Ph.D. Qualifying Exam problems, Real Analysis June 2005, part I.

1 (Quickies)

a. Let $(B, || \cdot ||)$ be a normed space, and $A : B \to B$ an invertible linear transformation such that $||A^n|| \le c$ for some constant c > 0 and all $n \in \mathbb{Z}$. Prove that there is an equivalent norm on B with respect to which A is an isometry.

b. Let μ be a finite measure on [-1, 1] and assume that $\int x^{kn} = 0$ for some integer k and all nonnegative integers n. Prove that if k is odd then $\mu = 0$. What can you say when k is even?

c. Prove that the space C(0, 1) is not reflexive.

Hint: Identify the dual space M(0,1) of C(0,1) and show that the dual of M(0,1) contains elements that can not be identified with elements of C(0,1).

d. Prove that C(0,1) is not isomorphic—and in particular not isometric— to a uniformly convex Banach space.

- 2 Prove that a linear operator T on a Hilbert space \mathcal{H} is *compact* if, and only if, it is the limit, in the norm topology of operators, of a sequence of operators of finite rank.
- 3 Suppose B is a Banach space and $K \subset B$ is a subset. Recall that its convex hull, ch(K), is the smallest convex subset of B which contains K.
 - **a.** Prove that if K is compact, then the closure of ch(K) is compact as well.

b. Show that the set of indicator functions $\{\mathbb{1}_{[\tau,\tau+\frac{1}{5}]}(t): \tau \in \mathbb{T}\}$ is compact in $L^1(\mathbb{T})$, and its convex hull is not.

- Let A_j ⊂ [0, 1], for j = 1, 2, ..., N be Lebesgue measurable, μ(A_j) ≥ 1/2. Let 0 < a < 1/2 and denote E_a = {x : x ∈ A_j for more than aN values of j}. Prove that μ(E_a) ≥ 1-2a/2(1-a). Show that the estimate μ(E_a) ≥ 1-2a/2(1-a) is best possible (if it is to apply to all N). *Hint:* Consider F = ∑₁^N 1_{A_j}.
- 5 The Hausdorff-Young inequality on the line states that if $1 \le p \le 2$ and 1/p + 1/q = 1, then

$$f \in L^p(\mathbb{R})$$
 implies $\|\hat{f}\|_{L^q(\hat{\mathbb{R}})} \le \|f\|_{L^p(\mathbb{R})}.$ (1)

Prove that the converse is true: (1) *implies* 1/p + 1/q = 1 and $1 \le p \le 2$. *Hint:* For the first claim use scaling $(f_{\lambda,s} = \lambda^s f(\lambda x)$ for appropriate *s*, and its effect on the Fourier transform). For the second claim, show that if $\varphi_{\lambda}(x) = e^{i\lambda x^2} \mathbb{1}_{[-1,1]}$, then as $\lambda \to \infty$ $\|\hat{\varphi}_{\lambda}\|_{\infty} \to 0$ while $\|\hat{\varphi}_{\lambda}\|_2$ remains constant.

Ph.D. Qualifying Exam problems, Real Analysis June 2005, part II.

- 6 (Quickies)
 - **a.** A distribution μ on \mathbb{T} is *positive* if $\langle f, \mu \rangle \ge 0$ for every nonnegative $f \in C^{\infty}(\mathbb{T})$. Show that a positive distribution is a measure.
 - *Hint*: Positivity implies: for real-valued f, $\langle f, \mu \rangle \leq \max f(t) \langle 1, \mu \rangle$.
 - **b.** Assume $f_n \in L^2[0,1]$, $n \in \mathbb{N}$, and $||f_n|| \le 1$.

Prove that $\mu(\{x \mid |f_n(x)| > n^{\frac{2}{3}}\}) < n^{-\frac{4}{3}}$, and conclude that for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that the measure of the set $\{x : |f_n(x)| \le n^{\frac{2}{3}} \text{ for } n > N\}$ exceeds $> 1 - \varepsilon$.

7 Let $\{f_n\}$ be an orthonormal sequence in $L^2(0,1)$. Prove that $S_n = \frac{1}{n} \sum f_m \to 0$ a.e.

Hints:

a. $||S_n||_{L^2} = \frac{1}{n}$. It follows that if $\sum \lambda_j^{-1} < \infty$, and in particular if $\lambda_j = [j \log^2 j]$, then $\sum |S_{\lambda_j}|^2$ converges a.e. and $S_{\lambda_j} \to 0$ a.e.

- **b.** If $N \in (\lambda_j, \lambda_{j+1})$, then $S_N = \frac{\lambda_j}{N} S_{\lambda_j} + \frac{1}{N} \sum_{\lambda_j+1}^N f_m$. Use **6.b.** to estimate the last sum.
- 8 Let $B = \{(x, y, z) : r = \sqrt{x^2 + y^2 + z^2} \le 1\}$, the unit ball in \mathbb{R}^3 , $G = \mathbb{1}_B$ its indicator function, and $g(x) = \int G(x, y, z) \, dy \, dz$.
 - **a.** Compute g.
 - **b.** Show that $\hat{g}(\xi) = O(|\xi|^{-3})$
 - c. Prove $\hat{G}(\xi, \eta, \zeta) = O\left((\xi^2 + \eta^2 + \zeta^2)^{-\frac{3}{2}}\right).$
 - **d.** Let $F_n(x, y, z) = \sin^2(nr)G(x, y, z)$, and $f_n(x) = \int F_n(x, y, z)dy dz$. Prove: $f_n \to \frac{1}{2}g$ uniformly as $n \to \infty$,
- 9 Let $f(x) = \sum 10^{-n} \cos 10^{2n} x$
 - **a.** Prove that f satisfies the Hölder $\frac{1}{2}$ condition:

$$|f(x+h) - f(x)| \le \text{const} \cdot h^{\frac{1}{2}}.$$

b. Prove that *f* is nowhere differentiable.

Hint: For every x and every n find points y_n and z_n such that $|x - y_n| \sim 10^{-2n}$, $|x - z_n| \sim 10^{-2n}$, $\frac{f(x) - f(y_n)}{x - y_n} > 10^{n-2}$, and $\frac{f(x) - f(y_n)}{x - y_n} < -10^{n-2}$.

c. Can a Lipschitz function be nowhere differentiable? (Justify your answer by quoting relevant standard theorems.)

10 Let B be a Banach space and S a linear map from B into C([0, 1]), such that if $\{v_n\} \subset B$ and $\|v_n\|_B \to 0$ then $Sv_n(x) \to 0$ pointwise in [0, 1]. Prove that S is bounded; in particular, the assumptions $\|v_n\|_B \to 0$ implies $Sv_n(x) \to 0$ uniformly.