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A1 Basketball star Shanille O’Keal’s team statistician
keeps track of the number,S(N), of successful free
throws she has made in her firstN attempts of the sea-
son. Early in the season,S(N) was less than 80% of
N , but by the end of the season,S(N) was more than
80% ofN . Was there necessarily a moment in between
whenS(N) was exactly 80% ofN?

A2 For i = 1, 2 let Ti be a triangle with side lengths
ai, bi, ci, and areaAi. Suppose thata1 ≤ a2, b1 ≤
b2, c1 ≤ c2, and thatT2 is an acute triangle. Does it
follow thatA1 ≤ A2?

A3 Define a sequence{un}∞n=0 by u0 = u1 = u2 = 1, and
thereafter by the condition that

det
(

un un+1

un+2 un+3

)
= n!

for all n ≥ 0. Show thatun is an integer for alln. (By
convention,0! = 1.)

A4 Show that for any positive integern, there is an integer
N such that the productx1x2 · · ·xn can be expressed
identically in the form

x1x2 · · ·xn =
N∑

i=1

ci(ai1x1 + ai2x2 + · · ·+ ainxn)n

where theci are rational numbers and eachaij is one of
the numbers−1, 0, 1.

A5 An m × n checkerboard is colored randomly: each
square is independently assigned red or black with
probability1/2. We say that two squares,p andq, are in
the same connected monochromatic component if there
is a sequence of squares, all of the same color, starting
atp and ending atq, in which successive squares in the
sequence share a common side. Show that the expected
number of connected monochromatic regions is greater
thanmn/8.

A6 Suppose thatf(x, y) is a continuous real-valued func-
tion on the unit square0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show
that∫ 1

0

(∫ 1

0

f(x, y)dx

)2

dy +
∫ 1

0

(∫ 1

0

f(x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0

f(x, y)dx dy

)2

+
∫ 1

0

∫ 1

0

(f(x, y))2 dx dy.

B1 Let P (x) = cnxn + cn−1x
n−1 + · · · + c0 be a poly-

nomial with integer coefficients. Suppose thatr is a
rational number such thatP (r) = 0. Show that then
numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r
2 + cn−2r,

. . . , cnrn + cn−1r
n−1 + · · ·+ c1r

are integers.

B2 Letm andn be positive integers. Show that

(m + n)!
(m + n)m+n

<
m!
mm

n!
nn

.

B3 Determine all real numbersa > 0 for which there ex-
ists a nonnegative continuous functionf(x) defined on
[0, a] with the property that the region

R = {(x, y); 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)}

has perimeterk units and areak square units for some
real numberk.

B4 Let n be a positive integer,n ≥ 2, and putθ = 2π/n.
Define pointsPk = (k, 0) in the xy-plane, fork =
1, 2, . . . , n. Let Rk be the map that rotates the plane
counterclockwise by the angleθ about the pointPk. Let
R denote the map obtained by applying, in order,R1,
then R2, . . . , thenRn. For an arbitrary point(x, y),
find, and simplify, the coordinates ofR(x, y).

B5 Evaluate

lim
x→1−

∞∏
n=0

(
1 + xn+1

1 + xn

)xn

.

B6 LetA be a non-empty set of positive integers, and let
N(x) denote the number of elements ofA not exceed-
ing x. Let B denote the set of positive integersb that
can be written in the formb = a − a′ with a ∈ A and
a′ ∈ A. Let b1 < b2 < · · · be the members ofB, listed
in increasing order. Show that if the sequencebi+1 − bi

is unbounded, then

lim
x→∞

N(x)/x = 0.


