (2) and solving for R yields

R =
1
4

√
(ac + bd)(ad + bc)(ab + cd)
(s− a)(s− b)(s− c)(s− d)

(3)

Both quadrilaterals are inscribed in the same circle so (3) can be used for both
quadrilaterals and they can be set equal to each other. Solving for x is surprisingly
simple and the area computations can be calculated using (1) directly. The area of the

inscribed hexagon with sides 3,3,3,4,4, and 4 is
73
√

3
4

.

Solution 2 by Jonathan Schrock, Seth Bird, and Jim Moore (jointly, students
at Taylor University), Upland, IN.

Since the hexagon is convex and cyclic, a radius of the circumscribing circle can be
drawn to each vertex producing six isosceles triangles. The formula for the height of one

of these triangles is
1
2

√
4r2 − c2 where c is the length of the base of the triangle and r is

the radius of the circle. Since 2r = d (the diameter of the circle), the area of any one of
these triangles will therefore be

c

4

√
d2 − c2. The total area of the hexagon is the sum of

the areas of the triangles. There are three triangles for which c = 3 and three for which

c = 4. So the total area of the hexagon in terms of d is 3
√

d2 − 16 +
9
4

√
d2 − 9.

We can determine d by rearranging the hexagon so that the side lengths alternate as
3,4,3,4,3,4. This creates three congruent quadrilaterals. Consider just one of these
quadrilaterals and label it ABCO, where A, B, and C lie on the circle and O is the
center of the circle. Since the interior angle for a circle is 360o and there are three
quadrilaterals, 6 AOC = 120o. By constructing a line from A to C we can see by the
symmetry of the rearranged hexagon, that 6 ABC = 120o. Using the law of cosines,

AC
2 = AB

2 + BC
2 − 2

(
AB

)(
BC

)
cos(120o),

which can be written as AC
2 = 32 + 42 − 2(3)(4) cos(120o). That is, AC =

√
37.

To determine d we use the law of cosines again. Here,

AC
2 = AO

2 + CO
2 − 2

(
AO

)(
CO

)
cos(120o),

which can be written as 37 =
d2

2
− d2

2
cos(120o). Solving for d gives d = 2

√
37
3

.

Substituting this value of d into the formula 3
√

d2 − 16 +
9
4

√
d2 − 9 gives the area of the

hexagon as
73
√

3
4

.



Comment by editor: David Stone and John Hawkins of Statesboro GA
generalized the problem for any convex, cyclic hexagon with side lengths a, a, a, b, b, b
(with 0 < a ≤ b) and with d as the diameter of the circumscribing circle. They showed
that d is uniquely determined by the values of a and b, d =

√
4
3(a2 + ab + b2). Then

they asked the question: What fraction of the circle’s area is covered by the hexagon?
They found that in general, the fraction of the circle’s area covered by the hexagon is:

√
3

4
(a2 + 4ab + b2)

π

3
(a2 + ab + b2)

=
3
√

3(a2 + 4ab + b2)
4π(a2 + ab + b2)

=
3
√

3
4π

(a + b)2 + 2ab

(a + b)2 − ab
=

(
3
√

3
4π

)
1 + 2c

1− c

where c =
ab

(a + b)2
.

They continued on by stating that in fact, c takes on the values 0 < c ≤ 1/4, thus

forcing 1 <
1 + 2c

1− c
≤ 2. So by appropriate choices of a and b, the hexagon can cover

from
3
√

3
4π

≈ 0.4135 of the circle up to
3
√

3
4π

· 2 ≈ 0.827 of the circle. A regular hexagon,

where a = b and c = 1/4, would achieve the upper bound and cover the largest possible
fraction of the circle.

For instance, we can force the hexagon to cover exactly one half the circle by making(
3
√

3
4π

)
1 + 2c

1− c
=

1
2
. This would require c =

2π − 3
√

3

2
(

3
√

3 + π

) ≈ 0.0651875. Setting this

equal to
ab

(a + b)2
, we find that

a

b
=

(
6
√

3− π

)
±

√
3(27− π2)

2π − 3
√

3
.

That is, if b = 13.2649868a, the hexagon will cover half of the circle.

Also solved by Matt DeLong, Upland, IN; Peter E. Liley, Lafayette, IN;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay (jointly, students at
Taylor University), Upland, IN; Paul M. Harms, North Newton, KS; Boris
Rays and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA , and
the proposer.

• 4962: Proposed by Kenneth Korbin, New York, NY.
Find the area of quadrilateral ABCD if the midpoints of the sides are the vertices of a
square and if AB =

√
29 and CD =

√
65.

Solution by proposer.

Conclude that AC ⊥ BD and that AC = BD. Then, there are positive numbers
(w, x, y, z) such that

w + x = AC,
y + z = BD,

w2 + y2 = 29, and
x2 + z2 = 65.

Then, (w, x, y, z) = (
11√
10

,
19√
10

,
13√
10

,
17√
10

) and AC = BD =
30√
10

. The area of the



quadrilateral then equals 1
2(AC)(BD) =

1
2

(
30√
10

)(
30√
10

)
= 45.

Also solved by Peter E. Liley, Lafayette, IN, and by Boris Rays and
Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA.

• 4963: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

∑
1≤i<j≤n

1
3i+j

.

Solution 1 by Ken Korbin, New York, NY.

∑
1≤i<j≤n

1
3i+j

=
(

1
33

+
1
34

)
+

(
2
35

+
2
36

)
+

(
3
37

+
3
38

)
+

(
4
39

+
4

310

)
+ · · ·

=
4
34

+
8
36

+
12
38

+
16
310

+ · · ·

=
4
34

[
1 +

2
32

+
3
34

+
4
36

+ · · ·
]

=
4
34

[
1 +

1
32

+
1
34

+
1
36

+ · · ·
]2

=
4
34

[
1

1− 1
32

]2

=
4
34

[
9
8

]2

=
1
16

.

Solutions 2 and 3 by Pat Costello, Richmond, KY.

2) When n = 2 we have
1

31+2
.

When n = 3 we have
1

31+3
+

1
32+3

.

When n = 4 we have
1

31+4
+

1
32+4

+
1

33+4
.

Adding down the columns we obtain:

∞∑
k=3

1
3k

+
∞∑

k=5

1
3k

+
∞∑

k=7

1
3k

+ · · ·

=
(1/3)3

1− 1/3
+

(1/3)5

1− 1/3
+

(1/3)7

1− 1/3
+ · · ·

=
3
2

(
1
3

)3

(1 + (1/3)2 + (1/3)4 + · · ·)

=
3
2

(
1
3

)3(
1 + (1/9) + (1/9)2 + · · ·

)
=

3
2

(
1
3

)3( 1
1− 1/9

)
=

1
16

.



3) Another way to see that the value is 1/16 is to write the limit as the double sum

∞∑
n=2

n−1∑
i=2

1
3n+i

=
∞∑

n=2

1
3n

n−1∑
i=2

1
3i

=
∞∑

n=2

1
3n

(
(1/3)− (1/3)n

1− (1/3)

)

=
3
2

∞∑
n=2

1
3n

(
(1/3)− (1/3)n

)

=
3
2

(
(1/3)

∞∑
n=2

1
3n
−

∞∑
n=2

1
9n

)

=
3
2

(
(
1
3
)

1/9
1− 1/3

− 1/(81)
1− 1/9

)

=
3
2

(
1
18
− 1

72

)
=

1
16

.

Also solved by Bethany Ballard, Nicole Gottier, Jessica Heil (jointly,
students at Taylor University), Upland, IN; Matt DeLong, Upland, IN; Paul
M. Harms, North Newton, KS; Carl Libis, Kingston, RI; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 4964: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let x, y be real numbers and we define the law of composition

x ⊥ y = x
√

1 + y2 + y
√

1 + x2.

Prove that (R,+) and (R,⊥) are isomorphic and solve the equation x ⊥ a = b.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

Define f : (R,+) → (R,⊥) by f(x) = sinhx.
Then f is one-to-one and onto, and

f(a + b) = sinh(a + b)
= sinh a cosh b + cosh a sinh b

= sinh a

√
1 + sinh2 b + sinh b

√
1 + sinh2 a

= f(a) ⊥ f(b)

Therefore (R,+) and (R,⊥) are isomorphic abelian groups.
Note that: 

i) f(0) = 0 and that f(−a) = −f(a).
ii) In (R,⊥)

0 ⊥ a = 0
√

1 + a2 + a
√

1 + 02 = a and
a ⊥ (−a) = a

√
1 + a2 − a

√
1 + a2 = 0.

If x ⊥ a = b, then x = b ⊥ (−a) = b
√

1 + a2 − a
√

1 + b2.



Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY, and the proposer.

• 4965: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let ha, hb, hc be the heights of triangle ABC. Let P be any point inside 4ABC. Prove
that

(a)
ha

da
+

hb

db
+

hc

dc
≥ 9, (b)

d2
a

h2
a

+
d2

b

h2
b

+
d2

c

h2
c

≥ 1
3
,

where da, db, dc are the distances from P to the sides BC, CA and AB respectively.

Solution to part (a) by Scott H. Brown, Montgomery, AL.

Suppose P is any point inside triangle ABC. Let AP,BP, and CP be the line segments
whose distances from the vertices are x, y, and z respectively. Let AP,BP, and CP
intersect the sides BC, CA, and AB, at points L,M, and N respectively. Denote
PL, PM, and PN by u, v, and w respectively.
In reference [1] it is shown that

x

u
+

y

v
+

z

w
≥ 6, (1)

with equality holding only if P in the centroid of triangle ABC.
Considering the heights ha, hb, and hc, and the distances respectively to the sides from
P as da, db, and dc in terms of u, v, w, x, y, and z gives:

ha

da
=

x + u

u
,

hb

db
=

y + v

v
,

hc

dc
=

z + w

w
. (2)

Applying inequality (1) gives:
ha

da
+

hb

db
+

hc

dc
≥ 9,

with equality holding only if P is the centroid of triangle ABC.

Reference [1]. Some Inequalities For A Triangle, L. Carlitz,
American Mathematical Monthly, 1964, pp. 881-885.

Solution to part (b) by the proposers.

For the triangles BPC, APC, APB we have,

[BPC] = da ×
BC

2
=

da

ha
× ha BC

2
=

da

ha
× [ABC]

[APC] = db ×
AC

2
=

db

hb
× hb AC

2
=

db

hb
× [ABC]

[APB] = dc ×
AB

2
=

dc

hc
× hc ABC

2
=

dc

hc
× [ABC]

Adding up the preceding expressions yields,(
da

ha
+

db

hb
+

dc

hc

)
[ABC] = [ABC]



and
da

ha
+

db

hb
+

dc

hc
= 1

Applying AM-QM inequality, we get√√√√ d2
a

h2
a

+ d2
b

h2
b

+ d2
c

h2
c

3
≥ 1

3

(
da

ha
+

db

hb
+

dc

hc

)
=

1
3

from which the inequality claimed immediately follows. Finally, notice that equality
holds when da/ha = db/hb = dc/hc = 1/3. That is, when 4ABC is equilateral and P is
its centroid.

• 4966: Proposed by Kenneth Korbin, New York, NY.
Solve:

16x + 30
√

1− x2 = 17
√

1 + x + 17
√

1− x

with 0 < x < 1.

Solution 1 by Elsie Campbell, Dionne Bailey, & Charles Diminnie, San
Angelo, TX.

Let x = cos θ where θ ∈ (0, π
2 ). Then,

16x + 30
√

1− x2 = 17
√

1 + x + 17
√

1− x

becomes

16 cos θ + 30
√

1− cos2 θ = 17
√

1 + cos θ + 17
√

1− cos θ

= 17
√

2

√
1 + cos θ

2
+

√
1− cos θ

2


= 34

(
1√
2

cos
θ

2
+

1√
2

sin
θ

2

)
= 34

(
cos

π

4
cos

θ

2
+ sin

π

4
sin

θ

2

)
= 34 cos(

π

4
− θ

2
). (1)

Let cos θ0 = 8
17 . Then by (1),

cos(
π

4
− θ

2
) =

8
17

cos θ +
15
17

sin θ

= cos θ0 cos θ + sin θ0 sin θ

= cos(θ0 − θ).

Therefore,

θ0 − θ = π
4 −

θ
2

⇒ θ = 2θ0 − π
2

⇒ x = 240
289

or
θ0 − θ = −(π

4 −
θ
2)

⇒ θ = 2
3θ0 + π

6
⇒ x = cos(2

3 cos−1 8
17 + π

6 ).

Remark: This solution is an adaptation of the solution on pp.13-14 from Mathematical
Miniatures by Savchev and Andreescu.



Solution 2 by Brian D. Beasley, Clinton, SC.

Since 0 < x < 1, each side of the given equation will be positive, so we may square both
sides without introducing any extraneous solutions. After simplifying, this yields

(480x− 289)
√

1− x2 = 161(2x2 − 1).

For each side of this equation to have the same sign (or zero), we require
x ∈ (0, 289/480] ∪ [

√
2/2, 1). We now square again, checking for actual as well as

extraneous solutions. This produces

(1156x3 − 867x + 240)(289x− 240) = 0,

so one potential solution is x = 240/289. The cubic formula yields three more, namely

x ∈ {− cos(
1
3

cos−1(
240
289

)), sin(
1
3

sin−1(
240
289

)), cos(
1
3

cos−1(−240
289

))}.

Of these four values, only two are in x ∈ (0, 289/480] ∪ [
√

2/2, 1):

x =
240
289

and x = sin(
1
3

sin−1(
240
289

)).

Addendum. The given equation generalizes nicely to

2ax + 2b
√

1− x2 = c
√

1 + x + c
√

1− x,

where a2 + b2 = c2 with a < b. The technique outlined above produces

(4c2x3 − 3c2x + 2ab)(c2x− 2ab) = 0,

so one solution (which checks in the original equation) is x = 2ab/c2. Another solution

(does it always check in the original equation?) is x = sin(
1
3

sin−1(
2ab

c2
)), which is

connected to the right triangle with side lengths (b2 − a2, 2ab, c2) in the following way:

If we let 3θ be the angle opposite the side of length 2ab in this triangle, then we have
2ab/c2 = sin(3θ) = −4 sin3 θ + 3 sin θ, which brings us right back to
4c2x3 − 3c2x + 2ab = 0 for x = sin θ.

Similarly, we may show that the other two solutions are x = − cos(
1
3

cos−1(
2ab

c2
)) and

x = cos(
1
3

cos−1(−2ab

c2
)); the first of these is never in (0, 1), but will the second ever be a

solution of the original equation?

Also solved by John Boncek, Montgomery, AL; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4967: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with an interior point P such that AP2 + BP2 = CP2,
and with an exterior point Q such that AQ2 + BQ2 = CQ2, where points C, P, and Q
are in a line. Find the lengths of AQ and BQ if AP =

√
21 and BP =

√
28.

Solution by Paul M. Harms, North Newton, KS.

Put the equilateral triangle on a coordinate system with A at (0, 0), B at (a,
√

3a) and C
at (2a, 0) where a > 0. The point P is at the intersection of the circles

x2 + y2 = 21



(x− a)2 + (y −
√

3a)2 = 28 and
(x− 2a)2 + y2 = 28 + 21 = 49.

Using x2 + y2 = 21 in the last two circles we obtain

−2ax− 2
√

3ay + 4a2 = 28− 21 = 7 and
−4ax + 4a2 = 49− 21 = 28.

From the last equation x =
a2 − 7

a
and, using the linear equation, we get y =

2a2 + 7
2
√

3a
.

Putting these x, y values into x2 + y2 = 21 yields the quadratic in
a2, 16a4 − 392a2 + 637 = 0. From this equation a2 = 22.75 or a2 = 1.75. From the
distances given in the problem, a2 must be 22.75. The coordinates of P are x = 3.3021
and y = 3.1774. The line through C and P is y = −0.5094x + 4.85965.

Let Q have coordinates (x1, y1). An equation for AQ
2 + BQ

2 = CQ
2 can be found using

the coordinates Q(x1, y1), A(0, 0), B(4.7697, 8.2614), and C(9.5394, 0). An equation is

x2
1 + y2

1 + (x1 − 4.7697)2 + (y1 − 8.2614)2 = (x1 − 9.5394)2 + y2
1.

Simplifying and replacing y1 by −0.5094x1 + 4.85965 yields the quadratic equation
1.2595x2

1 + 13.0052x1 − 56.6783 = 0. In order that Q is exterior to the triangle we need
the solution x1 = −13.6277. Then y1 = −0.5094x1 + 4.85965 = 11.8020. The distance
from A to Q is

√
325 = 18.0278 and the distance from B to Q is

√
351 = 18.7350.

Also solved by Zhonghong Jiang, New York, NY, and the proposer.

• 4968: Proposed by Kenneth Korbin, New York, NY.

Find two quadruples of positive integers (a, b, c, d) such that

a + i

a− i
· b + i

b− i
· c + i

c− i
· d + i

d− i
=

a− i

a + i
· b− i

b + i
· c− i

c + i
· d− i

d + i

with a < b < c < d and i =
√
−1.

Solution 1 by Brian D. Beasley, Clinton, SC.

We need ((a + i)(b + i)(c + i)(d + i))2 = ((a− i)(b− i)(c− i)(d− i))2, so

(a + i)(b + i)(c + i)(d + i) = ±(a− i)(b− i)(c− i)(d− i).

Then either

(ab− 1)(c + d) + (a + b)(cd− 1) = 0 or (ab− 1)(cd− 1)− (a + b)(c + d) = 0.

But (ab− 1)(c + d) > 0 and (a + b)(cd− 1) > 0, so the first case cannot occur. In the
second case, since d = (ab + ac + bc− 1)/(abc− a− b− c) > 0, we have abc > a + b + c.
Then d ≥ 4 implies

3 ≤ c ≤ ab + 4a + 4b− 1
4ab− a− b− 4

,

where we note that 1 ≤ a < b implies 4ab > a + b + 4. Thus 2 ≤ b ≤ (7a + 11)/(11a− 7),
so a ≤ 5/3. Thus a = 1, which yields b ∈ {2, 3, 4}.

If (a, b) = (1, 2), then d = (3c + 1)/(c− 3), so c < d forces c ∈ {4, 5, 6}. Only c ∈ {4, 5}
will yield integral values for d, producing the two solutions (1, 2, 4, 13) and (1, 2, 5, 8) for
(a, b, c, d).



If (a, b) = (1, 3), then d = (2c + 1)/(c− 2), so 3 < c < d forces c = 4. But this yields
d = 9/2.

If (a, b) = (1, 4), then d = (5c + 3)/(3c− 5), but 4 < c < d forces the contradiction c ≤ 3.

Hence the only two solutions for (a, b, c, d) are (1, 2, 4, 13) and (1, 2, 5, 8).

Solution 2 by Dionne Bailey, Elsie Campbell, & Charles Diminnie, San
Angelo, TX.

By using the following properties of complex numbers,

(z1z2) = z̄1z̄2,
(

z1
z2

)
= z1

z2
, z = z,

we see that the left and right sides of the equation are conjugates and hence, the
equation reduces to

Im

(
a + i

a− i
· b + i

b− i
· c + i

c− i
· d + i

d− i

)
= 0. (1)

If z = (a + i) (b + i) (c + i) (d + i) = A + Bi, then (1) becomes

Im

(
z

z

)
= 0,

which reduces to AB = 0 or equivalently, A = 0 or B = 0. With some labor, we get

A = 1− (ab + ac + ad + bc + bd + cd) + abcd

= (ab− 1) (cd− 1)− (a + b) (c + d) and
B = (abc + abd + acd + bcd)− (a + b + c + d)

= (a + d) (bc− 1) + (b + c) (ad− 1) .

Therefore, a, b, c, d must satisfy

(ab− 1) (cd− 1) = (a + b) (c + d) (2)

or
(a + d) (bc− 1) + (b + c) (ad− 1) = 0. (3)

Immediately, the condition 1 ≤ a < b < c < d rules out equation (3) and we may restrict
our attention to equation (2).
Since c ≥ 3 and d ≥ 4, we obtain

(cd− 1)− (c + d) = (c− 1) (d− 1)− 2 > 0

and hence,
c + d < cd− 1.

Using this and the fact that (ab− 1) > 0, equation (2) implies that

(ab− 1) (c + d) < (ab− 1) (cd− 1) = (a + b) (c + d) ,

or
ab− 1 < a + b.

This in turn implies that
0 ≤ (a− 1) (b− 1) < 2.



Then, since 1 ≤ a < b, we must have a = 1 and equation (2) becomes

(b− 1) (cd− 1) = (b + 1) (c + d) . (4)

Finally, b ≥ 2 implies that

cd− 1 =
b + 1
b− 1

(c + d) =
(

1 +
2

b− 1

)
(c + d) ≤ 3 (c + d)

or
0 ≤ (c− 3) (d− 3) ≤ 10. (5)

To complete the solution, we solve each of the 11 possibilities presented by (5) and then
substitute back into (4) to solve for the remaining variable. It turns out that the only
situation which yields feasible answers for b, c, d is the case where (c− 3) (d− 3) = 10.
We show this case and two others to indicate the reasoning applied.
Case 1. If

(c− 3) (d− 3) = 0,

then since 1 = a < b < c < d, we must have c = 3 and b = 2. When these are substituted
into (4), we get

3d− 1 = 3 (3 + d)

which is impossible.
Case 2. If

(c− 3) (d− 3) = 6,

then since c < d, we must have c− 3 = 1, d− 3 = 6 or c− 3 = 2, d− 3 = 3. These yield
c = 4, d = 9 or c = 5, d = 6. However, neither pair gives an integral answer for b when
these are substituted into (4).
Case 3. If

(c− 3) (d− 3) = 10,

then since c < d, we must have c− 3 = 1, d− 3 = 10 or c− 3 = 2, d− 3 = 5. These yield
c = 4, d = 13 or c = 5, d = 8. When substituted into (4), both pairs give the answer
b = 2.
Therefore, the only solutions for which a, b, c, d are integers, with
1 ≤ a < b < c < d, are (a, b, c, d) = (1, 2, 4, 13) or (1, 2, 5, 8).

Also solved by Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Raul A. Simon, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

.

• 4969: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers such that abc = 1. Prove that

1

a2

(
1
a

+
1
c

) +
1

b2

(
1
b

+
1
a

) +
1

c2

(
1
c

+
1
b

) ≥ 3
2

Solution by Kenneth Korbin, New York, NY.



Let x =
1
a
, y =

1
b
, z =

1
c
. Then, K =

x2

x + z
+

y2

y + x
+

z2

z + y
.

Let U1 =
x√

x + z
, U2 =

y√
y + x

,U3 =
z√

z + y
. Then, K = (U1)2 + (U2)2 + (U3)2.

Let V1 =
√

x + z, V2 =
√

y + x, V3 =
√

z + y. Then, by the Cauchy inequality,

K = (U1)2 + (U2)2 + (U3)2

≥ (U1V1 + U2V2 + U3V3)2

(V1)2 + (V2)2 + (V3)2

=
(x + y + z+)2

2(x + y + z)
=

x + y + z

2

Then, by the AM-GM inequality,

K ≥ x + y + z

2

≥ 1
2
(3)( 3

√
xyz)

=
3
2
(1) =

3
2
.

Note: abc = 1 implies xyz = 1.

Comment by editor: John Boncek of Montgomery, AL noted that this problem is a
variant of an exercise given in Andreescu and Enescu’s Mathemical Olympiad Treasures,
(Birkhauser, 2004, problem 6, page 108.)

Also solved by John Boncek; David E. Manes, Oneonta, NY, and the
proposer.

• 4970: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [0, 1] −→ R be a contintuous convex function. Prove that

3
4

∫ 1/5

0
f(t)dt +

1
8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

By the convexity of f we have

3
4
f

(
s

5

)
+

1
4
f

(
2s

5

)
≥ f

(
(
3
4
)(

s

5
) + (

1
4
)(

2s

5
)
)

= f

(
s

4

)
for 0 ≤ s ≤ 1. Hence,

3
4

∫ 1

0
f

(
s

5

)
ds +

1
4

∫ 1

0
f

(
2s

5

)
ds ≥

∫ 1

0
f

(
s

4

)
ds.

By substituting s = 5t in the first integral, s =
5t

2
in the second at the left and s = 4t in

the integral at the right, we obtain the inequality of the problem.



Solution 2 by David Stone and John Hawkins, Statesboro, GA.

Note 1. Consider the behavior in the extreme case: if f is a linear function, then
equality holds:

3
4

∫ 1/5

0
(mt+b)dt+

1
8

∫ 2/5

0
(mt+b)dt =

3
4

[
m

2

(
1
5

)2

+b
1
5

]
+

1
8

[
m

2

(
2
5

)2

+b
2
5

]
=

1
40

m+
1
5
b,

and
4
5

∫ 1/4

0
(mt + b)dt =

4
5

[
m

2

(
1
4

)2

+ b
1
4

]
=

1
40

m +
1
5
b.

We rewrite the inequality in an equivalent form by clearing fractions and splitting the
integrals so that they are taken over non-overlapping intervals:

3
4

∫ 1/5

0
f(t)dt +

1
8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt ⇐⇒

30
∫ 1/5

0
f(t)dt + 5

[ ∫ 1/5

0
f(t)dt +

∫ 1/4

1/5
f(t)dt +

∫ 2/5

1/4
f(t)dt

]
≥ 32

[ ∫ 1/5

0
f(t)dt +

∫ 1/4

1/5
f(t)dt

]
⇐⇒

3
∫ 1/5

0
f(t)dt + 5

∫ 2/5

1/4
f(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt. (1)

So we see that the interval of interest,
[
0,

2
5

]
, has been partitioned into three

subintervals
[
0,

1
5

]
,

[
1
5
,
1
4

]
and

[
1
4
,
2
5

]
.

Consider the secant line through the two points
(

1
5
, f

(
1
5

))
and

(
1
4
, f

(
1
4

))
. The

linear function giving this line is s(t) = 20
[
f

(
1
4

)
− f

(
1
5

)]
t +

[
5f

(
1
5

)
− 4f

(
1
4

)]
. It is

straightforward to use the convexity condition to show that this line lies above f(t) on

the middle interval
[
1
5

]
, and lies below f(t) on the outside intervals

[
0,

1
5

]
and

[
1
4
,
2
5

]
.

That is

s(t) ≥ f(t) on
[
1
5
,
1
4

]
and (2)

s(t) ≤ f(t) on
[
0,

1
5

]
, and

[
1
4
,
2
5

]
(3).

Considering the sides of (1),

3
∫ 1/5

0
f(t)dt + 5

∫ 2/5

1/4
f(t)dt ≥ 3

∫ 1/5

0
s(t)dt + 5

∫ 2/5

1/4
s(t)dt by (3).

and

3
∫ 1/5

0
s(t)dt + 5

∫ 2/5

1/4
s(t)dt = 27

∫ 1/4

1/5
s(t)dt by (Note 1),

and

27
∫ 1/4

1/5
s(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt by (2).

Therefore (1) is true.

Also solved by John Boncek, Montgomery, AL and the proposers.



• 4971: Proposed by Howard Sporn, Great Neck, NY and Michael Brozinsky, Central Islip,
NY.
Let m ≥ 2 be a positive integer and let 1 ≤ x < y. Prove:

xm − (x− 1)m < ym − (y − 1)m.

Solution 1 by Brian D. Beasley, Clinton, SC.

We let f(x) = xm − (x− 1)m for x ≥ 1 and show that f is strictly increasing on [1,∞).
Since f ′(x) = mxm−1 −m(x− 1)m−1, we have f ′(x) > 0 if and only if
xm−1 > (x− 1)m−1. Since x ≥ 1 and m ≥ 2, this latter inequality holds, so we are done.

Solution 2 by Matt DeLong, Upland, IN.

Let X = x− 1 and Y = y − 1. Then 0 ≤ X < Y, x = X + 1, and y = Y + 1. Expanding
(X + 1)m −Xm and (Y + 1)m − Y m we see that

(X + 1)m −Xm = mXm−1 +
m(m− 1)

2
Xm−2 + · · ·+ mX + 1

and
(Y + 1)m − Y m = mY m−1 +

m(m− 1)
2

Y m−2 + · · ·+ mY + 1.

Since 0 ≤ X < Y , we can compare these two sums term-by-term and conclude that each
term involving Y is larger than the corresponding term involving X. Therefore,

(X + 1)m −Xm < (Y + 1)m − Y m.

Since x = X + 1 and y = Y + 1, we have shown that

xm − (x− 1)m < ym − (y − 1)m.

.

Solution 3 by José Luis Dı́az-Barrero, Barcelona, Spain.

We will argue by induction. The case when m = 2 trivially holds because
x2 − (x− 1)2 = 2x− 1 < 2y − 1 = y2 − (y − 1)2. Suppose that

xm − (x− 1)m < ym − (y − 1)m

holds and we have to see that

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1

holds. In fact, multiplying by m + 1 both sides of xm − (x− 1)m < ym − (y − 1)m yields

(m + 1)(xm − (x− 1)m) < (m + 1)(ym − (y − 1)m)

and ∫ x

1
(m + 1)(xm − (x− 1)m) dx <

∫ y

1
(m + 1)(ym − (y − 1)m) dy

from which immediately follows

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1



Therefore, by the PMI the statement is proved and we are done.

Solution 4 by Kenneth Korbin, New York, NY.

Let m ≥ 2 be a positive integer, and let 1 ≤ x < y. Then,

(y − 1)m < ym, and
(y − 1)m−1(x− 1) < ym−1(x), and

(y − 1)m−2(x− 1)2 < ym−2(x2), and
.
.
.

y0 = 1 ≤ xm.

Adding gives[
(y − 1)m + (y − 1)m−1(x− 1) + · · ·+ 1

]
<

[
ym + ym−1x + ym−2x2 + · · ·+ xm

]
.

Multiplying both sides by [(y − 1)− (x− 1)] = [y − x] gives

(y − 1)m − (x− 1)m < ym − xm.

Therefore
xm − (x− 1)m < ym − (y − 1)m.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; Raul A. Simon,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
various teams of students at Taylor University in Upland, IN:

Bethany Ballard, Nicole Gottier, and Jessica Heil;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay;
Jeremy Erickson, Matthew Russell, and Chad Mangum;

Seth Bird, Jim Moore, and Jonathan Schrock;

and the proposers.
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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
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when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2008

• 4990: Proposed by Kenneth Korbin, New York, NY.
Solve

40x + 42
√

1− x2 = 29
√

1 + x + 29
√

1− x

with 0 < x < 1.

• 4991: Proposed by Kenneth Korbin, New York, NY.
Find six triples of positive integers (a, b, c) such that

9
a

+
a

b
+

b

9
= c.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.
A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.



Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :

1−
√

5
2

≤ |z| ≤ 1 +
√

5
2

}
.

• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.
Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i + 1)− 2 for i = 2, 3, 4, · · · ,

where T (i + 1) = (i + 1)(i + 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solutions

• 4972:Proposed by Kenneth Korbin, New York, NY.
Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x + 1 CD =
√

y

where x and y are positive integers with 20 < x < 120.

Solution by Kee-Wai Lau, Hong Kong, China.

Applying the cosine formula to triangle CAD, we obtain

CD
2 = AD

2 + AC
2 − 2AD ·AC cos 60o,

or

(
√

y)2 = x2 + (2x + 1)2 − 2x(2x + 1) cos 60o

y = 3x2 + 3x + 1.

For 20 < x < 120, we find using a calculator that y is the square of a positive integer if
x = 104, y = 32761. Hence the length of the side of equilateral triangle ABC is 209.

Comments:

1) Scott H. Brown, Montgomery, AL.

The list of pairs (x, y) that satisfy the equation y = 3x2 + 3x + 1 is so large I will not
attempt to name each pair...numerous triangles with the given conditions can be found.

2) David Stone and John Hawkins, Statesboro, GA.



The restriction on x seems artificial–every x produces a triangle. In fact, if we require
the cevian length to be an integer, this becomes a Pell’s Equation problem and we can
generate nice solutions recursively in the usual fashion. The first few for
x, s = 2x + 1, y = 3x2 + 3x + 1, & cevian =

√
y are:

7 15 169 13

104 209 32761 181

1455 2911 6355441 2521

20272 40545 1232922769 35113

Also solved by Peter E. Liley, Lafayette, IN, and the proposer.

• 4973: Proposed by Kenneth Korbin, New York, NY.
Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.
Solution by David E. Manes, Oneonta, NY.

The area A of the trapezoid is given by A =
3
√

3
8

(
15 +

√
5
)

.

Since the trapezoid is cyclic, it is isosceles so that AD = BC. Note that
6 ACD = 60o ⇒ 6 CAB = 60o since alternate interior angles of a transversal intersecting
two parallel lines are congruent. Therefore, from the law of sines in triangle ABC,

BC

sin 60o = 2R or BC = 2
√

3. Using the law of cosines in triangle ABC,

BC2 = 1 + AC2 − 2AC · cos 60o, or AC2 −AC− 11 = 0.

Thus, AC is the positive root of this equation so that AC =
1 + 3

√
5

2
. Similarly, using

the law of cosines in triangle ACD and recalling that AD = BC, one obtains

AD2 = AC2 + DC2 − 2 ·AC ·DC · cos 60o

or DC2 −
(

1 + 3
√

5
2

)
DC +

−1 + 3
√

5
2

= 0. Noting that DC > 2 and√
6− 2

√
5 =

√
(1−

√
5)2 =

√
5− 1, it follows that DC = 3

√
5− 1. Finally, let H be the

point on line segment DC such that AH is perpendicular to DC. Then the height h of

the trapezoid is given by h = AC · sin 60o =
√

3
4

(
1 + 3

√
5
)

. Hence,

A =
1
2

(
AB + DC

)
· h =

1
2

(
1 + 3

√
5− 1

)√
3

4

(
1 + 3

√
5
)

=
3
√

3
8

(
15 +

√
5
)

.

Also solved by Robert Anderson, Gino Mizusawa, and Jahangeer Kholdi
(jointly), Portsmouth, VA; Dionne Bailey, Elsie Campbell, and Charles
Diminnie, (jointly), San Angelo, TX; Paul M. Harms, North Newton, KS;
Zhonghong Jiang, NY, NY; Charles McCracken, Dayton, OH; Boris Rays,
Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.



• 4974: Proposed by Kenneth Korbin, New York, NY.
A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the
circumradius and the area of the hexagon in terms of a and b.
Solution by Kee-Wai Lau, Hong Cong, China.

We show that the circumradius R is

√
a2 + ab + b2

3
and the area A of the hexagon is

√
3(a2 + 4ab + b2)

4
.

Denote the angle subtended by side a and side b at the center of the circumcircle
respectively by θ and φ. Since 3θ + 3φ = 360o so θ = 120− φ and

cos θ = cos(120o − φ) =
− cos φ +

√
3 sinφ

2
. Hence,

(2 cos θ + cos φ)2 = 3(1− cos2 φ) or 4 cos2 θ + 4 cos θ cos φ + 4 cos2 φ− 3 = 0.

Now by the cosine formula cos θ =
2R2 − a2

2R2
and cos φ =

2R2 − b2

2R2
.

Therefore,

(2R2 − a2)2 + (2R2 − a2)(2R2 − b2) + (2R2 − b2)2 − 3R4 = 0 or

9R4 − 6(a2 + b2)R2 + a4 + a2b2 + b4 = 0.

Solving the equation we obtain R2 =
a2 + ab + b2

3
or R2 =

a2 − ab + b2

3
. The latter

result is rejected because if not, then for a = b, we have cos θ = cos φ < 0 so that

θ + φ > 180o, which is not true. Hence, R =

√
a2 + ab + b2

3
.

To find A, we need to find the area of the triangles with sides R,R, a and R,R, b. The

heights to bases a and b are respectively
√

4R2 − a2

2
=
√

3(a + 2b)
6

and
√

4R2 − b2

2
=
√

3(2a + b)
6

. Hence the area of the hexagon equals

3
(√

3a(a + 2b)
12

+
√

3b(2a + b)
12

)
=
√

3
4

(
a2 + 4ab + b2

)
as claimed.

Also solved by Matt DeLong, Upland, IN; Paul M. Harms, North Newton,
KS; Zhonghong Jiang, NY, NY; David E. Manes, Oneonta, NY; M. N.
Deshpande, Nagpur, India; Boris Rays, Chesapeake, VA; David Stone and
John Hawkins (jointly), Statesboro, GA; Jonathan Schrock, Seth Bird, and
Jim Moore (jointly, students at Taylor University), Upland, IN; David
Wilson, Winston-Salem, NC, and the proposer.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Solve in R the following system of equations



2x1 = 3x2

√
1 + x2

3

2x2 = 3x3

√
1 + x2

4

. . . . . .

2xn = 3x1

√
1 + x2

2


Solution by David Stone and John Hawkins, Statesboro, GA.

Squaring each equation and summing, we have

4(x2
1+x2

2+x2
3+ · · ·+x2

n) = 9(x2
1+x2

2+x2
3+ · · ·+x2

n)+9(x2
1x

2
2+x2

2x
2
3+x2

3x
2
4+ · · ·+x2

n−1x
2
n).

So
0 = 5(x2

1 + x2
2 + x2

3 + · · ·+ x2
n) + 9(x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
4 + · · ·+ x2

n−1x
2
n).

Because these squares are non-negative and the sum is zero, each term on the right-hand
side must indeed equal 0. Therefore x1 = x2 = x3 = · · · = xn = 0.

Alternatively, we could multiply the equations to obtain

2nx1x2x3x4 · · ·xn = 3nx1x2x3x4n

√
1 + x2

1

√
1 + x2

2 · · ·
√

1 + x2
n.

If all xk are non-zero, we’ll have
(

2
3

)n

=
√

1 + x2
1

√
1 + x2

2 · · ·
√

1 + x2
n. The term on the

left is < 1, while each term on the right is > 1, so the product is > 1. Thus we have
reached a contradiction, forcing all xk to be zero.

Also solved by Bethany Ballard, Nicole Gottier, and Jessica Heil (jointly,
students, Taylor University), Upland, IN; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie, San Angelo, TX; Matt DeLong, Upland, IN;
Paul M. Harms, North Newton, KS; Mandy Isaacson, Julia Temple, and
Adrienne Ramsay (jointly, students, Taylor University), Upland, IN;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris
Rays, Chesapeake, VA, and the proposer.

• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 27.

Solution by Matt DeLong, Upland, IN.

In fact, I will prove that the sum is at least 39. Rewrite the sum

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
as

a2

bc
+ 3

b

c
+ 9

c

b
+

b2

ca
+ 3

c

a
+ 9

a

c
+

c2

ab
+ 3

a

b
+ 9

b

a
.

Rearranging the terms gives(
a2

bc
+

b2

ca
+

c2

ab

)
+ 3

(
b

c
+

c

b
+

c

a
+

a

c
+

a

b
+

b

a

)
+ 6

(
c

b
+

a

c
+

b

a

)



Now, repeatedly apply the Arithmetic Mean-Geometric Mean inequality.

a2

bc
+

b2

ca
+

c2

ab
≥ 3

(
a2b2c2

bccaab

)1/3

= 3

b

c
+

c

b
≥ 2

(
bc

cb

)1/2

= 2

c

a
+

a

c
≥ 2

(
ac

ca

)1/2

= 2

a

b
+

b

a
≥ 2

(
ab

ba

)1/2

= 2

c

b
+

a

c
+

b

a
≥ 3

(
cab

bca

)1/3

= 3.

Thus, we have(
a2

bc
+

b2

ca
+

c2

ab

)
+ 3

(
b

c
+

c

b
+

c

a
+

a

c
+

a

b
+

b

a

)
+ 6

(
c

b
+

a

c
+

b

a

)
≥ 3 + 3(2 + 2 + 2) + 6(3).

In other words

a2 + 3b2 + 9c2

bc
+

b2 + 3c2 + 9a2

ca
+

c2 + 3a2 + 9b2

ab
≥ 39

.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie,
San Angelo, TX; Jeremy Erickson, Matthew Russell, and Chad Mangum
(jointly, students, Taylor University), Upland, IN; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solution by Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles
Diminnie, San Angelo, TX .

Strictly speaking, the conclusion is incorrect as stated. If a = x1 = x2 = x3, then

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log a

.

Similarly,
1

log x1
+

1
log x2

+
1

log x3
+

3
log x1x2x3

=
4

log b

when b = x1 = x2 = x3.
The statement is true when 1 < a ≤ x1 ≤ x2 ≤ x3 ≤ b with x1 6= x3. Since

3
log x1x2x3

=
3

log x1 + log x2 + log x3
,



then
4

log x3
<

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
<

4
log x1

.

By the Intermediate Value Theorem, there exists c ∈ (a, b) such that

1
log x1

+
1

log x2
+

1
log x3

+
3

log x1x2x3
=

4
log c

.

Solution 2 by Paul M. Harms, North Newton, KS.

Assume x1 < x3 with x2 in the interval [x1, x3]. For x > 1, we note that f(x) = log(x)
and g(x) = 1/ log(x) are both continuous, one-to-one, positive functions with f(x)
strictly increasing and g(x) strictly decreasing.

Consider
3

log(x1x2x3)
=

1
log(x1) + log(x2) + log(x3)

3

.

The denominator is the average of the 3 log values which means this average value is
between the extremes log x1 and log x3. Since f(x) is one-to-one and continuous there is

a value x4 where x1 < x4 < x3 and log x4 =
(log x1 + log x2 + log x3)

3
with log x4

between log x1 and log x3.

The equation in the problem can now be written

1
log x1

+ 1
log x2

+ 1
log x3

+ 1
log x4

4
=

1
log c

or

g(x1) + g(x2) + g(x3) + g(x4)
4

=
1

log c
.

The average of the four g(x) values is between the extremes g(x1) and g(x3). Since g(x)
is continuous and one-to-one there is a value x = c such that

g(c) =
1

log c
=

g(x1) + g(x2) + g(x3) + g(x4)
4

where x1 < c < x3 and, thus, a < c < b.

Note that if x1 = x2 = x3, then we obtain c = x1 = x2 = x3. If we want a < c < b, then
it appears that we need to keep x1, x2 and x3 away from a and b when these three
x-values are equal to each other.

Also solved by Michael Brozinsky, Central Islip, NY; Matt DeLong, Upland,
IN; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.
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can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.
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Solutions to the problems stated in this issue should be posted before
March 15, 2008

• 4996: Proposed by Kenneth Korbin, New York, NY.
Simplify:

N∑
i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
.

• 4997: Proposed by Kenneth Korbin, New York, NY.
Three different triangles with integer-length sides all have the same perimeter P and all
have the same area K.
Find the dimensions of these triangles if K = 420.

• 4998: Proposed by Jyoti P. Shiwalkar & M.N. Deshpande, Nagpur, India.
Let A = [ai,j ], i = 1, 2, · · · and j = 1, 2, · · · , i be a triangular array satisfying the
following conditions:

1) ai,1 = L(i) for all i
2) ai,i = i for all i
3) ai,j = ai−1,j + ai−2,j + ai−1,j−1 − ai−2,j−1 for 2 ≤ j ≤ (i − 1 ).

If T (i) =
i∑

j=1

ai,j for all i ≥ 2, then find a closed form for T (i), where L(i) are the Lucas

numbers, L(1) = 1, L(2) = 3, and L(i) = L(i− 1) + L(i− 2) for i ≥ 3.



• 4999: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real triplets (x, y, z) such that

x + y + z = 2
2x+y2

+ 2y+z2
+ 2z+x2

= 6 9
√

2

• 5000: Proposed by Richard L. Francis, Cape Girardeau, MO.

Of all the right triangles inscribed in the unit circle, which has the Morley triangle of
greatest area?

• 5001: Proposed by Ovidiu Furdui, Toledo, OH.

Evaluate: ∫ ∞
0

ln2

(
x2

x2 + 3x + 2

)
dx.

Solutions

• 4978: Proposed by Kenneth Korbin, New York, NY.
Given equilateral triangle ABC with side AB = 9 and with cevian CD. Find the length
of AD if 4ADC can be inscribed in a circle with diameter equal to 10.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, Karl Havlak,
and Paula Koca (jointly), San Angelo, TX.

Let x = AD and y = CD. If A is the area of 4ADC, then

A =
1
2

(9)x sin 60o =
9
4

√
3x.

Since the circumradius of 4ADC is 5, we have

5 =
9xy

4A
=

y√
3

and hence,
y = 5

√
3.

Then, by the Law of Cosines,

75 = y2 = x2 + 81− 2 (9)x cos 60o = x2 − 9x + 81

which reduces to
x2 − 9x + 6 = 0.

Therefore, there are two possible solutions:

AD = x =
9±

√
57

2
.

Also solved by Scott H. Brown, Montgomery, AL; Daniel Copeland,
Portland, OR; M.N. Deshpande, Nagpur, India; Paul M. Harms, North



Newton, KS; Jahangeer Kholdi, Portsmouth, VA; Xiezhang Li, David Stone
& John Hawkins (jointly), Statesboro, GA; Peter E. Liley, Lafayette, IN;
David E. Manes, Oneonta, NY; Charles, McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; David C. Wilson, Winston-Salem, NC, and the
proposer.

• 4979: Proposed by Kenneth Korbin, New York, NY.
Part I: Find two pairs of positive numbers (x, y) such that

x√
1 + y −

√
1− y

=
√

65
2

,

where x is an integer.

Part II: Find four pairs of positive numbers (x, y) such that
x√

1 + y −
√

1− y
=

65
2

,

where x is an integer.
Solution 1 by Brian D. Beasley, Clinton, SC.

(I) We need 0 < y ≤ 1, so requiring x to be an integer yields

x =
√

65
2

(√
1 + y −

√
1− y

)
∈ {1, 2, 3, 4, 5}.

We solve for y to obtain y = 2x
√

65− x2/65. Substituting x ∈ {1, 2, 3, 4, 5} yields five
solutions for (x, y), with two of these also having y rational, namely

(x, y) = (1, 16/65) and (x, y) = (4, 56/65).

(II) We again need 0 < y ≤ 1, so requiring x to be an integer yields

x =
65
2

(√
1 + y −

√
1− y

)
∈ {1, 2, . . . , 45}.

We solve for y to obtain y = 2x
√

4225− x2/4225. Substituting x ∈ {1, 2, . . . , 45} yields
45 solutions for (x, y), with four of these also having y rational, namely

(x, y) = (16, 2016/4225); (x, y) = (25, 120/169);
(x, y) = (33, 3696/4225); (x, y) = (39, 24/25).

Solution 2 by James Colin Hill, Cambridge, MA.

Part I: The given equation yields 4x2 = 130(1 +
√

1− y2). Let y = cos θ. Then

sin θ =
4x2

130
− 1.

For x ∈ Z+, we find several solutions, including the following (rational) pair:

x = 1, y = 16/65
x = 4, y = 56/64.

Part II: The given equation yields sin θ =
4x2

8450
− 1, where y = cos θ as before. For

x ∈ Z+, we find many solutions, including the following (rational) four:

x = 16, y = 2016/4225



x = 25, y = 120/169
x = 33, y = 3696/4225
x = 39, y = 24/25

Also solved by John Boncek, Montgomery, AL; Dionne Bailey, Elsie
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta,
NY; Boris Rays, Chesapeake, VA; Harry Sedinger, St. Bonaventure, NY;
David Stone and John Hawkins (jointly), Statesboro, GA, David C. Wilson,
Winston-Salem, NC, and the proposer.

• 4980: J.P. Shiwalkar and M.N. Deshpande, Nagpur, India.
An unbiased coin is sequentially tossed until (r + 1) heads are obtained. The resulting
sequence of heads (H) and tails (T) is observed in a linear array. Let the random
variable X denote the number of double heads (HH’s, where overlapping is allowed) in
the resulting sequence. For example: Let r = 6 so the unbiased coin is tossed till 7 heads
are obtained and suppose the resulting sequence of H’s and T’s is as follows:

HHTTTHTTTTHHHTTH

Now in the above sequence, there are three double heads (HH’s) at toss number
(1, 2), (11, 12) and (12, 13). So the random variable X takes the value 3 for the above
observed sequence.
In general, what is the expected value of X?
Solution by N. J. Kuenzi, Oshkosh,WI.

Let X(r) be the number of double heads (HH) in the resulting sequence.
First consider the case r = 1. Since the resulting sequence of heads (H) and tails (T )

ends in either TH or HH, P [X(1) = 0] =
1
2

and P [X(1) = 1] =
1
2
. So E[X(1)] =

1
2
.

Next let r > 1, an unbiased coin is tossed until (r + 1) heads are obtained. If the
resulting sequence of H ′s and T ′s ends in TH then X(r) = X(r − 1). And if the
resulting sequence of H ′s and T ′s ends in HH then X(r) = X(r − 1). So

P [X(r) = X(r − 1)] =
1
2

and P [X (r) = X (r − 1) + 1] =
1
2
.

It follows that

E[X(r)] =
1
2
E[X(r − 1)] +

1
2
E[X(r − 1) + 1] = E[X(r − 1)] +

1
2
.

Finally, the Principle of Mathematical Induction can be used to show that E[X(r)] =
r

2
.

Also solved by Kee-Wai Lau, Hong Kong, China; Harry Sedinger, St.
Bonvatenture, NY, and the proposers.

• 4981: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

5x + 3x + 2x − 28x + 18 = 0.



Solution by Paolo Perfetti, Dept. of Mathematics, University of Rome, Italy.

Let f(x) = 5x + 3x + 2x − 28x + 18. The values for x ≤ 0 are excluded from being
solutions because for these values f(x) > 0. It is immediately seen that f(x) = 0 for
x = 1, 2. Moreover, the derivative f ′(x) = 5x ln 5 + 3x ln 3 + 2x ln 2− 28 is an increasing
continuous function such that:

1) f ′(0) = ln 30− 28 < 0, lim
x+∞

f ′(x) = +∞
2) f ′(1) = 5 ln 5 + 3 ln 3 + 2 ln 2− 28 < 10 + 6 + 2− 28 = −10
3) f ′(2) = 25 ln 5 + 9 ln 3 + 4 ln 2− 28 ≥ 34− 28 > 0.

By continuity this implies that f ′(x) = 0 for just one point xo between 1 and 2, and that
the graph of f(x) has a minimum only at x = xo. It follows that there are no values of x
other than x = 1, 2 satisfying f(x) = 0.

Also solved by Brain D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San
Angelo, TX; M.N. Deshpande, Nagpur, India; Paul M. Harms, North
Newton, KS; Jahangeer Kholdi, Portsmouth, VA; Kee-Wai Lau, Hong Kong,
China; Kenneth Korbin, NY, NY; Charles McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; Harry Sedinger, St. Bonaventure, NY; David Stone
and John Hawkins, Statesboro, GA, and the proposers.

• 4982: Proposed by Juan José Egozcue and José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

1
n + 1

 ∑
1≤i1≤n+1

1
i1

+
∑

1≤i1<i2≤n+1

1
i1i2

+ · · ·+
∑

1≤i1<...<in≤n+1

1
i1i2 . . . in

 .

Solution 1 by Paul M. Harms, North Newton, KS.

Let S(n) be the addition of the summations inside the parentheses of the expression in
the problem. When n = 1 . The expression in the problem is

1
2

([
1
1

+
1
2

]
+
[

1
1(2)

])
= (

1
2
)2 = 1, where S (1) = 2.

When n = 2 the expression is

=
1
3

([
1
1

+
1
2

+
1
3

]
+
[

1
1(2)

+
1

1(3)
+

1
(2)(3)

]
+
[

1
1(2)(3)

])
=

1
3

(
S(1) +

1
3

[
1 + S(1)

])
=

1
3

(
2 +

1
3
3
)

= 1, where S (2) = 3.

When n = 3 the expression is

1
4

(
S(2) +

1
4

[
1 + S(2)

])
=

1
4

(
3 +

1
4

[
1 + 3

])
= 1, where S (3) = 4.

When n = k + 1 the expression becomes

1
k + 2

(
S(k) +

1
k + 2

[
1 + S(k)

])
= 1, where S (k) = k + 1.



The limit in the problem is one.

Solution 2 by David E. Manes,Oneonta, NY.

Let

an =
1

n + 1

 ∑
1≤i1≤n+1

1
i1

+
∑

1≤i1<i2≤n+1

1
i1i2

+ · · ·+
∑

1≤i1<...<in≤n+1

1
i1i2 . . . in

 .

Then a1 = 3/4, a2 = 17/18, a3 = 95/96, and a4 = 599/600.
We will show that

an = 1− 1
(n + 1)(n + 1)!

Note that the equation is true for n = 1 and assume inductively that it is true for some
integer n ≥ 1. Then

an =
1

n + 1

 ∑
1≤i1≤n+1

1
i1

+
∑

1≤i1<i2≤n+1

1
i1i2

+ · · ·+
∑

1≤i1<...<in≤n+1

1
i1i2 . . . in



=
1

n + 2

[
(n + 1)an +

1
n + 2

+
(

n + 1
n + 2

)
an +

1
(n + 1)!

]

=
1

n + 2

[
(n + 1)

(
1− 1

(n + 1)(n + 1)!

)
+

1
n + 2

+
(

n + 1
n + 2

)(
1− 1

(n + 1)(n + 1)!

)
+

1
(n + 1)!

]

=
1

n + 2

[
(n + 1)− 1

(n + 1)!
+ 1− 1

(n + 2)(n + 1)!
+

1
(n + 1)!

]

=
1

n + 2

[
n + 2− 1

(n + 2)!

]
= 1− 1

(n + 2)(n + 2)!
.

Therefore, the result is true for n + 1. By induction an = 1− 1
(n + 1)(n + 1)!

is valid for

all integers n ≥ 1. Hence lim
n→∞

an = 1.

Also solved by Carl Libis, Kingston, RI; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4983: Proposed by Ovidiu Furdui, Kalamazoo, MI.
Let k be a positive integer. Evaluate

1∫
0

{
k

x

}
dx,

where {a} is the fractional part of a.
Solution by Kee-Wai Lau, Hong Kong, China.

We show that
1∫

0

{
k

x

}
dx = k

( k∑
n=1

1
n
− ln k − γ

)
,



where γ is Euler’s constant. By substituting x = ky, we obtain

1∫
0

{
k

x

}
dx = k

∫ 1/k

0

{
1
y

}
dy. For any integer M > k , we have

1/k∫
1/M

{
1
y

}
dy =

M−1∑
n=k

∫ 1/n

1/(n+1)

{
1
y

}
dy

=
M−1∑
n=k

∫ 1/n

1/(n+1)

{
1
y
− n

}
dy

=
M−1∑
n=k

(
ln(

n + 1
n

)− 1
n + 1

)

= ln
(

M

k

)
−

M∑
n=k+1

1
n

=
k∑

n=1

1
n
− ln k −

( M∑
n=1

1
n
− lnM

)
.

Since lim
M→∞

( M∑
n=1

1
n
− lnM

)
= γ, we obtain our result.

Also solved by Brian D. Beasley, Clinton, SC; Jahangeer Kholdi,
Portsmouth, VA; David E. Manes, Oneonta, NY; Paolo Perfetti, Dept. of
Mathematics, University of Rome, Italy; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

Acknowledgments
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Problem 4952 was posted in the January 07 issue of this column. It was proposed by
Michael Brozinsky of Central Islip, NY & Robert Holt of Scotch Plains, NJ.
I received one solution to this problem; it was from Paul M. Harms of North
Newton, KS. His solution, which was different from the one presented by proposers,
made a lot of sense to me and it was published in the October 07 issue of this column.
Michael then wrote to me stating that he thinks Paul misinterpreted the problem. For
the sake of completeness, here is the proposers’ solution to their problem.

• 4952: An archeological expedition discovered all dwellings in an ancient civilization had
1, 2, or 3 of each of k independent features. Each plot of land contained three of these
houses such that the k sums of the number of each of these features were all divisible by
3. Furthermore, no plot contained two houses with identical configurations of features



and no two plots had the same configurations of three houses. Find a) the maximum
number of plots that a house with a given configuration might be located on, and b) the
maximum number of distinct possible plots.

Solution by the proposers: a) Clearly these maximum numbers will be attained
using the 3k possible configurations for a house.
Note: For any two houses on a plot:
1) if they have the same number of any given feature then the third house will
necessarily have this same number of that feature since the sum must be divisible by
three, and
2) if they have a different number of a given feature then the third house will have a
different number of that feature than the first two houses since the sum must be
divisible by three.

It follows then that any fixed house can be adjoined with
3k − 1

2
possible pairs of houses

to be placed on a plot since the second house can be any of the remaining 3k − 1 house
configurations but the third configuration is uniquely determined by the above note and
the fact that no two houses on a plot can be identically configured. These 3k − 1

permutations of the second and third house thus must have arisen from the
3k − 1

2

possible pairs claimed above. The answer is thus
3k − 1

2
.

b) The above note shows that for any two differently configured houses only one of the
remaining 3k − 2 configurations will form a plot with these two. Hence, the probability
that 3 configurations chosen randomly from the 3k configurations are suitable for a plot

is
1

3k − 2
. Since there are

(
3k

3

)
subsets of size three that can be formed from the 3k

configurations, it follows that the maximum number of distinct possible plots is(
3k

3

)
3k − 2

=
3k−1(3k − 1)

2
.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2008

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

3
√

x +
√

x2 − 1 +
3
√

x−
√

x2 − 1 =
7
2

and

3

√
y +

√
y2 − 1 + 3

√
y −

√
y2 − 1 =

√
10

• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that

a

1 + a
+

b

1 + b
+

c

1 + c
≥

√
ab

1 + a + b
+

√
bc

1 + b + c
+

√
ca

1 + c + a

• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that
√

3
2

(
a + b + c

)1/2

≥ 1
a + b

+
1

b + c
+

1
c + a

.



• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑
k=2

(−1)k ln
(

1− 1
k2

)
.

• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solutions

• 4984: Proposed by Kenneth Korbin, New York, NY.
Prove that

1√
1 +

√
3

+
1√

5 +
√

7
+ · · ·+ 1√

2009 +
√

2011
>
√

120.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

The sum

503∑
k=1

1√
4k − 3 +

√
4k − 1

>
1
2

503∑
k=1

(
1√

4k − 3 +
√

4k − 1
+

1√
4k − 1 +

√
4k + 1

)

=
1
2

503∑
k=1

(√
4k − 1−

√
4k − 3

2
+
√

4k + 1−
√

4k − 1
2

)

=
1
4

503∑
k=1

(√
4k + 1−

√
4k − 3

)

=
1
4

(√
2013− 1

)

=
1
4

√
2013− 2

√
2013 + 1

>
1
4

(√
2013− 2(45) + 1

)

>
1
4

√
1920

=
√

120

as required.

Solution 2 by Kenneth Korbin, the proposer.



Let K =
1√

1 +
√

3
+

1√
5 +

√
7

+ · · ·+ 1√
2009 +

√
2011

.

Then, K >
1√

3 +
√

5
+

1√
7 +

√
9

+ · · ·+ 1√
2011 +

√
2013

and,

2K >
1√

1 +
√

3
+

1√
3 +

√
5

+
1√

5 +
√

7
+ · · ·+ 1√

2011 +
√

2013

=
√

3−
√

1
2

+
√

5−
√

3
2

+
√

7−
√

5
2

+ · · ·+
√

2013−
√

2011
2

=
√

2013− 1
2

. So,

K >

√
2013− 1

4
>
√

120.

Also solved by Brian D. Beasley, Clinton, SC; Charles R. Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; Paolo Perfetti,
Mathematics Department, U. of Rome, Italy, and David Stone & John
Hawkins (jointly), Statesboro, GA.

• 4985: Proposed by Kenneth Korbin, New York, NY.
A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

Solution by Brian D. Beasely, Clinton, SC.

Using the Law of Sines, we obtain
sinA

a
=

sin(2A)
b

=
sin(180◦ − 3A)

c
=

sin(3A)
c

,

where 6 B = 26 A forces 0◦ < A < 60◦. Since sin(2A) = 2 sinA cos A and
sin(3A) = 3 sinA− 4 sin3 A, we have b = 2a cos A and c = a(3− 4 sin2 A). In particular,

a < b < 2a, and using A = cos−1
(

b

2a

)
implies

c = 3a− 4a

(
1−

(
b

2a

)2
)

= −a +
b2

a
.

Then a divides b2, so we claim that a must be a perfect square: Otherwise, if a prime p
divides a but p2 does not, then p divides b2; thus p divides b, yet p2 does not divide a,
which would imply that p divides b2/a and hence p divides c, a contradiction of
(a, b, c) = 1.

Next, we note that the area of the triangle is (1/2)bc sin A, which becomes

b(b + a)(b− a)
2a

√
1−

(
b

2a

)2

=
b(b + a)(b− a)

4a2

√
4a2 − b2.



I. Let a = 25. Then 25 < b < 50 and c = −25 + b2/25, so 5 divides b. Checking
b ∈ {30, 35, 40, 45} yields two solutions for which the area of the triangle is an integer:

(a, b, c) = (25, 30, 11) with area = 132; (a, b, c) = (25, 40, 39) with area = 468.

II. Let 100 < a < 200. Then a ∈ {121, 144, 169, 196}.

If a = 121, then 11 divides b, so b = 11d for d ∈ {12, 13, . . . , 21}. Since the area formula
requires 4a2 − b2 = 112(222 − d2) to be a perfect square, we check that no such d
produces a perfect square 222 − d2.

If a = 144, then 12 divides b, so b = 12d for d ∈ {13, 14, . . . , 23}. Since
4a2 − b2 = 122(242 − d2) must be a perfect square, we check that no such d produces a
perfect square 242 − d2.

If a = 169, then 13 divides b, so b = 13d for d ∈ {14, 15, . . . , 25}. Since
4a2 − b2 = 132(262 − d2) must be a perfect square, we check that the only such d to
produce a perfect square 262 − d2 is d = 24. This yields the triangle

(a, b, c) = (169, 312, 407) with area 24,420.

If a = 196, then 14 divides b, so b = 14d for d ∈ {15, 16, . . . , 27}. Since
4a2 − b2 = 142(282 − d2) must be a perfect square, we check that no such d produces a
perfect square 282 − d2.

Comment: David Stone and John Hawkins of Statesboro, GA conjectured that
in order to meet the conditions of the problem, a must equal p2, where p is an odd
prime congruent to 1 mod 4. With p = m2 + n2, there are one or two triangles,
according to the ratio of m and n. If

√
3n < m < (2 +

√
3)n, there are two solutions; if

m > (2 +
√

3)n, there is one solution; and if n < m <
√

3n, there is one solution.

Also solved by M.N. Deshpande, Nagpur, India; Grant Evans (student, Saint
George’s School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter
E. Liley, Lafayette, IN; John Nord, Spokane, WA; David Stone & John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4986: Michael Brozinsky, Central Islip, NY.
Show that if 0 < a < b and c > 0, that√

(a + c)2 + d2 +
√

(b− c)2 + d2 ≤
√

(a− c)2 + d2 +
√

(b + c)2 + d2.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

Squaring both sides and simplifying, we reduce the desired inequality to

2c(b− a) +
√

(a− c)2 + d2
√

(b + c)2 + d2 ≥
√

(a + c)2 + d2
√

b− c)2 + d2.

Squaring the last inequality and simplifying we obtain√
(a− c)2 + d2

√
(b + c)2 + d2 ≥ ab + ac− bc− c2 − d2. (1)

If ab + ac− bc− c2 − d2 ≤ 0, (1) is certainly true. If ab + ac− bc− c2 − d2 > 0, we square
both sides of (1) and the resulting inequality simplifies to the trivial inequality
(a + b)2d2 ≥ 0. This completes the solution.



Solution 2 by Paolo Perfetti, Mathematics Department, U. of Rome, Italy.
The inequality is√

(b− c)2 + d2 −
√

(a− c)2 + d2 ≤
√

(b + c)2 + d2 −
√

(a + c)2 + d2.

Defining f(x) =
√

(b + x)2 + d2 −
√

(a + x)2 + d2, −c ≤ x ≤ c, the inequality becomes
f(−c) ≤ f(c) so we prove that

f ′(x) =
b + x√

(b + x)2 + d2
− a + x√

(a + x)2 + d2
> 0.

There are three possibilities: 1) b + x > a + x ≥ 0, 2) a + x < b + x < 0, and 3)
b + x > 0, a + x < 0. It is evident that 3) implies f ′(x) > 0. With the condition 1), after
squaring, we obtain

(b + x)2((a + x)2 + d2) > (a + x)2((b + x)2 + d2) or

(b + x)2 > (a + x)2which is true.

As for 2) we have

|b + x|√
(b + x)2 + d2

<
|a + x|√

(a + x)2 + d2
or

(b + x)2 < (a + x)2

and making the square root −(b + x) < −(a + x) which is true as well.

Also solved by Angelo State University Problem Solving Group, San Angelo,
TX; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY,
and the proposer.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.

Solution by José Luis Dı́az-Barrero, the proposer.

Let A′ ∈ BC be the foot of ha. We have,

ha = c sinB and BA′ = c cos B (1)

and
ha = b sinC and A′C = b cos C (2)

Multiplying up and adding the resulting expressions yields

ha(BA′ + A′C) =
b2 sin 2C

2
+

c2 sin 2B

2

or
c2 sin 2B + b2 sin 2C = 4S



Likewise, we have
a2 sin 2C + c2 sin 2A = 4S,

a2 sin 2B + b2 sin 2A = 4S.

Adding up the above expressions yields

(a2 + b2) sin 2C + (b2 + c2) sin 2A + (c2 + a2) sin 2B = 12S

Applying the AM-GM inequality yields

3

√
(a2 + b2) sin 2C(b2 + c2) sin 2A(c2 + a2) sin 2B ≤ 4S

from which the statement follows. Equality holds when 4ABC is equilateral and we are
done.

• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

3x2−x−z + 3y2−y−x + 3z2−z−y = 1.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, Karl Havlak,
and Paula Koca (jointly), San Angelo, TX.

By the Arithmetic - Geometric Mean Inequality,

1 = 3x2−x−z + 3y2−y−x + 3z2−z−y

≥ 3
3
√

3x2−2x+y2−2y+z2−2z

=
3
√

3(x−1)2+(y−1)2+(z−1)2

and hence,
3(x−1)2+(y−1)2+(z−1)2 ≤ 1.

It follows that
(x− 1)2 + (y − 1)2 + (z − 1)2 = 0,

i.e.,
x = y = z = 1.

Since it is easily checked that these values satisfy the original equation, the solution is
complete.

Also solved by Kee-Wai Lau, Hong Kong, China; Charles McCracken,
Dayton, OH; Paolo Perfetti, Mathematics Department, U. of Rome, Italy;
Boris Rays, Chesapeake, VA, and the proposer.

• 4989: Proposed by Tom Leong, Scotrun, PA.
The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.



Solution 1 by Harry Sedinger, St. Bonaventure, NY.

First we show by induction that if there are n red points and n blue points (all distinct)
on the circle, then there exist n nonintersecting chords, each connecting a read point an
a blue point (with each point being used exactly once). This is obvious for n = 1.
Assume it is true for n and consider the case for n + 1. There obviously is a pair of
adjacent points (no other points between them on one arc), one read and one blue.
Clearly they can be connected by a chord which does not intersect any chord connecting
two other points. Removing this chord and the two end points then reduces the problem
to the case for n, which can be done according to the induction hypothesis. The desired
result is then true for n + 1 and by induction true for all n.
Now for the given problem, color the points numbered 1, 2, · · · , n red and color the ones
numbered n + 1, n + 2, · · · , 2n blue. From above there exists n nonintersecting chords
and the sum of their values is

2n∑
k=n+1

k −
n∑

k=1

k =
2n∑

k=1

k − 2
n∑

k=1

k =
2n(2n + 1)

2
− 2

n(n + 1)
2

= n2.

Solution 2 by Kenneth Korbin, New York, NY.

Arrange the numbers 1, 2, 3, · · · , 2n randomly on points of a circle. Place a red checker
on each point from 1 through n. Let

∑
R = 1 + 2 + · · ·+ n =

n(n + 1)
2

.

Place a black checker on each point numbered from n + 1 through 2n. Let

∑
B = (n + 1) + (n + 2) + · · ·+ (2n) = n2 +

n(n + 1)
2

.

Remove a pair of adjacent checkers that have different colors. Connect the two points
with a chord. The value of this chord is (B1 −R1).
Remove another pair of adjacent checkers with different colors. The chord between these
two points will have value (B2 −R2).
Continue this procedure until the last checkers are removed and the last chord will have
value (Bn −Rn).
The sum of the value of these n chords is

(B1 −R1) + (B2 −R2) + · · ·+ (Bn −Rn) =
∑

B −
∑

R = n2.

Also solved by N.J. Kuenzi, Oshkosh, WI; David Stone & John Hawkins
(jointly), Statesboro,GA, and the proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2008

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.
Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

• 5009: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α + sin 2β + sin 2γ

(sinα + sin β + sin γ)(cos α + cos β + cos γ)
≤ 2

3
.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1 −
1
2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.



• 5012 Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solutions

• 4990: Proposed by Kenneth Korbin, New York, NY.
Solve

40x + 42
√

1− x2 = 29
√

1 + x + 29
√

1− x

with 0 < x < 1.

Solution by Boris Rays, Chesapeake, VA.

Let x = cos α, where α ∈ (0, π/2). Then

40 cos α + 42
√

1− cos2 α = 29
√

1 + cos + 29
√

1− cos α

= 29
√

2
(√

1 + cos α

2
+

√
1− cos α

2

)
= 29 · 2√

2

(√
1 + cos α

2
+

√
1− cos α

2

)

= 29 · 2
(

1√
2

cos
α

2
+

1√
2

sin
α

2

)

= 58
(

cos
π

4
cos

α

2
+ sin

π

4
sin

α

2

)
= 58 cos(

π

4
− α

2
). Therefore,

40 cos α + 42 sinα = 58 cos (
π

4
− α

2
).

40
58

cos α +
42
58

sin α = cos (
π

4
− α

2
)

20
29

cos α +
21
29

sin α = cos (
π

4
− α

2
).

Let cos α0 =
20
29

. Then sinα0 =

√
1−

(
20
29

)2

=
21
29

.

cos α0 cos α + sinα0 sinα = cos
(

π

4
− α

2

)



cos(α0 − α) = cos
(

π

4
− α

2

)
.

Therefore we obtain from the above,

1) α0 − α1 =
π

4
− α1

2
α1 = 2α0 −

π

2
, where α0 = arccos

20
29

.

2) α0 − α2 = −
(

π

4
− α2

2

)
=

α2

2
− π

4
3
2
α2 = α0 +

π

4

α2 =
2
3
α0 +

π

6
, where α0 = arccos

20
29

.

Therefore,

1) x1 = cos
(

2α0 −
π

2

)
= cos (2α0) cos

π

2
+ sin (2α0) sin

π

2

= 2 sinα0 cos α0 · 1 = 2 · 21
29

· 20
29

=
840
841

.

2) x2 = cos
(

2
3
α0 +

π

6

)
= cos

(
2
3

arccos
(

20
29

)
+

π

6

)
.

The solution is:
x1 =

840
841

x2 = cos
(

2
3

arccos
(

20
29

)
+

π

6

)
.

Remark: This solution is an adaptation of the solution to SSM problem 4966, which is
an adaptation of the solution on pages 13-14 of Mathematical Miniatures by Savchev
and Andreescu.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; José Hernández Santiago (student at UTM), Oaxaca,
México; Kee-Wai Lau, Hong Kong, China; Peter E. Liley, Lafayette, IN;
John Nord, Spokane, WA; Paolo Perfetti, Math Dept., U. of Rome, Italy;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4991: Proposed by Kenneth Korbin, New York, NY.
Find six triples of positive integers (a, b, c) such that

9
a

+
a

b
+

b

9
= c.

Solution by David Stone and John Hawkins, Statesboro, GA,(with comments
by editor).

David Stone and John Hawkins submitted a six page densely packed analysis of the
problem, but it is too long to include here. Listed below is their solution and the gist of



their analysis as to how they solved it. (Interested readers may obtain their full analysis
by writing to David at <dstone@georgiasouthern.edu> or to me at <eisenbt@013.net>.
Others who solved the problem programmed a computer.
David and John began by listing what they believe to be all ten solutions to the problem.

a b c
2 12 6
9 9 3
14 588 66
18 36 5
54 12 6
162 4 41
378 588 66
405 25 19

11826 21316 2369
29565 133225 14803


The analysis in their words:
Rewriting the equation, we seek positive integer solutions to

(1) 81b + 9a2 + ab2 = 9abc.

Theorem. A solution must have the form a = 3iA, b = 3jA2, where (A, 3) = 1, i, j ≥ 0.
At least one of i, j must be ≥ 1.
Proof. From equation (1), we see that 9 divides all terms but ab2, so 9 divides ab2, so 3
divides a or b so at least one of i, j must be ≥ 1.
Also from equation (1), it is clear that if p is a prime different from 3, then p divides a if
and only if p divides b.
Suppose p is such a prime and a = 3ipmC, b = 3jpnD, where m,n ≥ 1, and C and D are
not divisible by 3 or p. Then equation (1) becomes

81
(

3jpnD

)
+ 9

(
3ipmC

)2

+
(

3ipmC

)(
3jpnD

)2

= 9
(

3ipmC

)(
3jpnD

)
c,

or
(#) 3j+4pnD + 32i+2p2mC2 + 3i+2jpm+2nCD2 = 3i+j+2pm+nCDc.

If n < 2m, we can divide equation (#) by pn to obtain

3j+4D + 32i+2p2m−nC2 + 3i+2jpm+nCD2 = 3i+j+2pmCDc.

But then p divides each term after the first, so p divides 3j+4D, which is impossible.
If n > 2m, we can divide through equation (#) by p2m to obtain

3j+4pn−2mD + 32i+2C2 + 3i+2jp2n−mCD2 = 3i+j+2pn−mCDc

81pm−2nD + 9C2 + pmCD2 = 9pm−nCDc.

Noting that 2n > 4m > m and n > 2m > m, we see that p divides each term except
32i+2C2, so p divides 32i+2C2, which is impossible.
Therefore n = 2m.
That is, a and b have the same prime divisors, and in b, the power on each such prime is



twice the corresponding power in a; therefore, in b, the product of all divisors other than
3 is the square of the analogous product in a. So the proof is complete.

They then substituted this result into equation (1) obtaining

81
(

3jA2
)

+ 9
(

3iA2
)

+
(

3iA

)(
3jA2

)2

= 9
(

3iA

)(
3jA2

)
c,

or
(2)

(
2j+4 + 32i+2

)
+ 3i+2jA3 = 3i+j+2Ac

and started looking for values of i, j, A and c satisfying this equation.
Analyzing the cases (1) where 3 divides b but not a; (2) where 3 divides a but not b;
and (3) where 3 divides a and b led to the solutions listed above.
They ended their submission with comments about the patterns they observed in

solving analogous equations of the form
N

a
+ b +

c

N
= c for various integral values of N .

Also solved by Charles Ashbacher, Marion, IA; Britton Stamper (student at
Saint George’s School), Spokane, WA, and the proposer.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.
A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

1
3
πr2h = 2(πr2 + πr

√
r2 + h2) or

rh = 6r + 6
√

r2 + h2.

Squaring and simplifying gives r2 = 36
h

h− 12
. Therefore,

h

h− 12
is a square, and

h

h− 12
∈ {1, 4, 9, 16, . . .}. Note that f(h) =

h

h− 12
is a decreasing function of h for

h > 12 and that h(16) = 4. Note also that f(13), f(14) and f(15) are not squares of
integers. Therefore (h, r) = (16, 24) is the only solution.

Also solved by Paul M.Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; Britton
Stamper (student at Saint George’s School), Spokane, WA; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

Solution by N. J. Kuenzi, Oshkosh, WI.



Both 1 and 1/2 are easily seen to be positive rational roots of the given equation. So
(x− 1) and (2x− 1) are both factors of the polynomial 126x7 − 127x6 + 1. Factoring
yields

126x2 − 127x6 + 1 = (x− 1)(2x− 1)(63x5 + 31x4 + 15c3 + 7x2 + 3x + 1).

The equation (63x5 + 31x4 + 15c3 + 7x2 + 3x + 1) does not have any rational roots
(Rational Roots Theorem) nor any positive real roots (Descartes’ Rule of Signs).
Using numerical techniques one can find that −0.420834167 is the approximate value of
a real root.
The four other roots are complex with approximate values:

0.1956354060 + 0.4093830251i 0.1956354060− 0.4093830251i

−0.2312499936 + 0.3601917120i −0.2312499936− 0.3601917120i

So the real solutions of the equation 126x7 − 127x6 + 1 = 0 are 1, 1/2 and −0.420834167.

Also solved by Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; Charles McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Statesboro GA, and the proposer.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :

1−
√

5
2

≤ |z| ≤ 1 +
√

5
2

}
.

Solution by Kee-Wai Lau, Hong Kong, China.

By rewriting the equation as az2 = −bz − c, we obtain

|a||z|2 = |az2| = |bz + c| ≤ |b||z|+ |c| or |z |2 − |z | − 1 ≤ 0

or
(
|z|+

√
5− 1
2

)(
|z| −

√
5 + 1
2

)
≤ 0 so that |z | ≤ 1 +

√
5

2
.

By rewriting the equation as c = −az2 − bz, we obtain

|c| = | − az2 − bz| ≤ |a||z|2 + |b||z| or |z |2 + |z | − 1 ≥ 0

or
(
|z|+

√
5 + 1
2

)(
|z| −

√
5− 1
2

)
≥ 0 so that |z | ≥

√
5− 1
2

.

This finishes the solution.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Russell
Euler and Jawad Sadek (jointly), Maryville, MO; Boris Rays, Chesapeake,
VA; José Hernández Santiago (student at UTM) Oaxaca, México; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.



• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.
Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i + 1)− 2 for i = 2, 3, 4, · · · ,

where T (i + 1) = (i + 1)(i + 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX.

If we allow T (0) = 0, then for i ≥ 1 and j = 0, 1, . . . , i, it’s clear from the definition of
ai,j that

ai,j = ai,0 + T (j)
= T (i + 1)− 2 + T (j)

=
i2 + 3i− 2 + j2 + j

2
.

Therefore, for every pair (i, j),

4ai,j + 9 = 2
(
i2 + 3i− 2 + j2 + j

)
+ 9

= 2
(
i2 + 3i + j2 + j

)
+ 5

= (i + j + 2)2 + (i− j + 1)2 .

Solution 2 by Carl Libis, Kingston, RI.

For every pair (i, j), 4a(i, j) + 9 = (i− j + 1)2 + (i + j + 2)2 since

4a(i, j) + 9 = 4
[
a(i, 0) +

j(j + 1)
2

]
+ 9 = 4

[
(i + 1)(i + 2)

2
− 2 +

j(j + 1)
2

]
+ 9

= 2(i + 1)(i + 2)− 8 + 2j(j + 1) + 9

= 2i2 + 6i + 4 + 2j2 + 2j + 1

= (i− j + 1)2 + (i + j + 2)2.

Also solved by Paul M. Harms, North Newton, KS; N. J. Kuenzi, Oshkosh,
WI; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone and John
Hawkins (jointly), Statesboro GA; José Hernándz Santiago (student at
UTM), Oaxaca, México, and the proposers.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2008

• 5014: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with a = 100, b = 105, and with equal cevians AD and BE. Find
the perimeter of the triangle if AE · BD = CE · CD.

• 5015: Proposed by Kenneth Korbin, New York, NY.

Part I: Find the value of
10∑

x=1

Arcsin
( 4x2

4x4 + 1

)
.

Part II: Find the value of ∞∑

x=1

Arcsin
( 4x2

4x4 + 1

)
.

• 5016: Proposed by John Nord, Spokane, WA.

Locate a point (p, q) in the Cartesian plane with integral values, such that for any line
through (p, q) expressed in the general form ax + by = c, the coefficients a, b, c form an
arithmetic progression.

• 5017: Proposed by M.N. Deshpande, Nagpur, India.

Let ABC be a triangle such that each angle is less than 900. Show that

a

c · sinB
+

1
tanA

=
b

a · sinC
+

1
tanB

=
c

b · sin A
+

1
tanC



where a = l(BC), b = l(AC), and c = l(AB).

• 5018: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Write the polynomial x5020 + x1004 + 1 as a product of two polynomials with integer
coefficients.

• 5019: Michael Brozinsky, Central Islip, NY.

In a horse race with 10 horses the horse with the number one on its saddle is referred to
as the number one horse, and so on for the other numbers. The outcome of the race
showed the number one horse did not finish first, the number two horse did not finish
second, the number three horse did not finish third and the number four horse did not
finish fourth. However, the number five horse did finish fifth. How many possible orders
of finish are there for the ten horses assuming no ties?

Solutions

• 4996: Proposed by Kenneth Korbin, New York, NY.
Simplify:

N∑

i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
.

Solution by José Hernández Santiago, (student, UTM, Oaxaca, México.)

N∑

i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
=

N∑

i=1

(
N

i

)

2i−1 +
N∑

i=1

(
N

i

)

2i−1 · 3N−i

=
1
2

N∑

i=1

(
N

i

)

2i +
3N

2

N∑

i=1

(
N

i

)(2
3

)i

=
(1

2

)((
2 + 1

)N

− 1
)

+
(3N

2

)((2
3

+ 1
)N

− 1
)

=
3N − 1

2
+

3N

2

(5N − 3N

3N

)

=
(3N − 1)3N + 3N (5N − 3N )

2 · 3N

=
15N − 3N

2 · 3N

=
5N − 1

2

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Central



Islip, NY; John Boncek, Montgomery, AL; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; José Luis
Dı́az-Barrero, Barcelona, Spain; Paul M. Harms, North Newton, KS; N. J.
Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong Kong, China; Carl Libis,
Kingston, RI; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4997: Proposed by Kenneth Korbin, New York, NY.
Three different triangles with integer-length sides all have the same perimeter P and all
have the same area K.
Find the dimensions of these triangles if K = 420.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX.

Let a, b, c be the sides of the triangle and, for convenience, assume that a ≤ b ≤ c. By
Heron’s Formula,

(420)2 =
(

a + b + c

2

) (
a + b− c

2

) (
a− b + c

2

) (−a + b + c

2

)
(1)

Since a, b, c are positive integers, it is easily demonstrated that the quantities
(a + b− c), (a− b + c), and (−a + b + c) are all odd or all even. By (1), it is clear that
in this case, they are all even. Therefore, there are positive integers x, y, z such that
a + b− c = 2x, a− b + c = 2y, and −a + b + c = 2z. Then, a = x + y, b = x + z,
c = y + z, a + b + c = 2 (x + y + z), and a ≤ b ≤ c implies that x ≤ y ≤ z. With this
substitution, (1) becomes

(420)2 = xyz (x + y + z) (2)

Since x ≤ y ≤ z < x + y + z, (2) implies that

x4 < xyz (x + y + z) = (420)2

and hence,
1 ≤ x ≤

⌊√
420

⌋
= 20,

where $m% denotes the greatest integer ≤ m. Therefore, the possible values of x are
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20 (since x must also be a factor of (420)2).
Further, for each x, (2) implies that

y3 < yz (x + y + z) =
(420)2

x
,

i.e.,

x ≤ y ≤

 3

√
(420)2

x

 ,

(and y is a factor of (420)2x). Once we have assigned values to x and y, (2) becomes

z (x + y + z) =
(420)2

xy
, (3)

which is a quadratic equation in z. If (3) yields an integral solution ≥ y, we have found
a viable solution for x, y, z and hence, for a, b, c also. By finding all such solutions, we



can find all Heronian triangles (triangles with integral sides and integral area) whose
area is 420. Then, we must find three of these with the same perimeter to complete our
solution.
The following two cases illustrate the typical steps encountered in this approach.
Case 1. If x = 1 and y = 18, (3) becomes

z2 + 19z − 9800 = 0.

Since this has no integral solutions, this case does not lead to feasible values for a, b, c.
Case 2. If x = 2 and y = 24, (3) becomes

z2 + 26z − 3675 = 0,

which has z = 49 as its only positive integral solution. These values of x, y, z yield
a = 26, b = 51, c = 73, and P = 150.
The results of our approach are summarized in the following table.

x y z a b c P
1 6 168 7 169 174 350
1 14 105 15 106 119 240
1 20 84 21 85 104 210
1 25 72 26 73 97 196
1 40 49 41 50 89 180
2 24 49 26 51 73 150
2 35 35 37 37 70 144
4 21 35 25 39 56 120
5 9 56 14 61 65 140
5 21 30 26 35 51 112
6 15 35 21 41 50 112
8 21 21 29 29 42 100
9 20 20 29 29 40 98
10 15 24 25 34 39 98
12 12 25 24 37 37 98

Now, it is obvious that the last three entires constitute the solution of this problem.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 4998: Proposed by Jyoti P. Shiwalkar & M.N. Deshpande, Nagpur, India.
Let A = [ai,j ], i = 1, 2, · · · and j = 1, 2, · · · , i be a triangular array satisfying the
following conditions:

1) ai,1 = L(i) for all i
2) ai,i = i for all i
3) ai,j = ai−1,j + ai−2,j + ai−1,j−1 − ai−2,j−1 for 2 ≤ j ≤ (i − 1 ).

If T (i) =
i∑

j=1

ai,j for all i ≥ 2, then find a closed form for T (i), where L(i) are the Lucas

numbers, L(1) = 1, L(2) = 3, and L(i) = L(i− 1) + L(i− 2) for i ≥ 3.



Solution by Paul M. Harms, North Newton, KS.

Note that ai−2,j is not in the triangular array when j = i− 1, so we set ai−2,i−1 = 0.
From Lucas numbers ai,1 = ai−1,1 + ai−2,1 for i > 2. For i > 2,

T (i) = ai,1 + ai,2 + · · · + ai,i−1 + i

= (ai−1,1 + ai−2,1) + (ai−1,2 + ai−2,2 + ai−1,1 − ai−2,1) + · · ·
+(ai−1,i−1 + ai−2,i−1 + ai−1,i−2 − ai−2,i−2) + i.

Therefore we have

(ai−1,i−1 + ai−2,i−1 + ai−1,i−2 − ai−2,i−2) = (i− 1) + 0 + ai−1,i−2 − (i− 2).

Note that in T (i) each term of row (i− 2) appears twice and subtracts out and each
term of row (i− 1) except for the last term (i− 1), is added to itself. The term (i− 1)
appears once. If we write the last term, i, of T (i) as i = (i− 1) + 1, then
T (i) = 2T (i− 1) + 1. The values of the row sums are:

T (1) = 1
T (2) = 5
T (3) = 2(5) + 1
T (4) = 2(2(5) + 1) + 1 = 22(5) + 2 + 1

T (5) = 2
(

2[2(5) + 1] + 1
)

+ 1 = 23(5) + 22 + 2 + 1, and in general

T (i) = 2i−2(5) + (2i−3 + 2i−4 + · · · + 1)

= 2i−2(5) + (2i−2 − 1)
= 2i−2(6)− 1
= 2i−1(3) for i ≥ 2.

Also solved by Carl Libis, Kingston, RI; N. J. Kuenzi, Oshkosh, WI; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4999: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real triplets (x, y, z) such that

x + y + z = 2
2x+y2

+ 2y+z2
+ 2z+x2

= 6 9
√

2

Solution by David E. Manes, Oneonta, NY.

The only real solution is (x, y, z) = (
2
3
,
2
3
,
2
3
). Note that these values do satisfy each of

the equations.
By the Arithmetic-Geometric Mean Inequality,

6 9
√

2 = 2x+y2
+ 2y+z2

+ 2z+x2



≥ 3 3
√

2x+y+z · 2x2+y2+z2 = 2 · 22/3 3
√

2x2+y2+z2 .

Therefore, 2x2+y2+z2 ≤ 24/3 so that x2 + y2 + z2 ≤ 4/3 (1). Note that

4 = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx), so that

x2 + y2 + z2 = 4− 2(xy + yz + zx).

Substituting in (1) yields the inequality xy + yz + zx ≥ 4
3
. From

(x− y)2 + (y− z)2 + (z − x)2 ≥ 0 with equality if and only if x = y = z, one now obtains
the inequalities

4
3
≥ x2 + y2 + z2 ≥ xy + yz + zx ≥ 4

3
.

Hence

x2 + y2 + z2 = xy + yz + zx =
4
3

(x− y)2 + (y − z)2 + (z − x)2 = 0, and x = y = z =
2
3
.

.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie and Karl
Havlak (jointly), San Angelo, TX; Michael Brozinsky, Central Islip, NY;
Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Math Dept. U. of Rome,
Italy; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposers.

• 5000: Proposed by Richard L. Francis, Cape Girardeau, MO.

Of all the right triangles inscribed in the unit circle, which has the Morley triangle of
greatest area?

Solution by Ken Korbin, New York, NY.

Given 'ABC with circumradius R = 1 and with A + B = C = 90o.
The side x of the Morley triangle is given by the formula

x = 8 · R · sin(
A

3
) · sin(

B

3
) · sin(

C

3
)

= 8 · 1 · sin(
A

3
) · sin(

B

3
) · 1

2

= 4 sin(
A

3
) sin(

B

3
).

x will have a maximum value if

A

3
=

B

3
=

45o

3
= 15o.

Then,

x = 4 sin2(15o)



= 4
(1− cos 30o

2

)

= 2− 2 cos 30o

= 2−
√

3.

The area of this Morley triangle is

1
2

· (2−
√

3)2 · sin 60o

=
1
2
(7− 4

√
3) ·

√
3

2
=

7
√

3− 12
4

.

Comment by David Stone and John Hawkins: “It may be the maximum, but it is
pretty small!”

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; David Stone an John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5001: Proposed by Ovidiu Furdui, Toledo, OH.

Evaluate:

∫ ∞

0
ln2

(
x2

x2 + 3x + 2

)

dx.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that
∫ ∞

0
ln2

(
x2

x2 + 3x + 2

)
dx = 2 ln2 2 +

11π2

6
.

Denote the integral by I. Replacing x by 1/x, we obtain

I =
∫ ∞

0

ln2
(

(x + 1)(2x + 1)
)

x2
dx =

∫ ∞

0

ln2(x + 1)
x2

dx +
∫ ∞

0

ln2(2x + 1)
x2

dx

+2
∫ ∞

0

ln(x + 1) ln(2x + 1)
x

dx

= I1 + I2 + 2I3, say.

Integrating by parts, we obtain

I1 =
∫ ∞

0
ln2(x + 1)d(

−1
x

) = 2
∫ ∞

0

ln(x + 1)
x(x + 1)

dx = 2
∫ ∞

1

lnx

x(x− 1)
dx.

Replacing x by /(1− x),we obtain I1 = −2
∫ 1

0

ln(1− x)
x

dx = 2
∞∑

n=1

1
n2

=
π2

3
.

Replacing x by x/2 in I2, we see that I2 = 2I1 =
2π2

3
. Next note that

I3 =
∫ ∞

0
ln(x+1) ln(2x+1)d(

−1
x

) =
∫ ∞

0

ln(2x + 1)
x(x + 1)

dx+2
∫ ∞

0

ln(x + 1)
x(2x + 1)

dx = J1+2J2, say.



Replacing x by x/2, then x by x− 1 and then x by 1/x, we have

J1 = 2
∫ ∞

0

ln(x + 1)
x(x + 2)

dx = 2
∫ ∞

1

lnx

(x− 1)(x + 1)
dx

= −2
∫ 1

0

lnx

(1− x)(1 + x)
dx = −

∫ 1

0
lnx

( 1
1− x

+
1

1 + x

)
dx.

Integrating by parts, we have,

J1 =
∫ 1

0

− ln(1− x) + ln(1 + x)
x

dx =
∞∑

n=1

1 + (−1)n−1

n2
=

π2

6
+

π2

12
=

π2

4
.

We now evaluate J2. Replacing x + 1 by x and then x by 1/x, we have

J2 =
∫ ∞

1

lnx

(x− 1)(2x− 1)
dx = −

∫ 1

0

lnx

(1− x)(2− x)
dx = −

∫ 1

0

lnx

1− x
+

∫ 1

0

lnx

2− x
dx =

π2

6
+K, say.

Replacing x by 1− x

K =
∫ 1

0

ln(1− x)
1 + x

dx =
∫ 1

0

ln(1 + x)
1 + x

dx +
∫ 1

0

ln(1− x)− ln(1 + x)
1 + x

dx

=
1
2

ln2 2 +
∫ 1

0

ln
(1− x

1 + x

)

1 + x
dx.

By putting y =
1− x

1 + x
, we see that the last integral reduces to

∫ 1

0

ln y

1 + y
dy = −π2

12
.

Hence, K =
1
2

ln2 2− π2

12
, J2 =

1
2

ln2 2 +
π2

12
, I3 = ln2 2 +

5π2

12
and finally

I = I1 + I2 + 2I3 =
π2

3
+

2π2

3
+ 2

(
ln2 2 +

5π2

12

)
= 2 ln2 2 +

11π2

6
as desired.

Also solved by Paolo Perfetti, Math. Dept., U. of Rome, Italy; Worapol
Rattanapan (student at Montfort College (high school)), Chiang Mai,
Thailand, and the proposer.
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• 5020: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that{
x7 − 13y = 21
13x− y7 = 21

• 5021: Proposed by Kenneth Korbin, New York, NY.

Given
x + x2

1− 34x + x2
= x + 35x2 + · · ·+ anxn + · · ·

Find an explicit formula for an.

• 5022: Proposed by Michael Brozinsky, Central Islip, NY .

Show that
sin

(
x

3

)
sin

(
π + x

3

)
sin

(
2π + x

3

)
is proportional to sin(x).

• 5023: Proposed by M.N. Deshpande, Nagpur, India.

Let A1A2A3 · · ·An be a regular n-gon (n ≥ 4) whose sides are of unit length. From Ak

draw Lk parallel to Ak+1Ak+2 and let Lk meet Lk+1 at Tk. Then we have a “necklace”
of congruent isosceles triangles bordering A1A2A3 · · ·An on the inside boundary. Find
the total area of this necklace of triangles.



• 5024: Proposed by José Luis Dı́az-Barrero and Josep Rubió-Massegú, Barcelona, Spain.

Find all real solutions to the equation√
1 +

√
1− x− 2

√
1−

√
1− x = 4

√
x.

• 5025: Ovidiu Furdui, Toledo, OH.

Calculate the double integral ∫ 1

0

∫ 1

0
{x− y}dxdy,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

Solution by David E. Manes, Oneonta, NY.

The value of x is
√

3
7

.

Note that each inscribed side of the hexagon subtends an angle at the center of the
circle that is independent of its position in the circle The sides are subject to the
constraint that the sum of the angles subtended at the center equals 360o. Therefore the
sides of the hexagon can be permuted from 3x, 3x, 3x, 5x, 5x, 5x to 3x, 5x, 3x, 5x, 3x, 5x.
In problem 4974 : (December 2007, Korbin, Lau) it is shown that the circumradius r is
then given by

r =

√
(3x)2 + (5x)2 + (3x)(5x)

3
.

With r = 1, one obtains x =
√

3
7

.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; John Boncek, Montgomery, AL; M.N.
Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona, Spain; Grant
Evans (student at St George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; Minerva P. Harwell (student at Auburn University),
Montgomery, AL; Kee-Wai Lau, Hong Kong, China; Peter E. Liley,
Lafayette, IN; Amanda Miller (student at St. George’s School), Spokane,
WA; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

3
√

x +
√

x2 − 1 +
3
√

x−
√

x2 − 1 =
7
2

and



3

√
y +

√
y2 − 1 + 3

√
y −

√
y2 − 1 =

√
10

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

Let A = 3
√

x +
√

x2 − 1 and B = 3
√

x−
√

x2 − 1. Note that

A3 + B3 = 2x and
AB = 1.

Since A + B =
7
2
,

343
8

= (A + B)3

= A3 + 3A2B + 3AB2 + B3

= A3 + B3 + 3AB(A + B)

= 2x +
21
2

.

Thus, x =
259
16

.

Similarly,
2y + 3

√
10 = 10

√
10

and, thus, y =
7
√

10
2

.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; M.N. Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona,
Spain; Grant Evans (student at St. George’s School), Spokane, WA; Paul M.
Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Peter E.
Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Amanda Miller (student
at St. George’s School), Spokane, WA; John Nord, Spokane, WA; Paolo
Perfetti (Department of Mathematics, University of Rome), Italy; Boris
Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that

a

1 + a
+

b

1 + b
+

c

1 + c
≥

√
ab

1 + a + b
+

√
bc

1 + b + c
+

√
ac

1 + c + a

Solution by John Boncek, Montgomery, AL.

We use the arithmetic-geometric inequality: If x, y ≥ 0, then x + y ≥ 2
√

xy. Now

a

1 + a
≥ a

1 + a + b
, and

b

1 + b
≥ b

1 + a + b
, so



a

1 + a
+

b

1 + b
≥ a + b

1 + a + b
≥ 2

√
ab

1 + a + b
.

Similarly,
a

1 + a
+

c

1 + c
≥ 2

√
ac

1 + a + c
, and

b

1 + b
+

c

1 + c
≥ 2

√
bc

1 + b + c
.

Summing up all three inequalities, we obtain

2
(

a

1 + a
+

b

1 + b
+

c

1 + c

)
≥ 2

√
ab

1 + a + b
+

2
√

ac

1 + a + c
+

2
√

bc

1 + b + c
.

Divide both sides of the inequality by 2 to obtain the result.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; M.N. Deshpande, Nagpur, India; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes,
Oneonta, NY; Paolo Perfetti (Department of Mathematics, University of
Rome), Italy; Boris Rays, Chesapeake, VA, and the proposers.

• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that
√

3
2

(
a + b + c

)1/2

≥ 1
a + b

+
1

b + c
+

1
c + a

.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

Since a + b ≥ 2
√

ab =
2√
c

and so on, and by the Cauchy-Schwarz inequality, we have

1
a + b

+
1

b + c
+

1
c + a

≤
√

c +
√

a +
√

b

2

=
1
2

(
(1)
√

a + (1)
√

b + (1)
√

c

)
≤ 1

2
√

1 + 1 + 1
√

a + b + c

=
√

3
2

(
a + b + c)1/2

as required.

Solution 2 by Charles McCracken, Dayton, OH.

Suppose a=b=c=1. Then the original inequality reduces to
3
2
≥ 3

2
which is certainly

true.



Let L represent the left side of the original inequality and let R represent the right side.
Allow a, b, and c to vary and take partial derivatives.

∂L

∂a
=
√

3
2
· 1
2

(
a + b + c

)−1/2

> 0. Similarly,
∂L

∂b
> 0 and

∂L
∂c

> 0.

∂R

∂a
= −(a + b)−2 − c(a + b)−2 < 0. Similarly,

∂R

∂b
< 0 and

∂R

∂c
< 0.

So any change in a, b or c results in an increase in L and a decrease in R so that L is
always greater than R.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti (Department of Mathematics,
University of Rome), Italy, and the proposer.

• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑
k=2

(−1)k ln
(

1− 1
k2

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

Using ln
(

1− 1
k2

)
= ln

(
k − 1

k

)
+ ln

(
k + 1

k

)
, the summation is

(
ln

1
2

+ ln
3
2

)
−

(
ln

2
3

+ ln
4
3

)
+

(
ln

3
4

+ ln
5
4

)
− ln

(
4
5

+ ln
6
5

)
+ · · ·

= ln
(

1
2

)
+ ln

(
3
2

)2

+ ln
(

3
4

)2

+ ln
(

5
4

)2

+ · · ·

= ln
(

1
2

)
+ 2

[
ln

(
3
2

)
+ ln

(
3
4

)
+ ln

(
5
4

)
+ ln

(
5
6

)
+ · · ·

]
= ln

(
1
2

)
+ 2 ln

(
3
2

)(
3
4

)(
5
4

)(
5
6

)(
7
6

)
· · · .

Wallis’ product for
π

2
is

π

2
=

(
2
1

)(
2
3

)(
4
3

)(
4
5

)(
6
5

)(
6
7

)
· · · .

Dividing both sides by 2 and taking the reciprocal yields

4
π

=
(

3
2

)(
3
4

)(
5
4

)(
5
6

)(
7
6

)(
7
8

)
· · · .

The summation in the problem is then

ln
(

1
2

)
+ 2 ln

(
4
π

)
= ln

[(
1
2

)(
16
π2

)]
= ln

(
8
π2

)
.

Solution 2 by Kee-Wai Lau, Hong Kong, China.



It can be proved readily by induction that for positive intergers n,

2n∑
k=2

(−1)k ln
(

1− 1
k2

)
= 4

(
ln((2n)!)− 2 ln(n!)

)
+ lnn + ln(2n + 1)− 2(4n− 1) ln 2.

By using the Stirling approximation ln(n!) = n lnn− n +
1
2

ln(2πn) + O

(
1
n

)
as n →∞,

we obtain
ln((2n)!)− 2 ln(n!) = 2n ln 2− lnn

2
− lnπ

2
+ O

(
1
n

)
.

It follows that

2n∑
k=2

(−1)k ln
(

1− 1
k2

)
= 3 ln 2− 2 ln π + ln

(
1 +

1
2n

)
+ O

(
1
n

)
= 3 ln 2− 2 ln π + O

(
1
n

)

and that
2n+1∑
k=2

(−1)k ln
(

1− 1
k2

)
= 3 ln 2− 2 ln π + O

(
1
n

)
as well.

This shows that the sum of the problem equal 3 ln 2− 2 ln π = ln
(

8
π2

)
.

Also solved by Brian D. Beasley, Clinton, SC; Worapol Rattanapan (student
at Montfort College (high school)), Chiang Mai, Thailand; Paolo Perfetti
(Department of Mathematics, University of Rome), Italy; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solution by Kenneth Korbin, New York, NY.

The centroids are not the same unless the triangle is equilateral.
For example, the isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its
centroid at (0, 2).
Its Morley triangle has verticies at (0, 12− 6

√
3), (−6 + 3

√
3, 3), and (6− 3

√
3, 3) and

has its centroid at (0, 6− 2
√

3).

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY, and the proposer.
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• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD + area 4PBC = area 4PAB + area 4PCD.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that(
x + {x}

[x]
− [x]

x + {x}

)
+

(
x + [x]
{x}

− {x}
x + [x]

)
>

9
2
,

where [x] and {x} represents the entire and fractional part of x.



• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈ M2(C), (n ≥ 2 ), be the solutions of the equation Xn =
(

2 1
6 3

)
.

Prove that
n∑

k=1

Tr(Ak) = 0.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solutions

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.
Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

Solution by David C. Wilson, Winston-Salem, N.C.

Let the side lengths of AB= x, BC=31, CD= y, DA=31, and BD=z.
By the law of cosines

312 = x2 + z2 − 2xz cos 60o and
312 = y2 + z2 − 2yz cos 60o =⇒
961 = z2 + x2 − xz and
961 = y2 + z2 − yz =⇒

0 = (y2 − x2)− yz + xz =⇒
0 = (y − x)(y + x)− z(y − x) = (y − x)(y + x− z) =⇒

y − x = 0 or y + x− z = 0.

But AB > CD =⇒ x > y =⇒ y − x 6= 0. Thus, y + x− z = 0 =⇒ z = x + y. Thus,

961 = (x + y)2 + x2 − x(x + y) = x2 + 2xy + y2 + x2 − x2 − xy = x2 + xy + y2.

Consider x = 30, 29, · · · , 18. After trial and error with a calculator, when x = 24 then
y = 11 =⇒ z = 35 and these check. Thus, the perimeter of ABCD is 35 + 31 + 31 = 97.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Lauren Christenson,
Taylor Brennan, Ross Hayden, and Meaghan Haynes (jointly; students at
Taylor University), Upland, IN; Charles McCracken, Dayton, OH; Amanda
Miller (student, St.George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5009: Proposed by Kenneth Korbin, New York, NY.



Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

Solution by David Stone and John Hawkins, Statesboro, GA.

The answer: AB = 1775, 1840, 1961, 1984 .
Let x =AD and y =BD, with s = x + y = the side length AB. Applying the Law of
cosines in each “subtriangle,” we have

17292 = s2 + x2 − 2sx cos
π

3
= s2 + x2 − sx and

17292 = s2 + y2 − 2sy cos
π

3
= s2 + y2 − sy.

After adding equations and doing some algebra, we obtain the equation

y2 + xy + x2 = 17292.

Solving for y by the Quadratic Formula, we obtain

y =
−x±

√
4 · 17292 − 3x2

2
=
−x± z

2

where z =
√

4 · 17292 − 3x2 must be an integer.

Because y must be positive, we have to choose y =
−x + z

2
.

Now we let Excel calculate, trying x = 1, 2, · · · , 1729. We have 13 “solutions”, but only
four of them have s = AB relatively prime to 1729; hence only equilateral triangles of
side length AB = 1775, 1840, 1961, and 1984 admit the cevian described in the problem.

x z =
√

345862 − 3x2 y = (−x + z)/2 s = x + y gcd(1729, s)

96 3454 1679 1775 1
209 3439 1615 1824 19
249 3431 1591 1840 1
299 3419 1560 1859 13
361 3401 1520 1881 19
455 3367 1456 1911 91
504 3346 1421 1925 7
651 3269 1309 1960 7
656 3266 1305 1961 1
741 3211 1235 1976 247
799 3169 1185 1984 1
845 3133 1144 1989 13
931 3059 1064 1995 133


Note that we could let x run further, but the problem is symmetric in x and y, so we’d
just recover these same solutions with x and y interchanged.

Comment by Kenneth Korbin, the proposer.

In the problem CD = (7)(13)(19) and there were exactly 4 possible answers. If CD
would have been equal to (7)(13)(19)(31)then there would have been exactly 8 possible
solutions.



Similarly, there are exactly 4 primitive Pythagorean triangles with hypotenuse
(5)(13)(17) and there exactly 8 primitive Pythagorean triangles with hypotenuse
(5)(13)(17)(29). And so on.

Also solved by Charles McCracken, Dayton, OH; David E. Manes, Oneonta,
NY; David C. Wilson, Winston-Salem, NC, and the proposer.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α + sin 2β + sin 2γ

(sinα + sin β + sin γ)(cos α + cos β + cos γ)
≤ 2

3
.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy.

Proof After some simple simplification the inequality is

sin 2α + sin 2β + sin 2γ ≤ sin(α + β) + sin(β + γ) + sin(γ + α)

The concavity of sin(x) in the interval [0, π] allows us to write
sin(x + y) ≥ (sin(2x) + sin(2y))/2 thus

sin(α + β) + sin(β + γ) + sin(γ + α) ≥ sin 2α + sin 2β + sin 2γ

concluding the proof.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeak, VA, and the proposers.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1−
1
2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

Solving the characteristic equation

r2 − 2r +
1
2

= 0

and using the intitial conditions, we obtain the solution

an =
(

2 +
√

2
2

)n

+
(

2−
√

2
2

)n

.

Note that

2pap+q =
(2 +

√
2)p+q + (2−

√
2)p+q

2q
and



aq−p =
(2 +

√
2)q−p + (2−

√
2)q−p

2q−p
while

2papaq =
(2 +

√
2)p+q + (2−

√
2)p+q + 2p[(2 +

√
2)q−p + (2−

√
2)q−p]

2q

= 2pap+q + aq−p.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

By induction, we obtain readily that for n ≥ 0,

an =
(

2 +
√

2
2

)n

+
(

2−
√

2
2

)n

.

Hence

apaq =
((

2 +
√

2
2

)p

+
(

2−
√

2
2

)p)((
2 +

√
2

2

)q

+
(

2−
√

2
2

)q)

=
((

2 +
√

2
2

)p+q

+
(

2−
√

2
2

)p+q)
+

(
2 +

√
2

2

)p(2−
√

2
2

)q

+
(

2−
√

2
2

)p(2 +
√

2
2

)q

= ap+q +
(

2 +
√

2
2

)p(2−
√

2
2

)q((
2−

√
2

2

)q−p

+
(

2 +
√

2
2

)q)

= ap+q +
1
2p

aq−p,

and the identity of the problem follows.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Jose Hernández Santiago
(student, UTM), Oaxaca, México; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5012: Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

Solution 1 by Kenneth Korbin, New York, NY.

The incenters are not the same unless the triangle is equilateral. For example, the
isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its incenter at
(0, 6

√
2− 6).

Its Morely triangle has vertices at (0, 12− 6
√

3), (−6 + 3
√

3, 3), and (6− 3
√

3, 3) and has
its incenter at (0, 6− 2

√
3).

Solution 2 by Kee-Wai Lau, Hong-Kong, China.

We show that the incenter I of a triangle ABC is the same as the incenter IM of its
Morley triangle if and only if ABC is equilateral.



In homogeneous trilinear coordinates, I is 1 : 1 : 1 and IM is

cos
(

A

3

)
+2 cos

(
B

3

)
cos

(
C

3

)
: cos

(
B

3

)
+2 cos

(
C

3

)
cos

(
A

3

)
: cos

(
C

3

)
+2 cos

(
A

3

)
cos

(
B

3

)
.

Clearly if ABC is equilateral, then I = IM . Now suppose that I = IM so that

cos
(

A

3

)
+ 2 cos

(
B

3

)
cos

(
C

3

)
= cos

(
B

3

)
+ 2 cos

(
C

3

)
cos

(
A

3

)
(1)

cos
(

B

3

)
+ 2 cos

(
C

3

)
cos

(
A

3

)
= cos

(
C

3

)
+ 2 cos

(
A

3

)
cos

(
B

3

)
. (2)

From (1) we obtain

(
cos

(
A

3

)
− cos

(
B

3

))(
1− 2 cos

(
C

3

))
= 0.

Since 0 < C < π, so

1− 2 cos
(

C

3

)
< 0.

Thus,

cos
(

A

3

)
= cos

(
B

3

)
or A = B.

Similarly from (2) we obtain B = C. It follows that ABC is equilateral and this
completes the solution.

Also solved by David E. Manes, Oneonta, NY, and the proposer.

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solution by Kee-Wai Lau, Hong Kong, China.

For positive integers M1,M2, · · · ,Mk, we have

M1∑
n1=1

M2∑
n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

n1 + n2 · · ·+ nk

=
M1∑

n1=1

M2∑
n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

∫ 1

0
xn1+n2+···+nk−1dx

=
∫ 1

0

( M1∑
n1=1

(−1)n1xn1

)( M2∑
n2=1

(−1)n2xn2

)
· · ·

( Mk∑
nk=1

(−1)nkxnk

)
x−1dx

=
∫ 1

0

(−x(1− (−x)M1)
1 + x

)(−x(1− (−x)M2)
1 + x

)(−x(1− (−x)Mk)
1 + x

)
x−1dx



= (−1)k
∫ 1

0

xk−1(1− (−x)M1)(1− (−x)M2) · · · (1− (−x)Mk))
(1 + x)k

dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx + O

( ∫ 1

0
xM1 + xM2 + · · ·+ xMk

)
dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx + O

(
1

M1
+

1
M2

+ · · ·+ 1
Mk

)

as M1,M2, · · · ,Mk tend to infinity. Here the constants implied by the O′s depend at
most on k.
It follows that the sum of the problem equals

(−1)k
∫ 1

0

xk−1

1 + x)k
dx = (−1)kIk, say.

Integrating by parts, we have for k ≥ 3,

Ik =
1

1− k

∫ 1

0
xk−1d((1 + x)1−k)

=
−1

(k − 1)2k−1
+ Ik−1.

Since I2 = ln 2− 1
2
, we obtain readily by induction that for k ≥ 2.

Ik = ln 2−
k∑

j=2

1
(j − 1)2j−1

.

we now conclude that for k ≥ 2,

∑
n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
= (−1)k

(
ln 2−

k−1∑
j=1

1
j(2j)

)
.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Paul M. Harms, North Newton, KS; Boris Rays,
Chesapeake, VA, and the proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2009

• 5032: Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A,B, C such that

tanA · tanB + tanB · tanC + tanC · tanA = 1.

Find the value of
sin A

cos B · cos C
+

sinB

cos A · cos C
+

sinC

cos A · cos B
.

• 5033: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P is on side AB and point Q is on side CD. Find the coordinates of P and Q if
area 4PCD = area 4QAB = 1

2area quadrilateral ABCD.

• 5034: Proposed by Roger Izard, Dallas, TX.

In rectangle MDCB, MB ⊥ MD. F is the midpoint of BC, and points N,E and G lie
on line segments DC, DM , and MB respectively, such that NC = GB. Let the area of
quadrilateral MGFC be A1 and let the area of quadrilateral MGFE be A2. Determine
the area of quadrilateral EDNF in terms of A1 and A2.

• 5035: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

(aabbcc)2(a−(b+c) + b−(c+a) + c−(a+b))3 ≥ 27.



• 5036: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all triples (x, y, z) of nonnegative numbers such that{
x2 + y2 + z2 = 1
3x + 3y + 3z = 5

• 5037: Ovidiu Furdui, Toledo, OH.

Let k, p be natural numbers. Prove that

1k + 3k + 5k + · · ·+ (2n + 1)k = (1 + 3 + · · ·+ (2n + 1))p

for all n ≥ 1 if and only if k = p = 1.

Solutions

• 5014: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with a = 100, b = 105, and with equal cevians AD and BE. Find
the perimeter of the triangle if AE ·BD = CE · CD.

Solution by David Stone and John Hawkins, Statesboro, GA.

The solution to this problem is more complex than expected. There are infinitely many
triangles satisfying the given conditions, governed in a sense by two types of degeneracy.
The nicest of these solutions is a right triangle with integer sides, dictated by the given
data: 100 = 5(20) and 105 = 5(21) and (20, 21, 29) is a Pythagorean triple.

One type of degeneracy is the usual: if AB = 5 or AB = 205, we have a degenerate
triangle which can be shown to satisfy the conditions of the problem.

The other type of degeneracy is problem specific: when neither cevian intersects the
interior of its targeted side, but lies along a side of the triangle. In these two situations,
the problem’s condition are also met.

Let x = length of CE so 0 ≤ x ≤ 105. The following table summarizes our results.



x = CE cos(C) C AB BD Perimeter AD = BE note

0 21
40 cos−1

(
21
40

)
100 0 305 100 1

21 194
350 cos−1

(
194
350

) √
9385 20 301.88

√
8113 2

1985
41 1 0 5 1900

41 210 2105
41 3

excluded values ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2205
41 −1 180o 205 2100

41 410 6305
41 3

105
41 (

√
178081− 400) 0 90o 145 ≈ 53.65 350 ≈ 114.775 4

105 10
21 cos−1

(
10
21

)
105 100 310 105 5





Notes:
1. Cevian BE is side BC; Cevian AD is side AB. 2. A “nice” value for x. 3.
Degenerate triangle. 4. Right triangle. 5. Cevian BE is side AB; Cevian AD is side
AC.

In short, the perimeter assumes all values in [210, 305] ∪ [310, 410].

Now we support these assertions. Consider 4ABC with cevians BE (from 6 B to side
AC) and AD ( from 6 A to side BC). Let CE = x,AE = 105− x and CD = 100−BD.
To find the perimeter, we only need to compute AB.

We have AE = 105− x, so

AE ·BD = CE · CD

(105− x)BD = x(100−BD)

100x = 105BD

so BD =
20
21

x and CD = 100 − 20
21

x .

Applying the Law of Cosines three times, we have

(1) BE2 = x2 + 1002 − 2(100)x cos C
(2) AD2 = CD2 + 1052 − 2(105)CD cos(C) and
(3) AB2 = 1002 + 1052 − 2 · 100 · 105 cos(C).

Because we must have AD = BE, we combine (1) and (2) to get

CD2 + 1052 − 2(105)CD cos(C) = x2 + 1002 − 2(100)x cos(C) or(
100− 20

21
x

)2

+ 1055 − 210
(

100− 20
21

x

)
cos(C) = x2 + 1002 − 2(100)x cos(C).

Solving for cos(C), we obtain a rational expression in x:

(4) cos(C) =
41x2 + 84000x− 22052

212 · 200(2x− 105)
.

Substituting this value into (3) we have

AB2 = 21025− 2100 · 41x2 + 84000x− 22052

212 · 200(200x− 105)
, so

(5) AB2 =
5
21

41x2 + 92610x + 4410000
105− 2x

.

Thus we can then calculate AB and the perimeter

P = 205 +

√
5
21

41x2 + 92610x + 4410000
105− 2x

.



The graphs of cos(C) and of AB have vertical asymptotes at x =
105
2

, in the center of

our interval [0, 105]. Other than an interval bracketing this singularity, each value of x
produces a solution to the problem.

We explore the endpoints and the “degenerate” solutions, obtaining the values exhibited
in the table above.

I. x = 0: That is CE = 0, so E = C and the cevian from vertex B is actually the side
BC. Therefore, BE = BC = 100. Hence, the condition

AE ·BD = CE · CD becomes
AC ·BD = 0 · CD or
100 ·BD = 0.

Thus BD = 0, so D = B and the cevian from vertex A is actually the side AB;
AD = AB.
Computing by (4) and (5): cos(C) =

21
40

and AB = 100. Thus
AD = AB = 100 = BC = BE, so this triangle satisfies the required conditions. Its
perimeter is 305.

II. x = 105: gives a similar result, a (105, 105, 100) triangle with cevians lying along the
sides and P = 310.

III. The degenerate case C = 0 occurs when cos(C) = 1. By (4), this happens when

x =
1985
41

. Also, C = 0 if and only if AB = 5, which is the smallest possible value (by

the Triangle Inequality).

IV. The degenerate case C = π occurs when cos(C) = −1. By (4) this happens when

x =
2205
41

. Also C = π if and only if AB = 205, which is the largest possible value (by

the Triangle Inequality).

The values of x appearing in III and IV are the endpoints of the interval of excluded

values bracketing
105
2

.

V. The degenerate case C = π/2 occurs when cos(C) = 0. By (4), this happens when x

takes on the ugly irrational
105
41

(√
178081− 400

)
. In this case, AB = 145 and our

triangle is the (20, 21, 29) Pythagorean triangle scaled up by a factor of 5. The common

value of the cevians is AD = BE =
5
41

√
49788121− 352800

√
178081 ≈ 114.775.

VI. Because BD =
20
21

x, some nice results occur when x is a multiple of 21. The table
shows the values for x = 21.

Excel has produced many values of these triangles, letting x range from 0 to 105, except

for the excluded interval
(

1985
41

,
2205
41

)
, but in summary,

– the perimeter assumes all values in [210, 305] ∪ [310, 410].

– side AB assumes all values in [5, 100] ∪ [105, 205].

– 6 C assumes all values in



[
0, cos−1

(
21
40

)]
∪

[
cos−1

(
10
21

, 180o
)]

= [0, 58.33o] ∪ [61.56o, 180o].

– The common cevians achieve the values[
2105
41

, 100
]
∪

[
105,

6305
41

]
≈ [51.34, 100] ∪ [105, 153.78].

Our final comment: AB assumes all integer values in [5, 100] ∪ [105, 205], so the right
triangle described above is not the only solution with all sides integral. For any integer
AB in [5, 100] ∪ [105, 205], we can use (5) to determine the appropriate value of x, C,
etc. Of course, this raises another question: are any of these triangles Heronian?

Also solved by the proposer.

5015: Proposed by Kenneth Korbin, New York, NY.

Part I: Find the value of
10∑

x=1

Arcsin
(

4x2

4x4 + 1

)
.

Part II: Find the value of ∞∑
x=1

Arcsin
(

4x2

4x4 + 1

)
.

Solution by David C. Wilson, Winston-Salem, N.C.

First, let’s look for a pattern.

x = 1 : Arcsin(
4
5
).

x = 2 : Arcsin(
4
5
) + Arcsin(

16
65

) = Arcsin(
12
13

).

Let θ = Arcsin(
4
5
) and φ = Arcsin(

16
65

).

sin θ =
4
5

sinφ =
16
65

cos θ =
3
5

cos φ =
63
65

sin(θ + φ) = sin θ cos φ + cos θ sinφ = (
4
5
)(

63
65

) + (
3
5
)(

16
65

) =
300
325

=
12
13

= Arcsin(
12
13

).

x = 3 : Arcsin(
12
13

) + Arcsin(
36
325

) = Arcsin(
24
25

).

Let θ = Arcsin(
12
13

) and φ = Arcsin(
36
325

).

sin θ =
12
13

sinφ =
36
325

cos θ =
5
13

cos φ =
323
325

sin(θ + φ) = (
12
13

)(
323
325

) + (
5
13

)(
36
325

) =
4056
4225

=
24
25

= Arcsin(
24
25

).

x = 4 : Arcsin(
24
25

) + Arcsin(
64

1025
) = Arcsin(

40
41

).



Let θ = Arcsin(
24
25

) and φ = Arcsin(
64

1025
).

sin θ =
24
25

sinφ =
64

1025

cos θ =
7
25

cos φ =
1023
1025

sin(θ + φ) = (
24
25

)(
1023
1025

) + (
7
25

)(
64

1025
) =

25000
25625

=
40
41

= Arcsin(
40
41

).

Therefore, the conjecture is
n∑

x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)
.

Proof is by induction.

1) For n = 1, we obtain Arcsin(
4
5
) = Arcsin(

4
5
).

2) Assume true for n; i.e.,

n∑
x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)
.

3) For n + 1, we have

n+1∑
x=1

Arcsin
(

4x2

4x4 + 1

)
=

n∑
x=1

Arcsin
(

4x2

4x4 + 1

)
+ Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
=

n∑
x=1

Arcsin
(

2n2 + 2n

2n2 + 2n + 1

)
+ Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
.

Let θ = Arcsin
(

2n2 + 2n
2n2 + 2n + 1

)
and φ = Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
.

sin θ =
2n2 + 2n

2n2 + 2n + 1
sinφ =

4(n + 1)2

4(n + 1)4 + 1

cos θ =
2n + 1

2n2 + 2n + 1
cos φ =

4(n + 1)4 − 1
4(n + 1)4 + 1

sin(θ + φ) = sin θ cos φ + cos θ sinφ

=
(

2n2 + 2n

2n2 + 2n + 1

)[
4(n + 1)4 − 1
4(n + 1)4 + 1

]
+

(
2n + 1

2n2 + 2n + 1

)[
4(n + 1)2

4(n + 1)4 + 1

]
=

8n6 + 40n5 + 80n4 + 88n3 + 58n2 + 22n + 4
(2n2 + 2n + 1)(2n2 + 6n + 5)(2n2 + 2n + 1)

=
(2n2 + 2n + 1)2(2n2 + 6n + 4)
(2n2 + 2n + 1)2(2n2 + 6n + 5)

=
2n2 + 6n + 4
2n2 + 6n + 5

=
2(n + 1)2 + 2(n + 1)

2(n + 1)2 + 2(n + 1) + 1
.

Thus
n+1∑
x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

[
2(n + 1)2 + 2(n + 1)

2(n + 1)2 + 2(n + 1) + 1

]
and this proves the

conjecture.



Part I:
10∑

x=1

Arcsin
(

4x2

4x4 + 1

)
= Arcsin

[
220
221

]
.

Part II:
∞∑

x=1

Arcsin
(

4x2

4x4 + 1

)
=

lim
n →∞

n∑
x=1

Arcsin
[

4x2

4x4 + 1

]

=
lim

n →∞
Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)

= Arcsin
[

lim
n →∞

2n2 + 2n

2n2 + 2n + 1

]
= Arcsin(1) =

π

2
.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Boris Rays, Chesapeake, VA; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

5016: Proposed by John Nord, Spokane, WA.

Locate a point (p, q) in the Cartesian plane with integral values, such that for any line
through (p, q) expressed in the general form ax + by = c, the coefficients a, b, c form an
arithmetic progression.

Solution 1 by Nate Wynn (student at Saint George’s School), Spokane, WA.

As {a, b, c} is an arithmetic progression, b can be written as a + n and c can be written
as a + 2n. Then using a series of two equations:{

ap + (a + n)q =a+2n
tp + (t + u)q =t+2u

Solving this system gives

(tn− au)q = 2tn− 2au, thus q = 2 .

Placing this value into the first equation and solving gives

ap + 2a + 2n = a + 2n
a(p + 1) = 0

p = −1.

Therefore the point is (−1, 2).

Solution 2 by Eric Malm (graduate student at Stanford University, and an
alumnus of Saint George’s School in Spokane), Stanford, CA.

The only such point is (−1, 2).
Suppose that each line through (p, q) is of the form ax + by = c with (a, b, c) an
arithmetic progression. Then c = 2b− a. Taking a = 0 yields the line by = 2b or y = 2,
so q = 2. Taking a 6= 0, p= must satisfy ap + 2b = 2b− a, so p = −1.



Conversely, any line through (p, q) = (−1, 2) must be of the form
ax + by = ap + bq = 2b− a, in which case the coefficients (a, b, 2b− a) form an arithmetic
progression.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Rachel Demeo,
Matthew Hussey, Allison Reece, and Brian Tencher (jointly, students at
Talyor University, Upland, IN); Michael N. Fried, Kibbutz Revivim, Israel;
Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; Raul A. Simon,
Chile; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

5017: Proposed by M.N. Deshpande, Nagpur, India.

Let ABC be a triangle such that each angle is less than 900. Show that

a

c · sinB
+

1
tanA

=
b

a · sinC
+

1
tanB

=
c

b · sin A
+

1
tanC

where a = l(BC), b = l(AC), and c = l(AB).

Solution by John Boncek, Montgomery, AL.

From the Law of Sines:

a sinB = b sinA → sinB =
b sinA

a

b sinC = c sinB → sinC =
c sinB

b

c sinA = a sinC → sinA =
a sinC

c
,

and from the Law of Cosines, we have

bc cos A =
1
2
(b2 + c2 − a2)

ac cos B =
1
2
(a2 + c2 − b2)

ab cos C =
1
2
(a2 + b2 − c2).

Thus,

a

c sinB
+

1
tanA

=
a2

bc sinA
+

cos A

sinA

=
a2 + bc cos A

bc sinA

=
a2 + b2 + c2

2bc sinA
,

b

a sinC
+

1
tanB

=
b2

ac sin B
+

cos B

sinB



=
b2 + ac cos B

ac sinB

=
a2 + b2 + c2

2ac sinB

=
a2 + b2 + c2

2c(a sinB)

=
a2 + b2 + c2

2bc sinA
,

and

c

b sin A
+

1
tanC

=
c2

ab sinC
+

cos C

sinC

=
c2 + ab cos C

ab sinC

=
a2 + b2 + c2

2ab sinC

=
a2 + b2 + c2

2b(a sinC)

=
a2 + b2 + c2

2bc sinA
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael C. Faleski, University Center, MI; Paul
M. Harms, North Newton, KS; Kenneth Korbin, New York, NY; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

5018: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Write the polynomial x5020 + x1004 + 1 as a product of two polynomials with integer
coefficients.

Solution by Kee-Wai Lau, Hong Kong, China.

Clearly the polynomial y5 + y + 1 has no linear factor with integer coefficients.
We suppose that for some integers a, b, c, d, e

y5 + y + 1 = (y3 + ay2 + by + c)(y2 + dy + e)

= y5 + (a + d)y4 + (b + e + ad)y3 + (ae + bd + c)y2 + (be + cd)y + ce.

Hence
a + d = b + e + ad = ae + bd + c = 0, be + cd = ce = 1.

It is easy to check that a = −1, b = 0, c = 1, d = 1, e = 1 so that

y5 + y + 1 = (y3 − y2 + 1)(y2 + y + 1)



and
x5020 + x1004 + 1 =

(
x3012 − x2008 + 1

)(
x2008 + x1004 + 1

)
.

Comment by Kenneth Korbin, New York, NY. Note that (y2 + y + 1) is a factor
of (yN + y + 1) for all N congruent to 2(mod3) with N > 1.

Also solved by Landon Anspach, Nicki Reishus, Jessi Byl, and Laura
Schindler (jointly, students at Taylor University), Upland, IN; Brian D.
Beasley, Clinton, SC; John Boncek, Montgomery, AL; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie, San Angelo, TX; Matt DeLong,
Upland, IN; Paul M. Harms, North Newton, KS; Matthew Hussey Rachel
DeMeo, Brian Tencher, and Allison Reece (jointly, students at Taylor
University), Upland IN; Kenneth Korbin, New York, NY; N. J. Kuenzi,
Oshkosh, WI; Carl Libis, Kingston, RI; Eric Malm, Stanford, CA; David E.
Manes, Oneonta, NY; John Nord, Spokane, WA; Harry Sedinger, St.
Bonaventure, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.

5019: Michael Brozinsky, Central Islip, NY.

In a horse race with 10 horses the horse with the number one on its saddle is referred to
as the number one horse, and so on for the other numbers. The outcome of the race
showed the number one horse did not finish first, the number two horse did not finish
second, the number three horse did not finish third and the number four horse did not
finish fourth. However, the number five horse did finish fifth. How many possible orders
of finish are there for the ten horses assuming no ties?

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

There are 229,080 possible orders of finish.
For k = 0, 1, 2, 3, 4 we perform the following calculations:
a) Choose the k horses numbered 1 through 4 which finish in places 1 through 4.
b) Arrange the k horses in places 1 through 4 and count the permutations with no
“fixed points.”
c) Arrange the remaining (4− k) horses numbered 1 through 4 in places 6 through 10.
d) Arrange the 5 horses numbered 6 through 10 in the remaining 5 places.

Case 1: K=0.

4C0 · 5 · 4 · 3 · 2 · 5! = 120 · 5!

Case 2: K=1.

4C1 · 3 · 5 · 4 · 3 · 5! = 720 · 5!

Case 3: K=2.

4C2 · 7 · 5 · 4 · 5! = 840 · 5!

Case 4: K=3.

4C3 · 11 · 5 · 5! = 220 · 5!

Case 5: K=4.

4C4 · 9 · 5! = 9 · 5!



Solution 2 by Matt DeLong, Upland, IN.

We must count the total number of ways that 10 horses can be put in order subject to
the given conditions. Since the number five horse always finishes fifth, we are essentially
only counting the total number of way that 9 horses can be put in order subject to the
other given conditions. Thus there are at most 9! possibilities.

However, this over counts, since it doesn’t exclude the orderings with the number one
horse finishing first, etc. By considering the number of ways to order the other eight
horses, we can see that there are 8! ways in which the number one horse does finish first.
Likewise, there are 8! ways in which each of the horses numbered two through four
finish in the position corresponding to its saddle number. By eliminating these from
consideration, we see that there are at least 9!-4(8!) possibilities.

However, this under counts, since we twice removed orderings in which both horse one
finished first and horse two finished second etc. There are 6(7!) such orderings, since
there are 6 ways to choose 2 horses from among 4, and once those are chosen the other 7
horses must be ordered. We can add these back in, but then we will again be over
counting. We would need to subtract out those orderings in which three of the first four
horses finish according to their saddle numbers. There are 4(6!) of these, since there are
4 ways to choose 3 horses from among 4, and once those are chosen the other 6 horses
must be ordered. Finally, we would then need to add back in the number of orderings in
which all four horses numbered one through four finish according to their saddle
numbers. There are 5! such orderings.

In sum, we are applying the inclusion-exclusion principle, and the total that we are
interested in is 9!− 4(8!) + 6(7!)− 4(6!) + 5! = 229, 080.

Also solved by Michael C. Faleski, University Center, MI; Paul M. Harms,
North Newton, KS; Nate Kirsch and Isaac Bryan (students at Taylor
University), Upland, IN; N. J. Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong
Kong, China; Carl Libis, Kingston, RI; David E. Manes, Oneonta, NY;
Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2009

• 5038: Proposed by Kenneth Korbin, New York, NY.

Given the equations
√

1 +
√

1− x − 5 ·
√

1−
√

1− x = 4 · 4
√

x and

4 ·
√

1 +
√

1− y − 5 ·
√

1−
√

1− y = 4
√

y.

Find the positive values of x and y.

• 5039: Proposed by Kenneth Korbin, New York, NY.

Let d be equal to the product of the first N prime numbers which are congruent to
1(mod 4). That is

d = 5 · 13 · 17 · 29 · · ·PN .

A convex polygon with integer length sides is inscribed in a circle with diameter d.
Prove or disprove that the maximum possible number of sides of the polygon is the N th

term of the sequence t = (4, 8, 20, 32, 80, · · · , tN , · · ·) where tN = 4tN−2 for N > 3.

Examples: If N = 1, then d = 5, and the maximum polygon has 4 sides (3, 3, 4, 4). If N =
2, then d = 5 ·13 = 65 and the maximum polygon has 8 sides (16, 16, 25, 25, 25, 25, 33, 33).

Editor’s comment: In correspondence with Ken about this problem he wrote that he has
been unable to prove the formula for N > 5; so it remains technically a conjecture.

• 5040: Proposed by John Nord, Spokane, WA.

Two circles of equal radii overlap to form a lens. Find the distance between the centers

if the area in circle A that is not covered by circle B is
1
3

(
2π + 3

√
3
)

r2.

• 5041: Proposed by Michael Brozinsky, Central Islip, NY.

Quadrilateral ABCD (with diagonals AC = d1 and BD = d2 and sides AB = s1, BC =
s2, CD = s3, and DA = s4) is inscribed in a circle. Show that:

d2
1 + d2

2 + d1d2 >
s2
1 + s2

2 + s2
3 + s2

4

2
.



• 5042: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain.

Let A(z) = zn +
n−1∑
k=0

akz
k (ak 6= 0) and B(z) = zn+1 +

n∑
k=0

bkz
k (bk 6= 0) be two prime

polynomials with roots z1, z2, . . . , zn and w1, w2, . . . , wn+1 respectively. Prove that

A(w1)A(w2) . . . A(wn+1)
B(z1)B(z2) . . . B(zn)

is an integer and determine its value.

• 5043: Ovidiu Furdui, Toledo, OH.

Solve the following diophantine equation in positive integers k, m, and n

k · n! ·m! + m! + n! = (m + n)!.

Solutions

• 5020: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that{
x7 − 13y = 21
13x− y7 = 21

Solution 1 by Brian D. Beasley, Clinton, SC.

Using the Fibonacci numbers F1 = 1, F2 = 1, and Fn = Fn−2 + Fn−1 for each integer
n ≥ 3, we generalize the given problem by finding numbers x and y such that{

xn − Fny = Fn+1

Fnx + (−1)nyn = Fn+1

for each positive integer n. (The given problem is the case n = 7.)

We let α = (1 +
√

5)/2 and β = (1−
√

5)/2 and apply the Binet formula
Fn = (αn − βn)/

√
5 for each positive integer n to show that we may take x = α > 0 and

y = −β > 0:

αn − Fn(−β) =
αn(β +

√
5)− βn+1

√
5

=
αn+1 − βn+1

√
5

= Fn+1;

Fn(α) + (−1)n(−β)n =
αn+1 − βn(α−

√
5)√

5
=

αn+1 − βn+1

√
5

= Fn+1.

Solution 2 by David Stone and John Hawkins, Statesboro, GA.

The solution anticipated by the poser is probably (α,−β), where

α =
1 +

√
5

2
≈ 1.618034 is the Golden Ratio and β =

1−
√

5
2

≈ −0.618034 its

companion (in the official terminology of The Fibonacci Quarterly ).

Note that:



(#) if (x, y) is a solution to the system, then so is (−y, x). Thus we may as well look for
all solutions, not just positive solutions. We graph the system in the form

y =
x7 − 21

13

y = (13x− 21)1/7

.

There are five points of intersection. Graphically conditional (#) appears as symmetry
of intersections across the line y = −x (even though the curves themselves have no such
symmetry).

Although we cannot determine all solutions analytically, we have their approximate
numerical values:

(x , y)
(1.6418599 , 0.85866981)

(1.61803399 , 0.61803399)
(1.249536927 , −1.249536927)
(−0.61803399 , −1.61803399)
(−0.85866981 , −1.6418599)

(1) The second and fourth solutions seem to lie on the line y = x− 1, suggesting that x
satisfies x7 − 13(x− 1) = 21, so x7 − 13x− 8 = 0. Factoring,

x7 − 13x− 8 = (x2 − x− 1)(x5 + x4 + 2x3 + 3x2 + 5x + 8)

and the quadratic factor has (well-known) roots

α =
1 +

√
5

2
≈ 1.618034 and β =

1−
√

5
2

≈ −0.618034.

Thus we actually know the second and fourth solutions are (α,−β) and (β,−α).
We verify that (α,−β) is indeed a solution to the given system. Note that by the first
well-known relationship to the Fibonacci numbers, αn = αFn + Fn−1, we have
α7 = αF7 + F6 = 13α + 8.
Now, substituting into the first equation:

α7 − 13(−β) = α7 − 13(α− 1)
= α7 − 13α + 13
= 13α + 8− 13α + 13 = 21, as desired.

It is also straight forward to verify the second equation: 13α− (−β)7 = 21, using
αβ = −1.

(2) The third solution lies on the line y = −x, so x is the sole real zero of
x7 + 13x− 21 = 0. This polynomial equation is not solvable in radicals – according to
Maple, the Galois group of x7 + 13x− 21 is S7, which is not a solvable group. Hence, an
approximation is probably the best we can do (barring some ingenious treatment
employing transcendental functions.)
Unfortunately, we do not have any analytic characterization of the first and fifth
solutions.



A final comment: the problem involves the exponent 7 and the Fibonacci numbers
F7 = 13 and F8 = 21, so there is almost certainly a more general version with solution
(α,−β).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; Charles McCracken,
Dayton, OH; Boris Rays, Chesapeake, VA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5021: Proposed by Kenneth Korbin, New York, NY.

Given
x + x2

1− 34x + x2
= x + 35x2 + · · ·+ anxn + · · ·

Find an explicit formula for an.

Solution by David E. Manes, Oneonta, NY.

An explicit formula for an is given by

an = −1
8

[
(4− 3

√
2)(17 + 12

√
2)n + (4 + 3

√
2)(17− 12

√
2)n
]
.

Let F (x) =
x + x2

1− 34x + x2
be the generating function for the sequence

(
an

)
n≥1

, where

a1 = 1 and a2 = 35.
Then the characteristic equation is λ2 − 34λ + 1 = 0, with roots r1 = 17 + 12

√
2 and

r2 = 17− 12
√

2.

Therefore,

an = α

(
17 + 12

√
2
)n

+ β

(
17− 12

√
2
)n

for some real numbers α and β. From the initial conditions one obtains

1 = α

(
17 + 12

√
2
)

+ β

(
17− 12

√
2
)

35 = α

(
17 + 12

√
2
)2

+ β

(
17− 12

√
2
)2

.

The solution for this system of equations is

α = −1
8

(
4− 3

√
2
)

β = −1
8

(
4 + 3

√
2
)

.

Hence, if n ≥ 1, then

an = −1
8

[
(4− 3

√
2)(17 + 12

√
2)n + (4 + 3

√
2)(17− 12

√
2)n
]
.

Also solved by Brian D. Beasley, Clinton, SC; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro



Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; Boris Rays, Chesapeake, VA; David Stone and John
Hawkins, Statesboro, GA; David C. Wilson, Winston-Salem, NC, and the
proposer.

• 5022: Proposed by Michael Brozinsky, Central Islip, NY.

Show that
sin
(

x

3

)
sin
(

π + x

3

)
sin
(

2π + x

3

)
is proportional to sin(x).

Solution 1 by José Hernández Santiago, (student, UTM), Oaxaca, México.

From the well-known identity sin 3θ = 3 cos2 θ sin θ − sin3 θ, we derive that

sin 3θ = 4 sin θ

(
3
4

cos2 θ − 1
4

sin2 θ

)
= 4 sin θ

(√
3

2
cos θ − 1

2
sin θ

)(√
3

2
cos θ +

1
2

sin θ

)
= 4 sin θ sin

(
π

3
− θ

)
sin
(

π

3
+ θ

)
.

When we let θ =
x

3
, the latter formula becomes:

sin 3
(

x

3

)
= 4 sin

(
x

3

)
sin
(

π − x

3

)
sin
(

π + x

3

)
(1)

Now, the fact that

sin
(

x + 2π

3

)
= sin

(
x− π

3
+ π

)
= sin

(
x− π

3

)
cos π

= sin
(

π − x

3

)
allows us to put (1) in the form

sinx = 4 sin
(

x

3

)
sin
(

π + x
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)
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)
;

and clearly this is equivalent to what the problem asked us to demonstrate.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

Since
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=
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so
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(
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)
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(
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3

)
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(
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)
=

1
4

(
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(
x

3

)
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(
x
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=

1
4

sin(x),

which is proportional to sin(x).

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly),
San Angelo, TX; Michael C. Faleski, University Center, MI; Bruno Salgueiro
Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi, Portsmouth, VA; Kenneth Korbin, NY, NY: Peter E. Liley,
Lafayette, IN; David E. Manes, Oneonta, NY; Charles, McCracken, Dayton,
OH; John Nord, Spokane, WA; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5023: Proposed by M.N. Deshpande, Nagpur, India.

Let A1A2A3 · · ·An be a regular n−gon (n ≥ 4) whose sides are of unit length. From Ak

draw Lk parallel to Ak+1Ak+2 and let Lk meet Lk+1 at Tk. Then we have a “necklace”
of congruent isosceles triangles bordering A1A2A3 · · ·An on the inside boundary. Find
the total area of this necklace of triangles.

Solution 1 by Paul M. Harms, North Newton, KS.

In order that the “necklace” of triangles have the n−gon as an inside boundary, it
appears that line Lk (through Ak) should be parallel to Ak−1Ak+1 rather than
Ak+1Ak+2. With this interpretation in mind, we now consider the n isosceles triangles
with a vertex at the center of the n−gon and the opposite side being a side of unit
length. The measure of the central angles are 360o/n. The angle inside the n-gon at the
intersection of 2 unit sides is twice one of the equal angles of the isosceles triangles with
a vertex at the center of the n−gon, so it has a degree measure of 180o − (360o/n).

The isosceles triangle Ak−1AkAk+1 has two equal angles (opposite the sides of unit
length) with a measure of

1
2

(
180o − (180o − (360o/n))

)
=

180o

n
.

A side of length one intersects the two parallel lines (Ak−1Ak+1) and the line parallel to
it through Ak. Using equal angles for a line intersecting parallel lines, we see that the
equal angles in one necklace isosceles triangle has a measure of 180o/n.

Using the side of length one as a base, the area of one necklace triangle is

1
2
(base) · (height) =

1
2
(1)
(

1
2

tan(180o/n)
)

=
1
4

tan(180o/n).

The total area of n necklace triangles is
n

4
tan(180o/n). It is interesting to note that the

total area approaches π/4 as n gets large.



Solution 2 by David Stone and John Hawkins, Statesboro, GA.

David and John looked at the problem a bit differently than the other solvers. They
wrote: “In order to get a clearer picture of what is going on, we introduce additional
points that we will call Bk, where we define Bk to be the intersection of Lk and Lk−2,
for 3 ≤ k ≤ n and the intersection of Lk and Lk+n−2 for k = 1 or 2.”
Doing this gave them a “necklace of isosceles triangles with bases along the interior
boundary of the polygon: 4A1B1A2,4A2B2A3,4A3B3A4, · · · ,4AnBnA1.” (Note that
by doing this AkTk does pass through Ak+3.)

They went on: “It is not clear that this was the intended necklace, because these
triangles do not involve the points Tk. Let’s call this the Perimeter Necklace.”

There is a second necklace of isosceles triangle whose bases do involve the points
Tk : 4T1B3T2, 4T2B4T3, 4T3B5T4, · · · , 4Tn−2BnTn1, 4Tn−1B1T1, 4TnB2T1. Let’s
call this the Inner Necklace.
They then found the areas for both necklaces and summarized their results as follows:

n = 4: Area of Perimeter Necklace = 0. No Inner Necklace.
n = 5:

Area of Perimeter Necklace =
5
4

tan
(

π

5

)
Area of Inner Necklace =

5
4

(
1− tan2 π

5

)
sin
(

π

5

)

n = 6

Area of Perimeter Necklace =
3
2

tan
(

π

3

)
=

3
√

3
2

Area of Inner Necklace = 0.

n > 5

Area of Perimeter Necklace =
n

4
tan

(
2π

n

)
Area of Inner Necklace =

π

4

(
4 sin

2π

n
cos

2π

n
− 4 sin

2π

n
+ tan

2π

n

)
Note that these give the correct results for n=6.

Then they used Excel to compute the areas of the necklaces for various values of n, and
proved that for large values of n, the ratio of the areas approaches one.

n PerimeterNecklace InnerNecklace
6 2.59876211 0
10 1.81635632 0.693786379
100 1.572747657 1.561067973
500 1.570879015 1.570382935

lim

n →∞

n

4

(
4 sin

2π

n
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n
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n
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n

)
n

4
tan

2π

n

= 1.



Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Michael N. Fried,
Kibbutz Revivim, Israel; Grant Evans (student, Saint George’s School),
Spokane, WA; Boris Rays, Chesapeake, VA, and the proposer.

• 5024: Proposed by Luis Dı́az-Barrero and Josep Rubió-Massegú, Barcelona, Spain.

Find all real solutions to the equation√
1 +

√
1− x− 2

√
1−

√
1− x = 4

√
x.

Solution by Jahangeer Kholdi, Portsmouth, VA.

Square both sides of the equation, simplify, and then factor to obtain

5(1−
√

x) = 3
√

1− x.

Squaring again gives 17x− 25
√

x + 8 = 0, and now using the quadratic formula gives

x = 1 and x =
64
289

. But x = 1 does not satisfy the original equation. The only real

solution to the original equation is x =
64
289

.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly),
San Angelo, TX; Matt DeLong, Upland, IN; Grant Evans (student, Saint
George’s School), Spokane, WA; Michael C. Faleski, University Center, MI;
Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton,
KS; Kenneth Korbin, NY, NY; Kee-Wai Lau, Hong Kong, China; Peter E.
Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Charles McCracken,
Dayton, OH; Wattana Namkaew (student, Nakhon Ratchasima Rajabhat
University), Thailand; John Nord, Spokane, WA; Paolo Perfetti,
Mathematics Department, University “Tor Vergata”, Rome, Italy; Boris
Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro,
GA; David C. Wilson, Winston-Salem, NC, and the proposers.

• 5025: Ovidiu Furdui, Toledo, OH.

Calculate the double integral ∫ 1

0

∫ 1

0
{x− y}dxdy,

where {a} = a− [a] denotes the fractional part of a.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada.∫ 1

0

∫ 1

0
{x− y}dxdy =

∫ 1

0

∫ x

0
{x− y}dydx +

∫ 1

0

∫ y

0
{x− y}dxdy

=
∫ 1

0

∫ x

0
(x− y)dydx +

∫ 1

0

∫ y

0
(x− y + 1)dxdy

=
∫ 1

0

(
xy − y2

2

)∣∣∣∣x
0
dx +

∫ 1

0

(
x2

2
− xy + x

)∣∣∣∣∣
y

0

dy

=
∫ 1

0

x2

2
dx +

∫ 1

0

(
y − y2

2

)
dy



=
x3

6

∣∣∣∣∣
1

0

+
(

y2

2
− y3

6

)∣∣∣∣∣
1

0

=
1
2
.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Michael C. Faleski,
University Center, MI; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; Nate Kirsch and Isaac Bryan (jointly, students
at Taylor University), Upland, IN; Kee-Wai Lau, Hong Kong, China;
Matthew Hussey, Rachel DeMeo, Brian Tencher (jointly, students at Taylor
University), Upland, IN; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Nicki Reishus, Laura Schindler,
Landon Anspach and Jessi Byl (jointly, students at Taylor University),
Upland, IN; José Hernández Santiago (student, UTM), Oaxaca, México,
Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.
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