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FOREWORD

The thirteenth volume of the Romanian Mathematical Contests booklet consists,
as usual, of two parts. In the first part we present the problems given at the district
and final round of the Romanian National Olympiad along with those given at the
selection tests for the Romanian Teams, junior and senior. We collected some of
the problems considered by the problem selection committee at different stages of
the Olympiad.

The second part provides full solutions to the problems, with emphasis on those
given at the selection tests for the IMO. We hope that in this way we contribute to
the development of the so-called problem solving community in the world.

Most of the problems are new or, to our knowledge, do not have equivalent
statements in the mathematical olympiad literature. We thank the large number
of teachers in mathematics, mathematicians and students who contributed during
the year with more than one thousand problems, so our selection process was not
easy. Part of the problems come from some other sources: shortlisted problems
from the IMO’s and BMO?’s, various mathematical journals, or the large variety of
Web sites.

We thank the Ministry of Education and Research for permanent involvement
in supporting the Olympiads and the participation of our teams in international
events.

Special thanks are due to SOFTWIN, Volvo Romania, Medicover and W BS —
sponsors of the Romanian IMO team. Thanks are also due to “Gill Publisher” and
the “Sigma Foundation” for constant support in the mathematical competitions.
The students taking part at the final training camp look carefully on the manuscript
and made important remarks. We thank them all.

Luminita Stafi from “The Theta Foundation” helped the editor in the process
of producing this booklet.

Last, not least, we are grateful to the Board of the Institute of Mathematics
“Simion Stoilow” in Bucharest, for constant technical support in the Mathematical
Olympiads and involvement in the training seminars for students.

Bucharest, June 2274, 2006 Mircea Becheanu and Radu Gologan
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DISTRICT ROUND

March 11%, 2006

7" GRADE

Problem 1. Let » >1 be an integer. Prove that the number /11...144.. 4
(digit “1” occurs n times and digit “4” occurs 2n times) is an irrational number.

Cecilia Deaconescu, Pitesti
Problem 2. In triangle ABC, ZABC = 2 - ZACB. Prove that:

a) AC?> = AB? + AB - BC,
b) AB+ BC <2 AC.

Gh. Bumbicea, Bugteni

Problem 3. A set M containing 4 positive integers is called connected, if for
every x in M at least one of the numbers  — 1, z + 1 belongs to M. Let U, be
the number of connected subsets of the set {1,2,...,n}.

a) Evaluate Uy,.

b) Determine the least » for which U,, > 2006.

Lucian Dragomir, Otelul Rogu

Problem 4. Let ABC be an isosceles triangle, with AB = AC. Let D be the
midpoint of the side BC, M the midpoint of the line segment AD and let N be
the projection of D on BM. Prove that ZANC = 90°.

Marcel Chirita, Bucuresti
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8" GRADE

Problem 1. Let ABC be aright triangle (with A = 90°). Two perpendiculars
on the triangle’s plane are erected at points A and B, and the points M and N
are considered on these perpendiculars, on the same side of the plane, such that
BN < AM. 1tis known that AC = 2a, AB = av/3, AM = a and that the angle
between the planes M NC and ABC equals 30°. Find:

a) the area of triangle MNC;

b) the distance from the point B to the plane MNC.

Gianina Busuioc, Niculai Solomon

Problem 2. For each positive integer n, denote by «(n) the largest prime num-
ber less than or equal to » and by v(n) the smallest prime number greater than n.
Prove that

1 1 1 111
@@ T uEeE) T u@p@ T T a@oto)eeoi0) 2 2001
Nicolae Stiniloiu, Bocsa

Problem 3. Prove that there exist infinitely many irrational numbers z and y
suchthatz +y =zy € N
Claudiu Stefan Popa, Tagi

Problem 4. a) Prove that one can assign to each of the vertices of a cube one of
the numbers 1 or —1 such that the product of the numbers assigned to the vertices
of each face equals —1.

b) Prove that such an assignment is impossible in the case of a regular hexag-
onal prismn. '

Cecilia Deaconescu, Pitegti

9*h GRADE

Problem 1. Let z,y, z be positive real numbers. Prove that the following
inequality holds:

1 1 + 1 1/1 +L _1_
z2+yz+y2+zz 2Z24zy 2\zy  yz. zx)’
Traian Tamiian

DISTRICT ROUND 5

Problem 2. The entries of a 9 x 9 array are all the numbers from 1 to 81. Prove
that there exists £ € {1,2,3,...,9} such that the product of the numbers in the
line k differs from the product of the numbers in the column k.

Marius Ghergu, Slatina

Problem 3. Let ABC D be a convex quadrilateral. Let M and N be the mid-
points of the line segments AB and BC, respectively. The line segments AN and
BD intersect at E and the line segments DM and AC intersect at F. Prove that
if BE = $BD and AF = 1 AC, then ABCD is a parallelogram.

Gh. Turea, Jagi
Problem 4. For each positive integer n, denote by p(n) the largest prime num-

ber less than or equal to 7 and by g(n) the smallest prime number greater than n.
Prove that ’

R CLORE
Nicolae Stiniloiu, Bocga

10*® GRADE

Problem 1. Consider the real numbers a,b,c € (0,1) and z,y, z € (0, c0),
such that

a®=be, b =ca, c*=ab.

Prove that

1 n 1 n 1 < 3
2+z 24y 24z 4
Cezar Lupu, Bucuresti

Problem 2. Let ABC be a triangle and consider the points M € (BC), N €
(CA), P € (AB) such that $£ = EM - SN proye that if MNP is an
equilateral triangle, then ABC is an equilateral triangle as well.

LV. Maftei, A. Schier, Bucuregti

Problem 3. A prism is called binary if one can assign to each of its vertices
a number from the set {—1, +1}, in such a way that the product of the numbers
assigned to the vertices of every face equals —1.

a) Prove that the number of vertices of every binary prism s divisible by 8.
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b) Prove that a prism with 2000 vertices is binary.
Cecilia Deaconescu, Pitegti

Problem 4. a) Find two sets X,Y suchthat X NY =0, XUY = Q} and
Y={ablabe X}
b) Find two sets U,V such that U NV =, UUV =RandV = {z + y |
z,y €U}
Marius Cavachi, Constanfa

11** GRADE

Problem 1. Let z > 0 be areal number and let A be a 2 x 2 matrix with real
entries, such that
det(A? + z15) = 0.

Prove that det(A? + A + zlp) = =.
Vasile Pop, Cluj

Problem 2. Let n, p > 2 be integer numbers and let Abean x n real matrix
such that APT1 = A.
a) Prove that rank(A) + rank(I, — A?) =n.
b) Prove that if p is a prime number, then
rank(I,, — A) = rank(I, — A?) = ... = rank(I, — AP,
Marius Ghergu, Slatina

Problem 3. The sequence of real numbers (2 )0 satisfies
(Znt+1 — Tn)(Tns1 +Tn +1) <0, n2>0.

a) Prove that the sequence is bounded.
b) Can such a sequence be divergent?
Mihai Biluni, Bucuresti

Problem 4. We say that a function f : R — R has the property (P) if for every

real z,
sup f(t) = z.

t<z

DISTRICT ROUND 7

a) Give an example of a function having property (P) which is discontinuous
at every real point. :

b) Prove that if f is continuous and has property (P) then f is the identical
function.

Mihai Piticari, Cimpulung
12** GRADE

Problem 1. Let fi, fa,..., fn : [0,1] = (0, 00) be continuous functions and
let o be a permutation of the set {1,2, ..., n}. Prove that

[ @) o
I / fow >l [ #oa.

Cezar Lupu, Mihai Piticari

Problem 2. Let G = {A € My(R) | det(A) = +1} and H = {A €
M;(C) | det A = 1}. Prove that, under matrix multiplication, G and H are
non-isomorphic groups.

Marius Cavachi, Constanta

Problem 3. Let A be a finite commutative ring with at least two elements.
Prove that for any positive integer n. > 2, there exists a polynomial f € A[X] of
degree n, with no roots in A.

Marian Andronache, Bucuresti

?roblem 4. Let 7 = {f :[0,1] — [0,00) | f continuous} and letn > 2 be a
positive integer. Determine the least real constant ¢, such that

1 1
/0 f(¥z)dz < c/o f(z)dz
forall f € F.

Gh. Turea, Jasi



FINAL ROUND

April 15, 2006

7" GRADE

Problem 1. Consider the triangle ABC' and points M, N belonging to the
sides AB, BC respectively, such that 22 = 4M et P be a point on AC.
Prove that the lines M N and N P are perpendicular if and only if PN bisects the
angle ZM PC. )

Marcel Teleucd

Problem 2. A square of side n is divided into n? unit squares each colored
red, yellow or green. Find the minimum value of 7 such that for any such coloring
we can find a row or a column containing at least three squares of the same color.

Mircea Fianu

Problem 3. In the acute triangle ABC angle C equals 45°. Points A; and By
are the foots of the perpendiculars from A and B respectively. Denote by H the
ortocenter of ABC. Points D and E are situated on the segments AA; and BC,
respectively, such that A; D = A E = A;B;. Prove that: -

9 A;B, = |[AEAT

b)CH = DE.

Claudiu-$tefan Popa

Problem 4. Let A be a set of nonnegative integers containing at least two
elements and such that for any a,b € A, a > b, we have 1:_’—1’,] € A. Prove that the
set A contains exactly two elements.

([a, b] denotes the least common multiple of a and b).
Marius Ghergu

FINAL ROUND 9
8" GRADE

Problem 1. Consider a convex poliedra with 6 faces each of them being a
circumscribed quadrilaterals. Prove that all faces are circumscribed quadrilaterals.

G. Rene

Problem 2. Given a positive integer n, prove that there exists an integer k,

k > 2 and numbers aq, az, . .., ax € {—1,1} such that
n= Z a;a;.
1<i<ji<k

Gheorghe Iurea

Problem 3. Let ABCDA;B1C;D; be acube and let P be a variable point
on the side [AB]. The plane through P, perpendicular to AB meets AC; at Q. Let
M and N be the midpoints of the segments A; P and BQ, respectively.

a) Prove that the lines M N and BC are perpendicular if and only if P is the
midpoint of AB.

b) Find the minimal value of the angle between the lines M N and BC}.

Petre Simion

Problem 4. Consider real numbers a,b, ¢ contained in the interval [§,1].

Prove that
a+b b+c c+a

—+—+-—<3.
S1+4c 1+a 1+b

Mircea Lascu

9** GRADE

Problem 1. Find the maximum value of
@+ 1)@ +1),

forz,y € Rsuchthatz +y = 1.

Dan Schwarz

Problem 2. Consider quadrilaterals ABCD inscribed in a circle of radius r,
such that there is a point P on side C'D for which CB = BP = PA = AB.
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a) Prove that there is a configuration of points A, B, C, D, P for which the
above configuration is possible.
b) Prove that for any such configuration we also have PD = DA = r.

Virgil Nicula
Problem 3. Consider the triangles ABC and DBC such that AB = BC,
DB = DC and-ZABD = 90°. Let M be the midpoint of BC. Points E, F, P are

suchthat E € (AB), P € (MC), C € (AF) and ZBDE = ZADP = ZCDF.
Prove that P is the midpoint of EF and DP 1L EF,

Manuela Prajea

Problem 4. A table tennis competition takes place during 4 days, the number
of participants being 2n, n > 5. Every participant plays exactly one game daily
(it is possible that a pair of participants meet more times). Prove that such a com-
petition can end with exactly one winner and exacily three players on the second
place and such that there is no player losing all four matches. How many partic-
ipants have won a single match and how many exactly two, in the given above
conditions?

Radu Gologan

10*® GRADE

Problem 1. Consider aset M with n elements andlet (M) denote all subsets
of M. Find all functions f : P(M) — {0,1,2,...,n}, satisfying the following
two conditions:

a) f(A) # 0, for any A # 0, and

b) f(AUB) = f(ANB) + f(AAB), for any A,B € P(M), where
AAB =(AUB)\ (ANB).

Vasile Pop
-Problem 2. Prove that for a,b € (0, Z) we have

sin®a+sin™b _ sin™ 2a + sin™ 2b
(sina +sinb)® ~ (sin2a + sin 2b)*°

Turie Boreico

FINAL ROUND 11

Problem 3. Prove that the sequence given by a,, = [ny/2] + [nV/3],n €N,
contains infinitely many odd numbers and infinitely many even numbers.
Marius Cavachi

Problem 4. Givenn € N, n > 2, find n disjoint sets A;, 1 < i < n, in the
plane, such that:

a) for any disk C and any i € {1,2,....n}, we have A; N Int (C) # 0, and

b) for any line d and for any i € {1,2,....n}, the projection of A; on d is not
all of d.

Severius Moldoveanu, Costel Chiteg

11** GRADE

Problem 1. A is a two by two matrix with complex entries. Denote by A* its
adjoint (the matrix formed by the cofactors of the transpose). Prove that if there is
an integer m > 1 such that (A*)™ = 0,, then (A*)2 = 0,.

Marian Ionescu

Problem 2. A matrix B € M,,(C) will be called a pseudo-inverse of a matrix
A e My(C)if A= ABAand B = BAB.

a) Prove that any square matrix has at least one pseudo-inverse.

b) Characterize the class of matrices with a unique pseudo-inverse.

Marius Cavachi
Problem 3. Consider two systems of points in the plane: A;, As, ..., A, and

Bi, Ba, ..., B, having different centroids. Prove that there is a point P in the
plane such that

PA; +PAs+---+PA, =PB;+ PBy+ -+ PB,.
Marius Cavachi
Problem 4. Consider a function f : [0, c0) — R, with the property that for
any z > 0, the sequence (f(nz))n>o is increasing.

a) If f is also continuous on [0, 1], does it follow that it is increasing?
b) What if f is continuous on Q. ?

Gheorghe Grigore
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12* GRADE

Problem 1. Let K be a finite field. Prove that the following statements are

equivalent:
a)l4+1=0;
b) for any f € K[X] with deg f > 1 the polynomial f(X 2) is reducible.

Marian Andronache

Problem 2. Prove that

1 n 1
™ x
i — - — —dz ) = dz
dmn (5 [ ramte) = [ 10
where f(z) = 22EZ for z € (0,1] and f(0) = 1.

Dorin Andrica, Mihai Piticari
Problem 3. Let G be a group with n elements (n > 2) and let p be the smallest
prime factor of n. Suppose G has a unique subgroup H with p elements. Prove

that H is contained in the center of G. (The center of G is the set Z(G) = {a €
G| az = za, Vz € G})

Ton Savu
Problem 4. Let f : [0,1] — R be a continuous function such that
1
/ f(z)dz = 0.
0
Prove that there is ¢ € (0, 1) such that
e
/ zf(z)dz = 0.
o
Cezar si Tudorel Lupu

SELECTION TESTS FOR
THE BMO AND IMO ROMANIAN TEAMS

FIRST SELECTION TEST

Problem 1. Let ABC and AM N be two similar triangles with the same ori-
entation, such that AB = AC, AM = AN, and having disjoint interiors. Let O
be the circumcenter of the triangle M AB. Prove that the points O, C, N, A are
concyclic if and only if the triangle ABC is equilateral.

Valentin Vornicu
Problem 2. Let p > 5 be a prime number. Find the number of irreducible
polynomials in Z[X], of the form
a? +paf +pat +1, k>1 kle{l,2,...,p—1}.
The Editors
Problem 3. Let a, b be positive integers such that for any positive integer n
we have a™ + n | b + n. Prove that a = b.
IMO Shortlist 2005
Problem 4. Let aj,az,...,an be real numbers such that |a;| < 1 for all

i=12,...,n,anda; +az+ -+ a, = 0.
() Prove that there exists k € {1,2,...,n} such that

2k +1
lat +2a2 + - + kag| < :

(b) Prove that for n > 2 the bound above is the best possible!
Radu Gologan, Dan Schwarz
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SECOND SELECTION TEST

Problem 5. Let {a,},>1 be a sequence given by a; = 1, ag = 4, and for all

integersn > 1
ap = y/an-1an41 + 1.
(a) Prove that all the terms of the sequence are positive integers.

(b) Prove that the number 2anan+1 + 1 is a perfect square for all integers
n>=1.

Valentin Vornicu
Problem 6. Let ABC be a triangle with ZABC = 30°. Consider the closed

discs of radius AC/3 centered at A, B and C. Does there exist an equilateral
triangle whose three vertices lie one each in each of the three discs?

Radu Gologan, Dan Schwarz
Problem 7. Determine the pairs of positive integers (m,n) for which there
exists a set A such that for z, y positive integers, if |z — y| = m, then at least one

of the numbers z, y belongs to the set A, while if |z — y| = n, then at least one of
the numbers z, y does not belong to the set.

Adapted by the Editors from AMM

Problem 8. Let z;, 1 < ¢ < n be real numbers. Prove that

n—2
E |zi + 25| > 5 E |z
i=1

1<i<jgn
Adapted by the Editors from Putnam

THIRD SELECTION TEST

Problem 9. The circle of center I is inscribed in the convex quadrilateral
ABCD. Let M and N be points on the segments AJ and CT respectively, such
that ZM BN = 3 ZABC. Prove that ZM DN = 3ZADC.

Problem 10.,Let A be a point exterior to acircle C. Two lines through A meet

the circle C at points B and C, respectively at D and E (with D between A and -

IMO AND BMO SELECTION TESTS 15

E). The parallel through D to BC meets the second time the circle C at F. The
line AF meets C again at G, and the lines BC and EG meet at M. Prove that
1 1 1
M = AB T Ac
Bogdan Enescu
Problem 11. Let « be the incircle of the triangle AgA;As. In what follows,
indices are reduced modulo 3. For each i € {0, 1,2}, let ~; be the circle through
A;41 and A;yo, and tangent to «y; let T; be the tangency point of +; and «; and
finally, let P; be the point where the common tangent at T; to -y; and ~ meets the
line A;41Aiy2. Prove that
() the points Py, P; and P; are collinear;
(b) the lines AgTo, A1T1 and A2T5 are concurrent.
AMM

Problem 12. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3.
Prove that 1 1 1
;7+b_2+§>“2+"2+°2'

Vasile Cartoaje

FOURTH SELECTION TEST
Problem 13. Given r, s € Q, determine all functions f : Q — Q such that

fla+f@)=flz+r)+y+s
forall z,y € Q. Vasile Pop, Dan Schwarz

Problem 14. Find all positive integers m, n, p, g such that p™¢"™ = (p+4)%+1.
Adrian Stoica

Problem 15. Let n > 1 be an integer. A set S C {0,1,...,4n — 1} is called
sparse if for any k € {0,1,...,n — 1} the following two conditions are satisfied:
(1) the set SN {4k — 2,4k — 1,4k, 4k + 1,4k + 2} has at most two elements;
(2) the set S N {4k + 1,4k + 2,4k + 3} has at most one element.
Prove that the set {0,1,...,4n — 1} has exactly 8 - 771 sparse subsets.
AMM



16 PROPOSED PROBLEMS

Problem 16. Let p, g be two integers, ¢ > p > 0. Let n > 2 be an integer and
ap=0,a1 20, ay,...,an—1, ap = 1 bereal numbers such that
a < “k_—l.yﬁi:‘., k=1,2,...

Prove that .

n— n—1
P+1)> ah>(q+1)) af.
k=1 k=1

Cilin Popescu

FIFTH SELECTION TEST

Problem 17. Let k > 1 be an integer and n = 4k + 1. Let A = {a? 4 nb? |
a,b € Z}. Prove that there exist integers z, y such that 2" +y" € Aandz+y ¢ A.
AMM

Problem 18. Let m and n be positive integers and let S be a subset with
(2™ — 1)n + 1 elements of the set {1, 2, ...,2™n}. Prove that S contains m + 1
distinct numbers ag, a1, . .., am Such that ax_; | ax forall k = 1,2,...,m.

AMM

Problem 19. Let z; = 1, x5, 3, ... be a sequence of real numbers such that

for all n > 1 we have .

Tpt1 = Tn + E
Prove that
|25z625) = 625.

The Editors

Problem 20. Let ABC be an acute triangle with AB # AC. Let D be the
foot of the altitude from A to BC and let w be the circumcircle of the triangle
ABC. Let wy be the circle that is tangent to AD, BD and w. Let ws, be the circle
that is tangent to AD, CD and w. Finally, let £ be the common internal tangent to
w1 and wo that is not AD.

I-Prove that ¢ passes through the midpoint of BC if and only if 2BC =
AB + AC.

SELECTION TESTS FOR THE JUNIOR
BALKAN MATHEMATICAL OLYMPIAD

FIRST SELECTION TEST

Problem 1. Let ABC be a rightangle triangle at C and consider points D, E
on the sides BC, C'A, respectively, such that 2 = AZ — k. Lines BE and AD
intersect at point O. Show that ZBOD = 60° if and only if k = /3.

Marcel Chirigi

Problem 2. Consider five points in the plane such that each triangle with ver-
tices at three of those points has area at most 1. Frove that the five points can be
covered by a trapezoid of area at most 3.

Marcel Chirigi

Problem 3. For any positive integer n let s(n) be the sum of its digits in
decimal representation. Find all numbers n for which s(n) is the largest proper
divisor of n.

Laurentiu Panaitopol
SECOND SELECTION TEST

Problem 4. Prove that % + ’c’—i + g—: > a+ b+ c, for all positive real numbers
a,b, and c.

Problem 5. Consider a circle C of center O and let A, B be points on the
circle with ZAOB = 90°. Circles C1(0;) and C5(O5) are internally tangent to
C at points A, B, respectively, and — moreover — are tangent to themselves. Cir-
cle C3(03), located inside the angle ZAOB, is externally tangent to Cy, Cs and
internally tangent to C. Prove that O, Oy, O, Oj are the vertices of a rectangle.



18 PROPOSED PROBLEMS

Problem 6. A 7 x 7 array is divided into 49 unit squares. Find all integers
n € N* for which n checkers can be placed on the unit squares so that each row
and each line contain an even number of checkers.

(0 is an even number, so empty rows or columns are not excluded. At most one
checker is allowed inside a unit square.)

Dinu $erbinescu

THIRD SELECTION TEST

Problem 7. Suppose ABCD is a cyclic quadrilateral of area 8. Prove that if
there exists a point O in the plane of the quadrilateral such that OA + OB+ OC'+
OD = 8, then ABCD is an isosceles trapezoid (or a square).

Flavian Georgescu

Problem 8. Prove that
2
a b ¢ 3 (a+b b+c c+a
(3+z+;> >§'< vttty )

for all positive real numbers a, b, and c.

Cezar Lupu

Problem 9. Find all real numbers a and b satisfying

2(a® + 1)(b? +1) = (a+ 1)(b+1)(ab+1).
Valentin Vornicu
Problem 10. Show that the set of real numbers can be partitioned into subsets

having two elements.

Dan Schwarz

FOURTH SELECTION TEST

Problem11. Let A = {1,2,...,2006}. Find the maximal number of subsets
of A that can be chosen such that the intersection of any two such distinct subsets
have 2004 elements.

JUNIOR SELECTION TESTS 19

Problem 12. Let ABC be a triangle and let Ay, By, C; be the midpoints of
the sides BC, C'A, AB, respectively. Show that if M is a point in the plane of the

triangle such that
MA MB MC

WA, = MB, = Mc;, =%
then M is the centroid of the triangle.
Dinu Serbinescu

Problem 13. Suppose a, b, ¢ are positive real numbers which sum up to 1.
Prove that

©
S

a b 5
_— — = 2 2
b+c+a>3(a +b° + ).

Mircea Lascu

Problem 14. The set of positive integers is partitioned into subsets with in-
finitely many elements each. The following question arises: does there exist a
subset in the partition such that any positive integer has a multiple in that subset?

a) Prove that if the number of subsets in the partition is finite, then the answer
is “yes”.

b) Prove that if the number of subsets in the partition is infinite, then the answer
can be “no” (for some partition).

FIFTH SELECTION TEST

Problem 15. Let ABC be a triangle and D a point inside the triangle, located
on the median from A. Show that if ZBDC = 180° — ZBAC, then AB-CD =
AC - BD.

Eduard Bizivan

Problem 16. Consider the integers ay, as, as, as, by, by, bs, by With ay # by
forallk =1,2,3,4.1f
{a1,01} + {a2, b2} = {a3, b3} + {as, ba},
show that the number |(a; — b1)(az — b2)(as — bs)(as — bs)| is a square.
Note. For any sets A and B, wedenote A+ B={z+y |z € A, y€ B}.
Adrian Zahariuc
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Problem 17. Let x, y, z be positive real numbers such that

1 1 1
—_— —— =2
1+z u 1+y+ 142
Prove that 8zyz < 1.
Mircea Lascu

Problem 18. For a positive integer n denote by r(n) the number having the
digits of n in reverse order; for example, r(2006) = 6002. Prove that for any
positive integers a and b the numbers 4a + (b) and 4b% + r(a) cannot be simul-
taneously perfect squares.

Marius Ghergu

SHORTLISTED PROBLEMS FOR THE 2006 OLYMPIAD

7" GRADE

Problem 1. The bisectors of the angles of the triangle ABC meet the sides
BC,CA, AB in D, E, F respectively. Prove that
1 n 1 n 1 _ 1
AB-CE  BC-AF "CA-BD r-R
Problem 2. In a triangle ABC, m(£BAC) = 110°, m(£ZABC) = 50°. Let
D be an internal point such that m(£ZDBC) = 20° and m(£DCB) = 10°. Find
m(£LADC).

Problem 3. The points M and NV are taken on the sides AC, respectively AB
of triangle ABC such that MA = m - MC and NA = n.- NB, where m, n are
positive reals and m + n = 2. The straight lines BM and CN meet at P. Prove
that area(AM PN) > Zarea(ABC).

Problem 4. Let ABCDEF be a convex hexagon. Triangles A i Ay will be
called opposite if they are determined by consecutive vertices of the hexagon and
have no common points. Prove that the straight lines joining the centroids of the
three pairs of opposite triangles are concurrent.

Problem 5. Let ABCDE be a convex pentagon. A straight line will be called
central if it joins the centroid of the triangle determined by three consecutive ver-
tices of the pentagon and the midpoint of the “opposite” side. Prove that the five
central lines are concurrent.

Problem 6. Let a, b, c, d be four distinct positive integers whose product is a
perfect square. Prove that the number a® + b% 4 ¢* + d* is the sum of five non-zero
perfect squares.
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Problem 7. Find three distinct positive integers with integral arithmetic, geo-
metric and harmonic means. Same problem for . > 4 distinct positive integers.

Problem 8. Prove that three positive real numbers x, y, 2 satisfy the equality

sly=5) , wz=2)  2w=y) g
y+z z+z z+y

)

if and only if at least two of these numbers are equal.

Problem 9. A tennis competition lasted three days and had 20 participants.
Every participant played a match each day (it is possible that the same pair of
players met more than once). In the end there was only one winner and everybody
had at least a victory. How many participants won exactly one match?

8" GRADE

Problem 10. Let m, n be integers such that m > n > 3. Prove that the roots
x1, 2 Of the equation 22 — ma + n = 0 are integers if and only if the number
|ma1]) + |ma2] is a perfect square.

Problem 11. Prove that if a, b, ¢ are three positive real numbers then

bte (a? 4 b 4 ¢®)(ab + bc + ca)
%c: a abc(a+b+c) :

Problem 12. Let a, b be positive integers such that a < b and @ is not a divisor .

of b. Solve the equation a|z] — b{z} = 0.
Problem 13. Consider the sets
T 1 .
A={ —+—la,b€N,a;éb}
a b
and
T 1 1 .
B= —+-+-|zy,zeN z>y>z,.
z Yy z

Prove that A N B contains infinitely many rational and infinitely many irrational

numbers.
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Problem 14. Prove that if a, b, ¢ are positive real numbers then

’ 1

a

E —_— <
2 2 =

po” 3a? + b2 +2ac 2

Problem 15. Find all positive integers n and 1, xs, . . ., 2, such that

1 1 1 1
itz t 42T =3n ad —+—+. 4 —=1+—.
T x2 Tn 4n
Problem 16. Let p, g be integers. Prove that if a set A has p?> — q elements
then A cannot have exactly ¢ — p subsets.

Problem 17. Find all integers z,y, z, t suchthat z 4+ y+ z = t2 and 22 + 2 +
2 _ 43 .
z° =1

Problem 18. The bases of aright prism ABCDEF A; B;Cy D1 Ey F arereg-
ular hexagons. Prove that:

a) AEy L ByEif andonly if A4A; = ABV/3;

b)if AE; L B; E then the distance between the straight lines AF; and B E
is Y2 AB.

Problem 19. Consider a tetrahedron ABC D of volume 2 and points M, N,
P,Q, R, S onthe edges AB, BC,CD, DA, AC and BD, respectively, such that
the segments M P, NQ and RS be concurrent. Prove that the volume of the poly-
hedron M NPQRS is at most 1.

Problem 20. The cube ABCDA'B’C’'D’ has edges of length 2. The two
triangles having as vertices the midpoints of the edges starting from B and C have
centroids £ and F respectively. Let P = A’E N D'F. Compute the cosine of the
angle ZA’P D’ and the distances from A’ to the planes of the two triangles.

9** GRADE

Problem 21. Consider an integer » > 2 and positive real numbers ay, as, . .
agn, With sum s. Prove that

i}

ay an @
IR 9nt1 T 2n >
s+ ant1 —ay S+ —an S+ a1 —angq S+ an —azn

and determine the cases of equality.



24 PROPOSED PROBLEMS

Problem 22. Let a, b, ¢ be positive real numbers such that a® + b% + ¢® = 3.

Prove that, for every positive numbers z,y, z,
x

;+%+%>\/x_y+\/ﬁ+\/zr.

Problem 23. Let a, b, ¢ be positive numbers such that abc = 1. Prove that

Y e <y
a? +202+3 " 2
cye
Problem 24. With each function f : {1,2,...,n} — {1,2,...,n} associate
afunction 7 : {1,2,...,n} = {0,1,...,n — 1}, by letting
fQ) +---+ f(k)

n

Tk =F) +-- + f(k) =n

foreach k = 1,2,...,n. Prove that a necessary and sufficient condition for a pair
(f, F) of one-to-one associated functions to exist is that n be even.

Problem 25. A function f : [0,00) — [0, 00) will be said to have property
Pif
F=f@?) = f@)f(f(=?)
for all z,y € [0, 00).
a) Show that there exist infinitely many functions which have property P.
b) Prove that there exists an unique function with property 7, whose range
contains an open interval centered at 1.

Problem 26. Find all integers z,y such that = = /3% — /32 + =.

Problem 27. Let a, b, ¢ be three positive real numbers such that a + b + ¢ >
1,1
143+ 1 Provethat
2

3
a+b+c2m+-@.

A Problem 28. Let a, b, c be three positive real numbers such that 2% < 3.
Prove that

3 @+l o
V@ —atl
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Problem 29. Given that the real numbers a, b, ¢ satisfy |az? + bz + ¢| < 1 for
allz € [—1,1] and all « € [0, 1], prove that

a(l +a)b|+ (1 —a?)|e| < 1+ o
Find the cases of equality.

Problem 30. An acute-angled triangle ABC has orthocenter H and altitudes
(AM), (BN), (CP). Let Q and R be the midpoints of the segments (BH) and
(CH), respectively, andlet U = MQN AB,V = MRN AC, T =" AH N PN.
Prove that:

MH _ TH.
&) A = Ta>

b) T is the orthocenter of triangle U AV'.

Problem 31. Consider a triangle ABC, the point M on the side (BC) such
that B — £4<) and the point N on (AM) such that ZBNM = ZBAC Prove
that 2ZCNM = ZBAC.

Problem 32. Let I be the incenter of triangle ABC and A4, By, C; the incen-
ters of triangles I BC, IC A, I AB, respectively. Prove that AA;, BBy, CCy are
concurrent.

Problem 33. In a competition there were 18 teams. Each pair of teams met at
most once, and within each group of 12 teams there were at least 6 matches. Find
the minimum number of matches that have been played.

10" GRADE

Problem 34. If a1, as,...,an, € {—1, 1} anday + ag + - - + an = 0, prove
that there exists k¥ € {1,2,...,n} such that

k
lar 4+ 2a2 + - - + kay| < lﬁJ

Problem 35. Prove that (22" 4 2™ 4 92m)1 js divisible by (271)2"+2" " .
(2m)27™+2""" for every n,m € N*.

Problem 36. Let a € N, a > 2. Define the sequence (z»)n>0 by

a?
To = —
4

, Ty = %(2(13 —4a? — a+4), Tni1 — (4a2 —2)Tp + Tp1 =0
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for n > 1. Prove that 2z, — “’2‘ 2 is a perfect square for every n € N.
Problem 37. Solve the equation
logs (21"‘3(22“) + 1) =log, (3° - 1).

Problem 38. Consider p,n € N* and nonnegative integers x1,22, ..., Tn.
Prove that

n P n
-1 (ZIi) < (’;) g
i=1 i=1ﬂ n )
p 2p-3 | . p 2p—2m—1
+(3>§’”" + +<2m+1)§’*

_|p=t
wherem~{ 3 J

Problem 39. Find all positive integers p, ¢ such that p is prime, p > ¢ > ¢*

and
2
(2)- ()=
q
Problem 40. A quadrilateral A, A3 A3 A4 has an incircle of radius 7.

a) Prove that there exist circles C; = (A;,;), centered at A; and radii r;,
i =1,2,3,4, such that C; is tangent to C; .1 (Where Cs = C1).

b) If, in addition
Lot
—r T

prove that the quadrilateral is a square.

Problem 41. Consider a straight line d in space. For every n points Aj,
As,. .., A, not outside d, the union of the halfplanes Sy = (dAk, 1 < k < n
will be called a n-fan if, when expressed in degrees, the measure of the dihedral
angle between any two halfplanes S; and S, 1 < @ < j < n, is a positive integer.

. a) Prove that every 91-fan has two perpendicular or two mutually estending
halfplanes.

b) For each 1 < n < 360, determine the number of n-fans containing two
perpendicular or two prolongating halfplanes (two n-fans are considered to be
identical if they can be obtained from one another through a rotation about d).
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Problem 42. Show that if a, b, c are the lengths of the sides of a triangle, R is
its circumradius and S is its area, then a® 4 b2 + ¢2 = 4

6R%+5%>3.

Problem 43. Given a point P inside triangle ABC, let ry, 2, r3, respectively,
denote the inradii of triangles PBC, PC A and PAB. Prove that
2L s62-va).
Ty T2 T3
Problem 44. Determine all complex numbers a, b, ¢ such that a® + b% 4 ¢3 =
24, (a+b)(b+c)(ct+a)=64,and|a+b|=|b+c|=|c+al

Problem 45. With reference to the standard notations in a triangle, prove that

/3
e (ma +2er +me)

11*" GRADE

Problem 46. a) Prove that if a matrix A € M3(R) has the property that
rang (A + XY) = rang (A + Y X) for every invertible matrices X, Y’ € Ms(R),
then there exists a € R such that A = als.

b) Let A € My, (R) (n > 2) be a matrix which is not of the form al,, a € R.
Prove that there exist X, Y € M, (R), with X invertible and rang (A + XY) <
rang (A + Y X).

Problem 47. Determine the largest integer n > 2 with the following property:
if A € Mu(C), A # A, forany A € C, then B € M,(C) and AB = BA
implies the existence of ag, a1, ..., an—1 € Csuchthat B = aol,, + a1 A+ --- +
%_1An—1_

Problem 48. Let n > 2 be an integer. Find the largest integer £ > 1
with the following property: for any k matrices Ay, A, ..., Ax € M,(C), if
I, — A1As--- Ay is invertible, then so is I, — Ar1)Ar(2) - - Ay for every
permutation 7 € Sk.

Problem 49. Consider a matrix A € M3(R) such that det(A% + I3) = 0.
Prove that:
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a) det(A + I3) —det(A — I3) = 4;
b) tr (43) = tr3(A).

Problem 50. Let A, B, C be matrices with real entries and let
X =AB+BC+CA, Y =BA+CB+AC, Z=A%+B?+C%

Prove that
det(2Z — X —Y) > 3det(X - Y).
Problem 51. A function f : R — Ry is continuous and has an irrational
period. Let M = max f. Evaluate
i JQ@)- 7).
n—o0 M )
Problem 52. A polynomial p € R[X] has the following properties: p(Q) C Q
and p(R \ Q) C R\ Q. Prove that degp = 1.

Problem 53. Find all continuous functions f : [0, 1] — R with the following
property: for every integer n > 3 and every arithmetic sequence ay, @, .. ., an,
the sequence f(a1), f(a2), .. -, f(an) is a geometric sequence.

Problem 54. Let f,g : R — R be such that f has the intermediate value
property and, for every z € R, the limit

i L@+ 1)~ 9(2)
h—0 h

exists and is finite. Prove that f = g.

Problem 55. The function f : (0,00) — R has the property that for every
a,b € R, a < b, there exists ¢ € (a, b) such that f is continuous at c. Given that
f(nz) < f((n + 1)z) for every z € (0, 00) and every n € N*, prove that f is
strictly increasing.

‘Problem 56. Let f : (0,00) — (0, c0) be a twice differentiable function such
that )

(@) + (=) 2 (=),

for all z > 0. Prove that the limit lim f(z) exists and is finite. Evaluate the limit.
z-00
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Problem 57. A function f : R — R satisfies the following condition: at every
zo € R:
aup L@ =T@D) _ o @)~ (o)

z<zy T — 0 z>z0 T — 30

Prove that f is convex and differentiable.

Problem 58. The sequences (an)n, (b )n and (zn ), of positive numbers sat-
isfy the conditions:

b
Jdim aray-can =0; lim —"—=0; and Zp41 < any + b,
for every n > 1. Prove that lim z, = 0.
n—so0
Problem 59. Consider an ellipse that is tangent to the sides of a rhombus
ABCD at their midpoints. Let A’, B’, ", D’ respectively, denote the orthogo-
nal projections of A, B, C, D onto a variable tangent to the ellipse. Prove that

AA'-CC'=BB'-DD'.

Problem 60. For each point L inside a given triangle ABC, consider the in-
tersections £ and F of the pairs of straight lines (AC, BL) and (AB,CL). Find
the locus of L for which the quadrilateral AFLF has an inscribed circle.

12* GRADE

Problem 61. Suppose A is aringsuchthat 1 + 1 +1+1+1 = 0 and
z%y® = 4324 for all 7,y € A. Prove that A is commutative.

Problem 62. Let Z[a] = {a + ab| a,b € Z}, where « € C \ Q and || = 1.
Prove that exactly two of the sets Z[] are rings under the usual operations with

complex numbers.

Problem 63. Define a sequence (a,),, by

1 o
= —d >1.
an /0 72 z, n>1

Prove that the sequence (nay )y, is convergent and find its limit.
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Problem 64. Let f : [0,1] — Ry be a continuous function with f(1) = 1

and let .
@) g5 n>1.

= »

o 1+z"

"15130% </01f(1‘)d:c —a") =1In2.

Problem 65. Find all natural numbers n such that the integral

/‘Dﬂ z(z){z}dz

Prove that

is an integer.
Problem 66. Let f : [0,00) — R be a continuous bounded function, with

f(0)=0. )
a) Prove that lim / f(nz™)dz = 0.
n—oo Jo

1
b) Evaluate lim / V1 + n2z2n dz.
n-so0 Jg

Problem 67. Prove that for any continuous function f : [0,1] - R,

/01 f(z) dz-/olz“f(a:) dz < %/01 2 (z)dz.

Also, find the cases of equality.
Problem 68. Find all integrable functions f : R — R such that

[ was [ roar e,
0 0

for all z € R and all n € N*.
Problem 69. Let f : [0,00) — R be a function such that |f(z) — f(y)| <
|z — y| for all z,y > 0. Prove that
b b2 a?
[ 1@az<or)+ 5 -as@) - 5,
a

for all a,b € [0,00), a < b. For f differentiable, also consider the cases of

equality.
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PROBLEMS AND SOLUTIONS

DISTRICT ROUND

7" GRADE

Problem 1. Let n >1 be an integer. Prove that the number v/11...144.. .4
(digit “1” occurs n times and digit “4” occurs 2n times) is an irrational number.

Solution. We have to prove that the number 11 ...144 ... 4 is not a square.

Let a be the n-digit number 11...1. Wehave 11...144...4 = a-10°" + 4a-
10" + 4a = a(10™ 4 2)2.

Since the remainder of a = 11...1 when divided by 4 equals 3, a is not a
square, therefore neitheris 11...144...4.

Problem 2. In triangle ABC, we have ZABC = 2 - ZACB. Prove that:

a) AC? = AB?> + AB - BC;

b) AB+ BC <2-AC.

Solution. a) Let BM be the angle bisector of ZABC.

The angle bisector theorem gives 42 = A hence 44 = 48, which
implies AM = #8245,

Since ZABM = £ACB, it follows that AABM ~ AACB, therefore % =
%,Lhatis, AM = ’;Bcz.

It follows that 4842 = % hence the conclusion.

b) Suppose that the parallel through A to BM intersects BC at P. We have
/APM = /MBC = ZABM = /PAB = ZC,hence AB = BP and AP =
AC. 1t follows that AB + BC = PB+ BC = PC < AP + AC =2-AC, as

needed.
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Problem 3. A set M containing 4 positive integers is called connected, if for
every z in M at least one of the numbers z — 1, z + 1 belongs to M. Let U, be
the number of connected subsets of the set {1,2,...,n}.

a) Evaluate Uy.

b) Determine the least n for which U,, > 2006.

Solution. Let a < b < ¢ < d be the elements of a connected set M. Since
a — 1 does not belong to the set, it follows that a + 1 € M, hence b = a + 1.
Similarly, since d+1 ¢ M we deducethat d—1 € M, hence ¢ = d— 1. Therefore,
a connected set has the form {a,a+1,d~1,d}, withd —a > 2.

a) There are 10 connected subsets of the set {1,2,3,4,5,6,7}:

{1,2,3,4};{1,2,4,5}; {1,2,5,6}; {1,2,6,7};

{2,3,4,5};{2,3,5,6};{2,3,6,7};

{3,4,5,6};{3,4,6,7} and {4,5,6,7}.

b) Call D = d — a + 1 the diameter of the set {a,b = a+ 1,c = d —1,d}.
Clearly, D > 3and D < n — 1+ 1 = n. For D = 4 there are n — 3 connected
sets, for D = 5 there are n — 4 connected sets, etc. Finally, for D = n there is one
connected set.

AddingupyieldsUp, = 14243+ -+ (n—-3) = ("—”3)2(";2)

Consequently, we have to find the lez;st n such that (n —3)(n—2) > 4012. By
inspection, we obtain n = 66. :

Problem 4. Let ABC be an isosceles triangle, with AB = AC. Let D be the
midpoint of the side BC, M the midpoint of the line segment AD and let N be
the projection of D on BM. Prove that ZANC = 90°.

Solution. Consider the point S such that ABDS is a parallelogram. Clearly,
ADCS is arectangle and let R be the point of intersection of its diagonals. In the
right triangle DN S the line segment N R is the median from the right angle and
therefore VR = 4 - SD = } - AC.

Since R is the midpoint of AC and NR-= } - AC, it follows that the triangle
ANC is aright triangle, as desired.
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8th GRADE

Problem 1. Let ABC be aright triangle (with A = 90°). Two perpendiculars
bn the triangle’s plane are erected at points A and B, and the points M and N
are considered on these perpendiculars, on the same side of the plane, such that
BN < AM. Tt is known that AC = 2a, AB = ay/3, AM = a and that the angle
between the planes M NC and ABC equals 30°. Find:

a) the area of triangle M NC;

b) the distance from the point B to the plane M NC.

Solution. a) The area of triangle ABC equals a? - /3. On the other hand; we
have areaABC] = area[M NC] - cos o, where a = 30° is the angle between the
planes MNC and ABC. It follows that area[ MNC] = 2 - a®.

b) Suppose that the lines M N and AB intersect at P. Let T be the projection
of the point A on PC. Using the theorem of the three perpendiculars, we obtain
that MT L PC,hence ZMTA = a = 30°.

Since AB = a, in triangle MAT we find AT = ay/3, so ZACT = 60°,
hence AP = 2a+/3. It follows that B is the midpoint of the line segment AP.

Project B on PC in Q. Using again the theorem of the three perpendiculars,
we obtain NQ L PC. Then BN = £, BQ = 243, NQ = a and the altitude BS
of the right triangle BN Q equals %",’%‘2 = “ﬁé. This is the requested distance.

Problem 2. For each positive integer n, denote by u(n) the largest prime num-
ber less than or equal to 7 and by v(n) the smallest prime number greater than n.
Prove that

1 . 1 1 1 1 1

@@ T @ T a@e@ T uotop (o) ~ 2 2011

Solution. Let p and q be consecutive prime numbers. Then there are ¢ — p

numbers 7 such that p < n < g and, for each such number, we have u (n) = p
and v (n) = g. It follows that the term p—‘q appears in the sum exactly g — p times.
* Since 2003 and 2011 are consecutive primes, the sum becomes

3-2 5—3+ +2011—2003_
23735 20032011
~2 3"3 5 2003 2011 2 2011
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Problem 3. Prove that there exist infinitely many irrational numbers z and y
suchthatz +y =2y € N.

Solution. Letn = 24y = zy. Theny = n—x,s0n = z (n — z) . We obtain

o= n+n?—4n
=
Since for n > 5 we have

(n-3)?<n?—dn<(n-2)%,

it follows that the number /7% — 4n is irrational. Consequently, we can choose
'n.+\/n2-!_~4_n and y = 2=V
% .

=

Problem4. a) Prove that one can assign to each of the vertices of a cube one of
the numbers 1 or —1 such that the product of the numbers assigned to the vertices
of each face equals —1.

b) Prove that such an assignment is impossible in the case of a regular hexag-
onal prism.

Solution. a) Let ABCDA'B'C’D’ be the cube. A possible labeling is the
following: assign +1 to the vertices A, B, D, A’ and —1 to the other vertices.

b) A contradiction is obtained by considering on one hand the product of the
numbers assigned to all lateral faces and, on the other hand, the product of the
numbers assigned to every second lateral face.

9*" GRADE

Problem 1. Let z,y, z be positive real numbers. Prove that the following
inequality holds:

1 n 1 4 1 171 n 1 1
224yz  yltzz 224zy 2 \zy E+Z ’
Solution. Using the AM-GM inequality we obtain z2 + yz > 2+/z%yz, and
therefore
. 1
, < 1 Vyz )
2?2 +yz = 2xfyz 2zyz
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Ilfollowstha\lz;-zl—yZ < #WE\/y_zbulz\/y_zgzy%ﬁ =Yz (AM-

GM again). The equality holds when z = y = 2.

Problem 2. The entries of a 9 x 9 array are all the numbers from 1 to 81. Prove
that there exists k € {1,2,3,...,
line £ differs from the product of the numbers in the column £.

9} such that the product of the numbers in the

Solution. Suppose, by way of contradiction, that for each i € {1,2,...,9},
the product of the elements in line i equals the product of the elements in column i.
Between 40 and 81 there are exactly 10 prime numbers, namely 41, 43, 47, 53, 59,
61, 67,71, 73, and 79. We prove that these numbers belong to the main diagonal
of the table. Indeed, if 40 < p < 81 is a prime number, then it is the only multiple
of p in the table. If p lies on line 7, by the assumption it follows that it lies on
column i, as well, that is, it lies on the main diagonal.

Therefore, on the main diagonal are all the 10 prime numbers, a contradiction.

Problem 3. Let ABC'D be a convex quadrilateral. Let M and N be the mid-
points of the line segments AB and BC, respectively. The line segments AN and
BD intersect at E and the line segments DM and AC intersect at F'. Prove that
if BE = {BD and AF = } AC, then ABCD is aparallelogram.

- —

Solution. DenoteAB = u, BC = CD = au +bv witha,b € R. Tt

followsl.hatAD (a-)-l)u + (b+1)v AN_ u+3 v.
s 3
Since BD E 3BE we obtain AE = M M u + —1'— v.
Because AE si AN are collinear vectors, we deduce that a —_2)b +1=0.
—

S_il)nilarly, we obtain 2a+b+ 2 = Ohencea = —1,b = 0, thatis, CD = —AB =
BA, whence ABC D is a parallelogram.

Problem 4. For each positive integer n, denote by p(n) the largest prime num-
ber less than or equal to » and by g(n) the smallest prime number greater than 7.
Prove that

- 1 1
> o <7

Solution. Denote by 2 = p; < ps < -+ < pm <
< k < pit+1 — 1 wehavep(k) =

- the sequence of the

prime numbers. For p; < i, q(k) = pit1.
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Suppose that p, = g(n). Then

n pm—1 m—1pt1—1
Ezp k)tz(k < Z P(k)q ; =

i=1

10" GRADE

39

Pit1 —Pi
q(k) Z

=1 PiPit1

_"’2‘2‘(1 1)_1 1<1
B Pi  Pip1 2 pm 2

Problem 1. Consider the real numbers a,b,¢ € (0,1) and z,y, 2z € (0, c0),

w1 o

such that
a® =be, bW =ca,
Prove that
LENSE SIS S
24z 24y 24z =
Solution. Denote A = log% a, B = log% b, C =
y= C+A 2= A%B.
The inequality becomes

1 3
LirEE <7

or, denoting S = A+ B+ C,

o

Al

A
25as

The latter is equivalent to

A
_ZS+A>__ or Z( S+A> >3

or

1
$Y 574>

which follows from the Cauchy-Schwartz inequality.

= ab.

log% c. Thenz =

9

B+C

A
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Problem 2. Let ABC be a triangle and consider the points M € (BC), N €
(CA), P € (AB) such that 45 = ZM = SI. Prove that if MNP is an
equilateral triangle, then ABC is an equilateral triangle as well.

Solution. Let \ = 45 = BM = SN

We use complex numbers and we choose the point M as origin. Furthermore,
we can assume that the complex numbers corresponding to the points IV and P are
1ande = cos § + isin %, respectively.

Suppose that the complex numbers corresponding to the points A, B,C are
a, b, ¢, respectively. We have then

e=(1—=Na+X, 0=(1-XNb+X, and 1=(1-Nc+Aa.
It follows that =2 = . Therefore, AC=ABand A= 3.

Problem 3. A prism is called binary if one can assign to each of its vertices
a number from the set {—1, +1}, in such a way that the product of the numbers
assigned to the vertices of every face equals —1.

a) Prove that the number of vertices of every binary prismis divisible by 8.

b) Prove that there are binary prisms with 2000 entries.

Solution. a) Suppose the base of the prism is a polygon with n vertices. Then
the product of the numbers assigned to the vertices of the lateral faces equals
(—1)™, but in the same time it must be equal to 1, since every vertex is counted
twice. It follows that  is an even number.

Now, if n = 4k + 2, for some k, then we consider the product of the numbers
assigned to the vertices of every second lateral face. We obtain (—1)*+! = 1.
This equals the product of all numbers, that is 1, which is a contradiction. This
proves the result.

b) Label the vertices Ay, As, As, ..., Agor with —1 and label the rest of the
base vertices with 1. For the upper base, label all with 1, except Aggg, labelled —1.

Problem 4. a) Find two sets X,Y suchthat X NY =0, XUY = Q} and
Y={a-blabeX}

b) Find two sets U,V such that UNV =0, UUV =Rand V = {z + y |
z,y € U}
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Solution. a) As an example, we can choose X as the set of all products of
the type p{'p5? - - - p*, where p1,pa, . . ., px are distinct prime numbers, o; are
n
integers and Y «; is odd. Finally, we set Y = Q% \ X.
i=1
b) Choose
U=|JBk+1,3k+2) and V=R\U.
keZ

It is not difficult to check that these sets satisfy the requested conditions.

11" GRADE

Problem 1. Let = > 0 be a real number and let A be a 2 x 2 matrix with real
entries, such that
det(A? + zly) = 0.
Prove that
det(A? + A + zlp) = x.

Solution. We have det(A +iy/zl5) - det(A —i/zI2) = 0; therefore, denoting
by d the determinant of A and by ¢ its trace, it results d = z and ¢ = 0, hence
A2 4 zly = 0. It follows that det(A? + A + zly) = det(A) = .

Problem 2. Let n, p > 2 be integer numbers and let A be a n x n real matrix
such that AP+1 = A,

a) Prove that rank(A) + rank(I,, — A?) =n.
b) Prove that if p is a prime number, then

rank(l,, — A) = rank(I, — A%) = ... = rank(I,, — AP71).

Solution. a) The Sylvester inequality yields rank(A) + rank(l, — A?) <
rank(A(I, — AP)) + n =n.

On the other hand, rank(A) + rank(I,, — AP) > rank(AP) + rank(I, — A?) >
rank(A? + (I, — AP)) = n.

b) Observe thatif k,m € N* and k |m then rank (I,, — A*) > rank(I, — A™).

Indeed, I,, — A™ can be written as a product of two matrices, one of them
being I, — A¥, and rank (XY') < rank (X) for all matrices X, Y.
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Letk € N,1 < k < p— 1. We have A+ = A for all k € N. Since p is
a prime number, the remainders of the numbers p + 1,2p + 1,..., kp + 1 when
divided by k are pairwise distinct. Therefore, one of these numbers, say ¢ = gp+1,
is divisible by k. Thus, rank(l, — A) > rank(I, — A*) > rank(l, — A*) =
rank(I, — APat1) = rank(I, — A).

Problem 3. The sequence of real numbers (r )n0 satisfies
(Znt1 — Zn)(Tng1 + 2 +1) <0, n >0.

a) Prove that the sequence is bounded.
b) Can such a sequence be divergent?

Solution. a) The hypothesis implies #2,; + Tnt1 < 72 + Tn, Whence the
sequence v, = z2 + Ty, is decreasing.

Since (y,) is clearly bounded from below, it is a convergent sequence. There-
fore, (z,) is bounded.

b) The answer is “yes”; an example is the sequence z, = i(z;l):

Problem 4. We say that a function f : R — R has the property (P) if for every

real z,

sup f(t) = z.
<z

a) Give an example of a function having property (P) which is discontinuous

at every real point.
b) Prove that if f is continuous and has property (P) then f is the identical

function.

Solution. a) An example is

f(z)={ T ifzeqQ;

z-1 ifzek\Q.
b) Observe that sup f(¢t) = sup f(t), forally < z.
t<a y<t<z

Since f is continuous, for each n € N*, there exists z,, < z, such that

@~ 1@ <
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forall ¢ € [y, x]. Consequently,

sup f(t) - f(z)| <

TpSIKT

)

S~

thatis, |z — f()| < &, for all n € N*. It follows that f(z) = .
12" GRADE

Problem 1. Let f1, fa, ..., fu : [0,1] = (0, 00) be continuous functions and
let o be a permutation of the set {1,2, ..., n}. Prove that

7 [ =) o[t
,-1:1/0 Toi @ dz >i1;11/° fi(z) dz.

Solution. Since fi(z) > 0forz € [0,1],4=1,2,...,n, we can use Cauchy-
Schwartz inequality:

( 91 ff:ffi) d’) (/01 foy(@) dl‘) > <-/01fi(z) dx>2,

foreachi = 1,2,...,n. Taking the product of these inequalities yields the result.

Problem 2. Let G = {A € M,(R) | det(A) = +1} and H = {A €
M;(C) | det A = 1}. Prove that, under matrix multiplication, G and H are
non-isomorphic groups.

Solution. It is not difficult to show that G and H are groups. If they were
isomorphic, then the equation X2 = I, should have the same number of solutions
in both groups. Cayley theoremimplies that this equation has exactly two solutions
in H, namely +1I5.

Since the equation has other solutions in G \H,eg.,

0
X = a , aeC*
1/a 0

it follows that G and H are not isomorphic.
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Problem 3. Let A be a finite commutative ring having at least two elements.
Prove that for every positive integer n > 2, there exists a polynomial f € A[X],
with deg f = n, having no roots in A.

Solution. Observe that the function ¢ : A — A, (z) = ™ — =, is not
one-to-one, since ¢(0) = 0 = ¢(1).

Because A is a finite set, it follows that ¢ is not onto either.

Therefore, one can find a € A \ Im ¢. But then, the polynomial f = X™ —
X — ahas noroots in A.

Problem 4. Let F = {f : [0,1] — [0,00) | f continuous} and letn > 2 be a

positive integer. Determine the least real constant c, such that

1 1
/ F(¥/m)de < c/ f@)de
0 0
for every f € F.

Solution. Substitute {/z = ¢ to obtain

/le( Vz)dz = n/ult"‘lf(i)dt < /01 70,

hence ¢ < n.
For p > 0, the function f,, : [0,1] — [0, 1], f(z) = 2P, belongs to F.
fol zRdr < ¢ fol 2Pdz implies -"i—p < pﬁ, therefore ¢ > 1’;—*:.
Finally, ¢ > lim ‘;% = n, that is, ¢ > n. Consequently, ¢ = n.
1 Sm

‘PROBLEMS AND SOLUTIONS

FINAL ROUND

7" GRADE

Problem 1. Consider the triangle ABC' and points M, N belonging to the
sides AB, BC respectively, such that ZZN = AM Let P be a point on AC.
Prove that the lines M N and N P are perpendicular if and only if PN bisects the
angle ZM PC.

Solution. Let T be the intersection point of the parallel to AC which contains
N with line AB. From $& = 4L we get AM = 2 - AT, thus T is the midpoint
of AM.

Denote by Q the intersection point of MN and AC. In triangle PMQ the -
point N is the midpoint of M Q.

In the triangle PMQ, PN is a median, thus PN is perpendicular to M N if
and only if PN bisects the angle ZM PC.

Problem 2. A square of side r is divided into 72 unit squares each colored
red, yellow or green. Find the minimum value of  such that for any such coloring

we can find a row or a column containing at least three squares of the same color.
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Solution. The number is 7. Forn = 7, at least 17 squares have the same color
by the PGH principle (49 = 3 - 16 + 1).

As 17 = 7- 2 + 3, we get, by the same principle, that among the 7 rows there
is one containing three squares of the same color. The same argument works for
columns.

The fact that for n = 6 the result is no more valid is given by the following
example.

T

@ 3 8 « =
3 8«

8N 8 @ 3 9
e«

q
a
T

g9
a T g a

3
32 8 @ = 9

g
a

2 8 9@

9
The same table can be used to find counterexamples for any n < 6.

Problem 3. In the acute triangle ABC angle C equals 45°. Points A; and By
are the foots of the perpendiculars from A and B respectively. Denote by H the
ortocenter of ABC. Points D and E are situated on the segments AA; and BC,
respectively, such that A; D = A1 E = Ay By. Prove that:

0 A;By = |[AEAS

b)CH = DE.

Solution. a) As the triangle ABC is acute, we have ZABC > 45°, so the

midpoint M of BC is situated on the segment A;C. We get BiM = B_ZC -
A&%’AﬁaﬁdAxM:MB—AIB=_B_C_AIB= AC;A B

In the right triangle M A; By we also have

AB + AC\? [A1C — AiB\? A1B?+ A,C?
2 + 2 = 2 '

A1B? + A,C?
AB; =,/_1_%‘_,

b) As the right triangle DA; E is isosceles we have succesively

A1B?=A;M*B,M*= (

thus

DE = AE-V2 = A1B1-V2 = A B> + A;C? = VA1 B? + A A% = AB.
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The equality of triangles AA;B and CAH implieé AB = CH, and, as a
consequence CH = DE.

Problem 4. Let A be a set of nonnegative integers containing at least two
elements and such that for any a,b € A, a > b, we have lu%ﬂb € A. Prove that the
set A contains exactly two elements.

([a, b] denotes the least common multiple of a and b).

Solution. We begin by proving that A'is finite. For, if b = min Aanda €
A\ {b}, then from (a — b)|[a, ] we get (a — b)|ab. As (a — b)|(a — b) we get
(a — b)|ab — b(a — b), thus a — b[b?, and, in wm, a < b+ b2 Buta € A was
arbitrarily chosen, so A is finite.

Puta = maxA and b = min A. If d = (a,b), then b = dz,a = dy, with
z,y € N* and (z,y) = 1. Then %;—b% = y—’j% € N*. As z,y and z — y are mutually
coprime, we deducey —z = lory =z +1, implying a = d(z + 1) and b = dz.
Then 28 = 2(z + 1) € A, from which b < z(z + 1) <aord € {z,z +1}.

First case. d=x.

We have a = z(z + 1) and b = 2. We show that A has no other elements.

By contradiction if ¢ = min (A4 \ {b}), we get, as before, &', z € N* such that
a=d’(z+1)andc=d’z.'l‘hen£—:;—°cl —2(z+1) € A Asz(z+1) #a2? =b,or
c< z(z+1) <aweobtaind' € {z,z+1}.

Ifd = z thena = 2(z + 1) and, as a = z(z + 1), we would have z = 2, a
contradiction (this would leads to b = c).

Ifd =z+1,thena= (z+1)%and a = z(z + 1), a contradiction. Thus, in
this case A has exactly two elements.

Second case. d =z + 1.

We have a = (z + 1)? and b = z(z + 1). As in the previous case itis easy to
show that A has no other elements.

8" GRADE

Problem 1. Consider a convex poliedra with 6 faces each of them being a
circumscribed quadrilateral. Prove that all faces are circumscribed quadrilaterals.
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Solution. It is known that a quadrilateral is circumscriptible if the sums of
opposite sides are the same. If 5 of the faces of the convex body are circumscribed
quadrilaterals, we can suppose that the body is ABCDA’B’C’ D’ with quadri-
laterals ABC' D and A’B’C’D’ opposite. Denote by z, v, z,t and 2/, ¢/, 2/, ¢/ and
a,b,c,d the sides AB,BC,CD,DA and A’'B’,B'C’,C'D',D'A’ and
AA’, BB',CC', DD’ respectively. Suppose all faces except A’B’'C’'D’ are cir-
cumscribed quadrilaterals. Then

' +y =(@-a-b)+(z—c—d)=(z+2)—a-b—c—d
=({t+y)—a—-b—c—d=t+7v,
thus A’B’C’ D is also circumscribed.

Problem 2. Given a positive integer n, prove that there exists an integer k,

k > 2 and numbers ay, ag, . .., ax € {1, 1} such that
n= Z a,-aj.
1<i<j<k

Solution. Consider the identity

(ar+ar+-ta) =af+ad+-+af+2 > aa,
1<i<j<k
Thus, the problem amounts to finding an integer £ > 2, and a1, as,...,a; €
{=1,1} suchthat2n = (a1 + ag + - + ax)? = (a} + a + --- + a2) = (o) +
ag + -+ +ag)? — k.

Let m be the number of ones in the sequence aq, as, .. ., ax and p = k—m the
number of minus ones. We have 2n = (m — p)? — k, or, denoting byl=m—p,
2n =12+ 1 —2m. Wehave to find I, m € N.

Takel €N, 1> 2with 2 +1 > 2nand m = £H=2n ¢ N,

Then k = —1 + 2m = (% — 2n satisfies the given condition with a; = ay =

-+ =.a;, = 1 and the remaining ones equal to —1.

Problem 3. Let ABCDA;B;Cy Dy be a cube and let P be a variable point
on side [AB]. The plane through P, perpendicular to AB meets AC at Q. Let M
and N be the midpoints of the segments A; P and BQ, respectively.
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a) Prove that the lines M N and BC are perpendicular if and only if P is the
midpoint of AB.
b) Find the minimal value of the angle between the lines M N and BCj.

Solution. a) Denote by O the center of the square BCC1B;. If P is the
midpoint of AB, then Q is the midpoint of AC, thus PBOQ is a parallelogram.
This means that the points P, N and O are collinear and M N is parallel to A;0.
As the triangle A1 BC| is equilateral, we get A;O L BCy, thus MN L BCy.

For the converse, M N is perpendicular to BC}, and, as BC is also perpen-
dicular to A;O we have that A;O || MN, or BC; L (A;OP). But as BC} is
not perpendicular to OP, we must have A;O || M N. This means that N is the
midpoint of OP.

1t follows that P BOQ is a parallelogram and as a consequence of the fact that
Q is the midpoint of ACy, we get that P is also the midpoint of AB.

b) Let U be the point where the parallel through Q to AB meets the line BC}.
As QPBU is aparallelogramwe get PN = NU, thus M N bisects the sides A; P
and A1U of the triangle. As a consequence, the angle between M N and BCy
equals the angle between A;U and BC}. The triangle A; BC; is equilateral. This
implies that the angle between the lines A,U and BC} is at least 60°. Equality
occurs for P = Aor P = B.

Problem 4. Consider real numbers a, b, c contained in the interval 3, 1].
Prove that
a+b b+c c+a
2< < 3.
= 1+c+ 1+a,+ 1+b

Solution. We begin by proving the lefthand-side inequality. Since a,b > %,
we have a + b > 1, thus
a+b a+b
T+c” atbte

and the like.
Summing up the three we obtain

o
4
o

(@D 40+ eta) ath bic

2=
a+b+c I+c l+a

+

+
o
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For the second inequality, observe that the considered expression can be writ-
ten

. Z @, _¢
1+c¢ 1+4a)’

SO

Asa,c<1,wehaveﬁgﬁandh+ﬂgc+%,
a c a
<—+ =
7 T7aSa+c  cra

and the like. Summing up the three we get the desired result.

1

9*" GRADE
Problem 1. Find the maximum value of
=+ 1)+ 1),
forz,y € Rsuchthatz +y = 1.

Solution. Putzy =t;as 2z +y = 1 weget (z® + 1)(3® + 1) =3 =3¢t + 2.

Fromz +y = 1 we obtain ¢t = zy < (1*23'1-)2 = 1. Itis easy to prove that
¢ — 3t +2 < 4fort < §, with equality if and only if ¢ = —1.

We infer that (z° + 1)(3® + 1) < 4 forz,y € Rwithz +y = 1 and
(¢® 4+ 1)(—1/¢® + 1) = 4, where ¢ is one of the roots of 22 —z — 1 =0.

Remark. In fact, for z,y € R, we have

[* + @ +9)3)° + (= +9)°] <4z + )%,

with equality if and only if 22 + 3zy + 2 = 0.

Problem 2. Consider the triangles ABC and DBC such that AB = BC,
DB = DC and ZABD = 90°. Let M be the midpoint of BC' Points E, F, P are
suchthat E € (AB), P € (MC),C € (AF) and ZBDE = LADP = ZLCDF.
Prove that P is the midpoint of EF and DP L EF.

Solution. Put w = ZBDE = ZMDP = ZCDF. In the right triangles
DBE, DM P, DCP we have
DC

BD coséMDP=% cos ZCDF = —.

cos/BDE = B P’ DF
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Thus BD = DE cosu, DM = DP cosu, DC = DF cosu.

Moreover, ZBDC = ZEDF and ZBDM = ZEDP. We get from here
that the triangles DBC and DEF are similar and points M, F' correspond to
each other.

Point M is the midpoint of BC, implying that P is the midpoint of EF. As
DM L BC we conclude that DP L EF.

Problem 3. Consider quadrilaterals ABCD inscribed in a circle of radius r,
such that there is a point P on sidea C'D for which CB = BP = PA = AB.

a) Prove that there is a configuration of points A, B,C, D, P for which the
above configuration is possible.

b) Prove that for any such configuration we also have PD = DA = 7.

Solution. a) Consider a chord AB such that AB < /3 and P in the interior
of 'the circle such that triangle ABC is equilateral. Let C be a point on the circle
such that BP = BC and AC N BP # 0. Line PC meets again the circle at D.
The configuration thus obtained fulfils the conditions in the statement.

b) Let ZBPC = £BCP = z. As the triangle BPC is isosceles, we get
/PBC = 180° — 2z. The quadrilateral ABCD is cyclic, ZBCD = z, thus
/DAB = 180° — z. Therefore, ZDAP = 120° — z,ZABC = 240° — 2z,
and consequently, ZADC = 2z — 60°. In the triangle ADP we have ZAPD =
120° — z, thus DA = DP.

Triangles ABD and PBD are equal, thus ZABD = ZPBD = 30°. More-
over, as ZABD = 30° we get DP =r.

Problem 4. A table tennis competition takes place during 4 days, the number
of participants being 2n, n > 5. Every participant plays exactly one game daily (it
is possible that a pair of participants meet more times). Prove that such a competi-
tion can end with exactly one winner and exactly three players on the second place
and such that there is no player losing all four matches. How many participants
have won a single game and how many exactly two, under the above conditions?

Solution. Denote by ny, the number of participants that won exactly £ games,
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0 < k < 4. Under the given conditions we have
no =0, ni+ne+nz+mng=2n2>10. (1)
The total number of games is 47, thus
4n=1-n1 +2-ng9 +3-n3 +4-ng (counting the winners) (2)
4n=3-n1+2-ng+1-n3+ 0-n4 (counting the loosers) 3)
thus 2n; = 2ng3 + 4n4. Substituing in (1) we obtain
ng + 2ng + 3ng = 2n. 4)

The other conditions of the problem will imply

g n3 ng ny n9 + 2n3 + 3ny
0 0 1 3 1

0 1 0 3 2

1 0 0 3 3

0 1 3 5

1 0 3 6

giving a contradiction.
It remains the case nq = 1, ng = 3, which implies ny = 2n — 9, n; = 5.

For a model, denote by a the winner; by by, b, b those on the second place; ’

by c one of the 2n — 9 winners of exactly two games and by d1, d2, d3, dg, ds those
five with only one won game. The remaining 2n — 10 players having won two
games, will be denoted (for n > 5) by c1,...,can—10. Finally, by zy we will

mean that = won the game against y/.

Day
1  aby cdy bads bzdy dids ciciyr
2 aby bidy cd3 bady dads ciciyq
3 abs bidy bady dsc dzdy cipic
4  ac bidy bady bzdy dyds ciyici,

wherei =1,3,...,2n —11.
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10" GRADE

Problem 1. Consider aset M with n elements and let (M) denote all subsets
of M. Find all functions f : P(M) — {0,1,2,...,n}, satisfying the following
two conditions:

a) f(A) # 0, for any A # 0, and

b) f(AUB) = f(ANB) + f(AAB), for any A,B € P(M), where
AAB = (AUB)\ (ANB).

Solution. From condition b) we obtain
fOU0)=fOND)+ f(PAD),

giving f (0) = 0.
By b), for A, B € P(M), with A ¢ B, we get

f(B)=f(AUB) = f(A) + [ (B\A).

From a) we have f (B\ A) # 0, thus f (B) > f(A).
Consequently, for any permutation (o1, ag, . . ., o) of the set M we have the
sequence of inequalities

0=7(0) < f({e1}) < f({a,a2}) <+ < f({or,00,...,0n}).
Since f(A) € {0,1,...,n}, forall A € P(M), it follows that

f{en, 09, 505)) = 4,

forany j € {1,2,...,n}. )
Consequently, f(A) = |A|, for any A € P(M). Itis easy to see that this
function fulfils the given conditions.

Problem 2. Prove that for a,b € (0, §) we have

sin®a+sin™b _ sin™ 2a + sin™ 2b
(sina +sinb)® ~ (sin2a + sin 2b)""
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Solution. Let » € N* and consider the function f, : [0,00) — R, f,(z) =
(3 =)™ + (4 + t)™ which, as

(3] 1\ "2
fn<t)=s203k<—) >0

k=0 2

isincreasing. Let z1, 2,41, %2 € (0,1)suchthatzy +zo = y1+yo = y1+yp = 1
and 129 < y1yo. We show that 27425 > yP+44, forany n € N*. By symmetry,
we may suppose 1 < z2 and y1 < yo. Then, denoting ¢ = 4~y =25~ 1 >0
ands=%—y; =y —4 >0, wehavet > s > 0. Thus

C @742y = fot) 2 fa(s) = 47 + 45, forany neN*.

Fora,b € (0,%), put

- sina sinb
== i Ty = — 0
1= Sna+sind’ 2 sina + sinb’
_ sin 2a sin 2b
n= Sin2atsin2e’ 27 sin2a +sin2b°

Clearly, 1, 2, y1,y2 € (0,1) and z1 + 25 = y; +yo. The inequality 129 < 7172
is equivalent to

(cosa — cosb)?(cos? a + cos? b + cosa cosb — 1) >0,
which is true for any a, b € (0, T). This ends the proof.

Problem 3. Prove that the sequence given by ay, = [nv/2] + [2/3],n €N,
contains an infinity of odd nubers and an infinity of even numbers.

Solution. Let z, = [nv/2], yn = [nV3], n € N. We have z,, — zn,
Yn+1— Yn € {1,2}, foralln € N.

Suppose, by way of contradiction, that there is £ € N such that all elements
an, n > k, have the same parity. As 2 < an41 — an < 4, forany n € N, we get
that any1 — an € {2,4}, foralln > k.

If any1— an =2, then Tpi1 — Tp = Yny1 —yn = 1, andif anyq — a, =4,
then Tpp1 — T = Ynt1 —Yn = 2.
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ThUS Yn, — Tn = Yn+1 — Tns1, for all n > k, which gives yn, — z, = yx — 2k,
foralln > k.
Buty, — zn > nv/3 — 1 —ny/2, for any n, so
n < LTk +1
V3-v2'

for all n > k, a contradiction.

Problem 4. Givenn € N, n > 2, find n disjoint sets A;, 1 < 7 < n, in the
plane, such that:

a) for any disk C and any i € {1,2,....n}, we have A; N Int (C) # 0; and

b) for any line d and any i € {1,2,....n}, the projection of A; on d is not all
of d.

Solution. There are a lot of natural ways to construct such sets. For example,
take p1, pa, . - . , Pn. square free positive integers and consider the sets

my ma
Ak={< , ) ml,mzquhEZ‘}»
q1y/Px’ 42/Pk !

It is easy to see that any such set is countable and dense in the plane.

11" GRADE

Problem 1. A is a square matrix with complex entries. Denote by A* its
adjoint (the matrix formed by the cofactors of the transpose). Prove that if there is
an integer m > 1 such that (A*)™ = 0, then (A*)2 = 0,,.

Solution. From det(A*)™ = 0, we have det(A*) = 0 and det(A) = 0. We
claim that the rank of A* is at most 1. For if rankA < n — 2 then A* = 0y, and if
rank A = n — 1then AA* = 0, and by Sylvester’s inequality 0 = rank (AA*) >
rank (A)+ rank (A*)—n = rank (A*)— 1. Suppose now that m > 3 (otherwise,
there is nothing to prove). As A has at most rank 1 there is a row matrix X €
M 1,(C) and a column matrix ¥ € M,1(C) such that A = Y X. Denoting
XY = a € Cweobtain 0, = A™ = Y(XY)""1X = a™" 'YX = a™ 14,
implying a = 0 or A = 0,,, 50 A? = aA = 0,,.
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Problem 2. A matrix B € M, (C) will be called a pseudo-inverse of a matrix
A€ My(C)if A= ABAand B = BAB.

a) Prove that any square matrix has at least one pseudo-inverse.

b) Characterize the class of matrices with a unique pseudo-inverse.

Solution. a) Denote by r the rank of A. This means that by elementary trans-
formations, A goes over to a matrix that has zeroes everywhere except the first
entries on the main diagonal. That s, there exist two invertible matrices P and Q
such that PAQ has 1 on the first r entries on the main diagonal and 0 elsewhere.
We thus have :
0

PAQ=D=
0 0 ... 0
This means that B = QDP is a pseudo-inverse of A.

b)If A = 0, then B = 0,, and, if A is invertiblethen B = A~1. We claim that
in any other situation A has an infinite number of pseudo-inverses. Such matrices
can be obtained, for instance, by replacing D by any matrix of the form

1 0 ... z

0 1 ... 0
D, = )

0 0 ... 0

which coincides with D, except that the (1, n)-entry is now any complex z.

Problem 3. Consider two systems of points in the plane: Aj, A, ..., A, and
By, By, . ..., B, having different centers of gravity. Prove that there is a point P
in the plane such that

PAy+PAs+---+PAy,=PB;+ PBy+---+ PB,.

Solution.” Consider a Cartesian system of coordinates such that the two cen-
troids have different z-coordinates. Suppose coordonates are A; (a;, a}) and B(b;, b))
We are looking for P on Oz: P(p,0). Consider f : R — R, defined by

f(p) = PA1+ PAy+--- 4+ PA, — (PBy + PBy +--- + PBy).
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‘We have

n

—_ 2 _p2 2 _ 2 n
2p(bx — ax) + aj — by + a2 — b]] _ Z(bk —aw)
=1

lim = lim
Jm £ (p) rro0 2 Jp— an) + A+ /(b — o) F 0P

and
n

Jm ) == (bk —ax).

k=1
Since f is continuous, by the intermediate value property, f(p) = 0 for some
real p.

Remark. The condition on the centroids is necessary only for n > 3. For, if
Bi, By, ..., By, are the mid-points of [A;Ag], [A2As], ..., [AnA1], P can exist,
unless the A; are collinear.

Problem 4. Consider a function f : [0,00) — R, with the property: for any
z > 0, the sequence (f(nz))nxo is increasing.

a) If f is also continuous on [0, 1], does it follow that it is increasing?

b) What if f is continuous on Q..?

Solution. a) The answer is “no”. A counterexample is

B z ifz€[0,1]UQy;
f(z)—{ 201 ifze(l,00)\Q

b) The answer is “yes”. The following remark is an easy consequence of the
hypothesis: if (7, ) is an increasing sequence of rational numbers and z is positive,
then the sequence (f(rnz)) is increasing.

Suppose, by contradiction, that for some z < y we have f(z) > f(y). Con-
sider a rational number a in (z, y). Find an increasing sequence of rationals (g,)
and a decreasing sequence of rationals (r,) such that (g,z) — a and (rny) — a.
We get, by continuity

f(2) < lim f(ane) = f(a) = lim_ f(ray) < f(v),

n—oo

a contradiction.
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12*» GRADE

Problem 1. Let K be a finite field. Prove that the following are equivalent:
al+1=0;
b) for any f € K[X] with deg f > 1 the polynomial f(X 2) is reducible.

Solution. To prove that a) implies b), consider F : K — K, givenby F(z) =
22, If F(z) = F(y) we get 22 = 32, thus (z —y)(z +y) = 0,50 (z —9)*> = 0,
or z = y. This means that F is one-to-one, consequently onto (for K is finite).

If f = Z": a, X ¥, then there exists by € K such that a; = b2 for k =
0,1,...,n. ’fT:)Ss

' n 2
f(X?) = Z bX2 = Zb2xz’° +23 bk X = <Z ka’“)
k=0 i<j k=0

Thus f(X?2) is reducible.

Conversely, take a € K andlet f = X —a. Asg = f(X?) = X?> —ais
reducible, it has a root in K. This means that F' is onto and thus one-to-one. As
F(1)=F(-1)=1,wegetl = —1.

Problem 2. Prove that

JL‘&"(""/ 1+x2" ) /f Yz,
where f(z) = Z2&Z for z € (0,1] and £(0) =

Solution. Denote

‘We have

x 1
I=n <— —-/ z(arctgz™)’ dz)
4 Jo

1 1
=n (% — zarctg ™ |,1) +/[ arctgz"da:) = n/ arctg z"dz
0 0
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1 1
,=n/ In&r_cﬂdzzn/ gognm12Cte”
0 zn ) z"
1 z™
tgt
=/ T / a4 ———dt | dz
o 0 t
=" arctgt 1" arctgt
=I/ arcgdtl‘ / / achgdt
0
/ arctgt ( arctgt )
= dz.
0

Using the inequality arctgt < ¢, ¢ > 0, we obtain

1 z™ 1 z™ . 1
og/ / awtgtdt / / dt dz=/ o de = —1,
0 0 0 0 0 n+1

which implies
1 ™
lim ( / amtgtdt)d =0,
n—oo Jo 0 t

whence the conclusion.

Problem 3. Let G be a group with n elements (n > 2) and let p be the smallest
prime factor of n. Suppose G has a unique subgroup H with p elements. Prove
that H is contained in the center of G. (The center of G is the set Z(G) = {a €
G | az = za, Yz € G}.)

Solution. For any g € G the set gHg~! is a subgroup of order p of G. The
hypothesis this implies gHg™! = H. Letg € G and f : H — H, given by
f(z) = gzg~'. As f(e) = e and f is bijective, it follows that the réstriction
of f to H \ {e} is a permutation of the set H \ {e}. Thus f®=D' = 1 and
consequently f(™ = 1.

As(n,(p—1)!) =1weget f =1y, thus gz = zg forany z € H.

Alternative solution 1. As the order p of H is prime, we deduce that H is
cyclic:

=(h) = {h,...,RP" WP = ¢}, (1)

i
|
|
1
1
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where e is the identity of G. It suffices to show that gh = hg, for any g € G. Let
g € Gand
K={k:ke{l,...,n} and g*h = hg*}.
The set K is non-empty, forn € K : g™ = ¢, thus g"h = eh = h = he = hg™.
We shall prove that 1 is an element of K, thus concluding the proof. Let m be the
smallest element of K. By minimality, m divides » and
n

K={km:k=1,...,;;}. @
On the other hand, gHg™! is a subgroup of order p of G. We get gHg™! =
H,ie gH = Hg. From (1) and gH = Hg, we deduce the existence of k €
{1,...,p— 1}, such that gh = h*g. Consequently,

gP~h = K7 Pl = pgp-1

)

for kP~ = 1 (mod p), and h? = e. Thus p — 1 is in K. By (2) m divides p — 1.
By p is the smallest prime factor of n, we conclude that » and p — 1 are mutually

prime, som = 1.

Alternative solution 2. Let f : G — H, be given by f(z) = zaz™! with
a € H\ {e}, fixed. Consider C(a) = {z € G |az = za} and denote by ¢
the number of elements in C(a). As f(z) = f(y) means zaz™! = yay~!, or
g1
for any b € Im f the set {z € G | f(z) = b} has q elements. Thus Im f has 2
elements. As e ¢ Im f we get 2 < p — 1 and as %|n, we obtain 2 = 1, that is

za = ay~'z, or y~'z € C(a), from where z € yC(a), we conclude that

C(a) = G. As a consequence az = za for any z € G, meaning a € Z(G). As
e€ Z(G)weget HC Z(G).

Remarks. The last proof can be translated as:
Because H is the unique subgroup with p elements of G, H is normal in G.
Leta € H \ {e}. G acts on H by conjugacy, thus

|G| = |Stab(a)] - |Orb(a)|.

As e ¢ Orb(a) we get |Orb(a)| < p — 1 thus |Orb(a)| = 1. It results Stab(a) =
G,ora € Z(G).
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The simplest example of a noncomutative group that satisfies the given con-
dition the multiplicative group of quaternions {+1, +1, &35, +k}; multiplication is
completely given by i = 52 = k? = —1 and-ij = —ji = k. The only subgroup
of order 2 is the center {£1}.

The conclusion still holds if we consider any prime factor p of n with n and
p — 1 coprime.

Problem4. Let f : [0,1] — R be a continuous function such that

/)1 f(z)dz = 0.

Prove that there is ¢ € (0, 1) such that

/Oczf(z)dx =0.

Cezar si Tudorel Lupu

Solution. Consider F(z) = [; tf(t)dt defined on [0,1]. By the I’Hospital
rule it is easily seen that
Fz) _

im =7 =0 M

Take a € (0, 1) and integrate by parts

1 1
/af(z)dz=—11;~F(x)|},+/a F(z)édz.

Taking limits as @ — 0 and using (1), we obtain

1 1 1
o=/0 f(z)dz:i—~F(z)|$+/0 F(z)-%dz:F(l)-;—/o F(z).%dz.

The last relation actually ends the proof: if F'(1) > 0 there will be a point zo such
that F(zo) > 0 and, similarly for (1) < 0. The intermediate value property
gives the desired ¢ where F'(c) = 0. It is an easily seen that ¢ can be choosen
in (0,1). .

Remark. The result stil holds for a Lebesgue integrable f such that
fol f(z)dz = 0 and an increasing function g : [0,1] — R, continuous at 0 and
such that g(0) = 0. There is a c such that focf(z)g(z:)dx = 0. Details will be
given elsewhere.



PROBLEMS AND SOLUTIONS

IMO AND BMO SELECTION TESTS

Problem 1. Let ABC and AM N be two similar triangles with the same ori-
entation, such that AB = AC, AM = AN, and having disjoint interiors. Let O
be the circumcenter of the triangle M AB. Prove that the points O, C, N, A are
concyclic if and only if the triangle ABC is equilateral.

Solution. Let o« = ZBAC = ZMAN. We consider the rotation of center
A and angle o; from the hypothesis we infer that B is mapped onto C, and M
is mapped onto N. This means that the triangle BAM is transformed into the
triangle CAN, and thus O is mapped onto O, the circumcenter of the triangle
CAN. Moreover, ZOAO' = aand OA = O’ A.

The condition that O, C, N, A lie on the same circle is equivalent to O'O =
O’ A (as already O’ is the circumcenter of the triangle C AN). But then the triangle
O’ AO is equilateral, therefore o« = 60°, and the triangles ABC and AM N are
also equilateral. The above reasoning works both ways, so the problem is solved.

Problem 2. Let p > 5 be a prime number. Find the number of irreducible
polynomials in Z[X], of the form

2P +pf+pat +1, k>0 kle{l,2,...,p—1}.

Solution. Let fi(z) = 2 + pz* + pz! + 1,k > |, k,l € {1,...,p—1}.
If the numbers k and [ have different parities, then fx;(—1) = 0. For fz,(z) to
be irreducible in Z[X | it is required that the numbers k and [ have the same parity;
then

Jea(w = 1) = 2% + prg(2) + p((-1)* + (-1)") = & + pzg(z) £ 2p,
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where g(z) € Z[X].

By Eisenstein’s criterion, fx,(z — 1) is irreducible in Z[X], thus fy,(z) is
irreduciblein Z[X].

Therefore the number of polynomials fy, ,(z), irreducible in Z[X], is equal to
the number of pairs (k, {), in which , { are distinct numbers, of the same parity, in
theset {1,2,..., p — 1}. The number of such pairs is

() - e=e=3,

Remarks. The idea of making the transformation z — z — 1 is suggested by
the method used by Gauss to prove the irreducibility of the p-th order cyclotomic
polynomial

Gp(x) =2 4P 24 p o1

Problem 3. Let a, b be positive integers such that for any positive integer n
we have a™ 4 n | b + n. Prove that a = b.

Solution. Assume that b # a. Taking n = 1 shows that a + 1 divides b +1,
hence b > a. Let p > b be a prime and let  be a positive integer such that

n=1(mod(p-1)) and n=—a (modp).

Such an n exists by the Chinese Remainder theorem (without the Chinese Remain-
der theorem, one could notice that n = (a + 1)(p 1) + 1 has this property).

By Fermat's little theorem, o™ = a(a?~!--.a?~!) = a (mod p), and there-
fore a™ + n = 0 (mod p). So p divides the number a™ + n, hence also b™ + n.
However, by Fermat’s little theorem again, we have analogously b” + n =b —a
(mod p). We are therefore led to the conclusion p | b—a, which s a contradiction.

Remarks. The first thing coming to mind is to show that @ and b share the
same prime divisors. This is easily established by using Fermat’s little theorem or
Wilson’s theorem. However, we know of no solution which uses this fact in any
meaningful way. .

For the conclusion to remain true, it is not sufficient that a™ + n | b™ 4+ n holds
for infinitely many n. Indeed, take @ = 1 and any b > 1. The given divisibility
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relation holds for all positive integers n of the form p — 1, where p > b is a prime,
but a # b.

Problem 4. Let aj,as,...,a, be real numbers such that |a;| < 1 for all
i=1,2,...,n,anda; +ag + -+ a, = 0.
(a) Prove that there exists £ € {1,2,...,n} such that

2k+1
lar + 2ag + - -+ + kax| < .

(b) Prove that for > 2 the bound above is the best possible.

Solution. (a) We may suppose that a; > 0, otherwise if a; = 0,k = lisa
solution, and if a; < 0 we can work with the set {—a; : i = T,n}.
k
Let us define sp = 0, and sx = Y ia;, for k = 1,2,...,n. Then ax =
i=1
2k=2k=1 which implies
hd s. u Sk
0= Zak =4 Z —
= n i k(k+1)
Because s; = a; > 0 it follows that there exists (a smallest) k£ such that
sg < 0. Then

k> |kag| = |sk = sk-1] = sk-1 — s = [sx—1] + [sxl-
If at the same time [sy_q| > 2E50HL = 2621 and || > 2Lt follows that

2k—1 2k+1
lsk-al + lskl > ——+ —— =k,

in contradiction with the previous relation.
(b) We will treat separately the cases when n is odd and n is even.
CASE L. n odd (n > 1). We take

31
{ashim1n = {M,—l, L-1,1, —l,m} :

Then we obtain the sequence

_ 35 _7 9 11 E_E
{si}6=1,n— Z’Z’ 4,2» T
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CASE II. n even (n > 2). We take

1 1
{ai}icin = {1, ) -1, ) 1,-1,1,~1, } .

Then we obtain the sequence

5 7 911 1315 17
{si}iz=in = {1, }

T T T

It turns out that, for » = 3 and n = 4, these sequences are also unique in
disproving the possibility of lowering the bound.

Problem 5. Let {a, }»>1 be a sequence given by a; = 1, ag = 4, and for all
integersn > 1

an = \/an-1an41 + 1.
(a) Prove that all the terms of the sequence are positive integers.
(b) Prove that the number 2anan+1 + 1 is a perfect square for all integers

n>1.
Solution. (a) We rewrite the recurrence relation as

2
a, —1

Ant1 =
* Ap—1

and we want to prove using induction that ax, € N forall k < n implies a1 € N.
For this we require the following, stronger, statement: aj, € N, Vk < n, and in
plus ged(ak, ax—1) = 1 for all k < n. The initial two stepsn = 2 andn = 3 are
easily calculated, so we suppose thatn > 4.

The relati _ ekl lies th _ %a-1-2 itl-al ,

erelation an = —='— implies that an4; = T .

AS an_1an-3 + 1 = a}_,, we infer that ap_; | a2_, — 1, therefore a,_; |
ap_1 —2a2_; +1—a2_,. On the other hand, a2_, | (a2_; —1)? = a2_,a2,
and as ged(an-—2, an—1) = 1 we obtain apy1 € N. From anq1an-1 — 1 = a2 we
obtain that ged(an, an41) = 1, so the induction is complete.

(b) Taking small values for n» we notice that

2anan i1 + 1= (ant1 — an)?,
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and we will prove this relation using induction. The first step, n = 1, is trivial. Let
n 2 2. The relation implies

2anani1 = 0541 — 2anani1 + 62 — 1 = Gni1(Ani1 — 2a5) + Gny1an-1,

therefore, by dividing both sides above with a,+1 > 0, we obtain the equivalent
relation
’
4an = @nt1 + Gn-1 = Ant1 = 4ap — ap_1.
2 -
‘We only have to prove that anio = 4an41 — Gp. But apio = i};‘—l SO we
require

daniian — a2 = a2,  —1 & 2an0n11 + 1 = (ant1 — an)?,
+

which is our induction hypothesis, and we are done.

ALTERNATIVE SOLUTION. (a) First notice that the sequence may be extended
to the left with 2o = 0 (this helps with having the recurrence relation also available
for n = 1). Now, writing two consecutive (squared) recurrence relations yields,
forn > 1,22 = &pi1Zp1 + 1 and 22, = 2,497, + 1, 50 by subtracting,
ZTn41(Tnt1 + Tn1) = Tn(Tni2 + o), that is,

Tni2+Tn _ Tnil+ Tnog
)

Tn+1 Tn

thus having constant value (z9+z0)/x1 = 4, Whence z,, 1 = 4z, —z,_1 (clearly
T, # 0forn > 1).

Therefore, once the first two terms are given as integers, so will all following
terms be.

(b) We have, forn > 1,0 = Zny1(Tnt1 —4Tn + Tn_1) = 2, —4Tn 1120 +
T4 18n—1 = T2 1 —4Tns1Tn +22 — 1 = (Tn+1—2n)? = (2TnTnt1 +1), hence
22nTny1 + 1 = (Tny1 — zn)? and therefore a perfect square.

Remarks. The first solution entails a longer and more ardous process, which
fails to provide the linear recurrence that turns to be instrumental in proving (b).

One may (similarly) easily obtain that 322 + 1 = (zn41 — 2,)2, there-
fore a perfect square, thus falling over a solution family for the Pell equation
y? =322 =1.
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This type of sequences and the way to attack them is quite well-known,
see [A. Engel], [A. Negut], [V. Vornicu].

Problem 6. Let ABC be a triangle with ZABC' = 30°. Consider the closed
discs of radius AC/3 centered at A, B and C. Does there exist an equilateral
triangle whose three vertices lie one each in each of the three discs?

Solution. We will start with the following

LEMMA. Given two points Ay, A2 and two closed discs centered at A, Ao
of radii r1, 75 respectively, the locus of the third vertex of an equilateral triangle
with the two other vertices lying in each of the two discs and located in one of
the halfplanes determined by the line A; As is the closed disc of radius r1 + 7o
centered at A3 which forms with A; and A, an equilateral triangle.

To be self-contained, we present a proof using complex numbers. Let lower-
case letters represent the affixes of capital-letter points. Then ag = a1 + w(ag —
a1) = @ay + wag, Where w = cos 60° + isin 60° is the primitive 6-th root of 1,
hence |w| = 1,0 = 1 —w and ww = 1 (if in the other halfplane, we may use the
symmetrical relation ag = wa; + @asg).

Take nOW a = a; + o, ah = ag + a2 ; then af = waf +wah = a3 + (@1 +
wag) = a3 + az. For || < 7y, |o| < ro we get |as| = |[@a; +was| < 71 +72.

Conversely, for any a3 with |as| < 71 + 72 one can take o = ﬁ;wo@,

g = ooz and get || < 71, |ee] < 2 and Doy + wag = a3,




68 SOLUTIONS

Returning to the original problem and denoting by C’, A’, B’ the points that
form an equilateral triangle with (A4, B), (B, C), (C, A) respectively, in the same
halfplane with C, A, B respectively, one easily establishes that AC = AA’ =
CC’ = BB'. This is because A lies on the perpendicular bisector of CA’, C lies
on the perpendicular bisector of AC”, while ZABC = 30° and ZAB'C = 60°
implies that B’ is the circumcenter of the triangle ABC, hence
B'B=B'C =AC.

By the lemma, the points A” on AA’ such that AA” = AA’/3, C” on CC’
such that CC” = CC’/3 and B” on BB’ such that BB” = BB’/3 are the only
points available as vertices for an equilateral triangle like that asked for, as the
discs of radii %AC centered at A’, C’, B’ are in fact tangent to the discs of radii
$AC centered at A, C, B respectively.

‘We have proved that there exists such a triangle, and in fact that the triangle is
unique.

Problem 7. Determine the pairs of positive integers (m, n) for which there

exists a set A such that for z, y positive integers, if |z — y| = m, then at least one

of the numbers z, y belongs to the set A, while if |z — y| = n, then at least one of
the numbers z, y does not belong to the set.

Solution. For k positive integer, we will denote by (k) the exponent of 2 in
the decomposition in prime factors of k. We shall prove that the pairs (m, n) that
fulfill the hypothesis are the ones for which v(m) = v(n).

Let us suppose that a set A with the properties in the hypothesis exists; then for
a € Awehavea+n ¢ Athus (a+n)+m € A which means ((a+n)+m)—n ¢ A,
therefore a + m ¢ A.

Analogously, for b ¢ A we have b+ m € A thus (b + m) + n ¢ A which
means that ((b + m) + n) —m € A, thereforeb +n € A.

Therefore, for z,y with |z — y| € {m,n}, one of them belongs to A and the
othet one does not, so the problem’s statement is symmetric in m, n.

Through a simple induction we obtain that a+km and a+kn both belong to the
same set (A or its complementary) as a for k even, and to different sets for k& odd.

Let us suppose now that v(m) # v(n). Without loss of generality we may °
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suppose that v(m) > v(n). Thenm = 2/(™) .o/, n = 2v(" . n/, with m', n/
odd positive integers. Let a € A and b = a + 2V(™) . m/n’; because b = a +n'm
and 7’ is odd, it follows that b ¢ A, but because b = a + 2V~ . m'n, and
v(m) — v(n) > 0 we have that b € A, contradiction.

Finally, for v(m) = v(n) = v, let us consider for example

21
a= |J {aeN:a=r(mod2t)}.
=0

It is easy to verify that this set fulfills the conditions in the statement.
Problem 8. Let z;, 1 < i < nbe real numbers. Prove that
n—2
Yo itz lal
1<i<j<n i=1
Solution. The inequality above is equivalent with
n
Z |z + ;] > nleiL
1<i,5<n i=1

‘We may suppose that (if necessary by reindexing the variables z;)

@20, 1<i<k z;<0, k+1<j<n

k n
Letp= > z;andm = — Y, z;. Wemay suppose that (n — k)p > km,
i=1 J=k+1
otherwise we work with —z; instead. We have

Z |zi + z5] = Z (zi + z;) = 2kp

1<i, <k 1<4,5<k
S omital== Y (@taz)=2n—km
k+1<i,j<n k+1<i,j<n
S olmtzlz| Y (@it a)| = ln—kp—km|
1<Kk 1<igk
k+1<7<n k+1<i<n
S olmtml=| Y @ita)| =10 -kp—kml.

k+1<1<n k+1<ign
IS§$§° 1<k
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Therefore,

n
Z |zitz;| > 2kp+2(n—k)m+2(n—k)p—2km and "Z |zi| = n(p+m).

1<i,j<n i=1
But

2kp + 2(n — k)m + 2(n — k)p — 2km = 2np + 2(n — 2k)m
=n(p + m) + (np + nm — 4km).

Finally,
_op)2
(=27 0.

P

np+nm—4km>m(-££z+n—4k) =m
n—

n—k
As an aside, it is illuminating that 2kp + 2(n — k)m > n(p + m), equivalent
to (2k — n)(p — m) > 0 is not necessarily true (e.g., for 2k > n, p < m take
n=3k=2 21 =19 =1, z3 = —3). We need the “little” extra brought in by
2|(n — k)p — km| in order to prove the inequality true.
k
Equality will occur if and only if z; = 0, for all ¢, or forn = 2k, 3 z; =
i=1
2k
— Y =z; (thatis p = m), and, moreover, |z; + z;| = Oforall 1 < i < k,
j=k+1
k+l1<j<nthatiszi=zo=---=2,=0>0,Tpp1 = =Tp = —a.

ALTERNATIVE SOLUTION. From the obvious relation, for a, b € R,

0 ifab >0,
la| + |b| = |a + b| =
2min(|al,|b]) ifab <0,

we get
37 (il + 1oyl = lws +2i) = > 2min(lzl, |z5)
1<i,j<n ;<0
=4 E min(z;, —z;)
©,>0>z;
<4 > Vm
z:>0>z,

(2]

z.>0 0>z,
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;>0 0>z,

1<k<n

< (Z CEDY \/—_av]-)z (AM-GM)
(2]

<n )l (CBS),

1<k<n
hence
S o lmtazltn 3 ful > Y (ol + Jzl) = 20 37 lmels
1<i<n 1<k<n 1<ig<n 1<k<n

which is equivalent to the stated inequality.

Problem 9. The circle of center I is inscribed in the convex quadrilateral
ABCD. Let M and N be points on the segments Al and CT respectively, such
that ZM BN = 1 ZABC. Prove that ZM DN = 3ZADC.

Solution. Denote by ZA, ZB, ZC, £D the angles of ABCD. Since BI is
the bisector of ZABC and ZM BN = 3/B, we may put

ar = LABM = ZIBN, a9 =/MBI =/NBC.

We also put ZADM = 3y, ZIDN = 35, ZNDC = 4.

Consider triangles AM B and M B1I. From the sine theorem it follows that
AM BM MI BM

sina;  sin(4)’ sinas  sinZBIM
2
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sina; _ AM -sin (%)
sinag  MI -sin ZBIA’
Similarly, from considering triangles AM D and M ID we have

sing,  AM -sin (%)

sinfBy  MI-sin ZDIA’

Hence
sine; _ sinB sinZDIA

sinas sinfB, SinZBIA' : )
Similarly considering triangles /BN and NBC, and then triangles /DN and
NDC, we get

sina; sinfs sinZBIC' ()
Now consider triangles ABI and DIC:
£ZBIA =180° — % - %
_(4A 4B L0 LD\ LA LB
“\2 2 2 2 2 2
= % + % =180° — £ZDIC.

1t follows that sin ZBI A = sin ZDIC and similarly sin ZAID = sin ZBIC.
Multiplying () and (x*) we obtain

sinf; _ sin Bs
sinfy  sinf;

Since B1 + B2 = fs + Bs = 42 < 3, and the function f(8) = ;(%5
2

is increasing for 3 € (O, %), we conclude that 8; = f33, and B2 = f34, which

means ZM DN = /D, and the problem s solved.

Problem 10. Let A be a point exterior to a circle C. Two lines through A meet
the circle C at points B and C, respectively at D and E (with D between A and
E). The parallel through D to BC meets the second time the circle C at F. The
line AF meets C again at G, and the lines BC and EG meet at M. Prove that

1 1 1
AM < AB T Ac
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Solution. Since lines DF and AC are parallel, it follows that the angle
LDFA = ZCAF. On the other hand, ZDFA = ZDEG because both an-
gles subtend the arc DG. Thus ZCAF = ZDEG, whence triangles AMG and
EM A are similar, which implies £ = Z4 thatis AM? = MG - ME.

E

A M B C

By the power of a point theorem, MG - ME = M B - MC, whence AM? =
MB-MC = (AB—-AM)(AC — AM) = AB-AC — AM(AB + AC) + AM?,
which yields AM(AB + AC) = AB - AC, equivalent to the required relation.

Remarks. The condition “D between A and E” is required, not so much be-
cause AF may be tangent to C (in which case G = F, but the result holds), but
because the parallel through D to BC may be tangent to C (in which case D = F,
whence E = G, and the line EG does not exist). Otherwise, except this degenerate
case, the result holds also when E between A and D.

Problem 11. Let « be the incircle of the triangle AgA; As. In what follows,
indices are reduced modulo 3. For each i € {0, 1,2}, let +; be the circle through
A1 and A;y o, and tangent to -y; let T} be the tangency point of +; and v; and
finally, let P; be the point where the common tangent at 7; to -y; and ~ meets the
line A;y1A;+2. Prove that

(a) the points Py, P; and P» are collinear;

(b) the lines AgTy, A1T1 and AT are concurrent.

Solution. (a) Consider the power of P; relative to the circles Ag A1 As, 7y; and
~: the first equals P; A; 1 - P; Aiyo; the second equals PyA; 41 - PiA;o = BT
and the third equals P;T2. Consequently, P; lies on the radical axis of the circles
AgA; Ay and +y and we are done.
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(b) Let us make the following notations: S; = N Ajp14ire, Ws = ATi N
Ai 1A, U; for the intersection of the line A;A;1 and the common tangent at
T;, V; for the intersection of the line A;A;o and the common tangent at T3, and
X (ABCD) for the cross-ratio of therays X A, X B, XC, X D.

By Brianchon’s theorem, A;+1V; N S;T; N Aiy2U; = w;. Now,

Ai(PiW; Aip1Ai12) = Ai(PTUV;) = wi( PTUV;) = wi( PiSiAiyaAiga).

This yields

Widips _ (PiAi+2>2 SiAin
WiAit1 PiAip1 SiAiyo’

SO

2 2 2 9
Wiliy2 Pidiya | SiAit1 -1
o Widit1 o PAigr ) g Sidis
—_— — —
=1 ) =1 (2
where (1) holds by Menelaus’ theorem using (a), and (2) holds because S; A; 1 =
Si+9A;+1 as tangents to + from A; 4 1. The conclusion follows by the converse to

=

Ceva’s theorem.

ALTERNATIVE SOLUTION TO (b). Denote by AT the triangle made by the
three common tangents; its sides are the tangents through the vertices of the trian-
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gle ToT T to its circumscribed circle, whence by Lemoine’s theorem, their inter-
sections with the sides of triangle Ty T; T are collinear (Lemoine’s line). Now, De-
sargues’ theorem shows that AT and triangle ToT} T are perspective. By (a), De-
sargues’ theorem similarly shows that AT and triangle AgA; Ay are perspective.
But the relation (for triangles) of being perspective is transitive, hence triangles
Ao A1 Ay and ToT: T, are perspective and therefore the lines A;T; are concurrent.

Itis obvious, from both solutions, that this problem calls for projective methods
to be used.

Problem 12. Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 3.
Prove that 1 1 1
2,32
FtEtzzad+b + 2

Solution. Let z = ab + bc + ca. From the well-known inequalities
(a+b+c)>>3(ab+bc+ca) and (ab+be+ ca)? > 3abe(a + b + ¢)
we get 0 < z < 3 and abe < %QA Since
2+ + = (a+b+c)? —2(ab+ be + ca) = 9 — 2z,
and
U l+l+12 p(Lyly L)y = ¢
a2 b2 \a b e ab " bc ' ca)  a?22  abc’
the inequality becomes
z2 — 6abe > (9 2z)a?b>c2.
Therefore, we have
242 409 _
z? — 6abe — (9 — 2z)a’b’c? > 2% — % - %121)
22(22° — 922 + 27)
81

2’ —3)%(2z +3)
B 81

A\
o
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Equality occurs if andonly if a=b=c = 1.
ALTERNATIVE SOLUTION. Let us make the notation
1 1
f(I)=?+;+1+I, .
then 1 .
= —z% = (1-2)f(z).
Let E = 3 (& —a?) = (1 — a)f(a). Because of the symmetry of the

relation we may assume without loss of generality a > b > ¢; thenusing 1 —c =
(a—1)+(-1)andl—a=(c—1)+(b—1)weget

E=(1-b)(f() - f(o) + (1 = a)(f(a) = f()), (+)
and
E=(1-b)(f(b) - f(@) + (1= )(f(e) = f(a))- ()
Now, for z < y, we will show that f(z) > f(y):

f(@) - fly) =

Iz_yzy(rzy2 —ay—z—y).

For z +y = k wehave z + y + zy > 33/z%2 by AM-GM. In order to have
33722 > z2y® weneed 33 > zly?, but k > 2,/zy yields k* > 28z'y?, so
3% > k2 is enough, which reduces to k < 2¢/27.

But for z, y being any of a, b, c we will have z 4y < 3 so the above inequality
is fulfilled, as 3 < 2/27.

This shows that f is decreasing. All that is left now is to use relation () for
b > 1 and relation (x) forb < 1.

Remarks. Yet another solution would be to homogenize the equation and use
“brute force” along with AM-GM and Muirhead, as in one of the solutions of IMO
2005, Problem 3.

The real beautiful thing to say is that if instead of 3 variables we think of the
inequality with n variables

n n
> sz, forz; >0 with Z:c,- =n,

f==1 i=1

-
8-
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this holds up to » = 10. For n > 11 it fails, e.g,, forz; = --- = z10 = 0.6,
z11 = 5, and z; = 1, for all ¢ > 12. The proof for 4 < n < 10 involves mixed
variables (Sturm-type) techniques and is probably worth a short article by itself.

Problem 13. Givenr, s € Q, determine all functions f : Q — Q such that
fl+f@)=flz+r)+y+s
forall z,y € Q.

Solution. Denote g(z) = f(z) — r — s. The functional equation becomes

9(z +9(v)) = g(z + fly) —r ~s)
=fz+r—s)+f¥)-r—s
=flz-s)+@y—s)—r-s
=glz—s)+y+s,

and
9™ +9W) = gly+s+9(x—s) = gly) +z - s+ 5=z +9(y),
hence g2 = id, on elements of the form« + g(y). By fixing y = yo, the set
{z+9w):z€Q=Q

hence g2 = id on all of Q, so g is one-to-one.
Then, by replacing y by g(y) (any v is in the image)

9(z +y) = g(z+ 9(9(y))) = 9(z — s) + g(v) + 5.

Obviously, g(y + z) = g(y — s) + g(x) + s, hence g(z) — g(z — s) = g(y) —
9(y — s) = kg a constant. This gives

9(z+y) = 9(z) + 9(v) + (s — k).

Forz =y = 0: s —ky = —g(0), s0 g(z + ) = g(z) + g(y) — g(0). Consider all
solutions g having g(0) =  fixed; then for any two such solutions g1, g2, denoting
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h = g1 — g2 we get h(z +y) = h(z) + h(y), so h(z) = Az (with A\ = h(1)).
On the other hand, go(z) = z is obviously a particular solution, hence the general
solution g is g(z) = h(z) + go(z) = Az + 2.

Checking this into the main relation for g, we get

gz +9@W) =gz + My +2) = Az + XNy + Az 42
and
gz—s)+y+s=Az—As+s+z+y+s= z4+y—As+s+2z

hence A =1, Az = —Xs + s = s(1 — ). We have therefore two solutions:
A=1,z=0gives g(z) = =,
A= -1,z = —2s gives g(z) = —z — 2s.
These lead to the following solutions for f:

fle)=z+r+s and f(z)=-z+7r—s.
Remarks. As it is, the method of solving an equation
Pz +y+a)=¢@) +¢@1) +a,
is refreshingly reminiscent of solving Cauchy, combined with the theory of ho-
mogenizing plus a particular solution.
Problem 14. Find all positive integers m, n, p, ¢ such that
Pret = (p+q)’ + 1.

Solution. Clearly wehave p | g2+ 1 and ¢ | p> 4 1. Now, if we assume p = g,
it follows p | p + 1, s0p = ¢ = 1 which s not a solution.

‘We may therefore assume without loss of generality p < ¢. But p = 1 leads to
¢ =2,andp = 1, ¢ = 2 is again no solution, therefore 2 < p. We have

P = (p+9)? +1 <4¢® < p*¢® <p® <p™E,
son < 3. The case n = 2leadstop™ < 4,som =1,p=20rp=3. Forp =3

we get 3¢% = (3+¢)%+ 1, impossible, while for p = 2 we get 2¢> = (2+¢)2 +1,

whence g = 5, a solution.
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The case n = 1 leads to p™ < 4q. Now, fromgq | p® + 1, if ¢ = p® + 1
then p | ¢* +1 = p* + 2p + 2 implies p = 2, whence ¢ = 5, but 2™ - 5! =

1
(2+5)2+1 = 50is impossible, so ¢ < 2 + , whence p™ < 2(p?+1), therefore

2
5
p=2andm < 3,orm <2 Butp =2leadstoq < 7 so ¢ < 2, impossible,
hence truly m < 2.
For m = 1 the equation writes

pg=(p+9°+1,

clearly impossible.

For m = 2 we get p* < 4q which combined with ¢ | p? + 1 leads to the
possibilities p? + 1 = g, 2¢, 3¢, 4¢. But the case p? 4+ 1 = g was dismissed in the
above, while p + 1 cannot be congruent with 0 modulo 3, nor 4, so the only case
leftis p? + 1 = 2q. But then, fromp | ¢® + 1 we get dp | p* + 2p* + 5,50 | 5,
ie., p =5, ¢ = 13, which checks as a solution.

Therefore, the only solutions are

(m,n,p,q) €{(2,1,5,2), (2,1,5,13), (1,2,2,5), (1,2,13,5)}.

If anyone reaches the equation p?q = (p+¢)?+ 1 (dealing with the preamble in
any different manner), yet another way to solve this is to consider it as a polynomial
in ¢ whose discriminant A = (2p—p?)?—4p?—4 = (p?—2p—2)?—8p—8should
be non-negative, which implies p > 5, and should also be a perfect square. But the
next lower perfect square is (p* —2p —3)? = (p® —2p—2)> —2(p> - 2p—2) + 1,
thus we must have —2(p* — 2p — 2) + 1 > —8p - 8, thatis 2p> — 12p — 13 < 0,
which implies p < 6.

Finally, we only have to check it for two values, p = 5 and p = 6, and only the
former provides a solution (see above).

This fruitful combination of divisibility constrains which lead to inequalities is
also reminscent of the BMO 2005, Problem 2.

ALTERNATIVE SOLUTION. The “proof from the Book” solution makes use of
the following known
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Lemma. The equation 22 + 42 + 1 = kazy has (infinitely many) solutions in
positive integers if and only if k£ = 3.

Indeed, assume k # 3, then a solution zg, yo cannot have o = yo; without
loss of generality we may take zo < 7o. One then also has

(kzo —40)* + 75 + 1 = k(kzo —yo)2o,

as it may be readily verified. But kzoyo = 73 + 3 + 1 > v3 implies kzo > yo,
while kzoyo = 23 + % + 1 < 2y3 implies kzo < 2yo, therefore 0 < zo(kzo —
0) < ToYo-

Take z1 = min{zo, kzo — o}, y1 = max{zo, kzo—yo};onehas 0 < z1y; <
Toyo, wWhich by Fermat’s infinite descent method leads to a contradiction.

Conversely, for k = 3, we have the infinite family of solutions (1,1), (1,2),
(2,5), (5,13), ..., (@n,Yn); - - -» With Zp 41 = Yn, Ynt1 = 3Yn — Tn.

For an alternative solution to the lemma, using Pell equation techniques, see
[A. Gica, L. Panaitopol].

Back to the original problem, the stated equation may be written as

P+ +1= """ - 2)pg.

According to the lemma above, in order to have positive integer solutions,
plgn=1 -2 =3 thatis, p™1¢""! = 5.

This quickly leads to the solutions (m,n,p,q) € {(2,1,5,2), (2,1,5,13),
(1,2,2,5),(1,2,13,5)}.

Remarks. While in English the expression “positive integer n”” means an in-
teger n > 0, in Romanian the verbatim translation of the expression includes the
casen = 0; this leads to a case which was not meant to be considered, but which is
worth noticing to be also true: for mn = 0 the equation is equivalent to z” = 32 +1
which has no solutions, either by invoking Catalan’s theorem, or by direct proof in
Gauss’ integer ring Z[i] using parity arguments.

Problem 15. Letn > 1 be an integer. A set S C {0,1,...,4n — 1} is called
sparse if for any k € {0, 1,...,n — 1} the following two conditions are satisfied:
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(1) the set S N {dk — 2,4k — 1,4k, 4k + 1,4k + 2} has at most two elements:
(2) the set SN {4k + 1,4k + 2,4k + 3} has at most one element.
Prove that the set {0,1,...,4n — 1} has exactly 8 - 7%~ sparse subsets.

Solution. Itis enough to have available a set of 7 elements (at the “end” of the
set) in order to write some recurrence relations.

[n—3 4n—2 4n—1] 4n [n+1 4n+2 4n+3).

Denote by 75, the total number of sparse sets, by A,, the number of sparse sets that
contain one of the “last” two elements (4n — 1, 4n — 2) and by B,, the number
of sparse sets that contain none of these two elements (no sparse set may contain
both because of condition (2)).

Then

Ant1 =Ty, (4n + 3 and no other element > 4n)
+ T (4n + 3 and 4n)
+ T (4n + 2 and no other element > 4n)
+ By (4n + 2 and 4n)
= 3T, + By,

and

Brt1 =T, (noelements > 4n)
+ T, (4n + 1, but not 4n)
+ Ty, (4n, but not 4n + 1)
+ By, (both 4n and 4n + 1)
= 3T, + B,,

hence Any1 = Bpty and Tpiq = Apt1 + Bpyy = 6T, + 2B,,.

Now it is enough to calculate A; and By; clearly {2}, {0,2}, {3}, {0,3} are
Ay and 0, {0}, {1}, {0,1} are By so A; = B; = 4. Therefore T; = 8, and
Tnt1 = 6Ty + 2B, = 7T, forn > 1,hence T, = 8 - 7~ 1.
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Remarks. The problem becomes more challenging if we work with remain-
ders modulo 47 rather than with their set of representants. In this case the result is
7™, but writing recurrence relations is far from being obvious. Counting a related
one-to-one set of differently defined subsets will do the trick.

Problem 16. Let p, ¢ be two integers, ¢ > p > 0. Let n > 2 be an integer and
ag =0,a1 >0, as, ..., an_1, a, = 1 be real numbers such that

ap—1 + Qi
— s

N

ay k=1,2...,n—1.

Prove that
n—1 n—1
P+1)> al>(g+1)) af.
k=1 k=1
Solution. It immediately follows that

O=ay<a1<---<ap=1

OSar=a1—a<az—a1 < <ap—ap-1=1—0an1.
A useful observation is that it suffices to prove the inequality for ¢ = p + 1, as we
may then extend it step-by-steptop +2,p+ 3, ....

Let S(m,r) = in: aj,. By Abel’s summation formula we get
k=1

n n—1
Srp+1) = ar-af =a,S(n,p) = O (ari1 — ar)S(k,p).
k=1 k=1
Since a, = 1, this yields
n—1
S(n—1,p+1)=8(n—1,p) = > (arr1 — ax)S(k,p).
k=1
Now,‘a]- —aj-1 < apq1 —ag, forj =1,2,...,k, so

k
(aks1 —ar)S(k,p) > Y (a; — aj_1)al.

J=1
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But

( Ya? > a;?“ “?ixl
a; —a;_1)af > L — 971
§ [ e

for
PU'?H + a§i} > (p+1)aj-1af

by the weighted AM-GM inequality.
Therefore

-

n—

k
1 +1
Z(“T -

15=1

1
_ < — -
S(n—1,p+1) < S(n—1,p) P

a
I

1
= —1,p) = ——S(n—1
St~ 1,p) = —=S(n=1,p+1),

where we used ap = 0 and the telescoping of the inner sum.
Consequently,

(P+2)8(n-1p+1) < (p+1)S(n—1,p).
. k
Equality occurs forp = g, ora; = --- = a,—1 =0,orp=0,g= 1 and ay = -

Problem 17. Let k be a positive integer and n = 4k + 1. Let A = {a2 +nb? :
a,b € Z}. Prove that there exist integers =, y such that 2" +y™ € Aand z+y ¢ A.

Solution. It looks natural, in order to facilitate further factorizations, to take
y = qz. Since squares are congruent to 0 or 1 modulo 4, and n = 1 (mod 4), any
number of the form a® +nb? is congruent to 0, 1 or 2, but not 3, modulo 4. In order
tohave z+y ¢ Aitis then enough to have z+y = 3 (mod 4), that is, (g+1)z=3
(mod 4), therefore we need take g even. Now, asn > 1,z = 1 4 =1
(mod 4), so we need take ¢ + 1 = 3 (mod 4), that is q = 2 (mod 4). It remains to
find z such that 2™ + y™ = (1 4 ¢")z™ is of the form a? + nb2.

Simply taking z = 1+ ¢" yields ™ + y™ = (1 4 ¢")**! = ((1 + q")#)
of the form a? + nb?, where b = 0.

2

It is rather more difficult to find an = such that neither a = 0, nor b = 0. Take
any integers u, v such that u? +v? = 1 (mod 4) and take & = (14 ¢™)(u2 +nv2).
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Thenz =1 (fnod 4), ensuring z +y ¢ A, and
"+ = (14 ")+ )
= (utw? 4 m?) 1+ )
+n (v(u2 +m0?) T (1+ q")q_l)Z-

Finally, the requirements for the exhibited solution are ¢ = 2 (mod 4) and
u+ v =1 (mod 2).

This result seems to have been a Sophie Germain conjecture.

Clearly, this method also works for any odd exponent m > 1 (instead of n),
but not for n = 3 (mod 4).

Problem 18. Let m and n be positive integers and let S be a subset with
(2™ — 1)n + 1 elements of the set {1,2,...,2™n}. Prove that S contains m + 1
distinct numbers ag, a1, - - - , @ such that ax—q | ax forall k = 1,2, ...,m.

Solution. We shall prove a stronger statement: such a set S will contain a
subset {z, 2"z, ..., 2"z} with m + 1 elements (obviously fulfilling the original
assertion). Assume this statement false and take among all sets for which it fails
one with min(S) maximal. As S has 2™n — (n — 1) elements, it follows S N
{1,2,...,n} # 0, whence 1 < z = min(S) < n, s0 2™z < 2™n. Therefore, the
set {z, 2z, ...,2™=} cannot be included in S, so there is some 1 < ¢ < m such
that 2z ¢ S. Take §” = (S U {2'z})\{z}; obviously min(S’) > min(S), hence
there will exist a subset A’ = {y, 27y, ..., 29y} C S’. As this subset cannot be
included in S it follows that some 2y = 2iz, 5 € {0, 51,72,...,Jm}. Butz <y
S04 > j and thus y = 289z, so the set A = (A'\{2z})U {z} C S, butis clearly
one of the forbidden subsets for S, contradiction.

Remarks. Note that the set {n + 1,...,2™n} has 2™n — n elements, and
cannot contain a subset with m + 1 elements that fulfills the original assertion.
Therefore the size of the sets S cannot be taken any lower than stated.

This generalizes a famous (and early and folklore nowadays) result of Erdds
(form = 1).
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Other ways of proving this result are available: induction on n or m, direct
consideration of subsets of elements having the same maximal odd factor (and
pigeonhole principle) etc.

Problem 19. Let z; = 1, z9, z3, . .. be a sequence of real numbers such that

for all n > 1 we have
1

Tnyl = Tn + Cr
n

Prove that

|25265] = 625.

Solution. Anyone provided with a pocket calculator and a good deal of pa-
tience (unless one runs into rounding problems), could prove this . . . just kidding
folks!

We will prove that, for all n > 1, n < \/nzn < n+ % Hy, where H, = 1 +
3+---+2. Squaring the recurrence relation yields 2, ; = 22 +1+1/(422). As
3 = 1 we will prove by simpie induction that 22 > n: 22, | > n+1+1/(4a2) >
n + 1; then \/nz, > n. Now, by iterating the squaregd relation:

1
x?.=zn_1+1+4z21= = t(-1D+Y
"= k=1 "k
et i3l cns bi < (vRecin)
S 4k—1k 1 n < "+8\/— nl o

S0 /Ay < n+ §Hy, as claimed.

All we need now is to show that Hgos < 8 (again, the pocket calculator . . .!).
It is well known that H, < 1 + Inn, so it is enough to show that In 625 < 7, or
€” > 5% This follows frome” > 2.6 (3)° = 54 & > 54 Alternatively, one can
prove that for n > 2k — 1, Hp < (Hak—1 — Hi—1) + H|n/2), by replacing each
5mrT DY 5 for k < m < 251, Taking k = 10, (and repeatedly using the same
type of majoration) we get

1 1 1 1 1 1 47

1
S Hg—Hom gLl 1 1.1 1 47
wo=gpttg<gtotg<giztiza
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Now

Heos < 6+ H312 < 20 + Hise < 30 + Hrs
<40+ Hzg <56+ Hyg = 66 + Hg

and
1 1 1, /1 1 1\ 1 1 52
=144 4= Szttt =24 23
Hyg v+2+ +9<1+2+<3+4+5>+3+4 2455 <3
Therefore

47
Heas <6-6—0+3=7-7<8, as wished for.

Remarks. While \/nz, > n may be proven through other methods than the
squaring of the relation (with various degrees of difficulty or success), the upper
asymptotic bound seems to be out of reach without resorting to it.

Of course, one would be happy to have \/nz, < n+ 1 for all n, but this is just
not true; in fact one can prove that

lim (\/ﬁz - <n+élnn>)

exists and is finite, thus spoiling any pretense to obtain the above wishful bound.
This idea (of squaring such recurrence relations) easily solves related problems
like Zn i1 = @, — ;& [A. Neguf] or &1 = 7 + 2 [A. Gica, L. Panaitopol].

Problem 20. Let ABC be an acute triangle with AB # AC. Let D be the
foot of the altitude from A to BC and let w be the circumcircle of the triangle
ABC. Let w be the circle that is tangent to AD, BD and w. Let w, be the circle
that is tangent to AD, C'D and w. Finally, let £ be the common internal tangent to
wy and wy that is not AD.

Prove that ¢ passes through the midpoint of BC if and only if 2BC =
AB + AC.

Solution. Let w; be tangent to AD, BD and w at P, U and S respectively,
and let wy be tangent to AD, CD and w at Q, V, and T respectively. Let ¢ be
tangent to wq and wy at U’ and V" respectively, and meeting BC at X .
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Without loss of generality, assume that b > ¢. Note that XU + XV = UV =
r1+7ry,ad XU - XV = XU' - XV'=U'V' = PQ =11 —r9,50 XU =19
and XV = r;. Then X is the midpoint of BC if and only if BX = BU + UX =
ccosB—r1 41y = §,0r
b —c

2a
By Casey’s theorem on points A, B, C, and circle w;,

2

Ty —T1 =

AC-BU + BC - AP = AB-CU,

or
b(ccosB—r) +a (ﬁ ——rl) =c(bcosC + 1),
a

which implies that
= be(cos B — cos C) + 2K
a+b+e ’
where K denotes the area of the triangle ABC.
Similarly,
be(cos C — cos B) + 2K
a+b+c ’

T =

* 2bc(cosC —cosB)  (b—c)(b+c—a)

a+b+c a

Ty —T1 =

Since b # ¢,
(b-c)bt+c—a) b —¢?

a 2a
ifandonlyif 2a = b+ c.



PROBLEMS AND SOLUTIONS

JUNIOR BMO SELECTION TESTS

Problem 1. Let ABC be a rightangle triangle at C and consider points D, E
on the sides BC, C A, respectively, such that g—g = 42 = k.Lines BE and AD
intersect at point O. Show that ZBOD = 60° if and only if k = /3.

Solution. Consider the rectangle ACDP. The hypothesis rewrites as % =
4 =k, 50 LAPE = /BPD and ZAPD = LEPB. Moreover, 45 = LD
hence APAD ~ APEB.

It follows that ZDAP = ZPEB, so APOE is cyclic and hence ZBOD =
ZAOE = LAPE.

The claim is proved by the following chain of equivalences: ZBOD = 60°«
tan ZBOD = \/3& tan ZAPE = /3 & AE-V3er=V3

Problem 2. Consider five points in the plane such that each triangle with ver-
tices at three of those points has area at most 1. Prove that the five points can be
covered by a trapezoid of area at most 3.

Solution. Denote A, B,C, D, E the given points and suppose ABC is the
triangle of maximal area. The distance from D to BC can not exceed the distance
from A to BC, hence D - and similarly E — are located between the parallel
through A to BC and its mirror image across BC. Apply the same argument
to AB'and AC, to deduce that the five poinys must lie in a triangular (bounded)
region Ay B1C; whose median triangle is ABC.

Since D and E lie in at most two of the triangles A; BC, AB,C, ABC}, one of
the trapezoids ABA; By, BCB;Cy, C ACy Ay must contains the points ABCDE.
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And since the area of such a trapezoid is 3 times the area of ABC, hence at most
3, the conclusion follows.

Problem 3. For any positive integer n let s(n) be the sum of its digits in
decimal representation. Find all numbers n for which s(n) is the largest proper
divisor of 7.

Solution. The numbers are 18 and 27.

Let k& be the number of digits of n in decimal representation. Notice that:

(1) n = p- s(n), where p is prime, so any prime divisor of s(n) is greater than
of equal to p;

(2) s(n)? > n, 501051 < n < s(n)? < (9k)2, hence k < 4.

Consider the following cases:

a)If k = 4, then n = abed, n < s(n)? < 362 = 1296, s0 a = 1. Then
s(n) < 28, thus n < 282 < 1000, false.

b) If k < 3, then abe, s0 9(11 -a + b) = (p — 1)(a+ b+ c).

If 9 divides p — 1, since p < a+b+ c = 27 we get p = 19. Next 9a = b+ 2c,
hence a < 3. As a + b+ ¢ > 23 — see (1) — we have no solution.

If 9 does not divide p — 1, from 3|a + b+ c and (1) we get p = 2 or p = 3.

Forp = 3wehaven = 3(a+b+c),s0a=0and10-b+c = 3(b+c).
Consequently, 7b = 2c and n = 27.

Forp =2wegetn =2(a+b+c),s0a=0and8 = c, hence n = 18.

Problem 4. Prove that ';—2 + ’c’—; + % > a+ b+ c, for all positive real numbers
a,b,and c. '

Solution. The inequality can be rewritten as a* + b% + ¢* > abe(a+b+c). A
successive application of the well-known inequality 22 + 42 + 22 > zy +yz + 22
yields the desired result:

a + b8 4+ ¢ > a%? + 2 + a® = (ab)? + (be)? + (ca)® > abe(a+ b+ c).

Problem 5. Consider a circle C of center O and let A, B be points on the
circle with ZAOB = 90°. Circles C1(O;) and C2(O,) are internally tangent to
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C at points A, B, respectively, and — moreover — are tangent to themselves. Cir-
cle C3(03), located inside the angle ZAOB, is externally tangent to Cy, C and
internally tangent to C. Prove that O, Oy, O, Os are the vertices of a rectangle.

Solution. Let R, 71,79 be the radii of the circles C,C1,Cy andlet r = R —
r1 — ro. Consider the point P so that OO; PO, is a rectangle. The tangency
conditions yield OO; = R — 71,00, = R —rp and 0109 =71 + 79 = R— 7.
It is sufficient to prove that C is the circle of radius 7 centered at P.

To prove this, notice that O1P = 00y = R —ry =7+ 71, 02P = 00, =
R—71 =r+7r,and OP = O;05 = R — r, so the three tangency conditions are
fulfilled.

Problem 6. A 7 x 7 array is divided into 49 unit squares. Find all integers
n € N* for which n checkers can be placed on the unit squares so that each row
and each line contain an even number of checkers.

(0is an even number, so empty rows or columns are not excluded. At mostone

checker is allowed inside a unit square.)

Solution. One can place 4,6, .. ., 40, 42 checkers under the given conditions.

We start by noticing that n is the sum of 7 even numbers, hence 7 is also even.
One can place at most 6 checkers on a row, hencen < 6 - 7 = 42.

The key step is to use 2k x 2k squares filled completely with checkers and (2k-+
1) x (2k 4+ 1) squares having checkers on each unit square except for one diagonal.
Notice that all these squares satisfy the required conditions, and moreover, we may
glue together several such squares under the conditions in the statement.

We describe below the configurations of n checkers for any even n between 4
and 42.

For 4, 8,12, 16, 20, 24, 28, 32or 36 checkersuse 1,2,3,4,5,6,7,80r 9,2 x 2
squares; notice that all fit inside the 7 x 7 array!.

For 6 checkers consider a 3 x 3 square, except for one diagonal; then adding
2 x 2 squares we get configurations of 10, 14,18,22, ..., 38 checkers.

For 40 checkers use a5 x 5 and five 2 x 2 squares.

For 42 checkers we complete the 7 x 7 array but a diagonal.
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Finally, notice that 2 checkers cannot be placed under the conditions in the
statement.

Problem 7. Suppose ABC D is a cyclic quadrilateral of area 8. Prove that if
there exists a point O in the plane of the quadrilateral such that OA + OB + OC +
OD = 8, then ABCD is an isosceles trapezoid (or a square).

Solution. Let o be the measure of the angle determined by the diagonals.

Since 8 = OA + OB + OC + OD > AC + BD > 2-vAC-BD >
2-VAC-BD-sina = 2v/28 = 8, we get AC = BD = 1 and o = 90°. The
claim follows by a simple arc subtraction.

Problem 8. Prove that

a b ¢\’ 3 fa+b b+c c+a
2402.8) 52,
(b+c+a> ~2 ( c + a + b >’

for all positive real numbers a, b, and c.

Solution. Let § = z,% = yand £ = z The inequality can be rewritten
successively: a2 +y? + 22 + 2zy + 2yz+ 222 > 3 (z tyt+z+i+l+ %) &
2
zz+y2+zﬂ+2(§+§+§) >3(etyteritiel) oo@ e+
z )+%+%+%>3(z+y+z)4
From AM-GM inequality we get

1 1
2z2+;=22+z2+; >34/a? 22 1:3:::.

Summing up the resulting inequalities and its analogues in = and y we get the
conclusion.

Problem 9. Find all real numbers a and b satisfying
2(a®* + 1)(b? +1) = (a+ 1)(b+ 1)(ab + 1).
Solution. Consider the given equation as quadratic in a:

a?(* —b+2)—a(b+1)>+262 —b+1=0.
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The discriminant is A = —(b — 1)?(7b? — 2b + 7), hence we have solutions only
for b = 1. It follows thata = 1.

ALTERNATIVE SOLUTION. Apply the Cauchy-Schwarz inequality, to get 2(a®+
1) > (a+1)% 26 +1) > (b+1)? and (a® + 1)(b?+1) > (ab+1)2 Multiplying,
we obtain 2(a? + 1)(b% + 1) > (a + 1)(b + 1)(ab + 1), hence the equality case
occurs in all inequalities, soa = b = 1.

Problem 10. Show that the set of real numbers can be partitioned into subsets

having two elements.

Solution. For example, consider R \ Z partitionated into doubletons {—z, z}
and Z into doubletons {2n, 2n + 1}.

Another example: split R into disjoint intervals [2n, 2n+ 1), withn € Z. Then
take the pairs (z,z + 1) from each interval (2n, 2n + 1), with z € [2n, 2n + 1).

Problem 11. Let A = {1,2,...,2006}. Find the maximal number of subsets
of A that can be chosen such that the intersection of any two such distinct subsets
have 2004 elements.

Solution. The required number is 2006, the number of the subsets having 2005
elements.

To begin with, notice that each subset must have at least 2004 elements. If
there exist a set with exactly 2004 elements, then this is unique and moreover,
only 2 other subsets may be chosen.

If no set has 2004 elements, then we can choose among the 2006 subsets with
2005 elements and the set A with 2006 elements. But if A is among the chosen
subsets, then any intersection will have more than 2004 elements, false. The claim

is thus proved.

Problem 12. Let ABC be a triangle and let A, By, C; be the midpoints of
the'sides BC, CA, AB, respectively. Show that if M is a point in the plane of the

triangle such that
MA MB MC

MA;, T MB, MG,
then M is the centroid of the triangle.

2,
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Solution. Let Ay, By, Cy be the mirror images of M across A;, By, C1, re-
spectively. The given condition shows that MA = M Ay, MB = M By, MC =
M Cs. Fromthe parallelograms AM BCy, BM C Ay, AMC B, we derive that M A =
MA; = BCy = BC,MB = MBy = ACy = CA; and MC = MC, =
BAj = AB,. It follows that M Ay BCo, M AyC B, and M By AC, are also paral-
lelograms, therefore A, M and A, are collinear. The conclusion is now clear.

Problem 13. Suppose a, b, c are positive real numbers which sum up to 1.

Prove that N . )
b
Ll 3@ 4.
b c a

Solution. By Cauchy-Schwarz inequality we get:

a® b 2
—t—t—=
b c a

e,
ba? ' cb? " ac® 7 a?b+b2c+ c2a’
It suffices to show that a® + b% + ¢® > 3(a®b + b2c + c%a) or, since a+ b+ ¢ = 1,
that
(a+b+c)(a® + b+ c?) > 3(a®b + b2+ Fa).

The last inequality can be rewritten 3 a(a — b)? > 0, which is obvious.

ALTERNATIVE SOLUTION. Since a+b+c = (a+b+c)? = 1, the inequality
can be successively rewrtitten as follows:

a_2+bz+‘32 ( 2,12, 2 2
Tt ;—a+b+c)23(a +b0"+c*) = (a+b+c)
or
Z(a—z—2a+b>>2(a_b)2
b z £l
that is,

(a=b)? _-
=5 Y-
Since a, b, ¢ < 1, we are done.
Problem 14. The set of positive integers is partitioned into subsets with in-

finitely many elements each. The following question arises: does there exist a
subset in the partition such that any positive integer has a multiple in that subset?
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a) Prove that if the number of subsets in the partition is finite, then the answer
is “yes”. ’

b) Prove that if the number of subsets in the partition is infinite, then the answer
can be “no” (for some partition).

Solution. a) Let Ay be the partition classes, with k& = 1,2,...7. Assuming
that the answer is “no”, there exist positive integers nk, k = 1,2,...r, such that
no multiple of n is in Ag. But nyny . .. ny lies in one of the sets Ay and is multiple
of any n, false.

b) We exhibit a partition for which the answer is “no”.

Let Ay be the set of all numbers written only with the first & primes at any
positive power; moreover, put 1 € Aj. For any fixed k, the number p1ps . . . Pr+1
has no multiples in Ay. o

FIFTH SELECTION TEST

Problem 15. Let ABC be a triangle and D a point inside the triangle, located
on the median from A. Show that if ZBDC = 180° — ZBAC, then AB - CD =
AC - BD. '

Solution. Let E be the mirror image of D across the midpoint of the side BC.
Notice that DBEC is a parallelogram and ABEC is cyclic. The equality of the
areas of triangles ABE and ACE implies AB - BE = AC - CE. Noticing that
CE = BD and BE = CD, the conclusion follows.

Problem 16. Consider the integers a1, a2, as, a4, b1, b2, b, by with ar, # br
forall k =1,2,3,4.1f

{a1,b1} + {a, b2} = {as, bs} + {as,ba},
show.that the number |(a; — b1)(a2 — b2)(as — bs)(as — ba)| is a perfect square.
Note. For any sets A and B, we denote by A + B = {z+y|ze€Ayec B}

Solution. Without loss of generality, assume ai > bi,'’k = T,4. Then a; +
as = as 4 ag'and by + by = bz + by. Two cases may occur:
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i) aq + by = as + by and ag + by = aq + bs. Subtracting we get [ay — ba| =
|ag — bal, |ay — b1| = |ag — bs| and the claim follows.

ii) @y + by = aq + b3 and ay + by = as + by. By subtraction we obtain
|ag — ba| = |as — bs], |a1 — b1| = |ag — ba|, as needed.

Problem 17. Let z,y, z be positive real numbers such that

1 + 1 + 1
1+z 1+y 142

Prove that 8zyz < 1.

Solution. Cancel out denominators to get 1 = zy + yz + zz + 2xyz. By the
AM-GM inequality we get 1 > 4/22%323, s0 1 > (8zyz)*. The conclusion
follows.

Problem 18. For a positive integer n denote by r(n) the number having the
digits of  in reverse order; for example, r(2006) = 6002. Prove that for any
positive integers a and b the numbers 4a + r(b) and 46 + r(a) cannot be simul-
taneously perfect squares.

Solution. Assume by contradiction that both 4a? + (b) and 4b? + r(a) are
perfect squares and let b < a. The number 7(b) has at most as many digits as b, so
r(b) < 10b < 10a. It follows that

(2a)® < 4a® + 10a < (2a + 3)%,

hence 4a? + r(b) = (2a+ 1)? or (2a +2)?, thus 7(b) = 4a + 1 or 8a + 4. Notice
that 7(b) > a > b, implying that a and b have the same number of digits. Then, as
above, we get 7(a) € {4b+ 1,8b +4}.

Three cases may occur:

1. 7(a) = 4b+1and(b) = 4a+1. Subtracting we get (r(a)—a)+(r(b)—b) =
3(b — a) + 2, which is false since 9 divides r(n) — n for any positive integer 7.

2. r(a) = 8b+4 and 7(b) = 4a-+1 (the same reasoning applies to 7(b) = 8a+4
and r(a) = 4b+1). Subtracting we obtain (r(a) —a)+ (r(b) —b) = 7b+3a+3, s0
3 divides b. Then 3 also divides 7(b) = 4a+ 1, so a and 7(a) both yield remainder
2 when divided by 3. This leads to a contradiction, for r(a) = (86 + 3) 4+ 1.
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3. 7(a) = 8b+ 4and r(b):= 8-+ 4. Then the last digit of both r(a) and r(b)
is even, 5o at least 2. Hence.the first digit of both a,and b is greater than or equal to
2,50 8+ 4.and 8bH-4 have more digits than a and.b. It follows that7(a) < 8b+4
and 7(b) < 8a + 4, a contradiction. :
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