Real Analysis Quals—Fall 2004

Part I.

Answer all problems

- 1 Prove that if $1 \le p < \infty$ and $f \in L^p(\mathbb{R})$, then the map $\tau \mapsto f_{\tau}$, where $f_{\tau}(x) = f(x \tau)$, is continuous from \mathbb{R} into $L^p(\mathbb{R})$ (endowed with the norm topology).
- **2** Let (X, \mathcal{B}, μ) be a measure space, μ finite or infinite. For a measurable real-valued f on (X, \mathcal{B}, μ) and $n \in \mathbb{Z}$ write

$$\mathbf{m}_n = \mathbf{m}_n(f) = \mu(\{x \colon 2^{n-1} \le |f(x)| < 2^n\}).$$

Give a condition, stated in terms of $\{\mathbf{m}_n\}$, which is necessary and sufficient for $f \in L^p$, where $1 \le p < \infty$.

3 Let (X, \mathcal{B}, μ) be a finite measure space, $\mu(X) = a$. **a.** Prove that $L^{p_1}(X, \mathcal{B}, \mu) \subset L^{p_0}(X, \mathcal{B}, \mu)$ for $1 \le p_0 \le p_1 < \infty$, and for $f \in L^{p_1}(X, \mathcal{B}, \mu)$,

$$||f||_{p_0} \le a^{\left(\frac{1}{p_0} - \frac{1}{p_1}\right)} ||f||_{p_1}$$

Hint: Reduce to, and prove, the case a = 1.

b. Let (X, \mathcal{B}, μ) be a finite measure space, $f_n \in L^2(X, \mathcal{B}, \mu)$, $||f_n||_{L^2} \leq 1$, f measurable, and $f_n \to f$ in measure. Prove:

- **b.1.** $f \in L^2(X, \mathcal{B}, \mu)$. **b.2.** $f_n \to f$ in the L^p -norm for every p < 2. **b.3.** $f_n \to f$ weakly (in L^2).
- 4 Denote by $C^{\infty}([0,1])$ the space of all the infinitely differentiable complexvalued functions on the interval [0,1]. Define convergence in $C^{\infty}([0,1])$ as follows: $f_n \to f$ in C^{∞} if $f_n^{(j)} \to f^{(j)}$ uniformly for every $j \in \mathbb{N}$.
 - **a.** Prove that this convergence is equivalent to convergence in the metric

$$d(f,g) = \sum_{j=0}^{\infty} 2^{-j} \frac{\|(f-g)^{(j)}\|_{\infty}}{1 + \|(f-g)^{(j)}\|_{\infty}}$$

- **b.** Prove that the topology so defined *cannot* be defined by a norm.
- 5 Let $f \in L^1(\mathbb{R})$ and assume that $\hat{f}(\xi) = \int e^{-ix\xi} f(x) dx = 0$ for $|\xi| > 1$. Prove that f is equal a.e. to the restriction to \mathbb{R} of an entire function f(z), z = x + iy, such that $\lim_{|y| \to \infty} e^{-|y|} f(x + iy) = 0$.

Real Analysis Quals—Fall 2004

Part II.

Answer all problems

- 6 Let $\{v_n\}$ be a sequence of vectors in a Hilbert space \mathcal{H} , and assume that $v_n \to v$ in the weak topology.
 - **a.** Prove that $||v_n|| = O(1)$.
 - **b.** Prove also that $v_n \to v$ in norm if, and only if $||v_n|| \to ||v||$.
- 7 Let (X, ρ) be a complete metric space. A set $E \subset X$ has the property of *Baire* if $E = (G \setminus P_1) \cup P_2$, where G is assumed open and P_j , j = 1, 2 meager (first category). We denote by \mathcal{PB} the set of all such E.

a. Prove: \mathcal{PB} is the sigma algebra generated by all the open sets and all the meager sets in X.

Hint: The boundary of a closed set is non-dense.

b. If E is a second category Borel set then it is residual (has meager complement) on some nonempty open subset.

c. If $E \subset \mathbb{R}$ is a second category Borel set then $E - E = \{x - y : x, y \in E\}$ contains an interval $(-\delta, \delta), \delta > 0$.

8 **a.** Let $B
ightharpoondown C^1([0,1])$ be a subspace of dimension N + 1. Show that there exists f
ightharpoondown B such that $\sup_{0 \le x \le 1} |f(x)| = 1$ and $\sup_{0 \le x \le 1} |f'(x)| \ge 2N$. *Hint:* There is a nontrivial g
ightharpoondown B which vanishes on $E = \{\frac{2j-1}{2N}\}_{j=1}^N$.

b. Prove that a subspace $B \subset C^1([0,1])$ which is closed under uniform convergence is finite dimensional.

Hint: Show that $||f'||_{\infty} \leq K ||f||_{\infty}$ for some constant K and all $f \in B$.

9 We denote by H-dim E the Hausdorff dimension of a (closed) set E ∈ ℝ^k, that is the number α₀ such that

H^α(E) = ∞
for α < α₀,
H^α(E) = 0
for α > α₀,

where H^α(E) denotes the Hausdorff measure in dimension α of the set E.
a. Let F be a Lipschitz map from a compact set E ⊂ ℝ^k into ℝ^l. Show that F(E) is closed and H-dim E ≥ H-dim F(E).

b. Prove that \mathcal{H} -dim(bdry(D)) ≥ 1 for every non-empty bounded open set $D \subset \mathbb{R}^2$.

10 Assume that α is an irrational multiple of π . Let μ be a finite Borel measure on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ and assume that the measure ν defined for all Borel sets $A \subset \mathbb{T}$ by: $\nu(A) = \mu(A - \alpha) - \mu(A)$ is absolutely continuous (with respect to Lebesgue).

Prove that μ is absolutely continuous (Lebesgue).

Hint: Write $\mu = \mu_{ac} + \mu_s$, the decomposition of μ to its absolutely continuous and singular parts.