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FOREWORD

Mathematical competitions have a long tradition in Romania. The
first mathematical contest was held in 1898, when the Ministry of Public
Education organized a national contest for the secondary schools, a part of
which was an examination in mathematics:

In 1902 was held the first competition in mathematics by the journal
" Gazeta Matematica" ( founded in 1895). Since 1904, this competition was
organized annualy, except for the years of the first world war and the years
1930-1932, because of an unsuccessful reform of the educational system.
The name of the competition was "The Annual Contest Gazeta Matematica”,
- and the competitors were selected from the correspondents of the journal.

- "The Annual Contest Gazeta Matematica" was scientifically supported by
well known mathematicians like Traian Lalescu, Gheorghe Titeica, Dan
Barbilian, Octav Onicescu, etc.

In 1950 the first National Mathematical Olympiad was organized by

the Ministry of Education and the Romanian Society for Mathematical
Sciences. The olympiads were held each year, becoming a very popular
competition in all schools in the country. These olympiads are organized for
each grade, in four rounds: school level, city level, region level and national

level. This year was held the 47-th olympiad in which approximately .

100000 students participated. The final round was organized in Buziu with
the 650 students that passed the regional round. One thing that distinguish
the Romanian Olympiad is the fact that the problems are proposed

acccordingly to the grade of the students and school curriculum. The contest -

problems are selected by a committee from a set of problems proposed by
teachers all around the country. The problems must be original ones and
have to respect the curriculum. The olympiad rules are similar to those of the
- IMO. The problems proposed in the regional and country levels between
1950-1990 were published under the coordination of prof. Ion Tomescu. The
problems of each olympiad were published in " Gazeta Matematici".
, The Romanian Society for Mathematical Sciences initiated in 1959
- the first International Mathematical Olympiad in which eight of the ex-

“* communist countries were invited. The existence of the international

'{oly}ppiads led to the developement of national competitions, problem
- proposers and contestants being stimulated. Ever since the scientific level of
the olympiads raised every year. Furthermore, it had a favorable influence in
mathematical teaching.
~> In this small book we present the problems proposed in the final
round of the 47-th Olympiad, problems used in the four selection tests as
well as the problems proposed in the 13-th Balkan Mathematic Olympiad,
which was held this year in Romania.
Special thanks to GIL Publishing House for helping us to offer you
this book.

‘Mircea Becheanu
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. compute the length of BD and the cosine of 82°30" .

THE 47-th NATIONAL MATHEMATICAL

OLYMPIAD
BUZAU 23-28 MARCH 1996

7-th GRADE

- _Problem 1

Find all pairs of real numbers (x, y) such that :
ax2y=1-

b2x* —xy-Sx+y+4=0° e
' ' Stefan Smarandache

Problem Il
Find all real numbers x for which the following equality holds

J \/ \/ \[71989 \/x 1990 \[x 1991
1989 V1990 1991 5

Cilin Burdusel

- Problem il

Let ABCD be a rectangle with AB=1. If m(BDC)=82"30,

Constantin Apostol

xEmbIem v

“In the right tnangle ABC (m(A) 90°) D 1s the foot of the
dititude from A. The bisectors of the angles ABD and ADB intersect in

T, and the bisectors of the angles ACD and ADC in I,. Find the
angles:of the triangle if the sum of distances from /,and 7, to AD is

eqpafmtb%of the length of BC. -
Adrian Ghioca
7



~_8-'thGR’_'ADE ' o

Problem |
Let @ and 5 be real numbers such'that 4 + 4 = 2. Show that -
min{lal,|b(}< 1 <max{al, [b]}@a b e(-3,1).
Dan Zaharia

Problem I
Find all the polynomials . - S
P(X)=a,X" +a, X'"1 +o +aX+a n>2,
with real, non-zero coeﬂiments such that - e
- P(X)-P (X)L (X)....... P (X) isa constant polynomlal
whereP(X) aX+a,,F(X)=a,X*+a, X +a,,
Pa(X)=a, X"+ . +a X +a,.
Adrian Ghioca, Eugen Piltinea

Problem m

Let N, P be the centers of the faces ABB’A’ and ADD’A’,
respectively, of a right paralleleplped ABCDA’B’C’D’ and M&(A’C)

such that A"M= %A’C Prove that MN.LAB and MPLAD’ if and only

if the paralleleplped 1s a cube. -
Petre Biitranetu

Problem IV

a) Let ABCD be a regular tetrahedron. On the sides AB, AC
and AD, the points M, N and P are considered. Determine the volume
of the tetrahedron AMNP in terms of X, Y, z, where x=AM, y=AN,
z=AP.

b) Show that for any real numbersx,y, z, z‘ u,ve(,1):

yz+uw(l-x)+1-y)(1-v)t+(1-z)1-u)1- t)<1.

Sfetoslav Cremarenco



9-th GRADE

- Problem | .

Let g, b, ceR, a0, such that a and 4a+3b+2c have the same
sign. Show that the equation ax’+bx+c=0 cannot have both roots in
the interval (1,2).

Cristinel Mortici

. Problem Il :
Let the real numbers g, b, ¢, d E[O,l] and x, y, zte [0,%]

suchthata+ b+ c+d= x+y+z+t~1 Show that: -
a+b b+c c+d d+a a+c b+d}

2 2 272 7272
b) ax + by + cz +dt = S54abcd .

b 2

a)ax+'by+cz+dt2mm{

Octavian Purcaru

~ Problem II{
- ' Show that :

e :
cos’ x+ cos7(x +2§-) + cos’(x+£3£) = acos3x ,(MxeR

Radu Damboianu, Viorel Drighici

Problem IV
: In the triangle ABC the incircle 3 touches the sides BC, CA,
AB in D, E, F, respectively. The segments (BE) and (CF) intersect 3 in
"G HIf B and C are fixed points, find the loci of points A, D, E, F, G,
" 'Hif GH || BC and the loci of the same points if BCHG is an inscriptible
quadrilateral.

Dan Brénzei

e
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Problem! = .- S
Fornm,p eN’, 1<p<n we define -

2= 2 o- kY (I c;:;

Show that :R77" = R" - o
Viorel Drighici, Radu Dimboianu

Problem Il

Let ABCD a tetrahedron and M a variable point on the face
BCD. The line perpendicular to (BCD) in'M intersects the planes
(ABC), (ACD), and (ADB) in M, M,, and M5, Show that the sum
MM, + MM, + MM; is constant if and only if the perpendicular
dropped from A to (BCD) passes through the centroid of tnangle

BCD.
Vasile Pop

Problem Il ,

Let P a convex regular polygon with 7 sides, having the center
O and xOy an angle of measurea, o € (0,7). Let S be the area of the
common part of the interiors of the polygon and the angle. Find, as a

function of 7, the values of & such that S remains constant when xO y
is rotating around O.
Adrian Ghioca

Problem v

Let g, b, ¢ be integers, a even and b odd. Show that for any

positive mteger n, there exists a positive integer x such that :
2"|al+ bx+c. ,
Mircea Becheanu



~function.

| S_how that:

11-th GRADE

Problem |

 Let I =R a non-degenerate interval and f: / -R a derivable

Lot J = {f@—f(a)

—-da

a,be[,a<b}.

a) Jis an interval;
b)J < () and f°(J) - J contains at most two elements;
c) Using a), b) deduce that f” has the Darboux property.
' Toan Rasa

Problem Il _ . |
a)Let fi, f,..., f» - R>R periodical functions such that the -
function /: R>R, f=fi+/f +..+f, has a finite limit at+eo. Show

that f is constant;
b) Show that if a,,q,,a, are real numbers and

‘@, cosa,x +a, cosa,x+a, cosax 20, Vx € R, then a,a,a, =0.
Sorin Ridulescu, Mihai Piticari -

Problem Il

Let A, B € My(R) such that det (AB + BA) < 0. Show that
det(A”+B?) > 0.

Cristinel Mortici

Problem IV
'© " LetA,B, C,D e M(C), Aand Cinversible. If A'B = C'D,
¥k = N show that B=D.
' Marius Cavachi

(f



Problem |

Let G be a group in which exactly two elements (different
from the unit element) are commuting. Show that G is isomorphic to
either Z;3 or Ss.

Marius Garjoaba

Problem I

Let f: [a, 5] — R a monotone function such that for any xi,
x2€[a, b], x1 <x», there exists ce(a, b) such that

j f () = f(e)(x —x2>

~a) Show that fis contmuous on (a b);
b) Does the conclusion of a) still ho dif fis integrable on [a, 5]

but is not monotone ?
Marecel Chirita, Mihai Piticari

Probiem Jil . ”
Let A be a commutative ring with 0%1, having the property that
for every xeA-{0} there exist m, neN" such that (x" +1)" = x. Show

that every endomorphism of A is an automorphism.
Marian Andronache, Ion Savu

Problem IV
~ Let f: [0,1)>R a monotone function. Prove that the limits

hmjf(t)dt and hm [f(O)%—f( )+ +f( nlj] exist and are

x<1 0

equal.
Mihai Baluna
1L



- exrtegxst. FEXn”

FOR THE 37th IMO
BUZAU, March 28, 1996 -

Problem |
Let n, n> 2, be an integer number and f R*->Rbea functlon

such that for any regular n-gon, A1Az... A,
AAD +fA) +.+flA) = 0.
Prove that fis the zero function. ' :
' Gefry Barad

Problem li
Find the greatest positive integer 7 such that the followmg

proposition is true:

“There exist n non-negative.integer numbers X1, Xa,.. ,x,,, at least
one different from zero such that for any system of nurnbers €1,€2,-++,Ens
gie{-1,0,1}, at least one dxﬁ‘erent from zero, n° does not divide

Dorel Mlhet
Problem Il
Let x,y be real numbers. Show that if the set
Ay={cos nrx+cos nxy | neN}
is finite then xeQ and yeQ. :
) Vasile Pop

* Pmbiem v

Let ABCD be an 1nscnpt1b1e quadrilateral and M be the set of

the 4x4=16 centers of all incircles and excircles of the triangles BCD,

ACD, ABD and ABC. Show that there exist two sets of parallel lines K
and I, each set consisting of four lines, such that any line of KoL

contains exactly four points of M.
Dan Brinzei

13



THE SECOND SELECTION EXAMINATION
BUCHAREST, APRIL 23, 1996

Problem |

On a circle § with center O two points A B are given such that
OA and OB are perpendicular. The circles {, and {, are tangent
from the inside tol - at the points A and B, respectively and also are
tangent to each other from the outside. The circle { ;' lies in the interior
of the angle AOB and is tangent from the inside to{ in the point C and
tangent from the outside to {, and {, in the points S and T

respectively. Find the angular measure of <« SCT.
Czech and Slovak Math. Olympiad

Problem I

A semicircle with center O and diameter AB is given. The line
d intersects AB in M and the semicircle in C and D such that MB<MA
and MD<MC. The circumcircles of the triangless AOC and DOB
intersect second time in the point K. Show that the lines MK and KO

are perpendicular.
Russian Olympiad

Probiem i
Let ae R and f,,f,,....f, :R—> R additive functions such that
S fo(x) ... f,(x) =ax", for all xe R. Prove that there exist be R
and 1€{1,2,...,n} such that f,(x)=>bx, forall xe R.
Mihai Piticari and Sorin Radulescu

Problem 1V .
The sequence (a,),,, is defined as follows: if the distinct prime
. 1 1 1
divisors of n are p,,p,,...,p, then @, =—+—+. . +—.
P Px

Show that for any positive mteger N,N=22,

Za°a3

L4 Laurentiu Panaitopol



THE THIRD SELECTION EXAMINATION
FOR THE 37th IMO
BUCHAREST, March 28, 1996

s

Problem |

Let n>3 be an integer number and X1,Xa,....Xal be positive
integers such that

(1) X1+, X170

(ii) x;+2xo+.. +H(n-1)Xe1=20-2.

Find the minimum of the sum:

n—1
F(x1,... %)= 9 kx, (2n—k)
k=1

Ioan Tomescu

Problem Ii

Let n,r be positive integers and A be a set of laticial points in
the plane, such that in any open disc of radius r there exists a point
from A. Show that for any coloring of the points from A using n
“colours, there exist four points which have the same colour and are the

vertices of a rectangle. .
Vasile Pop

Problem Ill
; Find all prime numbers for which the congruence

‘™= mod 3pq holds for all integers a.
: Proposed by Turkey for B.M.O

Probiem IV

Let n>3 be an integer and p>2n-3 be a prime number. let M be
aset of n points in the plane such that no three points are colinear and
FM—{0,1,...,p-1} be a function such that:

(i) only one point of M has the value 0.

_ (ii) if the points A,B,C are distinct points of M and C(ABC) 1s
the circumscribed circle of the triangle ABC then
S f(®)=0(mod p).
PeMNC(ABC)

Show that all the points of M are on a circle.
Marian Andronache, Ion Savu



THE FOURTH SELECTION EXAMINATION
¥OR THE 37th IMO
BUCHAREST, March 28, 1996

Problem |. . R
Let x1,%a,...,%n,Xa+1 D€ positive reals such that x;+x,+.. KT Ka.

Prove that Zﬂlx (Koo —% anﬂ (xnﬂ -%;).

Mircea Becheanu

Problem il

Let x,y,z be real numbers. Prove that the following conditions
are equivalent:

. 1 1
1)x>0,y>0,z>0 and —+ — +—-1- <I.
X y z

u)for & every quadnlateral with sides a,b,c,d, a x+b2y+c z>d?
Laurentiu Panaxtopol

Problem Il

Let neN™ and D be a set of n concentric circles of a plane.
Prove that if the function £D—D satisfies: d(f{A) f(B))>d(A,B) for

every A,BeD then d(fA),AB))=d(A,B) for every A.BeD.
Dinu Serbinescu

Problem IV

Let n>3 be an integer and Xc{l 2,3,...n°} be a set with 3n’
elements. Prove that one can find nine pa1rw1sely distinct numbers
a1,a2,3, b1,bo,bs, ¢1,¢5,¢3 from X such that the system

axtazytazz=0
bi1x+bay+bsz=0
c1x+eoytcz=0
has a solution (xo,y0,20) With Xo,yo,2o integers and Xoyoze=0.
Marius Cavachi

"



THE 13-th BALKAN MATHEMATICAL OLYMPIAD
BACAU, ROMANIA, APRIL 30, 1996

Problem i

Let O, G be the circumcentre and the barycentre of a triangle
ABC, respectively. If R is the c1rcumrad1us and r is the inradwus of

ABC show that
0G < yRR-2r) .
- proposed by Greece

Probilem i

Let p>5 be a prime number and X = { p-n°| neN and n <p }.
Prove that X contains two different elements x, y such that x # 1 and x

divides y.

proposed by Albania

Probiem Il
Let ABCDE be a convex pentagon. Denote by M, N, P, Q, R

_the xmdpomts of the segments AB, BC, CD, DE, EA, respectively. If

the segments AP, BQ, CR, DM have a common point, prove that this
point also belongs to the segment EN.
proposed by Yugoslavia

Problem IV

~ Show that there exists a subset A oftheset { 1, 2, ... 2% }
having the following properties: a) 1 € A and 2.1 eA; b) every
element of A except 1 is the sum of two ( not necessarily distinct)

glements of A; c) the number of elements of A does not exceed 2012.

proposed by Romania

- | 17



- THE 47-th NATIONAL MATHEMATICAL
Ly . OLYMPIAD

BUZAU 23-28 MARCH 1996

7-th GRADE
Problem I
Find all pairs of real numbers (x, y) such that :
ayxzyz1
b)2x* —xy~Sx+y+4=0
Stefan Smarandache
Solution

Condition b) is equivalent to: 2x* —=5x+4+y(1-x) =0
x2le1-x< O}v

From a) we get :
. _ X2y

=x(1-x)<y(1-x)

Therefore |
0=2x> -Sx+4+y(1—-x) 2 2x* -Sx+4+x(1-x) = (x—2)%,
it follows : (x—2)> <0« x=2;Finally :x=y=2.

Problem I]
Find all real numbers x for which the following equality holds :

\jx—7 \/x—-é \/x—S \/x—1989 Jx-1990 x—1991
+ + = + +
1989 V1990 V1991 7 6 V" s

Cilin Burdugel

Solution

For the existence of the radicals it is necessary that : x > 1991.
The equality is equivalent to :

(- EE - - o




Let us show that the three numbers that are added have the
same sign or are zero. Let & > a >0, with a+5=1996. The sign of

5

x—a x- b _(a=b)(x-a-?)
b a ab
a+b—-x=1996-x.

Therefore :
- ifx < 1996, all numbers are strictly positive and the equality

(*) is impossible;
- if x >1996 , all numbers are strictly negative and the equality

(*) is impossible;
- for x = 1996, all the numbers are zero and the equality is true.

( where x2b) is the same with the 31gn of :

. so is the sign of the number

Problem i
Let ABCD be a rectangle with AB=1. If m(BDC)=82°30",

compute the length of BD and the cosine of 82°30".
. Constantin Apostol

Solution
E Jal ' D

B C
Let m(BDC) =82'30" = m(ADB) =730

Wetake on (AD) the point F, such that : m(FBD) m(FDB) 7°30°.

Teresults : m(AFB) = 2m(4ADB) =15".

‘ We take then on (AD) the point E, such that

meBF) = m(EFB) = 15° . Tt results : m(AEB) = 2(AFB) =30". ,
In right triangle AEB( m( A) = 90°) we have the theorem of

fhe angle of 30°:

BE =2
l::AF 243 = BF =+/8+43
AE =3 | T



Ttresults : BD =1+ (2+/3 +48+44/3)%

A 1
\/l+(2+«/§+«]8+4«/§)2

cos82°30" = l_)§_ = ¢c0s82°30' =
BD

Problem 1Y

In the right triangle ABC (m(4)=90") D is the foot of the
altitude from A. The bissectors of the angles ABD and ADB intersect
in I,, and the bissectors of the angles ACD and ADC in /,. Find the

angles of the triangle if the sum of distances from [ and I, to AD is

equal with }/} of the length of BC.
Adrian Ghioca

Solution
A
P«
‘[1
........... MI
B EN — ' C

" Denote by m=BD, n=CD, d the distance from /; to AD, d>the
distance from I» to AD, #=AD, the projection of /; on AD with M, on
BC with N and on AB with P . Clearly BN = BP , AP = AM. It
follows that AB=AM+BN therefore c¢=# - ditm - di. Analogously
b=h- dytn- d». Adding then equalities, we get : 2+ (m+n)-2(d1+d2)=

b+ c¢ . But h:ﬁ, m+n=a,d +d, =% therefore the relation
a

~ above becomes:

Z-IE-f-a—2Z—=b-+-(:=:>4bc~'}-a2 =2ab+2ac=2c(2b—-a)—a(2b—a)=0=
a

= (2b-a)2c—a)=0=>a=2bora = 2c=>m(B)=30° and m(C) =60°
orm(C)= 30° and m( B ) = 60° ) %o,



§th GRADE

Problem |
Let a and & be real numbers such that @ + & = 2. Show that :
min{al, |b|}< 1 <max{al,|b|} & a,b € (-3,1).
Dan Zaharia

:Sjolution

3 Let @, bR such that a+b5=2. We have :
min{ld, [t} <1< mexc{al, [H} = e <1<[tf orfef <1<d] &= 2 2 1<ctPor BPel<d® o

& (-1(b2-1)<0 & a’’-(a’ +b2)+1<0@(d3) ~(4-2ab)+1<0 &

o+l <4 ofb+]<2e2<b+lobe(-3])

Probiem Il
Find all the polynomials
P(X)=a X" +a, X" '+..+aX+a,, nz22,
with real, non-zero coeﬂicxents such that :
P(X)-P(X)P(X)....... P_,(X) is a constant polynomial,
where £, (X) =a X +a,, B (X)=a,X* +a X-l-ao,

3 nl(X) a._ Xn_ ...... +aX+a
Adrian Ghioca, Eugen Piltinea

Soiution

Since the polynomial P(X)—F(X)F(X)....... P_(X) 1s
constant, we have deg P=deg (BPF,....F,) But a=0, k=1n-1,
therefore deg (R P,.....P,) =

n(n— 1)

=deg Pr+grad Py +..+deg Ppy=1+2+.+(n-1)=
n(n-— 1)

A-i

We obtain n =

, so n€{0,3}. Since n > 2, we conclude that

% = 3 In thxs case, P(X)=a,X’+a,X*+aX+a, and
PLX) - P(X)P,(X)=k, keR, if and only if :
(1) a=aa
() a;=al+aga,
(3) a=2ag

A
¥
o

\V]



4) a,=a’+k

From (3) we get a;(1-2a,)=0 and since @0, a, =
From (4) we get k = %

Let a;=a<R’, from (2) it results a,= a* +%a2, therefore
a, = 2a* and then a, = 2a° . Finally, the answer is -

P(X)=2aX’+2a*X? +aX+%, aeR

Problem IlI

Let N, P be the centers of the faces ABB’A’ and ADD’A’,
respectively, of a nght parallelepiped ABCDA’B’C’D’ and ME(A’C)

such that A’ M= EA'C . Prove that MNLAB’ and MP1 AD’ if and only

if the parallelepiped is a cube.
Petre Batrinetu

Soiution

Let AO’nA’C={G}, where O’ is the center of A’B’C’D’. In the
rectangle ACC’A’ since the triangle A’GO’ and CGA are similar, one

'obtams AG——GC and A’G-——-A'C therefore G=M. It follows

Me(AO).
Analogously, from the same sunﬂanty it follows that

MO’ = —AO Since [AO’] is a median in triangle AB’D’, we get M is
the centrmd of the triangle AB’D’.

INJ



_ Now  MNLAB’ and

D' . ¢ MPLAD’ so the medians [D'N]

] J and [B’P] are also altitudes in the

A B triangle AB’D’, therefore is an

G equilateral triangle. It follows that :

P * AAA’B=AD’A’B’=AD’A’A and

A’A=A’B’=A’D’, therefore the

N parallelepiped is a  cube.

Conversely, if the parallelepiped is

a cube then the triangle AB’D’ is

equilateral and its medians are also

altitudes. It follows MN.LAB’ and
‘MPLAD".

Problem IV

a) Let ABCD be a regular tetrahedron. On the sides AB, AC
and AD, the points M, N and P, are considered. Determine the volume
of the tetrahedron AMNP in terms of x, y, z, where x=AM, y=AN,
z=AP.

b) Show that for any real numbersx, y, z, ¢, , v €(0,1) :

xyz+uv(l—x)+ (1-y)A-vt+(-2)(1-wd-1)<l

: Sfeteslav Cremarenco

Solution

a)Let E be the midpoint of (CD). It follows BELCD, AE1CD. Since
ABCD is a regular tetrahedron, H=pracpMeAE. If we consider
Q=pracpBAE, it follows MH|BO, then AAMH~AABO, and we

_ AM MH MH
deduce —— =——, that is o= (because if AB=a, then

AB a \F

N3

BO’
omaf’
BC=a 3),

2
Since MH= x\/’—; it results:

SW-M’I‘szyz«/E

Vol( AMNP) = =45 . -




b)

' - C
b) Let us consider a regular tetrahedron ABCD with side 1 and
the points Me(AB), Ne(AC), Pe(AD), Qe(BC), Re(BD), Se(CD)
such that AM=x, AN=y, AP=z, BQ=v, BR=y, and, respectively CS=t
where x, y, z, t, v, ue(0,1). We have : '
Vol(AMNP) + Vol(BMQR) + Vol(CNQS) + Vol(DPRS) < Vol(ABCD).
From a) we deduce : .

vz42 . (1—x)qu§+ (1—v)(1—u)2a/§ X A-2)1-D1-uW?2 <£
o 12 r 12 12

which proves the given inequality.



9-th GRADE

Problem |

Let a, b, ceR, a#0, such that a and 4a+3b+2c have the same
sign. Show that the equation ax’+Bx+c=0 cannot have both roots in
the interval (1,2).

Cristinel Mortici
Solution
We have :
4q + 3 b
0 < a 36 + 2c =4 + 3= + 2£=2x1x2—3(x1 +x2)+4=

a . a a
=(x —1Y(x, —2)+(x, ~2)(x, 1) . If x1 and x belong to (1, 2) then
each term of the sum would be strictly negative, which 1s a
contradiction. :

Problem il |
Let the real numbers , b, ¢, d €[0,]] andx y,z ¢ € [0%:'

suchthata+ b+ c+d=x+y+ z+ t= 1. Show that:
a+b b+c c+d d+a a+c b+d}

2727 2

a)ax+by+cz+dt2min{ ,

> b

2 2

b) ax + by + cz +dt > S4abed.
QOctavian Purcaru

Soiution

a) Without loss of generality, we can suppose that
asb<c<d =

m-in{a+b b+c c+a d+a a+c d+a}=a+b

2 2 2 3 2 2 2 b 2 2 2 2
The inequality becomes E = 2ax+2by +2cz +2dt-a-b>0.
Since x = 1 -y-z-tandc-azb-ad-azb-agandx y,z 120>

SE = fb~a) + 2(c-a) + u(d~a) - (b-a) 2 Z(b'a)(yﬂﬂ'% ) =

musey-i-z-i-t——;- > 0.

<J j

M~
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a+b S Saabed

b) We have to prove that

If @ = 0 the assertion is obvious. Let 0 <a<b <c<d.

(1) = a+b 2108abc{l—a—b—c) e (a+b)1+108abc)+108abc? —108abe 2 0(2).
But .

a+b>2+/ab and 1+108abc > 2v/108abe = (a +b )1 +108abc) = 24ab~3¢c

Therefore (2) < 2+/3¢c +9¢* —=9¢ 20 (3).
Let +/3c =u > 0. Then (3) becomes
' —3u+220& (u—1)(u+2)2 0, obviously.

Problem Hi
Show that :
2 4
cos’ x+ cos7(x + —Ej + cos(x-i—l} = —é—icos3x ,(MxeR
: 3 3 64
Radu Damboianu, Viorel Draghici

Solution -
First solution:

n n 27 i 41
Let £, (x)=cos” x +cos X+ roos’ x == |
Using 4cos’ x = cos3x+ 3cosx we obtain

cos3x 3
En (x) = En—3 (x) + ZEn—Z (x) :

3
2’
E4(x)=—§—, Es(x)z-%cos?,x ,E7(x)=~230033x :

Wehave E (x)=3, E(x)=0, E,(x)= E3(x)=%cos3x,

Second solution:
We have 64cos’ x = cos7x +7cos5x+21cos3x +35cosx . We

: 4 )
replace x with x + —2; and then withx + _;_c_ The equality then
D

follows by adding the relations.

Problem IV

In the triangle ABC the incircle 3 touches the sides BC, CA,
AB in D, E, F, respectively. The segments (BE) and (CF) intersect 3 in
G, H. If B and C are fixed points, find the loci of points A, D, E, F, G, |



H if GH || BC and the loct of the same points if BCHG is an inscriptible

quadrﬂateral.
Dan Brinzet

Solution

Let A the point of the locus ( see figure 1). From BCHG it
follows that ZFHG=/GBC.

Since GHJ| BC it follows that ZGBC=/FCB. On the other hand,
/FHG=/FEG. From these equalities we get that LFEB=/FCB. In
conclusion, BCEF is an inscriptible trapezoid, therefore an isosceles
one. It results that the triangle ABC is isosceles, with AB=AC,
therefore A belongs to the straight line d perpendicular to BC that
passes through its midpoint, O. Conversely, for an arbitrary point
Aed-{0}, one obtains GH || BC and the fact that BCHG is inscriptible.
Therefore, the locus of A is d-{O}.Now, clearly, D is the midpoint of
BC, so D=0, and the locus of D is the point O. Furthermore,

BF=BD=%a, where a=BC, so F belong to a circle centered in B. As

m(ZLABC)<90°, we get that the locus of F is a half-circle located in
the halfplane bordered by the perpendicular to BC dropped in B that
contains C, excepting the point O. Analogously, the locus of E is the
circle € (see fig. 2).

Let Te(BC) such that BT=—;-a . We have

: 2
BE? = SZ —a?cosC (by the cosine law in BEC).
2
BG-BE= %—(the power of B with respect to I).
aZ
Therefore BG = .
4.BE
BE? + za2

Let o=m(£EBC). It results cosa. = 4
, 2a-BE
Then
O 5+ 0.8 o 7 P10 (o

9 73 - 144- BE? 6

a
2o GT=  ~constant. Since T is a fixed point, we deduce that the locus
27
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of G is included in the circle g(f,éd). Since I is m the interior of the

circle £ with radius —Zl—a with the center on d, the locus will be the

open arc (QOQ'), except the point O (see the figure). In the same
manner, we get that the locus of H is the arc POP', except the point O..




10-th GRADE

Problem | :
Forn,p eN’, 1 <p<n, we define

RP—E(p k)(l) n+1

Show that R =R? .
‘ Viorel Drighici, Radu Dimboianu

‘Solution

n—k+1=i

R =S e prioRy e o
n+1

=»z (1 _ p)n (_1)n+1—x C:::_, . Z (I _ p)n (_1)n+1—1 C;_H _
. l—P

=3 (- (- e, 2 ) Cra

- i=p k=p

Rln-pﬂ Rg

:"'::2(p k)(1> n+1_=”2(p k) (—1) n+I

k=0 k=p+l

« n+l
ey (p-k) (1) =0e

=0

ear(Sere)- *"*(i(—l)k s
e D S O B

k=0 k=0
. 1
We will show that the sums Y, (——1)" k*CE, =0,5=0...n
k=0
We'will prove that inductively on 7 :
. 1
For =0 we have 3 (~1)°C{ =0 (where s=0)

k=0



, . _
Suppose now 2(—1)kk’Cf+, =0, (V)s=0..n, (D)
k=0

n+2

We will show that ) (-1) k°C:, =0, (V)s=0..n+1.
k=0 :
n+2 n+2
Wehave S (-1)k°Cl, =3 (-1)' ”;:2 =
k=0 ’

k=1

n+l
=([n+2)Y (1) (k+1)7CE, =
x=0
n+l

s—1
=-(n+2)> (-1)°CL, (2 c;’_lk"j =
k=0 =0
- —(e2)S c;_l(f’z” 1) kfc;;,)i) 0, (¥)s=1L..n+1
i=0 k=0

n+l

For s=0 obviously ¥ (~1)"C%,, =0, which ends the proof.
k=0

Problem Il

Let ABCD a tetrahedron and M a variable point on the face
BCD. The line perpendicular to (BCD) in M intersects the planes
(ABC), (ACD), and (ADB) in M, M;, and Mz Show that the sum
MM, + MM; + MM; is constant if and only if the perpendicular
dropped from A to (BCD) passes through the centroid of triangle

BCD.
Vasile Pop

Solution

Let a1, &, a3 the measures of the angles between the lateral
faces and the base (BCD); O the projection of A on the base; 4 the
length of the altitude from A; y,, y,, y; the distances from O to the
sides of the base and x,, x,, x; the distances from M to the same

sides.

h
We have MM, =x, -1ga, , i=1, 2, 3 and fgo, =— , /=1, 2, 3
X, X, X
=MM, +MM, +MM; =k =h —+—=+—|=k. (1)
BATEED 2T

2
ERV
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T

26(BCD) _ 2S
BC  BC
28 c(OBC) h
BC'y, o(BCD) &
: Analogously for M=B and M=C  we obtain
*. 5(0CD) = 6(ODB) = 6(0BC) = -Zio (BCD)=> 0=G and #=3.

. 1 28 1 2S 1 28
o sely, if O=G th =y =y =
}_VVConver ely. en y 3 BC Y2 3 CD Y, 3 BD

5 M1M+M2M+M3M=—;—g(xl .BC+x,-CD+x,-DB)=

*"For M=D we have x, =x; =0 and x, =

and from (1) we obtain k = A

and

h
= —3— .26 = 3h = constant
2C

Problem il

Let P a convex regular polygon with 7 sides, having the center
O and xf)y an angle of measurect, ¢, € (0,m). Let S be the area of the
common part of the interiors of the polygon and the angle. Find, as a

function of n, the values of & such that S remains constant when x0O ¥y
is rotating around O.

Adrian Ghioca

Solution
It is easy to check o =%, k =1,...,[£;—} satisfy the condition
of the problem. We will prove that these e:re the only ones. Let
ae{%?—lk= B—}} With the notations used in the figure and
B, #A, we ) have  x, #x, (otherwise it  results
a:—z——lgi, k:-—l.,...,[%:{ ). Let B =u(40B,)<u(4,0B,). After a

rotation of angle B, (OB, coincides with (OA,; (OB, becomes
(0B, B, €[A,A,,,]. Overlapping triangles OA,A and OAA,, ,
we obtain the configuration bellow in which the condition of the

3



problem leads to G|OAB,|=0|0BB, | , impossible since mangle
A ,OA, is 1sosceles.

0

A=Ay By BY By . A=Ay

Problem IV
Let a, b, ¢ be integers, a even and b odd. Show that for any

positive 1nteger n, exists a positive mteger x such that :

2" ax 2t bx+c.
Mircea Becheanu

Solution”
We will prove the assertion by induction on 7 € N .
For n=0, let x, € N. It is clear that 2°|ax? +bxe+c.

For n20, let x, € N. such that 2"|ax? +bx, + ¢ = P (). We will
choose x,,, € N such that 2**' [P(x,,,). If 2P(x,) , let x,,, =
Otherwise P(x,)=2"-d, withd € Z,d odd. Now
P(x)-P(x,)= (x~x,a(x+x,)+b), where a(x+xn)+b is odd for
xeN.

Let x_,, =x, +2"-f, with f €N, odd
= P(x,.,)=P(x,)+2" fla(x,., + x,)+b)=

_ =2"(d+f( (n+1+r)+b))' 2°*

Since d + f(a(x,,, +x,)+ b) is even, which ends the proof.

(2d
f\}



11-th GRADE

| "~ pProblem | :
} | ~Let /<R anon-degenerate interval and f: / —R a denivable
fanction.
Let J={M a, bel, a<b}. |
b-a
Show that:

a)Jis an interval; .
b)J < f(I) and f’(I) - J contains at most two elements;
¢) Using a), b) deduce that /” has the Darboux property.
- Ioan Rasa

Solution -
h a) We will use that J is an interval
s(Vabeda<b=(ab)c)).
Let us consider

f®)-F@) | SE)=@)

bl -4 bz —-a

£(tb, + (1-1)b,) — f(ta, + (1-1)a,
t(b, —a,) +(1-t)}b, —a,)

eoutinuos, @(1) =u and @(0) =v we deduce that there exists , such

() =p,so p=MeJ,where
b, —a,
 baSth +(1-1)b,, a,=ta +(1-1,)a,.
S 0)-f(@)
b

-a

uvelJ, u<v, u=

). Since @ 1s

yé@_,v} . Let cp(f) =

b) From Lagrange's theorem, can be written as

y \ F ©), for some ce(a,b),so Jc f'(I).

H x{;:f ‘() e f'(I) then x, = Ii’mM, therefore x, is the
. . i X—=c X—cC
IimiT ef a sequence of points from J, which shows that only the

enclpomts of J can be in f (I)-J.

| Tt easy to see, from the results above, that f’(J,) is an
_inferyal, for any 7, < 7, therefore /7 has the Darboux property.

e IR




Problem Il
a)Let fi, f2.., /» - R>R periodical functions such that th
function f: R>R, f=fi+ /o +..7 f, has a finite limit at+ee. Shoy

that f 1s constant; .
b) Shoew that if a,,a,a, are rea numbers an

a, cosa,x + a, cosa,x+4a, cosa,x 2 0, Vx € R, then a,a,a, =0.
Sorin Riadulescu, Mihai Pitica)

Solution
a) We will prove the assertion inductively. For n=1 L
f:R—R, having the pericd T>0, and l1m f (x)=LeR If fis no

constant, we can find a,f€R such that f(a):t f(B). But the sequenc
x =a+nT and y,=B+nl have the limit +o0 therefo;

limf(x )=f(a)=L, limf(y,)=f(B)=L, whichisa contradiction
'. Suppose  the  assertion true for - functions. L
FisJforir for - R = Rperiodical functions-and f = f, + fo+.+ S
with lim f(x) = L € R. If T,>0 is a period of f;, then the function

x—yeo

RoR, g®)=0x+T,)-f(x)=
=(f,(x+ )= f,())+. -i{fnﬂ(xﬁ-T) fml(x)) is the sum of n penodlc

functions and lim g(x)=L—L=0. It follows that g is constant,
Jx+T,)=f(x), Vx€eR, that is fis periodical and since lim f(x)=L,f

constant.

b) Let fix)=a, cosa,x +a, cosa,x+a; cosa;x , f: R—>R and
g(x)=sina,x +sina,x +sina,x, gR->R. Observe th
g'(x)=f(x)20,VxeR, so g is increasing, and since is obviou
bounded, there exists 1151_{3 g(x) = L e R. But g is the sum of periodi

functions, therefore constant. Hence f{x)=0, V xeR.

From f(0)= f”(0)=0 we get a, +a, +a, =a; +a, +a;, =0.
But

a’+al+al—3a,a,a, = (a, +2, +a;)a; +a; +a; —2,3, —3,3; —2,3;)
hence aja,a; = 0.

3



chblem m -
Let A, B € M5(R) such that det (AB + BA) < 0. Show that

Jet(A2+B%) 2 0.
Cristinel Mortici

First solution

For any two matrices X,Ye M, (R) we have
det(X+T)+det(X-Y)=2det(X)+2det(T), (1).

Indeed, the function £ R—R, fit)=det(X+tY) is a polynomjal
fanction of degree at most two for which the coefficient of t* is det(¥)
and the free term is det(X). Therefore : f{t)=det(Y) t ? tat+det(X), for
some acR.

Then R 1)+A-1)=2det((Y)+2det(X), which is equivalent to

det(X+7)+det(X-Y)=2det(X)+2det(Y).

The equality (1) can be obtained also by a straight forward
gomputation.

Taking in (1) X=A%+B? Y=AB+BA usmg that
A’ B2+AB+BA_(A+B)“ AZB2AB-BA = (A-B)* we obtain that

" det((A+B)%rdet(A-B))=2det(A’+B%)+2det(AB+BA).

Hence

det(A? +B?) =
_ (det(A+ B))? +(det(A - B))? —2det(AB+BA) _ 0
2

Second solution
Let fR—>R flt)= det(A2+B +(AB+BA)) be a polynormal
finction of degree at most two in which the coefficient of t°
- def(AB+BA)<0.
We shall distinguish two cases.
1) det(AB+BA)=0. Then f'is a linear ﬁmctlon
Since f{-1)=det(A>+B>-AB-BA)= =det((A-B)?)=(det(A- -B))* 20

AD=det(A*+B*+AB+BA)= det((AfB) *)=(det(A+B))* 20
[t follows that f(0)=0, hence det(A™B?) 0.
’ IT) det(AB+BA)<0. Then fis a second degree function which
i$ someave. As in the previous case we have f{£1)20 and the concavity
of fiaplies £0)>0, hence det(A™+B7)20.

35



Problem iV
Let A, B, C, D € My(C), A and C inversable. If A“B = CkD

VkeN show that B=D.
Marius Cavachi

Solution

2
Let us consider the matnces L , A, A? ., A" . The
homogenous system having n*1 varables and n2 equations

Xolptx A+ +x , An =0 must have non-zero solutions hence there
n

exists a non-zero polynomial function /e C[X] such that {A)=0,.
Let f, g be the polynomials of minimum degree for which
SMA= 0, and g(C)= 0, Then j(O),c(O)¢O Indeed, if, for instance,
A0)=0 then, by multiplying with A™ the equality JS(A)=0, we obtain
proof of the existence of a polynomial fleC[,X] f1=0, f1(A)=0, and
deg fi<deg f.
N Let h=£ geC[X] Then h(A)=h(C)=0,, so h(A)-B=h(C)-D. If -
h=hg+h; X+...+hsX it results
h(A)B=(hl, +h1A+...+hsAS)B=h0B+h1A=B+...+hsASB and
h(C)-D=heD+h,CD+...+hsCD. Since A*B=C*D for any k>1 we obtain
that hoB=hoD. But hy=h(0)=A0)-g(0), hence he=0, which leads to B=D.

d
&



12-th GRADE

problem |
Let G a group in which exactly two elements (different from
the unit element) are commuting. Show that G is isomorphic to erther

Z3or Ss.
Marius Garjoaba

Solution

From the hypothesis, G contains at least 3 elements.

If all the elements of G have the order at most 2, then G is
commutative and contains at least 4 elements, hence it does not verify
the hypothesis of the problem. :

Therefore G contains elements of order at least 3. Let aeG,
with ord(a)=3. If ord(a)>3 then aa’,a are distinct and commuting,
which contradicts the hypothesis. Hence ord(a)=3. It follows that aza’
and a-a’= a>a, so a and a~ are the two elements that commute.

Let H::{e,a,az}. If G=H. then obviously G=Zs. If G=H, every
element of G\H must have the order 2. Let be G\H.

If xeG\H, then xebH={bbaba’}. Indeed, if bxeG\H then
(bx)’=e, and since b2=x’=e, we obtain bx=xb, which 1s a contradiction.
Then bxeH, hence xeb'H= bH (b= b?). Therefore G\H < bH and,
since G\H o bH, we obtain G\H=bH hence G contains 6 element.

Now, since G is non-commutative, it follows that G=Ss.

Indeed, 1 123\Sd 123\!81'
(nee,et0—2 3 1e;an 1—2 . 3!6 3. It is easy to

J Y,
check that fG—> Ss fbd)=td, (V) ie0lsije02 is an
isomorphism.)

Problem Ii
Let 7 : [a, b] — R a monotone function such that for any xi,
xefa, b], x1 < X there exists ce(a, &) 'such that

J;f(x)dx = f(_c)(xl -X.).

a) Showthat fis continuous on (a, b),



b) Does the conclusion of a) sull hold if fis integrable on [a, b
but is not monotone ?
Marcel Chirita, Mihai Piticari

Solution

a)Since the function is monotone on a closed interval, it is
integrable hence bounded. :
It follows that for every xo&(a, b) the left and nght limits of fin

Xo denoted by I, and l4 exist and are finite.(1)
1

Let us take x, =x, ——;x, = x,.
n
It results

o, € (xo ——l,xo) ai [ fx)dc=fa,) < (2)
n oy n

~Analogously, (3B, e(xo,xo +}11J al [* fodx=£(B,)~ (3)

Xo n

and (5« (xo -1 +ij al [ fx)dx = £(5,)-= (4)

n n

X o

Relations (2),(3),(4) lead to:
Ao+ B)=A8w)  (5) ,

If 8w2xo holds for an infinite number of values of n, then at
least one of the sets A={neN |5,<xo }, B={neN [5>x, } must be
infinite. ’

If, for instance, A is infinite making n— in (5) we obtain:
lHe=2l=1=l4=A(x0) (the last equality derives from the monotony of /).
Therefore the function is continuos in xo.

If A and B are finite, then (3) npeN such that §,=x, (Y)nn,
and letting n—co in (5) we get the conclusion.

1
_ [ sin—,x =0
b)We have the following counterexample: fx)= X

0,x=0

Problem Iil
Let A be a commutative ring with 0z1, having the property that

for every xe A-{0} there exist m, neN" such that (x"+1)" = x. Show

that every endomorphism of A is an automorphism.
Marian Andronache, Ion Savu



Let xcA-{0} and mneN’ such that (¥"+1)’=c. Then
;:(;c’""‘1 +Clx™ Oy O™ - 1)= ~1, hence x is inversible. Since
every element of A-{0} is inversible, it follows that A is a field. Let
weEnd(A) and a, beA such that u(a)=u(b). Then u(a)-u(b)=0, hence
u(a-b)=0. If a-b=0, then 1=u(l Y=u[(a-b)(a-b) " J=u(a-b)u[(a-b)"'1=0,
false. It follows a=b so that u is injective.
‘ For the surjectivity, let us consider b€ A-{0} and m,neN" such
that (6™+1)"=b. Let f= (X+1)-XeA[X] and Uy the set of roots of f 1n
A IfaceUsthen

Flu(o)) =" (o) + D" —u(@)=((™)+1)" ~u(@)=

=u" (o™ + 1) —u(@)=u((@” +1)")—u(®)= u((™+1)" —a)=
=u(0)=0, hence u(e) € U;

As A is a field, Uyis finite. As is injective and u(UpcUy then
u(Upc Uy so there is aeUysuch that u(a)=b.

Problem IV

Let f: [0,1)=>R a monotone function. Prove that the limits
1in‘l1,ff(t)dt and 11m_1_[f(0)+f(_1_]++f(?_:_1ﬂ exist and are
o n—e 11 n

n

equal. |
Mihai Baluna

Solution

We may assume that f is strictly increasing (otherwise, take -f
instead). Also we may assume f{x)>0 (if not we replace f by g(x)=Ax)-
A0)). |

Let F2[0,1)>R, F(x)= j;f(z)dz

Since F'(x)=f(x) and f{x)=0 it follows that £ is increasing, hence
there exists l‘x_rf} F(x) =1

x<1

We distinguish two cases :
Case 1: /=<. Then:

15 (k)1 1= (k)1 ol
"gof[;] B ;f(O) * ;Z}f(;) 2 ;f(O) + J’o f(Ddt
It follows —l—if[f.j > lf(o)'f‘F{—):—l—)

n 7

Ny \ N

39
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but hmF(——) = oo = llm—vf[ J
»—v-n,,,0 n
Case 2: /eR. Then :

2 ) (s

= _’.7___1)+2
n

It follows —Z f

nko

Hence lim— Z f

Sl o

1 n-—1
;;f( ; )

- ffl-,%J“[F(l—v—,,)—F(l‘%ﬂ

( ) +2/-2/=]

Ak

<l
n

i
o

" l) [ 0 F(0)dt =

f(t)dt




THE FIRST SELECTION EXAMINATION
FOR THE 37th IMO
. BUZAU, March 28, 1996

Problem |
Let n, n> 2, be an mteger number and f : R R be a function
such that for any regular n-gon, A1Az. Aa,
A +fA2) +.+ A =0.

Prove that fis the zero function.
Gefry Barad

Solution _ _
It is obvious that in this problem we identify a pair (x,y) of real
numbers with the corresponding point P(x,y) from the plane. Let P be

a point in the plane and let us consider the regular n-gon PAA2. Agl.
2km

After a rotation centered in P through the angle —, '

. n

k=0,1,2,...,n-1, of the given n-gon, we obtain the regular n-gon
AwAu... A1, Where A=P and Ay is the point obtained by rotating
the point A;, for all i=1,2,...,n-1. Taking into account the hypothesis for
each regular n-gon before obtained, we obtain:

n-1 n-l

Y > f(A)=0.
¥=0 i=0
In this sum, the number {P) appears i times and then
n-l n-1
) @)+ 2, 2./ (Ax) =0,
k=0 i=l
After a small analyze of the sum it is obvious that:
n-1 n-1 n-} n-l
@ ST (A =22 (A)=0
%=0 i=l i=l k=0

because AgAt...Any are all regular n-gons.
From (1) and (2) one gets f(P)=0 and then /=0.

Probiem il
Find the greatest positive integer n such that

proposition 1s true:

the following
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“There exist-n non-negative integer numbers xj, Xa,...;Xn, at least
one different from zéro such that for any system of numbers €1,€2,...,€n,
ge{-1,0,1}, at least one different from zero, n° does not divide
gxiteet. tenkn.” A

Dorel Mihet

Solution

For n=9, take the numbers 1,2,22,...,28. Then for arbitrary €€ {-

1,0,1} | : ‘
e 2+, +2%0|< 142+, +25=27-1<9°,
If 93|(81+282+...+2889), then g;+2ex+...+2%0=0 and because the sum
must be an even number it follows &;=0. Then we simplify by 2 and by
the same argument it follows €,=0 etc. In this way it is clear that the
number 9 satisfies the enounced condition.

Let us suppose n>10. It is proved, by mathematical induction
that 2°>n°. Let A={x;X,...%X} be a set of distinct non-negative
integers and P(A) be the set of all subsets of A. Because |P(A)|=2" and
2">n°, using the pigeonhole principle, it follows that there exist subsets
BcA, CcA and B#=C such that

EXEZX(mOd ). -4 ;

xeB xeC

This can be written in the form:

Ex—Ey = 0 (mod ).

xeB yeC
Such a congruence can be interpreted in the following way: there exist
numbers €1,€s,...,€a€ {-1,0,1}, but not all zeros, such that

3 n
n’l 2 EiXi.
i=1

It follows that the desired number is 9.

Problem il

Let x,y be real numbers. Show that if the set
A.,={cos nmx+cos nTy | neN}

is finite then xeQ and yeQ.
Vasile Pop

Soiution

Denote c,=cos nmx and By=cos mjty.Then:
(dm+ Bn)2+(an‘ B n)hzz (a~ﬂ+ B~n)=2+(aﬁl+ Bﬁ!) .



- Hence: (an—Bn)Z—Zﬂah+Ba)-(ct¢+Bn}
If we suppose that the set Axy is finite; ther the set Byy= {an-B,, i neN}
is also finite. From the two equahtleS‘ : . ,
an—[(an+Bn)+(@n‘Bn)]/ 2
Bu=(cta Bu)-(Cta-Bn) /2
it follows that the sets A={cty| neN} and B={B,| neN} are finite sets.
It follows that there exist positive integers m, n, m#n, such that t=0tm.
From the equivalences 0;=0lm<¢=> COS NTX=COS MTX <& nrxtmm=2kn
where keZ, one obtains xeQ, and similary, yeQ.

Problem IV

Let ABCD be an inscriptible quadrilateral and M be the set of
the 4x4=16 centers of all incircles and excircles of the triangles BCD, -
ACD, ABD and ABC. Show that there exist two sets of parallel lines X
and L, each set consisting of four lines, such that any line of KUZL
contains exactly four points of M. :
Dan Branzei

Author’s solution.

We shall use two lemmas:

'_ Lemma A. If L is the midpoint of the arc AB of the
circumcircle ABCD and I, I are the incenter, respectively the excenter
of the triangle ABC, then LI=LA=LB=LlIc.(se¢ fig.1)

Proof.From
ZLAI=/LAB+/BAI=(£LC+ZA)2=/ICA+/IAC=
=/LIA follows LI=LA. In the right triangle Alcl, ZAIL=90°-ZLAIL=
=90°- /L Al=/LAlc. Then LA=LIc. And finally, of course LA=LB.

Lemma B. The midpoint U of the segment Iglc and the
midpoint of the arc BAC of circumcircle ABCD coincide.(see fig.2)

Proof.The line Izlc bisects the exterior angles of the triangle
ABC in the vertex A. Then the midpoint U’ belongs to the segment
Iglc. In the right triangles I.BIp and I.Cls, the following equahtles are
valid: BU= Igle/2=CU. Hence, U belongs to the midperpendicular of
the segment BC. Moreover, U and A are in the same halfplane defined
by the line BC because Ic and Ig have this property.

To determine 12 points of the set A, let us consider the
midpoints E, F, G, H of the arcs AB, BC, CD, DA respectively, all
belonging to the circumcircle ABCD. We shall use the following
notations: A’, B’, C’, D’ are the incenters of the triangles BCD, CDA,
DAB and ABC respectxvely, Asg, Ac, Ap are the centers of the excircles
of the triangle BCD, and so on.

-
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Using: the lemma A, it.is easy to see that C'D’CpDc is' a
rectangle with the center E, ‘the diagonals of C’D* CpDc contain the
points C and D and have the length 2EA=2EB. In the same way are
obtained the rectangles D’A’DAp, -A’B’ApBa and B’C’BcCg having

. their centers in the points F,G,H respectively.(fig. 3)

It i1s now necessary to consider the centers of the form Xy,
where X and Y are opposite vertices in the quadrilateral ABCD. We
shall prove that K={ BcCg, C’'B’, D’A’, ApDa} and L={CpDc, D’C’,
A’B’, BaAg}. Consider the rectangle BcD’BsM. From the lemma B,
the midpoint K of the diagonal BcB4 is the midpoint of he arc CDA,
hence it belongs to the interior bisector line BK of the triangle ABC.
Using once again the lemma A, it follows that the center Dy of the
exscribed circle of ABC which is tangent to AB and the point M
coincide. Hence, DaeBcCg (BcCseK) and DaeBaAs (BaAgel). In
the same way can be proved the corresponding properties for the
points Ca, Bp and Ac. : '

Remark 1. If aline I of KUL intersects AL and BD in X and Y
réspectively, then there exists a “Thébault circle” tangent to the circle
ABCD and tangent to the lines AC and BD in X and Y respectively.
The Thébault’s problem was proposed in American Mathematical
Monthly, no 9(1938) and was solved in 1983. The given solution was
too long to be published. A nice generalization was given by John F.
Rigby in Journal of Geometry, 54(1995), pp 134-147.

Remark 2.In the examination, four students have presented
complete solutions of this problem. We thank professor Dan Branzei
for his kindly permission to publish the solution and history of this
problem. : '

L.
C
Fig 1
A U hu
L . § '..
i
0%
B : C
Fig2 Fig. 3



THE SECOND SELECTION EXAMINATION
BUCHAREST, APRIL 23, 1996

Problem |

. On a circle { with center O two points A B are given such that

" OA and OB are perpendicular. The circles ¢, and {, are tangent

" from the inside to{ at the points A and B, respectively and also are
tangent to each other from the outside. The circle  ; lies in the interior

* of the angle AOB and is tangent from the inside to¢ in the point C and

tangent from the outside to {, and §, in the points S and T

respectively. Find the angular measure of €SCT. ,
Czech and Slovak Math. Olympiad

Solution
Let us denote C, and C, the centers
2 of the circles {, and §, respectively
- (clE " and D be the fourth vertex of the
: rectangle C,0C,D. If the circles G,

and (, touch in K, then the points
B G> K, C, are collinear points. Hence
CC,=R +R, where R, i=12 1is
the radius of the circle (‘;1 Therefore
OD=CC,=R +R,. In the triangle
C,0¢,, OC,=R-R, and
OC, = R—R,, where R denotes the
: radius of the circle C .
Using the triangle’s inequality: C,C; < OC, +0C, it follows:
R +R,<(R-R)+(R-R)= R>R +R,. Hence, the point D is
interior to the circle { . Let H be the intersection of the ray OD with §
and E, F be the intersections of the circles G, resp. ¢, with the sides
C,D and C,D respectively. By simple computations: '
DE=DF=DH=R-(R +R). AT




Hence, the poinr D is the center of the circle {, and F=S, G= T,
H =C. Therefore, £SCT =45°.

Probiem Il

A semicircle with center O and diameter AB is given. The line
d intersects AB in M and the semicircle in C and D such that MB<MA
and MD<MC. The circumcircles of the triangles AOC and DOB
intersect second time in the point K. Show that the lines MK and KO
are perpendicular. &
' Russian Olympiad

Solution

Consider the inscribed quadrilaterals: AOKC, BOKD,
ABCD and let L be the intersection of the diagonals AD and BC.
Because +OKB = <0ODB = <OBD and

+€AKO = €ACO = «CAQ, follows
CD

4

FAKB = <OBD + €0AC = — (ACD +CDB) 90° +

It is obvious that <ALB = 90°+£?—. Hence the quadrilateral AKLR is
inscribed. From this property one obtains: €LKO = «LKA - €AKO =

180° - «<LBO - <AKO = 180°- - "5 90°.

Hence OK 1 KL.
The quadrilateral LKCD i is also inscribed because:
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£DKC = 360° - +DKO - <CKO = <DBO + «CAO = %c_ i '§7§ -

180°+CD _ £DLC

If one considers the circumscribed circles £, to AKLB and §, to
LKCD, the point M has the same powers to respect §, and §,.
Hence M belongs to radical axes of the two circles. This axis is the line
KL.

Problem lI
Let ae Rand f,,/,,....f, ‘R—> R additive functions such that

£ f, (%) ... f,(x)=ax", for all xe R. Prove that there exist be R

and i€ {1,2,....n} such that f,(x) =bx, forall xe R.
Mihai Piticari and Sorin Radulescu

Solution
.~ An additive function £R—R has the properties:
A0)=0 and Am)=mf(1) foranym € Z.
In our problem, let us denote f;(1)=c; and let x be an

arbitrary real number. For any integer number one obtains:
(D ﬁfi(1+mx)=ﬁ[ci +mf,(x)] = a(l + mx)"
Let us c;onside-r= 11:he real polyno;ials:

2D =TTte +,@1) and

0,(T) = a(L+xT)"
We shall distinguish two cases:
First case: a #0. Then

a=ﬂfi(1)=nci %0,
i=| i=1

and therefore ¢, # 0 for any i, 1 <1< n. In this case, the polynomials
P.(T) and Q_(T) are different from zero and from (1) we conclude
that P.(T) = Q, (7). Consequently, using the unique décomposition in
factors of polynomials, it follows that there exist real numbers 5,
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=1,2,...,n such that c + /)T =b1+xT). It follows, ¢, =b, and
Ji(x) = xb, = xf, (1) . The last equality is valid for arbitrary x € R and
~for all i. The conclusion is: Jfi(x)=cx,allxe Randall i.

The second case: a = 0. In this case we have to prove the following:
if f,..., f,:R—> R are additive functions such that

[1/@=0

then there exists 7 such that £,(x) =0, for all xe R. We shall prove by

mathematical induction. For n = 1, the conclusion is obvious. Suppose
the property valid for n functions and let Jis-es Sos frwy be additive

functions such that

[1/m=0 .
and-that f '

n+1(X) # 0. Then there exists xoe R with Sra (x,) = 0.
Let y be an arbitrary real number and consider the product:

n+l n+l

O:H_f;.(xo +my)=H[f,-(xo)+mf(}’)]:

i=] i=]
wherem ¢ Z. . »
From (2) follows that the real polynomial

n+l

Py (D =T+ £0)T]

is zero. Because f,,, (x,)+ F ()T # 0, it follows:
0., (D =TTt + £ ()T =0,

Hence: H 5i(»)=0, for all y € R The conclusion follows by

=]

induction.

Alternative solution for the second case: Suppose

[If(x)=0,vxeR
i=1

and that for any i, there exists @; € R such that fi@)=0.
Consider the real number
X, =a, +ma,+.+m"a,

where m € Z is arbitrary. Then

_/" -

”t‘ &



0= Hf ()= HU (@) + f,(@)m+. +f(@)ym™].
This shows that the polynomial
| H[f,- (@) +f, (@)T+..+f,(a)T™"]

is the zero polynomial. Hence
@)+ f.@)T+.+f (@)™ =0, foralli
and then f£,(a,) = 0. This is a contradiction.

Problem IV
The sequence (a,) », is defined as follows: if the distinct prime
divisors of n are p,,p,,...,Py then a, —_1_+_1._+ e
bh P P

Show that for any positive integer N, N > 2,
N

Zazaa...an <1
n=2

Laurentiu Panaitopol

Solution
It is easy to see the following equality holds:
1 1 ' 1in
a +—t . F—|= —|—
2 ‘ 2(.171 P, pk} ; p[p}
p prime
- The folowing inequalities are obvious forn>>0:
1| n -
—|l—= ——=n- —sn-
o 2 Ser{i L)

psn PLP psn P P psn k=1

p prime pprime . pprime
1 1< 1 _n

< n—+-— -
4 4%kk+1)) 2

Therefore, ;ak < 5

By the geometric-arithmetic mean inequality
a, +a,+..+a,

(azcz3...af,,)"_‘T < -
n-1

Hence, the folowing inequalities hold:
9



n-1 n-1
a, +a,+..+a, 1 1 e 3
a,a,...a, < <—| 1+ < <5
n-1 2 n-1 2 2

Add these inequalities and obtain:

- : 1 1 1 1
Zzaz...an =, + 0,0, + 40,0, +6,0,0,0F <o+t ot
1 1 30+10+5+1 3 1 46 6 229
Bt )= = 2 22
22 2 60 2 60 32 240

g v




THE THIRD SELECTION EXAMINATION
FOR THE 37-th IMO
BUCHAREST, March 28, 1996

Problem |

Let n>3 be an integer number and Xi,X2,...,Xnl be positive
integers such that :

(1) x1+... ¥Xp1=0

(if) x1+2x2+... Hn-1)Xe1=20-2.

Find the minimum of the sum:

n-1
F(x1,....Xn1)= D, kx, (20— k)
) k=1
Joan Tomescu

Soiution
We shall consider two cases : A) x,1=0 and B) xq1=1(From (1)

and (ii) we deduce that x,1€{0,1}).
A) In this case (i) and (i1) become :

{xl +..tX,, =1 (@)

X, + 2%, +..+(n-2)x,, =2n-2
If there exists an index m, 1<m<n-2 such that x>0 and x=0 for
any i#m then (ct) is not compatible for n23. _
If there exist two indices i, j such that x;, x>0, 1<i<j<n-2 and
j2i+2 then we shall define: x'=xi+1, i =Xir1- 1, X 7K1, X=X ]
n-1
and X1 =x¢ for every k=i, i+1, j, j+1. We deduce that Zx’i =n,;
i=1
n-1 ' .
Eix'i =2n-2 and F(xi,...,.Xa1)- F(X’1,...,X 1) =ixi(20-1) (i DX (20
i=1
i-1)Hx;(2n-)+ G+H1x1(2n-5-1) - i(xi+1)(2n-i) - (i+1)xp(2n-i-1) - j(5-
1)(2n4j) -(+1)(x1+1)(2n--1) = 2j-21 > 0 and F(X1,...,Xa1) Cannot be
minimum. '
Otherwise there exist two indices i,j such that 1<i<j<n-1, x;
x7=0 and j=i+1 and () becomes:

X; TX, =0
ixi +(i+1)xm =2n-2 S



. Xn.lzl.

which implies that x;;=(2-)n-2. But x:41>0, hence i=1, x;=2, x;=n-2,
X3=...=X,.1=0. In this case F(2,n-2,0, ...,O)=4n2-8n+6.

B) If X,1=1 then we have x +..#x_, =n-1 and x;+2x;+ +
(0-1)Xp2= = n-1. But in x;+2xy+. + (n-1)Xa2 > x1+... +Xq2 the equality
holds only for x;=...=x,,=0.It follows that X=n-1, Xo=...=x,2>=0. We
deduce that F(n-1,0,...,0,1)==(n-1)(2n-1)+(n-1)(a+1)=3n>3n.

But for n>3 4n*-8n+6>3n%3n and equality holds only for n=3,
when x;=2, x,=1. '

Concluding, min F(xy,...Xe1)= 3n%3n and equality holds only if
X1=n-1, Xo=...=X,2>=0 and x.;=1 for every n>3.

Alternative solution.

We have:

n-1

> kx, =DZ_I[(1<-1)(1<+1)+1]>'<k = Exk +§(k-1)(k+l)xk <

k=1

n—1 n~1
Sn+2(k-1)nxk =n+ nZ(k-l)xk =n+n(2n-2-n)=n’n.
. k=1 k=1

' n—~1 n-1
Thus > kx, (20~ k)= 2n(2n-2) - > k*x, >2n(2n-2)-n*+n=3n>3n.
k=1 k=1

The inequality becomes equality if x;=n-1, %,=...=x,-=0 and

Problem i

‘Let n,r be positive integers and A be a set of laticial points in
the plane, such that in any open disc of radius r there exists a point
from A. Show that for any coloring of the points from A using n
colours, there exist four points which have the same colour and are the
vertices of a rectangle.

Vasile Pop

 Soiution

We call the points of A to be A-points. In a square of side
L=4nr’, it is possible to inscribe. (2nr)*=4n’r* disjoint discs of ray r
(fig.1). Then in any such a square there are at least 4n’r> A-points. If
one considers such a square of side L whose vertices are latticial points

and sides are parallel with the coordinate axes, then all these A-points
2.2

nTto
————>n,i
4nr* -1

follows by the pigeonhole principle, that some vertical segment
SO

are situated on L-1=4nr-1 vertical segments. Because



contains n+1 A-points. Because these points are painted in n colors,
once again by the pigeonhole principle, there exist two A-points having
the same color. - . ’ : -
If one considers an infinite horizontal ribbon of disjoint squares
of dimensions LxL, one obtains infinitely many pairs of disjoint squares
of A-points situated on the same vertical segment and identically

L L-1
painted (say red). These pairs of points can be. distributed on [ , J

L

pairs of horizontal lines in the interior of the ribbon. So, there exist two
pairs of points painted in red, which are the vertices of a rectangle.

Problem il
Find all prime numbers for which the congruence

o*™M=c mod 3pq holds for all integers c. :
Proposed by Turkey for B.M.O

Solution

o*™=¢. mod 3pq for all & = o’™=o mod 3 for all o, in
particular 2°P*" =1 mod 3 = 2|(3pq-1) = p and q are odd.

o*M=o. mod 3pq_ for all @ = o’™=ct mod p, and if u is a
primitive root mod p, then wPl=1 mod p and (p-1)|(3pg-1).
Similarly(q-1)|(3pq-1).

_3_p_q:l___3q+_3_g_—_l 1S an integer => 391 is an integer. If

p—-1 p-1 p-1

p=q then p=q=3; but £=1med 9 = 4°=1 mod 27 = 47=1 and 47
is not congruent 4 mod 9.

3g-1
So p#q and we can suppose ¢>p. Then q2p+2 = d ) 3=
p—
3g-1_, 3p+1

4 .

p—1 2

is an integer =

: : 9

Is an integer, —+

p-1 2 2D

(p-1)|10 = p=11 and g=17. N
Finally, for n=3-11-17=561, observing that 2, 10 and 16 dm'de

560, and using Fermat’s and Chinese Remainder Theorem, we verify

that required condition is satisfied. i

Then, as

&3



Let n23 be an integer and p>2n-3 be a prime qumber. Let M be
~ aset of n points in the plane such that no three points are colinear and
SM—{0,1,...,p-1} bea function such that-
(1) only one goint of M has the value 0.
(1) if the points A B,C are distinct points of M and C(ABC) is
the circumscribed circle of the triangle ABC then
2./ () =0(mod p).
PeMﬂC(ABC)
Show that all the points of M are on a circle.
Marian Andronache, Ion Savu

Solution

Let X be the point of value 0.

We will first prove that if every circle that passes through X and
through two points of M contains a third point of M then all the points
of M are on a circle. Indeed, consider an inversion I of pole X. Then
the set N=I(M\{X}) has the property :any straight line which contains
two points of N contains also a third point of N. If not all the points of
N are collinear then there is a triangle ABC which has the vertices from
N and whose altitude AA’ is smaller or equal than all altitudes of the
triangles with vertices from N. But BC contains a third point D from N
and, since at least one of the angles ZABD, ZACD, ZADB, ZADC is
not acute, the corresponding altitude is smaller than AA;. This
contradiction shows that all points of N are collinear, whence all the
points of M are on a circle, o

Suppose now that not all the points of M are on a circle. Then there
exists a circle which passes through X and only two other points AB of M.
Let f{A)=i and f(B)y=p-i(f(A)+f(B)=0-from the hypothesis). Let a be a number
of the circles which pass through X A and other points of M, b the number of
circles that pass through X,B and other points of M and S the sum of the
values of the points of M. By “adding” the circles which pass through X and
A one gets S+(a-1)i=0; in the same way S(b-1)(p-i)=0. I follows that i(a+b-
2)=0, whence a+b=2. But 1<a,b<n-2 = 2<a+b<2n-4<p = a+b=2 = a=b=1,
which contradicts the hypothesis that not all the points of M are on the circle
C(XAD).
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THE FO URTH SELEC HON EXAMINATION
FOR THE 37-th IMO
BUCHAREST, March 28, 1996

Problem |.
Let x1,%o,..., %0, Xor1 De positive reals such that xi+xp+... +%=Xgs1.

Prove that Z,/x (X — % ZXM (X — X3 ) -

i=1

Mircea Becheanu
Solution
n n X. n X,
_ .2 _ L2 —
an+l(xn+l _Xi) = X4 [1_ : J - Xn+1[n—.z : j -
i i=l X1:1+1 i=1 Xn+l
= (n l)xnﬂ

The inequality becomes Z,/x (Xp — %;) X, ¥n—1 which

i=1

. . 1
1sthesa.rneasz\/ ! (1— . ) <1.
an Xn+1 n—l

i=l1 +

i

Since \/Xi (1- xij 1 S% i By follows
1

n—1

1 X; 2 X
that < - i |=
: ; ( Xn+l ) n- 1 2 i=1 X )[n L-lem-l \J

1 1
~+ (n-1) = 1.
2 2n-1)
Alternative Solution
By Cauchy - Schwartz inequality we have

Z'\/xi(XrH-l X ) < ﬁz‘( (‘{nﬁ-l xi) = n(xi+1 - lez) . BUta agmn by
= =1

i=1

A, e Y
Cauchy - Schwartz inequality, ¥ x} 2;(2 xi) =; 2 | . Hence
i=1 i=1 PE——
Y



. & L \/_2_—2—_ PO .
Jn(xnﬂ —2x;) Synxg - %, = anﬂ (Ko = %)
= -

i=l]

Problem Ii

Let x,y,z be real numbers. Prove that the following conditions
are equivalent:
)>0,y>0,250 and ~+++L<1.
X y z
ii)for every quadrilateral with sides a,b,c,d, a2x+b2y+czz>d2.
Laurentiu Panaitopol

Solution

(D)=(11). a2x+b2y+czz z(azx +b%y +c22{i+l+1) >
X y z

2
_[aw/. +b\/— \/—'+C\/— -\/_] =(a+b+c) >d>
(u):>(1) If x<0 then, by taking a quadrilateral with sides a=n,
b=1, c=1, d=n, we get y+z>n’(1-x), which ,for large n, is impossible.
therefore x>O and in the same way y,z>0.

Usmg now a quadrilateral with sides a=l, b=—, =l’
X y A

1 1.1 1 , _
=—+—+——— (where n 1is sufficiently large), one has

2
.11 1
ey > (Rl e s Lol s
X y zZ n X Yy z

2
) 1 1 1
> [l + ! + L 1) for every sufficiently large n, whence —+—+— >
y
1

X Z n X y z
2
2(l+——+—1-j and therefore —1—+—1-+—1- <1
X y z Xy z
Probiem Il

Let neN" and D be a set of n concentric circles of a plane.
Prove that if the function f£D—D satisfies: d(fA)AB))=d(A,B) for

every A BeD then d(RA),/(B))=d(A,B) for every ABeD.
( Dinu Serbinescu
b ' —



Solution

We will denote by A the pomt f(A) _

Let D=D;uD5u...uD, with center O and radii r1<rz<...<r. It is
obvious that f takes diametrically opposed points from D, into
diametrically opposed points from D,

Let now A, B, C € D, such that A and C are diametrically
opposed. Hence A’B’2+B C'? > ABHBC? = AC? = A’C? it follows

that OB’? = =E(A’B'2+B’C'2)—ZA'C'2 >, and therefore B’eD,

and AB=A’B’, BC=B’C’. This proves that f{Dy)cDy and the restriction
/D, is an isometry. If one takes A, X, Y, Z € Dy such that

' =AY=A’Z and XY it follows that A’X’ = A’Y’=A’Z and X’#Y’,
therefore X’=Z of Y’=Z, whence f{Dn)=Dn.

Since f is clearly injective and f{Dn)=Da one gets in the same
way that ADn1)=Dn-1, fADn2)=Dra2, .. .,f{ID)=D1 and all the restrictions
/ID; are isometrics.

Let us now take AeDy, BeD, 1 <k <p < n such that Oc(AB). One
gets A'B’2AB = rtr, = OA’+OB’ and therefore O€(A’B’), whence

"~ A’B’=AB. Finally, if O¢AB let A,eDy, BieD, be such that Oe(A;B) and
OE(AB}) It follows that AAl—A A1 5 BB1"‘B B1 s A.Bl—'A B1 ., BA]"B’Al 5
the isosceles trapezoids AA,B,B and A’A,’B,’B’ are congruent and therefore
AB=A’B’(this argument also holds in the case A€(OB)).

Problem IV A
Let n>3 be an integer and XC{1,2,3,...,n3} be a set with 3n°
elements. Prove that one can find nine pairwisely distinct numbers
a1,ay,a3, by,ba,bs, ¢1,¢2,c3 from X such that the system-
ajxtazy+az;z=0
bix+boy+bsz=0
cix+cay+esz=0

has a solution (xo,yo,Z0) With xo,y0,20 integers and X0Y0Zo20.
Marius Cavachi

Sofution
Let x;<x2<...<x3.2 be the elements of X and Xi={X1,X2, ..., X2},

Xo={x1,%a, ..., X2}, X3={X1,X2, Xm2}. For every (ab,c)eXixXoxXs;
let f{a,b,c)= (b-a,c-b) This deﬁnes a function f XixXoxXs ——>
CYe{l,...,n°)x{1,...,n°}, where Y is the set of pairs (p,q) with pHq<n’

&
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Since X;xXoxXs has (n?)’ = n® elements and Y has 2(n3-—p) =

p=1

\ )
. (nP=1)n° ‘n®—n? n® ‘ -
6 _ .3 ( ) = < —; elements, there exist three

n -n -

2 2
different triples (a,by,c1), (az2,b2,¢2), (a3,bs,c3) such that a;-b; = axb,=
=as-bz = k and Ci-b1 = cxby= Q3-b3 =DP. The elements ay, bi,c1 ,az, bz,
C2, a3, b3, c3 are also pairwisely distinct because aj, a;, azeXi; by, ba,
b3eXy; ¢, ¢, c3€X5; a1=a; = bi=by = c1=¢y; bi=b; = c;=c; = ar<ay;
C1=C; = b;=br = a;=a,.

Finally, it is easy to check that the system has the solution x¢=as-as,

Yo=asz-a,, Zp=a;~az.
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Problem I

Let O, G be the circumcentre and the barycentre of a triangle
ABC, respectively. If R is the circumradius and r is the inradius of

ABC, show that ,
O0G <RR-2r)
proposed by Greece

Solution .
Using Leibniz's relation, it is known that
0G*=R? ~(a’+b*+c?)/9
Then, the given inequality is equivalent with:
a*+b*+c* > 18 Rr
From abc= 4Rrp, it follows:
_abc
2(a+b+c)
Hence, the given inequality is equivalent with:
(atb+c)( a*b*+c?) > 9abe.
This inequality is a consequence of the mean inequalities:
a+b+c23§/ahTC, and -
a® +b% +c? >3Ya%b%c? .
The equalities both hold if a=b=c, hence ABC is equilateral.

Remark: It is known the Euler's equality:

| O =R*-2Ry,
where I is the incenter of ABC. Then the problem is to prove that
O0G<OL

Probiem il .
Let p>5 be a prime number and X = { p-n®| neN" and n® <p }.
Prove that X contains two different elements x, y such that x # 1 and x
divides y.
proposed by Albania
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Solution
' There are two cases to be considered:
a) if 1e X, then p = n™1, where n is even. Then
y=p-l=p-1"=n*e X
and 2n divides n®. But 2n = n®+1 - (n-1)*=p- (n-1)>
Hence x = p-(n-1)>=2n e X and it is obvious that x and y satisfy the
question. : '

b)1 ¢ X Letn= [\/5 } be the least positive integer such that n”° < p.

We have:
n*+1 <p<(n+1)*

Denote x = p - n°, x > 1. Because p i1s a prime number, we also have
p< n®+2n and p = n° +n. Therefore x-n =0 and 0 < x < 2n, which
gives 0 <|x-n|<n.
We may consider y=p - (x-n)* € X and from

: y=p-n°+2nx-x’= x(1+42n-x)
we deduce x|y.

Problem Jii

Let ABCDE be a convex pentagon. Denote by M, N, P, Q, R
the midpoints of the segments AB, BC, CD, DE, EA, respectively. If
the segments AP, BQ, CR, DM have a common point, prove that this

point also belongs to the segment EN.
proposed by Yugoslavia

Soiution
First solution:

It 1s easy to prove that a point O belongs to the median X3¢ of
the triangle XYZ if and only if O is an interior point of XYZ and &
(XOY) = ¢ (X0Z), where o denotes the area of the triangle.

Now, let O be the common peint of the segments AP, BQ, CR and
DM. It follows that: ¢ (BOE) = ¢ (BOD) = & (AOD) = ¢ (AOC) =
c(COE). '

On the other hand,

Oe [CR] implies O € int<BCE , O €[BQ] implies O & int<EBC

and we deduce O € intABCE.

Second solution:

Using complex numbers, let a, b, ¢, d, e be the afixes of the
points A B C D E respectively, We may assume that The commen
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point of the segments AP, BQ, CR and DM is the origin O of the
complex plane. Then, from the hypotesis we deduce
c+d d+e e+a a+b
, , , eR
22  2b " 2¢ " 2
~This is equivalent with:

ca +da,db +eb,ec +ac,ad + bd eR

If we add these numbers, we obtain:
eb +eC + (ca +ac) + (da+ad) +(db +bd) €R.

This gives  be +c€ €R and then —b?+£ eR.
e

This condition is equivalent with the fact that E, O, N are colinear
points.

Problem 1V

Show that there exists a subset A of the set { 1, 2, ... 2% }
having the following properties: a) 1 € A and 2%%°-1 €A; b) every
element of A except 1 is the sum of two ( not necessarily distinct)
elements of A; ¢) the number of elements of A does not exceed 2012.

proposed by Romania

Solution .

For a positive integer n denote f{n) the least number of
elements of a set A, Ac{1,2,...,n},and satisfying the conditions a),b).
We shall prove that f21*-1)< 2012.

First, note that the number f{n) has the following two
properties:

1) f2™1-1) < f2%1) + 2. Indeed if A < {1,2,...,2""-1} satlsﬁes
a) and b) and has f{2"-1) elements, then

B=Au {2“*1 -2,2"L1}
is a subset of {1,2,...,2""-1} and satisfies a) and b).
This is because
2™l2=(2%1) +(2~1) and
2™l 1=1+ (2" -2).
Hence 2™ - 1)< [B| =f2%1) + 1.

2) f{22-1) < f{2°- 1) + (n+1). If A = {1,2,..,2" - 1} satisfies a)

and b) and has f{2" - 1) elements then
B=Au{2(2"-1),2%(2"- 1), .., 2" (2°- 1), 2% - 1}
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1s a subset of {1,2,3, ..., 27 1} witch satisfies a) because:
2t (2n - 1)=2n21(2"- D,alj=0,1, .., n-1
and 27 1=2"(2"- 1)+ (2"- 1).
Hence 2™ - 1) < [B| = (2" - 1) + (n+1).
Now, we go down in applying the above two properties:
2" - 1) < f2%% - 1) + 999
27 - 1) < f12*° - 1) + 500
- <R®-n+ 2
2% - 1) < 2% - 1) + 250
¥ -D<R™-1n+ 2
f2°% - 1) <f2™ - 1) + 125
2 -1 <f2%-1)+ 63
2% - <R -1+ 32
2 -D<R®-D+ 2
- <fRP-1n+ 16
2P -1 <fRM- 1)+
M- <f2"- 1)+
f2"- ) <fRf- 1)+
f2°- D <f23-1+
f2*-1)=
Adding these inequalities we obtain
f2"% - 1) <2012.

w SN o
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