Do all five problems.

- 1. Suppose $f_n, f \in \mathcal{L}^2([0,1])$ with $f_n \to f$ in measure and with $||f_n||_{\mathcal{L}^2} \leq 1$ for all $n \geq 1$.
 - (a) Prove (i) that $f_n \to f$ weakly in \mathcal{L}^2 , and (ii) that $||f_n f||_{\mathcal{L}^2} \to 0$ if and only if $||f_n||_{\mathcal{L}^2} \to ||f||_{\mathcal{L}^2}$.
 - (b) Prove that $||f_n f||_{\mathcal{L}^p} \to 0$ for each $p \in [1, 2)$.

2. Let $f : \mathbf{R} \to \mathbf{R}$ be nowhere continuous. Prove that there is an $\epsilon > 0$ and a nonempty open interval (a, b) such that $\limsup_{t \to x} f(t) - \liminf_{t \to x} f(t) \ge \epsilon$ for every $x \in (a, b)$.

3. Consider the function $f(x) = \sum_{n=1}^{\infty} 10^{-n} \cos(10^{2n}x)$.

- (a) Prove that there is a C > 0 such that $|f(x) f(y)| \le C|x y|^{1/2}$ for every $x, y \in \mathbf{R}$.
- (b) Prove that f is nowhere differentiable.

Hint: consider the choices $h = 10^{-2m}\pi$ and $h = 10^{-2m}\frac{\pi}{2}$ in $\frac{f(x+h)-f(x)}{h}$, $m = 1, 2, \ldots$

4. If S is an uncountable subset of C([0,1]), prove that there is a uniformly convergent sequence $\{f_n\}_{n=1,2,\ldots}$ of distinct functions in S.

5. Suppose μ is an outer measure on a separable space X such that all Borel sets are μ -measurable and such that $\mu(X) < \infty$. Let

$$S_{\infty} = \{ x \in X : \limsup_{\rho \to 0} \rho^{-1} \mu(\mathbf{B}_{\rho}(x)) = \infty \}.$$

Prove that S_{∞} has 1-dimensional measure 0. That is, prove that for each $\epsilon > 0$, there is a covering of S_{∞} by balls $\mathbf{B}_{\rho_j}(x_j)$ such that $\sum_j \rho_j < \epsilon$.

Note: you may assume without proof the "five times covering lemma", which says that if \mathcal{B} is a collection of closed balls in X such that

$$\sup\{\operatorname{diam} B: B \in \mathcal{B}\} < \infty,$$

then there is a countable pairwise disjoint subcollection $\{B_{\rho_j}(x_j)\} \subset \mathcal{B}$ such that

$$\cup_{B\in\mathcal{B}}B\subset \cup_j B_{5\rho_j}(x_j).$$

Do all five problems.

- 1. Two quickies:
 - (i) Let E be a compact subset of C([0, 1]), where C([0, 1]) is equipped with the usual sup norm. Prove that E is equicontinuous.
 - (ii) Let $f = f_1 + if_2$ be a complex-valued $\mathcal{L}^1(\mathbf{R})$ function. Prove that $|\int_{\mathbf{R}} f(x) dx| \leq \int_{\mathbf{R}} |f(x)| dx$. Also, if $\int_{\mathbf{R}} |f(x)| dx = 1$ and if $\hat{f}(\xi) = \int_{\mathbf{R}} e^{-ix\xi} f(x) dx$, prove the strict inequality $|\hat{f}(\xi)| < 1$ for all but possibly one value of $\xi \in \mathbf{R}$.
- 2. For t > 0, let $F(t) = \chi_{[0,t]}$ (the indicator function of the interval [0,t]).
 - (a) Prove that F, as a map from $(0, \infty)$ to $\mathcal{L}^2(\mathbf{R})$, is nowhere differentiable. (That is, $\lim_{h \downarrow 0} \frac{F(t+h)-F(t)}{h}$ never exists as a limit taken in $\mathcal{L}^2(\mathbf{R})$ for $t \in (0, \infty)$.)
 - (b) If $g: \mathcal{L}^2(\mathbf{R}) \to \mathbf{R}$ is a bounded linear functional, prove that $g \circ F$ is differentiable almost everywhere on $(0, \infty)$.

3. In this problem, let $\mathcal{L}^2([0,1])$ denote the complex Hilbert space of square integrable complex-valued functions f on [0,1] with the usual inner product

$$\langle f,g\rangle = \int_0^1 f(t)\overline{g}(t) \, dt.$$

Define $T: \mathcal{L}^2([0,1]) \to \mathcal{L}^2([0,1])$ by $Tf(x) = \int_0^x f(t) dt$ for $x \in [0,1]$.

- (a) Prove that T is a compact continuous map.
- (b) Prove that T has no eigenvalues. That is, prove there is no $\lambda \in \mathbf{C}$ such that $T(f) = \lambda f$ for some nonzero $f \in \mathcal{L}^2([0,1])$.
- (c) Prove that the spectrum of T is $\{0\}$. That is, $f \mapsto T(f) \lambda f$ is an isomorphism of $\mathcal{L}^2([0,1])$ onto $\mathcal{L}^2([0,1])$ for each nonzero λ , and it is not such an isomorphism for $\lambda = 0$.
- 4. Suppose $f: \mathbf{R} \to \mathbf{R}$ is 2π -periodic and $f \in \mathcal{L}^2(-\pi, \pi)$. Suppose also that

$$\sum_{n \in \mathbf{Z}} (|\hat{f}(n)| n^k)^2 < \infty$$

for some integer $k \ge 1$. Prove that f is almost everywhere equal to a $C(\mathbf{R})$ function if k = 1 and to a $C^{k-1}(\mathbf{R})$ function if $k \ge 2$.

5.(a) Let $\{x_n\}_{n=1,2,...}$ be a sequence in a Banach space B, and let X be the convex hull. In other words,

$$X = \left\{ \sum_{j=1}^{N} \lambda_j x_j : N \ge 1, \, \lambda_j \in [0,1], \, \sum_{j=1}^{N} \lambda_j = 1 \right\}.$$

If x_n converges weakly to some x in B, prove that some sequence $\{y_n\} \subset X$ converges to x strongly (i.e., $||y_n - x|| \to 0$).

(b) Give an example of a Hilbert space H and a sequence x_n weakly converging to zero in H such that $||n^{-1} \sum_{j=1}^n x_j||$ does not converge to zero as $n \to \infty$.