Ph. D QUALIFYING EXAMINATION COMPLEX ANALYSIS–SPRING 1999

Work all 6 problems. All problems have equal weight. Write each solution in a separate bluebook.

1. Let $f(x): (-\frac{1}{2}, \infty) \to \mathbf{C}$ be a continuous function. Suppose f is analytic in a neighborhood of the origin and that there is a positive constant N so that

$$\lim_{x \to \infty} f(x)e^{Nx} = 0.$$

For the complex variable s we define

$$F(s) = \int_0^\infty f(x) x^s dx.$$

- (a) Show that the integral converges for $\operatorname{Re}(s) > -1$ and that F(s) has a meromorphic continuation to all s with possible poles only at $s = -1, -2, \cdots$.
- (b) Determine the exact location of the poles of F and its singular parts at poles.

Hint: The answer to the second part depends on the coefficients of the Taylor expansion of f at x = 0.

2. Let *D* be a bounded region in **C** whose boundary consists of *n*-smooth disjoint Jordan arcs. Thus *D* is *n*-connected. We denote by \overline{D} the closure of *D*.

(a) Suppose f(z) is a non-constant continuous function on \overline{D} and is analytic in D. Suppose further that

(*)
$$|f(w)| = 1$$
 for all $w \in \partial D$.

Show that f has at least n zeros (counting multiplicities) in D.

(b) For any n > 0, find an *n*-connected region D and an analytic function $f: D \to \mathbb{C}$ such that f satisfies (*) and has exactly n zeros in D.

Remark: You will receive partial credits if you work out the special case where $D = \{1 < |z| < c\}$ in part (a) and/or (b).

3. Show that

$$\int_0^\infty \frac{x^{-c}}{1+x} dx = \frac{\pi}{\sin \pi c} \qquad \text{if } 0 < c < 1.$$

Remark: You need to provide details to justify each step in your computation.

- 4. Let D be the open unit disk and $f: D \to \mathbf{C}$ be a bounded analytic function.
 - (a) Let $\{a_n\}_{n\geq 1}$ be the non-zero zeros of f in D counted according to multiplicity. We assume $\{a_n\}$ is an infinite sequence. Then prove that

$$\sum_{n=1}^{\infty} (1 - |a_n|) < \infty$$

(b) Let f and $\{a_n\}$ be as above. We define

$$B(z) = \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \left(\frac{a_n - z}{1 - \bar{a}_n z}\right).$$

Show that B(z) is a bounded analytic function on D with zeros $\{a_n\}$. Show further that there is an integer m and a bounded non-vanishing holomorphic function h(z) so that

$$f(z) = z^m B(z)h(z).$$

- **5.** Let D be the open unit disk and let f be a non-constant analytic function in D.
 - (a) Suppose for every $a \in \partial D \setminus \{1\}$ we have

$$\lim_{z \to a} |f(z)| \le 1$$

and for any $\delta > 0$ we have

**

*

$$\lim_{z \to 1} |f(z)| |z - 1|^{\delta} = 0.$$

Show that |f(z)| < 1 in D.

(b) Construct an analytic function on the unit disk D that is *not* bounded in D and that satisfies (*) but not (**).

Hint: Consider $u(z) = (z-1)^{\delta} f(z)$.

6. Let ω_1 and ω_2 be two non-zero complex numbers with non-real ratio ω_1/ω_2 . Let Λ be the lattice $\Lambda = \mathbf{Z}\omega_1 + \mathbf{Z}\omega_2$ and let a and b be two complex numbers not congruent to each other. We form the linear space V of all elliptic functions of period Λ with at most simple poles at a and b.

- (a) Prove that $\dim_{\mathbf{C}} V$ is at most 2.
- (b) Using the method of infinite series, construct explicitly a two dimensional families of elliptic functions in V, thereby proving that dim V = 2.

Remark: In (b) one needs to provide details to why the series converges, why they have period Λ and why they provide a two dimensional family.