

SỔ TAY ĐẠI SỐ CẤP 🎞

TRẦN PHƯƠNG

Sổ tay Đại số cấp III

CÁC PHƯƠNG PHÁP Và kỹ thuật chứng minh Bất đẳng thức

Tập 1

🗍 280 BẤT ĐẮNG THỨC CHỌN LỌC

D BOBÁT DÁNG THỨC TRONG BỘ ĐỂ THI TUYẾN SINH

15 KÝ THUẬT SỬ DUNG BẤT ĐẮNG THÚC CÔN

ΝΗλ Χυấτ bản thành phố hồ chí minh

$$1 \sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$$

$$\sum_{i=1}^{n} f(m) = f(m) + f(n) + f(p) + f(q)$$

$$VD : \sum_{a,b,c} \frac{a}{b+c} = \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$$

$$2 \forall AABC \text{ với gốc } (A, B, C) \text{ và cạnh } (a, b, c) \text{ ta qui uốc}$$

$$\sum_{A,B,C} f(A) = f(A) + f(B) + f(C)$$

$$\sum_{a,b,c} g(a) = g(a) + g(b) + g(c)$$

$$VD : \sum_{A,B,C} \sin A = \sin A + \sin B + \sin C$$

$$\sum_{A,B,C} \frac{Aa + Bb}{A + B} = \frac{Aa + Bb}{A + B} + \frac{Bb + Cc}{B + C} + \frac{Cc + Aa}{C + A}$$
3. [8III.2] : Để số 8 câu III phần 2
CMR : Chứng minh rằng
BĐT : Bất dầng thức
dpcm : Điều phải chứng minh
TB : Trung bình
gt : giả thiết
VT : Vế trái
dt : diện tích
ĐK : Điều kiện
CĐ, CT : Cực đại, cực tiểu
BCS : Bunhiacôpski

LỜI NHÀ XUẤT BẢN

Trong chương trình toán học phố thông, bất đẳng thức là phần gây cho học sinh, ngay cả học sinh khá và giỏi, nhiều bối rối nhất. Tuy nhiên, đây cũng là phần quyến rũ những học sinh say mê với toán học và mong giỏi toán vì nó đòi hỏi phải động não, tìm tòi và sáng tạo.

Đế giúp các em học sinh làm quen rồi đi đến thích thủ các bài toán bất đẳng thức, tác giả Trần Phương viết cuốn sách nhỏ này với mục đích cung cấp cho các em học sinh một vài phương pháp và kỹ thuật chứng minh bất đẳng thức.

Ở tập 1, cách phản loại phương pháp và kỹ thuật chủ yếu dựa trên 130 bài của Bộ đề tuyến sinh(với gần một nửa là cách giải hay khác với cách giải của Bộ đề), sau đó bổ sung 150 bài để giúp các em nấm sâu hơn về kỹ năng và phương pháp. Với mục tiêu học sinh nắm chắc cách giải bài toán bất dắng thức trong Bộ đề nên có một vài kỹ thuật đưa ra chỉ là sự phân loại theo Bộ đề.

Trong tập 1 này, bất đẳng thức Côsi được viết khá kỹ với 15 kỳ thuật. Đặt biệt các học sinh giới cấp toàn quốc không thế bỏ qua kỹ thuật 15, mà nhờ đó có thể dễ dàng chứng minh bất đẳng thức

$a^{\mathbf{b}} + b^{\mathbf{a}} > 1 \qquad \forall a, b > 0$

bằng cách sử dụng bất đẳng thức Côsi, chữ kìng sử dụng bất đẳng thức Becnuli như thường thấy trong các sách đã xuất bán.

Ở phần cuối của sách có giới thiệu 17 bất đẳng thức của các nhà toán học trên thế giới, trong đó có bất đẳng thức Niuton-Mac Loranh. Bất đắng thức Niuton-Mac Loranh, trong các tài liệu xuất bán hiện nay thường dựa vào định lý Lagrange để chứng minh, tuy nhiên các bạn có thể chứng minh bất đắng thức này bằng phương pháp bất đắng thức Côsi (Trong tập 2 sè trình bày)

Đế sử dụng tốt cuốn sách này, các em học sinh nên đọc cả phần bình luận minh hoa cho các kỳ thuật. Còn một số kỳ thuật khác tác giả muốn danh cho các em học sinh tự rút ra nhận xét và kết luận. Cùng cân nói thêm đế các em học sinh lưu ý, sách còn cung cấp lời giải đúng cho đề thi tuyển sinh số 33111.2.

Vì sách được viết nhằm xoay quanh 130 để bất đẳng thức trong Bộ để thi tuyến sinh nên chưa thế cung cấp đầy đủ cấc phương pháp chứng mình bất đẳng thức.

Nhà muất bản TP. Hồ Chí Minh trân trọng giới thiệu cuốn sách này và hý vọng nó sẽ giúp ích cho các em học sinh cuối cấp 3 dang chuẩn bị thị vào đại học. Mong nhận được ý kiến đóng góp của các bạn đọc,

NHÀ XUẤT BẢN TP, HỔ CHÍ MINH

§† 15 KÍ THUẬT SỬ DỤNG BẤT ĐẦNG THỨC CÔSI

I - BẤT DẰNG THỰC CÓSI

Ĵ.

7:

1. Dạng tổng quát (n số) : $\forall x = x_{s}, \dots, x_{s} \ge 0$ ta có 1.1. Dang 1: $\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \dots x_n}$ 1.2. Dang 2 : $x_1 + x_2 + \dots + x_n \ge n \sqrt[n]{x_1x_2 \dots x_n}$ 1.3. Dang 3 : $\left(\frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n}\right)^n \ge \mathbf{x}_1\mathbf{x}_2 \dots \mathbf{x}_n$ 1.4. $D \delta u b \delta ng \Leftrightarrow x_1 = x_2 = \dots = x_n$ 5. $H\hat{e} \ qu\dot{a} \ 1 : N\hat{e}u \ x_1 + x_2 + \dots + x_n = S - \text{const thi}$ Max $(x_1x_2 \dots x_n) = \left(\frac{S}{n}\right)^n x\dot{a}y \ ra \Leftrightarrow x_1 = x_2 = \dots = x_n = \frac{S}{n}$ 5. $H\hat{e} \ qu\dot{a} \ 2 : N\hat{e}u \ x_1x_2 \dots x_n = P - \text{const thi}$ Min $(x_1+x_2+\dots+x_n) = n \ \nabla P \ x\dot{a}y \ ra \Leftrightarrow x_1 = x_2 = \dots = x_n = \ \nabla P$ 2. Dang cụ thể (2 số, 3 số) $= 2 : \forall x, y \ge 0 \text{ khi dó}$ $\left(\begin{array}{c} n = 3 : \forall x, y, z \ge 0 \text{ khi dó} \\ x + y + z \end{array}\right)$ 1.5. Hệ quả 1 : Nếu $x_1 + x_2 + ... + x_n = S$ - const thì 1.6. Hệ quả 2 : Nếu $x_1x_2 \dots x_n = P - \text{const thi}$ $n = 2 : \forall x, y \ge 0$ khi đó $2.1 \frac{x + y}{2} \ge \sqrt{xy}$ $\frac{x + y + z}{3} \ge \sqrt[3]{xyz}$ $x + y + z \ge 3\sqrt[3]{xyz}$ $2.2 \mathbf{x} + \mathbf{y} \ge 2 \sqrt{\mathbf{x}\mathbf{y}}$ 2.3 $\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right)^2 \ge \mathbf{x}\mathbf{y}$ $\left(\frac{x+y+z}{3}\right)^3 \ge xyz$ Dấu bằng $\Leftrightarrow x = y = z$ 24 Dấu bằng $\Leftrightarrow x = y$

3. Bình luận

Dạng 2 và dạng 3 khi đặt cạnh dạng 1 có vẻ tẩm thường nhưng lại giúp nhận dạng khi sử dụng BĐT Côsi Đặc biệt có thể sử dụng BDT Côsi từ TB nhân sang TB cộng ngay cả khi không có căn thức $\begin{aligned} Vi \ du \ . \ CMR \ 16ab(a - b)^2 &\leq (a + b)^4 \ \forall a, \ b \geq 0 \\ Gidi \ : \ 16ab(a - b)^2 &= 4(4ab)(a - b)^2 \leq 4 \left[\frac{4ab + (a - b)^2}{2}\right]^2 \\ &= 4 \left[\frac{(a + b)^2}{2}\right]^2 = (a + b)^4 \end{aligned}$

II - CÁC KÍ THUẬT SỬ DỤNG

1. Đánh giá từ trung bỉnh cộng sang trung bỉnh nhân 1.1 CMR : $(a^2 + b^2) (b^2 + c^2) (c^2 + a^2) \ge 8a^2b^2c^2 \forall a, b, c$ Gini : Sai lam thường gặp Sů dụng : $\forall x, y \text{ thi } x^2 - 2xy + y^2 = (x - y)^2 \ge 0$ $\leftrightarrow x^2 + y^2 \ge 2xy. \text{ Do do}$ $\times \begin{cases} a^2 + b^2 \ge 2ab \text{ Dúng} \\ b^2 + c^2 \ge 2bc \text{ Dúng} \\ c^2 + a^2 \ge 2ca \text{ Dúng} \end{cases}$ $V_i d\mu : \begin{cases} 1 \ge -5 \text{ Dúng} \\ 2 \ge -3 \text{ Dúng} \\ 3 \ge 2 \text{ Dúng} \end{cases}$ $(a^{2}+b^{2})(b^{2}+c^{2})(c^{2}+a^{2}) \ge 8a^{2}b^{2}c^{2}$ Sai 6 ≥ 30 Sai Lời giải dúng : Sử dụng BDT Côsi : $x^2 + y^2 \ge 2\sqrt{x^2y^2} = 2|xy|$ ta có $\begin{array}{c} \cos a^{2} + b^{2} \geqslant 2|ab| \geqslant 0 \\ \times \begin{cases} a^{2} + b^{2} \geqslant 2|ab| \geqslant 0 \\ b^{2} + c^{2} \geqslant 2|bc| \geqslant 0 \\ c^{2} + a^{2} \geqslant 2|ca| \geqslant 0 \end{array}$ $(\mathbf{a}^2 + \mathbf{b}^2)(\mathbf{b}^2 + \mathbf{c}^2)(\mathbf{c}^2 + \mathbf{a}^2) \ge 8 |\mathbf{a}^2\mathbf{b}^2\mathbf{c}^2| = 8\mathbf{a}^2\mathbf{b}^2\mathbf{c}^2$ Binh luân : Chỉ nhân các vế của các BDT cùng chiếu (kết quả được BDT cùng chiếu) khi và chỉ khi các vế cùng không âm. • Nói chung ta it gặp các bài toán sử dụng ngay BĐT Côsi như bài toán trên mà thường phải biến đổi bài toán đến

tỉnh hướng thích hợp rồi mới sử dụng BDT Côsi

/NMATH.CON

1.2 CMR $(\sqrt{a} + \sqrt{b})^3 \ge 64ab (a + b)^2 \forall a, b \ge 0$ Giải

Ta có
$$(\sqrt{a} + \sqrt{b})^8 = \left[(\sqrt{a} + \sqrt{b})^2 \right]^4 = \left[(a + b) + 2\sqrt{ab} \right]^4 \ge$$

^{(Osi}
 $\ge \left[2\sqrt[3]{(a + b)} \cdot (2\sqrt{ab}) \right]^4 = 2^4 \cdot 2^2 ab(a + b)^2 = 64ab(a + b)^2$
1.3 [49111.3] : Cho x₁x₂ > 0 ; x₁z₁ $\ge y_1^2$; x₂z₂ $\ge y_2^2$;
CMR : $(x_1 + x_2)(z_1 + z_3) \ge (y_1 + y_2)^2$
Giải
Từ (gt) suy ra x₁, x₂, z₁, z₂ cùng dấu $\Rightarrow x_1z_2 \ge 0$ và x₂z₁ ≥ 0 .
Ta có $(x_1 + x_2)(z_1 + z_2) = x_1z_1 + x_2z_2 + x_1z_2 + x_2z_1 \ge y_1^2 + y_2^2 + x_1z_2 + x_2z_1$
^(Cosi)
 $\ge y_1^2 + y_2^2 + 2\sqrt{(x_1x_2)(x_2z_1)} \ge y_1^2 + y_2^2 + 2\sqrt{y_1^2y_2^2}$
 $= (|y_1| + |y_2|)^2 \ge (y_1 + y_2)^2$
1.4 *CMR* : (1 + a + b)(a + b + ab) $\ge 9ab \forall a, b \ge 0$
Ta có (1 + a + b)(a + b + ab) $\ge 3\sqrt[3]{a.b} \cdot \sqrt[3]{a.b ab} = 9ab$
1.5 [14811.2] *CMR* : 3a³ + 7b³ $\ge 9ab^2 \forall a, b \ge 0$
Giải
3a³ + 7b³ $\ge 3a^3 + 6b^3 = 3a^3 + 3b^3 + 3b^3 \stackrel{(Cosi)}{\ge} 3\sqrt[3]{3a^3} \cdot 3b^3 \cdot 3b^3} = 9ab^2$
1.6 87Vb
Cho $\begin{cases} 1 + a + \frac{1}{1+b} + \frac{1}{1+c} + \frac{1}{1+d} \ge 3$ *CMR* : abcd $\le \frac{1}{81}$
Giải
Từ (gt) suy ra $\frac{1}{1+a} \ge (1 - \frac{1}{1+b}) + (1 - \frac{1}{1+c}) + (1 - \frac{1}{1+d}) =$
 $= \frac{b}{1+b} + \frac{c}{1+c} + \frac{d}{1+d} \ge 3\sqrt[3]{\sqrt{(1+b)(1+c)(1+d)}}$

VNMATH.COM

Tương tự và dẫn đến :

 $\times \begin{cases} \frac{1}{1+a} \ge 3 \sqrt[3]{\frac{bcd}{(1+b)(1+c)(1+d)}} \ge 0 \\ \frac{1}{1+b} \ge 3 \sqrt[3]{\frac{bcd}{(1+c)(1+d)(1+a)}} \ge 0 \\ \frac{1}{1+c} \ge 3 \sqrt[3]{\frac{dab}{(1+d)(1+a)(1+b)}} \ge 0 \\ \frac{1}{1+c} \ge 3 \sqrt[3]{\frac{dab}{(1+a)(1+b)(1+c)}} \ge 0 \end{cases}$ $\frac{1}{(1+a)(1+b)(1+c)(1+d)} \ge 81 \frac{abcd}{(1+a)(1+b)(1+c)(1+d)}$ Suy ra : $abcd \le \frac{1}{81}$ $1.7 \text{ Cho} \begin{cases} a_1, a_2, \dots a_n > 0 \ (3 \le n \in \mathbb{N}) \\ \frac{1}{1+a_1} + \dots + \frac{1}{1+a_n} \ge n - 1 \end{cases}$ $CMR : a_1a_2 \dots a_n \le \frac{1}{(n-1)^n}$

Giải

$$\frac{1}{1+a_{1}} \ge \left(1 - \frac{1}{1+a_{2}}\right) + \dots + \left(1 - \frac{1}{1+a_{n}}\right) =$$

$$\frac{a_2}{1+a_2} + \dots + \frac{a_n}{1+a_n} \ge$$
$$\ge (n-1) \sqrt[n-1]{\frac{a_2 \dots a_n}{(1+a_2) \dots (1+a_n)}}$$

/NMATH.COM

Tương tự và dẫn đến :

 $\begin{cases} \frac{1}{1+a_1} \ge (n-1) & \sqrt{\frac{1}{(1+a_2)\dots(1+a_n)}} \ge 0\\ \frac{1}{1+a_2} \ge (n-1) & \sqrt{\frac{n-1}{(1+a_1)(1+a_3)\dots(1+a_n)}} \ge 0 \end{cases}$ $\frac{1}{(1+a_1)(1+a_2)\dots(1+a_n)} \ge (n-1)^n \frac{a_1 a_2 \dots a_n}{(1+a_1)(1+a_2)\dots(1+a_n)}$ Suy ra : $a_1 a_2 \dots a_n \le \frac{1}{(n-1)^n}$ 1.8 CMR : $1975^{197}\sqrt{a} + 1995^{199}\sqrt{b} \ge 3970^{3970}\sqrt{ab} \forall a, b \ge 0$ Áp dụng BĐT Côsi cho 3970 số trong đó gồm : 1975 số có dạng $^{197}\sqrt{a}$ và 1995 số có dạng $^{199}\sqrt{b}$ ta có $1975^{197}\sqrt{a} + 1995^{199}\sqrt{b} = {}^{197}\sqrt{a} + ... + {}^{197}\sqrt{a} + {}^{199}\sqrt{b} + ... + {}^{199}\sqrt{b}$ 1975 1995 \geq (1975 + 1995) $\sqrt{1975 \sqrt{a} \dots \sqrt{1975} \sqrt{a}}$ 1975 1995 $= 3970^{39} \sqrt[6]{ab}$

1.9 : CMR : $m^{m}\sqrt{a} + n^{m}\sqrt{b} \ge (m + n)^{m+m}\sqrt{ab} \forall a, b, \ge 0$; 1 ≤ m, n ∈ N

Sử dụng BDT Côsi cho (m + n) số trong đó gồm : m số "Va và n số "Vb ta có

$$m \sqrt[m]{a} + n \sqrt[m]{b} = \sqrt[m]{a} + \dots + \sqrt[m]{a} + \sqrt[m]{l} + \dots + \sqrt[m]{b} \ge$$

$$m \qquad n$$

$$\ge (m + n) \sqrt[m]{a} \sqrt[m]{a} \dots \sqrt[m]{a} \sqrt[n]{b} \sqrt{b} = = (m + n) \sqrt[m+n]{ab}$$

$$l.10 \text{ Cho} \begin{cases} a, b, c > 0 \\ a + b + c = 1 \end{cases} \text{ CMR} \left(\frac{1}{a} - 1\right) \left(\frac{1}{b} - 1\right) \left(\frac{1}{c} - 1\right) \ge 8 \quad (1)$$
Giải

$$VT (1) = \frac{1-a}{a} \cdot \frac{1-b}{b} \cdot \frac{1-c}{c} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}$$

$$\stackrel{(Cosi)}{\geq} \frac{2\sqrt{bc}}{a} \cdot \frac{2\sqrt{ca}}{b} \cdot \frac{2\sqrt{ab}}{c} = 8$$

$$I.11. \text{ Cho} \begin{cases} a_1, a_2, \dots a_n > 0\\ a_1 + a_2 + \dots + a_n = 1 \end{cases}$$

$$CMR \left(\frac{1}{a_1} - 1\right) \left(\frac{1}{a_2} - 1\right) \dots \left(\frac{1}{a_n} - 1\right) \ge (n-1)^n \qquad (1)$$

$$VT(1) = \frac{1-a_1}{a_1} \cdot \frac{1-a_2}{a_2} \cdots \frac{1-a_n}{a_n}$$
 Theo BDT Côsi ta có

$$\begin{cases} \frac{1-a_1}{a_1} = \frac{a_2 + \dots + a_n}{a_1} \ge \frac{(n-1)^{n-1}\sqrt{a_2 \dots a_n}}{a_1} > 0\\ \frac{1-a_2}{a_2} = \frac{a_1 + a_3 + \dots + a_n}{a_2} \ge \frac{(n-1)^{n-1}\sqrt{a_1 a_3 \dots a_n}}{a_2} > 0\\ \dots \\ \frac{1-a_n}{a_n} = \frac{a_1 + \dots + a_{n-1}}{a_n} \ge \frac{(n-1)^{n-1}\sqrt{a_1 a_2 \dots a_{n-1}}}{a_n} > 0 \end{cases}$$

$$VT(1) = \frac{1 - a_1}{a_1} \dots \frac{1 - a_n}{a_n} \ge (n - 1)^n \cdot \frac{a_1 a_2 \dots a_n}{a_1 a_2 \dots a_n} = (n - 1)^n$$

1.12 CMR : $\left(1 + \frac{a+b+c}{3}\right)^3 \ge (1 + a)(1 + b)(1 + c)$

 $\geq (1 + \sqrt[3]{abc})^3 \geq \delta\sqrt{abc} \quad \forall a, b, c \geq 0$ 1.13 Cho $a_1, a_2, \dots, a_n \geq 0$. CMR : $\left(1 + \frac{a_1 + \dots + a_n}{n}\right)^n \geq (1 + a_1) \dots (1 + a_n) \geq$ $\geq (1 + \sqrt[3]{a_1 \dots a_n})^n \geq 2^n \dots \sqrt{a_1 \dots a_n}$

Trong đánh giá từ TB cộng sang TB nhân có một kỉ thuật nhỏ hay được sử dụng. Đó là kỉ thuật tách nghịch đảo

2. Kí thuật tách nghịch dảo $2.1: CMR \quad \frac{a}{b} + \frac{b}{a} \ge 2 \forall ab > 0$ $\frac{a}{b} + \frac{b}{a} \stackrel{(C(s))}{\geq} 2\sqrt{\frac{a}{b} \cdot \frac{b}{a}} = 2$ Giải : 2.2. CMR $\left|\frac{a}{b} + \frac{b}{a}\right| \ge 2 \forall ab \neq 0$ Vi $\frac{a}{b}$, $\frac{b}{a} = 1 > 0 \Rightarrow \frac{a}{b}$ và $\frac{b}{c}$ cùng dấu. Do đơ $\left|\frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{b}}{\mathbf{a}}\right| = \left|\frac{\mathbf{a}}{\mathbf{b}}\right| + \left|\frac{\mathbf{b}}{\mathbf{a}}\right| \ge 2\sqrt{\left|\frac{1}{\mathbf{b}}\right| \cdot \left|\frac{\mathbf{b}}{\mathbf{a}}\right|} = 2$ 2.3. CMR : $\log_{1993} 1994 > \log_{1994} 1995$ Giải : Theo BDT Côsi thì $\log_{1993}1994 + \log_{1994}1993 \ge 2\sqrt{\log_{1993}1994} \cdot \log_{1994}1993 = 2$ (1) $Ma \log_{1995} 1995 + \log_{1994} 1993 = \log_{1994} (1995 \ 1993)$ $= \log_{1994}(1994 + 1)(1994 - 1) = \log_{1994}(1994^2 - 1)$ $<\log_{1991}1994^2 = 2$ (2) $T\tilde{u}(1) \ va(2) \rightarrow \log_{1993} 1994 > \log_{1994} 1995$

VNMATH.COM

- 2.4. a) $(MR : \log_n(n + 1) > \log_{n+1}(n + 2)) \forall 2 \le n \in \mathbb{N}$ b) $CMR : \log_{n+x} a > \log_n(a + x)) \forall a, x \in \mathbb{R}$ then $1 \le a + x \le a$ Giải
 - b) $\log_{a=x} a + \log_{a} (a x) \ge 2\sqrt{\log_{a-x} a \log_{a} a x} = 2$ (1) $\log_{a} (a + x) + \log_{a} (a - x) = \log_{a} (a^{2} - x^{2}) < \log_{a} a^{2} = 2$ (2) Từ (1) và (2) \rightarrow (dpcm).
- 2.5. (1091.1) Tim Min y = $\left| \log_{1+1}(3-x^2) + \log_{3-x^2}(x^2+1) \right|$ Giái :

Giả sử hàm số được xác định Khi đó vì $\log_{x^2+1}(3 - x^2)$ cùng dâu $\log_{3-x^2}(x^2 + 1)$

nén y =
$$|\log_{x^{2}+1}(3 - x^{2})| + |\log_{3-x^{2}}(x^{2} + 1)| \ge$$

 $\ge 2\sqrt{|\log_{x^{2}+1}(3 - x^{2})||\log_{3-x^{2}}(x^{2} + 1)|} = 2$

Dấy bằng xảy ra $\leftrightarrow x = \pm 1$. Khi đó y = 2 \rightarrow Min y = 2 2.6. $CMR : \frac{a^2 + 2}{\sqrt{a^2 + 1}} \ge 2 \forall a \in \mathbf{R}$

Giài :

$$\frac{a^2 + 2}{\sqrt{a^2 + 1}} = \frac{(a^2 + 1) + 1}{\sqrt{a^2 + 1}} =$$

$$= \sqrt{a^2 + 1} + \frac{1}{\sqrt{a^2 + 1}} \stackrel{(Cosi)}{\ge} 2\sqrt{\sqrt{a^2 + 1}} \frac{1}{\sqrt{a^2 + 1}} = 2$$
2.7. CMR : $\frac{a^2 + b^2}{a - b} = 2\sqrt{2} \forall \begin{bmatrix} a > b \\ ab = 1 \end{bmatrix}$

Giải :

$$\frac{a^{2}+b^{2}}{a-b} = \frac{(a-b)^{2}+2ab}{a-b} \stackrel{(ab=1)}{=} (a-b) + \frac{2}{a-b} \stackrel{(Cosi)}{\geq} 2\sqrt{(a-b)} \cdot \frac{2}{a-b} = 2\sqrt{2}$$

2.8.
$$CMR$$
 : a + $\frac{1}{b(a - b)} \ge 3 \forall a > b > 0$

Giải :

$$a + \frac{1}{b(a-b)} = b + (a - b) + \frac{1}{b(a-b)} \stackrel{(Cos)}{\ge} 3 \sqrt[3]{b(a - b)} \frac{1}{b(a-b)} = 3$$

2.9. CMR : $a + \frac{4}{(a - b)(b + 1)^2} \ge 3 \forall a > b \ge 0$ (VD Nam Tu 79

Giải :

$$a + \frac{4}{(a-b)(b+1)^2} = (a-b) + \frac{b+1}{2} + \frac{b+1}{2} + \frac{4}{(a-b)(b+1)^2} - \frac{(Cas)}{(a-b)(b+1)^2} + \frac{4}{(a-b)(b+1)^2} - 1 = 4 - 1 = 3$$
2.10. CMR : $a + \frac{1}{b(a-b)^2} \ge 2\sqrt{2}$ $\forall a > b > 0$

Giải :

$$VT = b + \frac{a-b}{2} + \frac{a-b}{2} + \frac{1}{b(a-b)^2} \stackrel{\text{(Cosi)}}{\ge} 4 \sqrt[4]{\sqrt{b\frac{a-b}{2}a-b}} = 2\sqrt{2}$$
2.11. CMR : $\frac{2a^3 + 1}{4b(a-b)} \ge 3 \forall \begin{cases} a \ge \frac{1}{2} \\ \frac{a}{b} > 1 \end{cases}$

Theo BDT Cô Si ta có $4b(a-b) \le 4\left[\frac{b+(a-b)}{2}\right]^2 = 4\left(\frac{a}{2}\right)^2 = a^3$

$$\Rightarrow \frac{2a^{3} + 1}{4b(a - b)} \ge \frac{2a^{3} + 1}{a^{2}} = \frac{a^{3} + a^{3} + 1}{a^{2}} =$$
$$= a^{3} + a + \frac{1}{a^{2}} \ge 3\sqrt[3]{a - a - \frac{1}{a^{2}}} = 3$$

$$2 12. Cho a_{1} > a_{2} > ... > a_{n-1} > a_{n} > 0 va 1 \le k \in \mathbb{Z}. CMR$$

$$a_{1} + \frac{1}{a_{n}(a_{1} - a_{2})^{k}(a_{2} - a_{3})^{k} - (a_{n-1} - a_{n})^{k}} \ge \frac{(n-1)k+2}{(n-1)k+2}$$
Giải

$$VT = a_{n} + (a_{1} - a_{2}) + (a_{2} - a_{3}) + ... + (a_{n-1} - a_{n}) + \frac{1}{a_{n}(a_{1} - a_{2})^{k}(a_{2} - a_{3})^{k} - ...(a_{n-1} - a_{n})^{k}}$$

$$= a_{n} + \frac{a_{1} - a_{2}}{k} + ... + \frac{a_{1} - a_{2} - a_{3}}{k} + ... + \frac{a_{2} - a_{n}}{k} + \frac{a_{n-1} - a_{n}}{k} + ... + \frac{a_{n-s_{4}} - a_{n}}{k}$$

$$= a_{n} + \frac{a_{1} - a_{2}}{k} + ... + \frac{a_{1} - a_{2} - a_{3}}{k} + ... + \frac{a_{2} - a_{n}}{k} + \frac{a_{n-1} - a_{n}}{k} + ... + \frac{a_{n-s_{4}} - a_{n}}{k}$$

$$= a_{n} + \frac{a_{1} - a_{2}}{k} + ... + \frac{a_{1} - a_{2} - a_{3}}{k} + ... + \frac{a_{2} - a_{n}}{k} + \frac{a_{n-1} - a_{n}}{k} + ... + \frac{a_{n-s_{4}} - a_{n}}{k}$$

$$= a_{n} + \frac{1}{a_{n}(a_{1} - a_{2})^{k}(a_{2} - a_{3})^{k} \dots (a_{n-1} - a_{n})^{k}}{a_{n}(a_{1} - a_{2})^{k} \dots (a_{n-1} - a_{n})^{k}}$$

$$[(n-1)k+2] = \sqrt{a_{n}(\frac{a_{1} - a_{2}}{k})^{k} \dots (\frac{a_{n-1} - a_{n}}{k})^{k}} + \frac{(n-1)k+2}{a_{n}(a_{1} - a_{2})^{k} \dots (a_{n-1} - a_{n})^{k}}$$

$$[(n-1)k+2] = \sqrt{(\frac{1}{k})^{(n-1)k}} = \frac{(n-1)k+2}{(n-1)k+2} \sqrt{k^{(n-1)k}}}$$

Bình luận : Kĩ thuật tách nghịch đảo là ki thuật tách phản nguyên theo mẫu số để khi chuyển sang TB nhán thì các phản chữa biến số bị triệt tiêu chỉ còn lại hàng số

3. Ký thuật dánh giả từ TB nhân sang TB cộng

 $30\sqrt{(a+1)!} + 4\sqrt{(b+1)(c-1)}$

+ 1994 $\sqrt{(c+1)(a-1)}$ < 1012a + 17b + 999c ∀a, b, c ≥ 1 Giải : Theo BDT Cô Si ta cổ

 $30 \sqrt{(a + 1)(b - 1)} \le 30 \left[\frac{(a + 1) + (b - 1)}{2} \right] = 15 (a + b)$

$$+ \begin{cases} 4\sqrt{(b+1)(c-1)} \le 4\left[\frac{(b+1)+(c-1)}{2}\right] = 2(b+c) \\ 1994\sqrt{(c+1)(a-1)} \le 1994\left[\frac{(c+1)+(a-1)}{2}\right] = 997(c+a) \\ 30\sqrt{(a+1)(b-1)} + 4\sqrt{(b+1)(c-1)} + 1994\sqrt{(c+1)(a-1)} \le \\ \le 1012a + 17b + 999c \end{cases}$$

3.2. CMR : $\sqrt{ab} + \sqrt{cd} \le \sqrt{(a + c)(b + d)} \forall a, b, c, d > 0$ Giải

$$\leftrightarrow \sqrt{\frac{ab}{(a+c)(b+d)}} + \sqrt{\frac{cd}{(a+c)(b+d)}} \leq 1.$$

Theo BDT Cô Si ta có

$$VT \leq \frac{1}{2} \left(\frac{a}{a+c} + \frac{b}{b+d} \right) + \frac{1}{2} \left(\frac{c}{a+c} + \frac{b}{b+d} \right)$$
$$= \frac{1}{2} \left(\frac{a+c}{a+c} + \frac{b+d}{b+d} \right) = \frac{1}{2} (1+1) = 1$$

3.3. CMR : $\sqrt{c(a-c)} + \sqrt{c(b-c)} \leq \sqrt{ab} \forall \begin{cases} a > c > 0 \\ b > c > 0 \end{cases}$

$$\leftrightarrow \sqrt{\frac{c(a-c)}{ab}} + \sqrt{\frac{c(b-c)}{ab}} \leq 1. \text{ Theo BDT Co Si ta co}$$
$$VT \leq \frac{1}{2} \left[\frac{c}{b} + \frac{a-c}{a} \right] + \frac{1}{2} \left[\frac{c}{a} + \frac{b-c}{b} \right] = \frac{1}{2} \left[\frac{a}{a} + \frac{b}{b} \right] = 1$$

3.4. CMR $\sqrt[3]{abc} + 1 \leq \sqrt[3]{(1+a)(1+b)(1+c)} \forall a, b, c. \geq 0$

$$\leftrightarrow \sqrt{abc} + \sqrt{1 \cdot 1 \cdot 1} \leqslant \sqrt{(1 + a)(1 + b)(1 + c)}$$

$$\Rightarrow \sqrt[3]{\frac{abc}{(1 + a)(1 + b)(1 + c)}} + \sqrt[3]{\frac{1 \cdot 1 \cdot 1}{(1 + a)(1 + b)(1 + c)}} \leqslant 1.$$
Theo BDT Co Si ta co

$$VT \leq \frac{1}{3} \left[\frac{a}{1+a} + \frac{b}{1+b} + \frac{c}{1+c} \right] + \frac{1}{3} \left[\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \right]$$
$$= \frac{1}{3} \left[\frac{a+1}{1+a} + \frac{b+1}{1+b} + \frac{c+1}{1+c} \right] = \frac{1}{3} \quad 3 = 1$$

$$\begin{aligned} 35 \left[1090 a \right] CMR \quad \sqrt{a_1 a_2 \dots a_n} + \sqrt{b_1 b_2 \dots b_n} \leq \sqrt{(a_1 + b_1)(a_2 + b_2) - (a_n + b_n)} \\ \forall a_1, b_1 > 0 \quad (i = \overline{1, n}) \\ \Rightarrow \sqrt{\frac{a_1 a_2 \dots a_n}{(a_1 + b_1)(a_2 + b_2) \dots (a_n + b_n)}} + \sqrt{\frac{b_1 b_2 \dots b_n}{(a_1 + b_1)(a_2 + b_2) \dots (a_n + b_n)}} \leq 1 \\ \text{Theo BDT Co Si ta co} \\ VT \leq \frac{1}{n} \left[\frac{a_1}{a_1 + b_1} + \dots + \frac{a_n + b_n}{a_n + b_n} \right] + \frac{1}{n} \left[\frac{b_1}{a_1 + b_1} + \dots + \frac{b_n}{a_n + b_n} \right] \\ = \frac{1}{n} \left[\frac{a_1 + b_1}{a_1 + b_1} + \dots + \frac{a_n + b_n}{a_n + b_n} \right] = \frac{1}{n} \cdot n = 1 \\ 3.6. \quad CMR : \frac{1}{n^{-1} \sqrt{n!}} + \frac{1}{n^{-1} \sqrt{n!}} \leq 1 \quad \forall \ 3 \leq n \in \mathbb{N} \\ \Rightarrow \quad \sqrt[n^{-1} \sqrt{\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \dots \frac{1}{n}} + \frac{n^{-1} \sqrt{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \dots \frac{n-1}{n}}{n} \leq 1 \\ \text{Theo BDT Co Si ta co} \\ VT \leq \frac{1}{n-1} \left[\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right] + \frac{1}{n-1} \left[\frac{1}{2} + \frac{2}{3} + \dots + \frac{n-1}{n} \right] \\ = \frac{1}{n-1} \left[\left(\frac{1}{2} + \frac{1}{2} \right) + \left(\frac{1}{3} + \frac{2}{3} \right) + \dots + \left(\frac{1}{n} + \frac{n-1}{n} \right) \right] \\ = \frac{1}{n-1} \left[(MR : 16ab(a - b)^2 \leq (a + b)^4 \quad \forall \ a, \ b \geq 0 \right] \\ \text{Given} \end{aligned}$$

Ta có 16ab (a - b)² = 4 (4ab) (a - b)²
$$\leq 4\left[\frac{4ab + (a - b)^{2}}{2}\right]^{2}$$

= 4 $\left[\frac{(a + b)^{2}}{2}\right]^{2} = (a + b)^{4}$

18

.

3.8.
$$[1461]: CMR: -\frac{1}{2} \leq \frac{(a + b)(1 - ab)}{(1 + a^2)(1 + b^2)} \leq \frac{1}{2}$$
 (1)

Giải

$$\Rightarrow \left| \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})} \right| \le \frac{1}{2} \Rightarrow |(a+b)(1-ab)| \le \frac{(1+a^{2})(1+b^{2})}{2}$$
(2)
Ta co VT (2) = $\sqrt{(a+b)^{2}(1-ab)^{2}} \le \frac{(Cos)}{s} \frac{(a+b)^{2}+(1-ab)^{2}}{2} =$
$$= \frac{a^{2}+b^{2}+1^{2}+a^{2}b^{2}}{2} = \frac{(1+a^{2})(1+b^{2})}{2}$$

→ (2) dúng → (1) dúng 3.9. [10011.2]: CMR \forall a, b, c ∈ (0, 1) luôn \exists 1 BDT sai $\begin{cases}
a(1 - b) > \frac{1}{4} \\
b(1 - c) > \frac{1}{4} \\
c(1 - a) > \frac{1}{4}
\end{cases}$

Cách 1 : Không mất tính tổng quát giả sử $a = \max(a, b, c)$ $\rightarrow c(1-a) \leq c(1-c) \leq \left[\frac{c+(1-c)}{2}\right]^2 = \frac{1}{4} \rightarrow BDT c(1-a) > \frac{1}{4}$ sai Cách 2 : Giả sử cả 3 BDT đều đúng. Khi đó

$$a(1 - b) b(1 - c) c(1 - a) > (\frac{1}{4})^3$$
 (1)

Ta có VT (1) = a(1 - a) b(1 - b) c(1 - c)

$$\stackrel{((CAs)}{\leq} \left[\frac{a+(1-a)}{2}\right]^2 \left[\frac{b+(1-b)}{2}\right]^2 \left[\frac{c+(1-c)}{2}\right]^2 \leftrightarrow VT (1) \leq \left(\frac{1}{4}\right)^3 (2) \Rightarrow (1) va$$
(2) mau thuẫn \Rightarrow Giả sử sai \Rightarrow (dpcm)

3.10 [131.2]: Cho a, b ≥ 1 .

$$CMR \sqrt{\log_2 a} + \sqrt{\log_2 b} \leq 2\sqrt{\log_2 \frac{a+b}{2}}$$

Giai : Ta co :

 $\left(\sqrt{\log_2 a} + \sqrt{\log_2 b}\right)^2 = \log_2 a + \log_2 b + 2\sqrt{\log_2 a} \cdot \log_2 b \leq$ (Côsi) $\leq \log_2 a + \log_2 b + \log_2 a + \log_2 b = 2(\log_2 a + \log_2 b) = 2\log_2 a b =$ = $4\log_2 \sqrt{ab} \le 4\log_2 \frac{a+b}{2} = \left[2\sqrt{\log_2 \frac{a+b}{2}}\right]^2 \rightarrow (dpcm)$ 3.11. Cho $\begin{cases} a, b, c \ge 0 \\ a + b + c = 1 \end{cases}$ CMR 16abc $\le a + b$

Giải

$$16abc \stackrel{((:0si)}{\le} 16 \left[\frac{a+b}{2}\right]^2 = 4 (a+b).(a+b) \quad c \le$$

$$\stackrel{((:0si)}{\le} 4(a+b) \cdot \left[\frac{(a+b)+c}{2}\right]^2 = 4(a+b) \left(\frac{1}{2}\right)^2 = (a+b)$$

$$(3.12) \quad Cho \begin{cases} a, b, c \ge 0\\ a+b+c = 1 \end{cases} CMR \ abc \ (a+b)(b+c)(c+a) \le \frac{8}{729}$$

$$Giài$$

$$abc(a+b)(b+c)(c+a) \leqslant \left[\frac{a+b+c}{3}\right]^{3} \left[\frac{(a+b)+(b+c)+(c+a)}{3}\right]^{3} = \frac{8}{729}$$

$$3.13. \text{ Cho } \begin{cases} a, b, c \ge 0\\ a+b+c = 1 \end{cases} CMR ab + bc + ca - abc \leqslant \frac{8}{27} \quad (1)$$
Giải

VT(1) = 1 + ab + bc + ca - abc - a - b - c = (1-a)(1-b)(1-c)

$$\stackrel{\text{(CAs)}}{\leq} \left[\frac{(1-a) + (1-b) + (1-c)}{3} \right]^3 = \left(\frac{2}{3} \right)^3 = \frac{8}{27}$$

3.14. Cho
$$\begin{cases} a, b, c \ge 0 \\ a+b+c = 1 \end{cases} CMR \ 0 \le ab + bc + ca - 2abc \le \frac{7}{27} \\ (VD \text{ Toán Quốc tế 84 - Bài 1 : CHLB Dức)} \end{cases}$$
Giải
Theo $(gt) \Rightarrow a, b, c \in [0, 1] \text{ do dó}$
 $ab + bc + ca - 2abc \ge 3\sqrt[3]{(ab)(bc)(ca)} - 2abc$
 $= 3(abc)^{2/3} - 2abc \ge 3(abc)^1 - 2abc = abc \ge 0$
Ta sẽ chứng minh :
 $(a+b-c)(b+c-a)(c+a-b) \le abc \forall a, b, c \in [0, 1]$
Nếu có 2 thừa số ở VT $\le 0 \text{ ví dụ}$
 $\begin{cases} a+b-c \le 0 \\ b+c-a \le 0 \rightarrow 2b \le 0 \text{ Vô lý} \end{cases}$
Nếu có dúng 1 thừa số ở VT $\le 0 \rightarrow (dpcm).$
Giả sử cả 3 thừa số ở VT dếu > 0. Khi đó
VT $= \sqrt{(a+b-c)(b+c-a)} \sqrt{(b+c-a)(c+a-b)} \cdot \sqrt{(c+a-b)(a+b-c)} \le \frac{(a+b-c)(b+c-a)}{2} \cdot \frac{(b+c-a) + (c+a-b)}{2} \cdot \frac{(c+a-b) + (a+b-c)}{2} = abc (dpcm)$
Mà $a + b + c = 1 \rightarrow abc \ge (1 - 2a)(1 - 2b)(1 - 2c) \iff abc \ge 1 \rightarrow 2 (a + b + c) + 4(ab + bc + ca) - 8abc \Rightarrow ab + bc + ca - 2abc \le \frac{1}{4}(1 + abc) \le \frac{1}{4}\left[1 + \left(\frac{a+b+c}{3}\right)^3\right] = \frac{7}{27}$

4. Ký thuật nhân thêm hàng số

4.1. CMR : $a\sqrt{b-1} + b\sqrt{a-1} \le ab \forall a, b \ge 1$ Giải

$$\begin{cases} a\sqrt{b-1} = a\sqrt{(b-1) \cdot 1} \le a \cdot \frac{(b-1)+1}{2} = \frac{ab}{2} \\ b\sqrt{a-1} = b\sqrt{(a-1) \cdot 1} \le b \cdot \frac{(a-1)+1}{2} = \frac{ab}{2} \end{cases}$$

$$a\sqrt{b-1} + b\sqrt{a-1} \le \frac{ab}{2} + \frac{ab}{2} = ab$$

4.2 Cho $\begin{cases} a, b, c \ge 0 \\ a+b+c = 1 \end{cases} CMR \sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \le \sqrt{6} \end{cases}$

Giải

$$\begin{cases}
\sqrt{a+b} = \sqrt{\frac{3}{2}} \cdot \sqrt{(a+b)\frac{2}{3}} \leq \sqrt{\frac{3}{2}} \cdot \frac{(a+b)+\frac{2}{3}}{2} \\
+ \sqrt{b+c} = \sqrt{\frac{3}{2}} \cdot \sqrt{(b+c)\frac{2}{3}} \leq \frac{\sqrt{3}}{2} \cdot \frac{(b+c)+\frac{2}{3}}{2} \\
\sqrt{c+a} = \sqrt{\frac{3}{2}} \cdot \sqrt{(c+a)\frac{2}{3}} \leq \sqrt{\frac{3}{2}} \cdot \frac{(c+a)+\frac{2}{3}}{2} \\
\hline
\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \leq \sqrt{\frac{3}{2}} \cdot \frac{2(a+b+c)+2}{2} = \sqrt{\frac{3}{2}} \cdot 2 = \sqrt{6} \\
4.3. \quad 144 \text{ II.1 Cho} \begin{cases} a \geq 3 \\ b \geq 4 \\ c \geq 2 \end{cases} \\
\text{Thm Maxf} = \frac{ab\sqrt{c-2} + bc\sqrt{a-3} + ca\sqrt{b-4}}{2\sqrt{2}}
\end{cases}$$

VNMATH.COM

Giải

$$ab\sqrt{c-2} = \frac{ab}{2}\sqrt{(c-2)2} \leq \frac{ab}{\sqrt{2}} \cdot \frac{(c-2)+2}{2} = \frac{abc}{2\sqrt{2}}$$

$$bc\sqrt{a-3} = \frac{bc}{\sqrt{3}}\sqrt{(a-3)3} \leq \frac{bc}{\sqrt{3}} \cdot \frac{(a-3)+3}{2} = \frac{abc}{2\sqrt{3}}$$

$$ca\sqrt{b-4} = \frac{ca}{\sqrt{4}}\sqrt{(b-4)4} \leq \frac{ca}{\sqrt{4}} \cdot \frac{(b-4)+4}{2} = \frac{abc}{2\sqrt{4}}$$
Suy ra : $f = \frac{ab\sqrt{c-2} + bc\sqrt{a-3} + ca\sqrt{b-4}}{abc} \leq \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{3}} + \frac{1}{2\sqrt{4}}$
Dáu bàng $\leftrightarrow \begin{cases} c-2=2\\ a-3=3\\ b-4=4 \end{cases} \begin{cases} c=4\\ a=6\\ b=8 \end{cases}$
Vây Maxf = \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{3}} + \frac{1}{4}
4.4. [103 II.3] Cho $\begin{cases} 0 \leq x \leq 3\\ 0 \leq y \leq 4 \end{cases}$
Tim Max A = (3-x)(4-y)(2x+3y)
Giải
$$A = \frac{1}{6}(6-2x)(12-3y)(2x+3y)$$

$$\begin{pmatrix} (Cosi)\\ \leq (\frac{(6-2x)+(12-3y)+(2x+3y)}{3} \\ \leq (\frac{(6-2x)+(12-3y)+(2x+3y)}{3} \\ \leq (2x+3y) \\ \leq (\frac{(6-2x)+(12-3y)+(2x+3y)}{3} \\ \leq (2x+3y) \\ \leq (2x+3y) \\ \leq (2x+3y) = 6 \\ \Rightarrow (x=0) \\ y=2 \end{cases}$$

4.5. Cho x, y > 0. Tim Min $f(x, y) = \frac{(x + y)^3}{xy^2}$

Giải

$$xy^2 = \frac{1}{16} (4x)(2y)(2y) \leq$$

VNMATH.COM

$$\leq \frac{1}{16} \left(\frac{4x + 2y + 2y}{3} \right)^{3} = \frac{1}{16} \left[\frac{4}{3} (x + y) \right]^{3} = \frac{4}{27} (x + y)^{3}$$
Suy ra $f(x, y) = \frac{(x + y)^{3}}{xy^{2}} \geq \frac{(x + y)^{3}}{\frac{4}{27} (x + y)^{3}} = \frac{4}{27} \rightarrow \text{Min } f(x, y) = \frac{4}{27}$
Dáu bàng xày ra $\leftrightarrow 4x = 2y = 2y \leftrightarrow y = 2x > 0$

1.6. Cho x, y, z > 0. Tim Min $f(x, y, z) = \frac{(x + y + z)^{6}}{xy^{2}z^{3}}$

Giài
$$xy^{2}z^{3} = \frac{1}{6 \cdot 3^{2} \cdot 2^{3}} \left[\frac{6x + 3y + 3y + 2z + 2z + 2z}{6} \right]^{6}$$

$$\leq \frac{1}{6 \cdot 3^{2} \cdot 2^{3}} \left[\frac{6x + 3y + 3y + 2z + 2z + 2z}{6} \right]^{6}$$

$$xy^{2}z^{3} < \frac{1}{6 \cdot 3^{2} \cdot 2^{3}} (x + y + z)^{6}$$

Suy ra $f(x, y, z) = \frac{(x + y + z)^{6}}{xy^{2}z^{3}} \ge \frac{1}{6 \cdot 3^{2} \cdot 2^{3}} = \frac{1}{432}$

$$\rightarrow \text{Min } f(x, y, z) = \frac{1}{432}$$

Dáu bàng xây ra $\leftrightarrow 6x = 3y = 2z > 0$

4.7. Cho $x_{1}, x_{2}, \dots, x_{n} > 0$. Tim Minf $= \frac{(x_{1} + x_{2} + \dots + x_{n})^{1+2+\dots+n}}{x_{1}x_{2}^{2}x_{3}^{3} \dots x_{n}^{n}}$

Ban doe tu giải

4.8 : CMER : A = sin^{2}x cosx $\leq \frac{2\sqrt{3}}{9}$

 $A^2 = \sin^4 x \cos^2 x = \frac{1}{2} \sin^2 x \cdot \sin^2 x \cdot (2\cos^2 x) \le$

$$\leq \frac{1}{2} \left[\frac{\sin^{2}x + \sin^{2}x + 2\cos^{2}x}{3} \right]^{3} = \frac{1}{2} \left[\frac{2(\sin^{2}x + \cos^{2}x)}{3} \right]^{3} = \frac{1}{2} \left(\frac{2}{3} \right)^{3} = \frac{4}{27}$$
Suy ra A < | A | < $\sqrt{\frac{4}{27}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$

4.9. CMR : A = $\sin^{m}x.\cos^{n}x < \sqrt{\frac{m^{m} \cdot n^{n}}{(m+n)^{m+n}}} \forall 1 < m, n \in \mathbb{Z}$
Giài

A² = $\sin^{2m}x.\cos^{2n}x = \frac{1}{n^{m}.m^{n}} (n\sin^{2}x) ... (n\sin^{2}x).(m\cos^{2}x) ... (m\cos^{2}x)$

m

$$\int_{0}^{\cos^{2}x} \frac{1}{m^{n}.n^{m}} \left[\frac{(n\sin^{2}x) + ... + (n\sin^{2}x) + (m\cos^{2}x) + ... + (m\cos^{2}x)}{m+n} \right]_{0}^{m+n}$$

= $\frac{1}{m^{n}.n^{m}} \left[\frac{mn(\sin^{2}x + \cos^{2}x)}{m+n} \right]_{0}^{m+n} = \frac{1}{m^{n}.n^{m}} \left[\frac{mn}{m+n} \right]_{0}^{m+n} = \frac{m^{m}.n^{n}}{(m+n)^{m+n}}$

Suy ra A < |A| < $\sqrt{\frac{m^{m} \cdot n^{n}}{(m+n)^{m+n}}}$

4.10. CMR $\sqrt[n]{n} < 1 + \frac{2}{\sqrt{n}} (1) \forall n \in \mathbb{N} (n \ge 1)$

Vói n = 1, 2 thủ trực tiếp thấy (1) dúng

Vói n \ge 3 ta có

 $\sqrt{n} + \sqrt{n} + 1 + 1 + \dots + 1$

 $\sqrt{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot \sqrt{n} \cdot 1 + \dots 1} < \frac{\sqrt{n} + \sqrt{n} + 1 + 1 + \dots + 1}{n + 2}$

$$\leftrightarrow \sqrt[n]{n} \leq \frac{2\sqrt{n} + (n-2)}{n} < \frac{n+2\sqrt{n}}{n} = 1 + \frac{2}{\sqrt{n}}$$

4.10. $CMR : \sqrt[N]{n} < 1 + \frac{1}{\sqrt{n}}$ (1) $\forall 1 \le n \in \mathbb{N}$
Với n = 1, 2, 3, 4 thử trực tiếp thấy (1) đúng
Với n ≥ 5 thì $\sqrt[n]{n} = \sqrt[n]{\frac{\sqrt{n}}{2} \cdot \frac{\sqrt{n}}{2}} \cdot 2 \cdot 2 \cdot 1 \dots 1 \leq$ CôSi)
n - 4
$\frac{\sqrt{n}}{2} + \frac{\sqrt{n}}{2} + 2 + 2 + 1 + \dots + 1$
$\leq \frac{n-4}{n} = \frac{\sqrt{n+4+n-4}}{n} = 1 + \frac{1}{\sqrt{n}}$
4.12. CMR : $\left(1 + \frac{1}{m}\right)^m < \left(1 + \frac{1}{n}\right)^n \forall m < n \in \mathbb{N}$
Giải
$\leftrightarrow \sqrt[n]{\left(1+\frac{1}{m}\right)^m} < 1 + \frac{1}{n}.$
Ta có :
$\sqrt[n]{\left(1+\frac{1}{m}\right)^{m}} = \sqrt[n]{\left(1+\frac{1}{m}\right) \cdot \left(1+\frac{1}{m}\right) \cdots \left(1+\frac{1}{m}\right) \cdot 1 \cdot 1 \cdots 1}$
m_són m
$ \underset{\leq}{\text{CoSi}} \frac{\left(1 + \frac{1}{m}\right) + \dots + \left(1 + \frac{1}{m}\right) + 1 + \dots + 1}{n} = \frac{m\left(1 + \frac{1}{m}\right) + n - m}{n} = 1 + \frac{1}{n} $
4.13. CMR : S = 1 + $\sqrt{\frac{2+1}{2}}$ + $\sqrt[3]{\frac{3+1}{3}}$ + + $\sqrt[n]{\frac{n+1}{n}}$ < n + 1
Giải
$\sqrt[k]{\frac{k+1}{k}} = \sqrt[k]{\frac{k+1}{k} \cdot 1 \dots 1} \le \frac{\frac{k+1}{k} + 1 + \dots + 1}{k} = 1 + \frac{1}{k^2}$
Do do S \leq n + $\frac{1}{2^2}$ + $\frac{1}{3^2}$ + $+ \frac{1}{n^2}$

Một khác
$$\frac{1}{k^2} < \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$$

Suy ra :

$$S \leq n + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$$

= $n + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$
= $n + 1 - \frac{1}{n} < n + 1$

Bình luận : Để sử dụng BĐT Cô Si từ TB nhân sang TB cộng ta cần chú ý : Chỉ số căn là bao nhiêu thì số các số hạng ở trong căn là bấy nhiêu. Nếu số các số hạng nhỏ hơn chỉ số căn thì phải nhân thêm (hằng số) để số các số hạng bằng chỉ số căn

5 Ki thuật ghép dối xứng + Phép cộng : $\begin{cases} 2(x + y + z) = (x + y) + (y + z) + (z + x) \\ x + y + z = \frac{x + y}{2} + \frac{y + z}{2} + \frac{z + x}{2} \end{cases}$ Phép nhân : $\begin{cases} x^2y^2z^2 = (\dot{x}y) \cdot (yz) \cdot (zx) \\ xyz = \sqrt{xy} \cdot \sqrt{yz} \cdot zx \end{cases} (x, y, z \ge 0)$ 5.1. CMR $\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \ge a + b + c \forall a, b, c > 0$ Giải : Áp dụng BĐT Cô Si ta có $\begin{cases} \frac{1}{2} \left(\frac{bc}{a} + \frac{ca}{b}\right) \ge \sqrt{\frac{bc}{a} \cdot \frac{ca}{b}} = c \\ + \begin{cases} \frac{1}{2} \left(\frac{ca}{b} + \frac{ab}{c}\right) \ge \sqrt{\frac{ca}{b} \cdot \frac{ab}{c}} = a \\ \frac{1}{2} \left(\frac{ab}{c} + \frac{bc}{a}\right) \ge \sqrt{\frac{ab}{c} \cdot \frac{bc}{a}} = b \end{cases}$

$$\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \ge a + b + c$$

5.2. CMR :
$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b} \lor abc \neq 0$$

Giải

Ap dung BDT Cô Si ta co

$$\frac{1}{2} \left(\frac{a^2}{b^2} + \frac{b^2}{c^2} \right) \ge \sqrt{\frac{a^2}{b^2} \cdot \frac{b^2}{c^2}} = \left| \frac{a}{c} \right| \ge \frac{a}{c}$$

$$+ \frac{1}{2} \left(\frac{b^2}{c^2} + \frac{c^2}{a^2} \right) \ge \sqrt{\frac{b^2}{c^2} \cdot \frac{c^2}{a^2}} = \left| \frac{b}{a} \right| \ge \frac{b}{a}$$

$$\frac{1}{2} \left(\frac{c^2}{a^2} + \frac{a^2}{b^2} \right) \ge \sqrt{\frac{c^2}{a^2} \cdot \frac{a^2}{b^2}} = \left| \frac{c}{b} \right| \ge \frac{c}{b}$$

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \left| \frac{a}{c} \right| + \left| \frac{b}{a} \right| + \left| \frac{c}{b} \right| \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b}$$

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \left| \frac{a}{c} \right| + \left| \frac{b}{a} \right| + \left| \frac{c}{b} \right| \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b}$$

5.3. CMR : $a^3 + b^3 + c^3 \ge a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \forall a, b, c, \ge 0$ Giải

Ta co
$$\frac{1}{\operatorname{tg}\frac{C}{2}} = \operatorname{cotg}\frac{C}{2} = \operatorname{tg}\left(\frac{A}{2} + \frac{B}{2}\right) = \frac{\operatorname{tg}\frac{A}{2} + \operatorname{tg}\frac{B}{2}}{1 - \operatorname{tg}\frac{A}{2}\operatorname{tg}\frac{B}{2}}$$

$$\Rightarrow tg \frac{A}{2} tg \frac{B}{2} + tg \frac{B}{2} tg \frac{C}{2} + tg \frac{C}{2} tg \frac{A}{2} = 1 \text{ Mat khac}$$

$$= \begin{cases} \frac{1}{2} \left(tg^2 \frac{A}{2} + tg^2 \frac{B}{2} \right) \ge \sqrt{tg^2 \frac{A}{2} tg^2 \frac{B}{2}} = tg \frac{A}{2} tg \frac{B}{2} \\ \frac{1}{2} \left(tg^2 \frac{B}{2} + tg^2 \frac{C}{2} \right) \ge \sqrt{tg^2 \frac{B}{2} tg^2 \frac{C}{2}} = tg \frac{B}{2} tg \frac{C}{2} \\ \frac{1}{2} \left(tg^2 \frac{C}{2} + tg^2 \frac{A}{2} \right) \ge \sqrt{tg^2 \frac{C}{2} tg^2 \frac{A}{2}} = tg \frac{C}{2} tg \frac{A}{2} \\ \frac{1}{2} \left(tg^2 \frac{C}{2} + tg^2 \frac{A}{2} \right) \ge \sqrt{tg^2 \frac{C}{2} tg^2 \frac{A}{2}} = tg \frac{C}{2} tg \frac{A}{2} \\ \frac{1}{2} \left(tg^2 \frac{B}{2} + tg^2 \frac{C}{2} \right) \ge tg \frac{A}{2} tg \frac{B}{2} + tg \frac{B}{2} tg \frac{C}{2} + tg \frac{C}{2} tg \frac{A}{2} = 1 \end{cases}$$

$$= 5.5 (108.111) \text{ Cho } \Delta \text{ABC. CMR a) (p - a)(p - b)(p - c) \le \frac{1}{8} \text{ab}$$

$$= b) \frac{1}{p - a} + \frac{1}{p - b} + \frac{1}{p - c} \ge 2 \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

$$= Giali$$

$$= b + c - a \\ 2 = 0 \text{ nen theo BDT Cosi ta co}$$

a)
×
$$\begin{cases}
0 < \sqrt{(p-a)(p-b)} \leq \frac{(p-a) + (p-b)}{2} = \frac{c}{2} \\
0 < \sqrt{(p-b)(p-c)} \leq \frac{(p-b) + (p-c)}{2} = \frac{a}{2} \\
0 < \sqrt{(p-c)(p-a)} < \frac{(p-c) + (p-a)}{2} = \frac{b}{2} \\
\hline
0 < (p-a)(p-b)(p-c) < \frac{1}{8}abc
\end{cases}$$

ų. T VNMATH.COM

b)
$$\frac{1}{2}\left(\frac{1}{p-a} + \frac{1}{p-b}\right) \ge \frac{1}{\sqrt{(p-a)(p-b)}} \ge \frac{1}{(p-a) + (p-b)} = \frac{2}{c}$$

$$\frac{1}{2}\left(\frac{1}{p-b} + \frac{1}{p-c}\right) \ge \frac{1}{\sqrt{(p-b)(p-c)}} \ge \frac{1}{(p-b) + (p-c)} = \frac{2}{a}$$

$$\frac{1}{2}\left(\frac{1}{p-c} + \frac{1}{p-a}\right) \ge \frac{1}{\sqrt{(p-c)(p-a)}} \ge \frac{1}{(p-c) + (p-a)} = \frac{2}{b}$$

$$\frac{1}{2}\left(\frac{1}{p-c} + \frac{1}{p-a}\right) \ge \frac{1}{\sqrt{(p-c)(p-a)}} \ge 2\left(\frac{1}{2} + \frac{1}{b} + \frac{1}{c}\right)$$

$$\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c} \ge 2\left(\frac{1}{2} + \frac{1}{b} + \frac{1}{c}\right)$$

$$5.6 \ 94.111.1 \ Cho \ \Delta ABC.$$

$$CMR \ (b+c-a)(c+a-b)(a+b-c) \le abc$$
Giải
Theo BDT Có si ta có:

$$\left\{\begin{array}{l} 0 \le \sqrt{(b+c-a)(c+a-b)} \le \frac{(b+c-a) + (c+a-b)}{2} = c\\ 0 \le \sqrt{(c+a-b)(a+b-c)} \le \frac{(c+a-b) + (a+b-c)}{2} = a\\ 0 \le \sqrt{(a+b-c)(b+c-a)} \le \frac{(a+b-c) + (b+c-a)}{2} = b\\ \hline 0 \le \sqrt{(a+b-c)(b+c-a)} \le \frac{(a+b-c) + (b+c-a)}{2} = b\end{array}\right\}$$

6. Ki thuật sử dụng công thức diện tiên tâm giác
1)
$$S = \sqrt{\frac{1}{2}}ah_a$$

2) $S = \frac{1}{2}besinA$
3) $S = \sqrt{p(p-a)(p-b)(p-c)}$
6) $S = (p-a)r_a = (p-b)r_b = (p-c)r_c$

6.1 94.III.2 $\triangle ABC$. CMR R \ge 2r(1) Giải

Ta có
$$\begin{cases} S = \frac{abc}{4R} \rightarrow \\ S = pr \end{cases} \begin{cases} R = \frac{abc}{4S} \\ r = \frac{S}{p} \end{cases} Do do$$

1)
$$\leftrightarrow \frac{abc}{4S} \ge \frac{2S}{p} \leftrightarrow abc \ge \frac{8S^2}{p} \leftrightarrow abc \ge \frac{8p(p-a)(p-b)(p-c)}{p}$$

 $\leftrightarrow abc \ge 8, \frac{b+c-a}{2}, \frac{c+a-b}{2}, \frac{a+b-c}{2} = (b+c-a)(c+a-b)(a+b-c)$

Theo 94III.1 thì BĐT cuối đúng \rightarrow (1) đúng (đpcm) 6.2 *II5V.a* Cho \triangle ABC. CMR : 4r.r_c \leq c²

Giải

Ta co
$$\begin{cases} S = pr \\ S = (p - a)r_c \leftrightarrow \begin{cases} r = \frac{S}{p} \\ r_c = \frac{S}{p - c} \end{cases} \text{ Do do} \\ r_c = \frac{S}{p - c} \end{cases}$$

$$4r.r_c = 4 \cdot \frac{S}{p} \cdot \frac{S}{p - c} = 4 \frac{p(p - a)(p - b)(p - c)}{p(p - c)}$$

$$= 4(p - a)(p - b) \leq 4 \left[\frac{(p - a)(p - b)}{2} \right]^2 = 4 \left(\frac{c}{2} \right)^2 = c^2$$

6.3 53111. Bộ đề cũ : CMR : $dt\Delta \ge 2$ diện tích hình vuông nội tiếp Δ

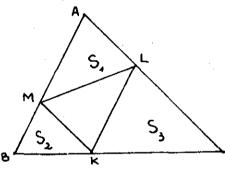
Giai

Ta sẽ chứng minh : dtABC > 2dt hình vuông (MNPQ) $\leftrightarrow \frac{1}{2}$ AH . BC > 2MN.PQ $\leftrightarrow \frac{1}{4} > \frac{MN}{BC} \cdot \frac{MQ}{AH}$. B Q H P

Thật vậy ta có

 $\frac{MN}{BC} \cdot \frac{MQ}{AH} = \frac{AM}{AB} \cdot \frac{BM}{AB} \le \frac{1}{AB^2} \left(\frac{AM + BM}{2}\right)^2 = \frac{1}{AB^2} \left(\frac{AB}{2}\right)^2 = \frac{1}{4}$ 6.4 : 101V.B6 dê cũ. Cho $\triangle ABC$ cơ diện tích bằng 1. Lấy các diểm K, L, M \in BC, CA, AB. CMR : trong các $\triangle ALM$, BMK, CKL luôn có ít nhất 1 \triangle có diện tích $\le \frac{1}{4}$

Giai :



Gọi diện tích các $\triangle ABC$, ALM, BMK, CKL lần lượt là S, S₁, S₂, S₃.

Giả sử trong các $\triangle ALM$, BMK, CKL không có \triangle nào có diện tích $\leq \frac{1}{4}$ suy ra

 $S_1S_2S_3 > \left(\frac{1}{4}\right)^3$ (1)

Māt khác :

$$\times \begin{cases} S_1 = \frac{S_1}{S} = \frac{\frac{1}{2}AM.ALsinA}{\frac{1}{2}AB.ACsinA} = \frac{AM.AL}{AB.AC} \\ S_2 = \frac{S_2}{S} = \frac{\frac{1}{2}BM.BKsinB}{\frac{1}{2}BA.BCsinB} = \frac{BM.BK}{BA.BC} \\ S_3 = \frac{S_3}{S} = \frac{\frac{1}{2}CK.CLsinC}{\frac{1}{2}CB.CAsinC} = \frac{CK.CL}{CB.CA} \\ \end{cases}$$

/NMATH.COM

Ta thấy (1) và (2) mẫu thuấn nhau. Vậy điều giả sử là sai. Vậy trong các \triangle AML, BMK, CKL luôn có ít mất I \triangle có diện tích $\leq \frac{1}{4}$ 6.5 : Cho \triangle ABC có diện tích S

$$CMR : S \leq \frac{1}{6} [r(r_a + r_b + r_c) + r_a r_b + r_b r_c + r_c r_a]$$

Giải
Ta có S = pr : S = (p - a)r_a = (p - b)r_b = (p - c)r_a

 $\Rightarrow S^4 = p(p-a)(p-b)(p-c)\mathbf{r}.\mathbf{r}_a.\mathbf{r}_b.\mathbf{r}_c = S^2 \mathbf{r}.\mathbf{r}_a.\mathbf{r}_b.\mathbf{r}_c \Rightarrow S = \sqrt{\mathbf{r}.\mathbf{r}_a.\mathbf{r}_b.\mathbf{r}_c}$

Ap dung BDT Cosi ta co

$$\begin{cases} S = \sqrt{(r \cdot r_{a}) \cdot (r_{b} \cdot r_{c})_{i}} \leq \frac{1}{2} (r \cdot r_{a} + r_{b}r_{c}) \\ + \begin{cases} S = \sqrt{(r \cdot r_{b}) \cdot (r_{c} \cdot r_{a})} \leq \frac{1}{2} (r \cdot r_{b} + r_{c}r_{a}) \\ S = \sqrt{(r \cdot r_{c}) \cdot (r_{a} \cdot r_{b})} \leq \frac{1}{2} (r \cdot r_{c} + r_{a}r_{b}) \end{cases}$$

$$3S = 3\sqrt{rr_{a}r_{b}r_{c}} \leq \frac{1}{2} [r(r_{a}+r_{b}+r_{c}) + r_{1}r_{b} + r_{b}r_{c} + r_{c}r_{a}]$$

$$\leftrightarrow S = < \frac{1}{6} \left[r(r_a + r_b + r_c) + r_a r_b + r_b r_c + r_c r_a \right]$$

6.6 Cho $\triangle ABC$. CMR : $tg\frac{A}{2} + tg\frac{B}{2} + tg\frac{C}{2} \le \frac{9R^2}{4S}$

Giải 📰

$$S\left(tg\frac{A}{2} + tg\frac{B}{2} + tg\frac{C}{2}\right) = S\left(\frac{r}{p-a} + \frac{r}{p-b} + \frac{r}{p-c}\right) = \frac{S^{2}}{p}\left(\frac{1}{p-a} + \frac{1}{p-b} + \frac{r}{p-c}\right) = \frac{p(p-a)(p-b)(p-c)}{p}\left(\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c}\right)$$

Do do
$$S \leq \frac{a^2 + b^2 + c^2}{4\sqrt{3}} = \frac{\frac{4}{3}(m_a^2 + m_b^2 + m_c^2)}{4\sqrt{3}} = \frac{m_a^2 + m_b^2 + m_c^2}{3\sqrt{3}}$$

Vây $m_a^2 + m_b^2 + m_c^2 \geq 3\sqrt{3}S$
6.9 : CMR : $(m_a^2 + m_b^2 + m_c^2)(h_a^2 + h_b^2 + h_c^2) \geq 27S^2 \forall \Delta ABC$
Giải
Theo bài 6.8 ta có $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2)$
Áp dụng BDT Cosi ta có
 $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2) \geq \frac{9}{4}$. $\sqrt[3]{a^2b^2c^2}$ (1)
Mật khác : $S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{c}h_c$ do đó
 $h_a^2 + h_b^2 + h_c^2 = 4S^2(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}) \geq 12S^2$. $\sqrt[3]{\frac{1}{a^2b^2c^2}}$
Nhân các vế của (1) và (2) suy ra
 $(m_a^2 + m_b^2 + m_c^2)(h_a^2 + h_b^2 + h_c^2) \geq 27S^2$
6.10 : ΔABC . CMR : $becotg\frac{A}{2} + cacotg\frac{B}{2} + abcotg\frac{C}{2} \geq 12S$

Giải :

$$VT = \frac{2S_{cot}g_{2}^{A}}{\sin A} + \frac{2S_{cot}g_{2}^{B}}{\sin B} + \frac{2S_{cot}g_{2}^{C}}{\sin C}$$

$$= S\left(\frac{1}{\sin^{2}A} + \frac{1}{\sin^{2}B} + \frac{1}{\sin^{2}C}\right) \ge S \cdot \frac{3}{\sqrt[3]{\sin^{2}A} \sin^{2}B} \frac{3}{\sqrt[3]{\sin^{2}A} \sin^{2}B} \frac{3}{2} \sin^{2}C}{\sqrt[3]{\sin^{2}A} \sin^{2}B \sin^{2}C}}$$

$$= \frac{3S}{\left[\sqrt[3]{\sin^{2}B} \sin^{2}B \sin^{2}C}\right]^{2} \ge \frac{3S}{\left[\frac{\sin^{2}A}{2} + \sin^{2}B}{3} + \frac{1}{\sin^{2}C}\right]^{2}}$$

Ap dung BDT Jensen

$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \le 3\sin \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 3\sin \frac{\pi}{6} = \frac{3}{2}$$

ta co
$$\frac{3S}{\left[\frac{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}{3}\right]^2} \ge \frac{3S}{\left(\frac{1}{2}\right)^2} = 12S \text{ (dpcm)}$$

Binh luận : Diện tích tam giác la chiếu cấu nối các mối quan hệ giữa các yếu tổ trong tam giác.

7. Ký thuật cập nghịch đảo 3 số

Noi dung : Ta co

· · · -	(x + y	$+z)\left(\frac{1}{x}\right)$	$+\frac{1}{y}+\frac{1}{z}$) >	9 V	х, у,	ż >	n	<u> </u>	(*)	
Thật	vậy :	VT ≥	3 ∛ xyz	3 . 3	1 xy2	- ; = 9					-

/NMATH.CON

Bất đẳng thức này chứng minh rất dễ nhưng nó có ý nghĩa rất lớn trong vai trò nhận dạng và đưa các bài toán xa lạ trở thành bài toán quen biết.

Các ví dụ sau đây sẽ minh chủng diễu đó. 7.1. 103 IV. Bộ đề câ. CMR : $h_a + h_b + h_c \ge 9r \forall \Delta ABC$ Giải

 $\frac{2S}{a} \frac{2S}{b} + \frac{2S}{c} \ge \frac{9}{p}$ $\leftrightarrow 2p \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9 \leftrightarrow (a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9$ Diffu hay dung theo BDT (*) 7.2. CMR : $r_a + r_b + r_c \ge 9r \forall \Delta ABC$

Giải

$$\frac{S}{p+1} + \frac{S}{p-b} + \frac{S}{p-c} \ge \frac{S}{p} \leftrightarrow p\left(\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c}\right) \ge S$$

-56

$$\mapsto \left[(p-a) \pm (p-b) + (p-c) \right] \left[\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c} \right] \ge 9.$$
Dúng theo BDT (*)
7.3. (114 V a) AABC nhọn cơ
dường cao AA₁, BB₁, CC₁ và trực
tàm H.
CMR : $\frac{AH}{A_1H} + \frac{BH}{B_1H} + \frac{CH}{C_1H} \ge 6$
Giải
 $\Rightarrow \left(1 + \frac{AH}{A_1H} \right) + \left(1 + \frac{BH}{B_1H} \right) + \left(1 + \frac{CH}{C_1H} \right) \ge 9$
 $\Rightarrow \frac{AA_i}{HA_i} + \frac{BB_i}{HB_1} + \frac{CC_i}{HC_i} \ge 9$
 $\Rightarrow \frac{1}{2}AA_i \cdot BC}{\frac{1}{2}HB_1} \cdot CA} + \frac{1}{2}CC_1 \cdot AB} \ge 9$
 $\Rightarrow \frac{1}{2}AA_i \cdot BC}{\frac{1}{2}HB_1} + \frac{dt(ABC)}{dt(HAB)} + \frac{dt(ABC)}{dt(HAB)} \ge 9$
 $\Rightarrow (dt(ABC)) + dt(AAC) + dt(AABC)] = \frac{1}{dt(HBC)} + \frac{1}{dt(HAB)} = 9$
Diễu này dúng theo BDT (*) $\Rightarrow (dpcm)$
7.4. CMR : $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6 \forall a, b, c \ge 6$
Giải
 $\Rightarrow (1 + \frac{b+c}{a}) + (1 + \frac{c+a}{b}) + (1 + \frac{a+b}{c}) \ge 9$

37 ... $\leftrightarrow (a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9. \text{ Dúng theo BDT (*)}$

7.5.
$$CMR : \frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} \ge \frac{9}{a+b+c} \forall a, b, c > 0$$

Giải

$$\leftrightarrow 2(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right) \ge 9$$

$$\leftrightarrow [(b+c) + (c+a) + (a+b)] \left\lfloor \frac{b+c}{b+c} + \frac{b+c}{c+a} + \frac{b+c}{a+b} \right\rfloor \ge 9$$

Dúng theo BDT (*)

7.6. CMR :
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2} \forall a, b, c > 0$$

Giải

$$\leftrightarrow \left(1 + \frac{\mathbf{a}}{\mathbf{b} + \mathbf{c}}\right) + \left(1 + \frac{\mathbf{b}}{\mathbf{c} + \mathbf{a}}\right) + \left(1 + \frac{\mathbf{c}}{\mathbf{a} + \mathbf{b}}\right) \ge \frac{3}{2} + 3 = \frac{9}{2}$$
$$\leftrightarrow \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{\mathbf{b} + \mathbf{c}} + \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{\mathbf{c} + \mathbf{a}} + \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{\mathbf{a} + \mathbf{b}} \ge \frac{9}{2}$$

VNMATH COM

$$\leftrightarrow 2(\mathbf{a} + \mathbf{b} + \mathbf{c}) \left(\frac{1}{\mathbf{b} + \mathbf{c}} + \frac{1}{\mathbf{c} + \mathbf{a}} + \frac{1}{\mathbf{a} + \mathbf{b}} \ge 9 \right)$$

$$\leftrightarrow [(b+c) + (c+a) + (a+b)] \left[\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right] \ge 9.$$

Đúng theo BDT (*) · · · . . .

7.7. CMR:
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{a+b+c}{2} \forall a, b, c > 0$$

$$\leftrightarrow \left(a + \frac{a^2}{b+c}\right) + \left(b + \frac{b^2}{c+a}\right) + \left(c + \frac{c^2}{a+b}\right) \ge \frac{3}{2}(a+b+c)$$

$$\leftrightarrow a\left(1 + \frac{a}{b+c}\right) + b\left(1 + \frac{b}{c+a}\right) + c\left(1 + \frac{c}{a+b}\right) \ge \frac{3}{2}(a+b+c)$$

$$\Rightarrow (a+b+c)\left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right) \ge \frac{3}{2}(a+b+c) \qquad \text{OIT}$$

$$\Rightarrow \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

$$\Rightarrow \left(1 + \frac{a}{b+c}\right) + \left(1 + \frac{b}{c+a}\right) + \left(1 + \frac{c}{a+b}\right) \ge \frac{9}{2}$$

$$\Rightarrow \left[(b+c) + (c+a) + (a+b)\right] \left[\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}\right] \ge 9$$

$$\text{Dúng theo BDT (*) $\Rightarrow (dpcm).$
7.8. $CMR : \log_{b+c}a^2 + \log_{c+a}b^2 + \log_{a+b}c^2 \ge 3 \forall a, b, c > 2$

$$Gidi : \forall i \ b, \ c > 2 \rightarrow bc > 2.max(b, \ c) \ge b + c$$

$$\text{Do dó } \log_{b+c}a^2 = \frac{\ln a^2}{\ln(b+c)} \ge \frac{\ln a^2}{\ln(bc)} = \frac{2\ln a}{\ln b + \ln c}$$

$$\text{Từ dó ta có : } \log_{b+c}a^2 + \log_{c+a}b^2 + \log_{a+b}c^2 \ge 3 \\ \ge \frac{2\ln a}{\ln b + \ln C} + \frac{2\ln b}{\ln c + \ln a} + \frac{2\ln c}{\ln a + \ln b} \ge 2 \cdot \frac{3}{2} = 3$$

$$(\r{O} dáy ta sử dụng bài 7.6 : \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \ge \frac{3}{2} \forall x, y, z > 0$$

$$7.9. CMR : 2\left(\frac{\log_b c}{b+c} + \frac{\log_a a}{c+a} + \frac{\log_a b}{a+b}\right) \ge \frac{9}{a+b+c} \forall a, b, c > 1$$

$$(Vo Dich Nam Int \ c)$$

$$\text{Giải}$$

$$\Rightarrow \left[(b+c) + (c+a) + (a+b)\right] \left[\frac{\log_b c}{b+c} + \frac{\log_a b}{a+b}\right] \ge 9$$

$$\text{Theo BDT Co Si ta có : }$$

$$\times \left[\frac{(b+c) + (c+a) + (a+b)}{(b+c) + (c+a) + (a+b)} \ge 3\sqrt[3]{\frac{\log_b c}{(b+c)(c+a)(a+b)}}$$

$$\left[(b+c) + (c+a) + (a+b)] \left[\frac{\log_b c}{b+c} + \frac{\log_a b}{c+a} + \frac{\log_a b}{b}\right] \le 9$$

$$\text{Theo BDT Co Si ta có : }$$

$$\times \left[\frac{(b+c) + (c+a) + (a+b)}{(b+c) + (c+a) + (a+b)} \ge 3\sqrt[3]{\frac{\log_b c}{(b+c)(c+a)(a+b)}}$$

$$\left[(b+c) + (c+a) + (a+b)] \left[\frac{\log_b c}{b+c} + \frac{\log_a b}{c+a} + \frac{3}{b} > 3\sqrt[3]{\frac{\log_b c}{(b+c)(c+a)(a+b)}}$$

$$= 0$$$$

3.

39

VNMATH.COM

710
$$(MR : 2\left(\frac{m^{N-N_{2}}}{h+c} + \frac{m^{N_{2}-N_{1}}}{c+a} + \frac{m^{N_{2}-N_{1}}}{a+b}\right) \ge \frac{9}{a+b+c} \forall a, b, c, m > 1$$

Giải
 $\Rightarrow [(b+c) + (c+a) + (a+b)]\left[\frac{m^{N_{1}-N_{2}}}{b+c} + \frac{m^{N_{2}-N_{1}}}{c+a} + \frac{m_{N_{1}-N_{1}}}{a+b}\right] \ge 9(*)$
Ta có
VT (*) $\ge 3\sqrt[3]{(b+c)(c+a)(a+b)} \cdot 3\sqrt[3]{\frac{m^{N_{1}-N_{2}}}{(b+c)(c+a)(a+b)}}$
 $= 9\sqrt[3]{m^{N_{1}-N_{1}}} = 9\sqrt[3]{m^{0}} = 9 \Rightarrow (dpcm)$
7.11. Cho $\left\{a, b, c\\a + b + c = 1\right\} \quad CMR \quad \frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \ge \frac{9}{2}$
Giải
 $\Rightarrow 2(a+b+c)\left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}\right) \ge 9$
 $\Rightarrow [(b+c) + (c+a) + (a+b)]\left[\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}\right] \ge 9$
Dúng theo BDT (*):
7.12. Cho $\left\{a, b, c > 0\\a+b+c \le 1 \quad CMR : \frac{-1}{a^{2}+2bc} + \frac{1}{b^{2}+2ca} + \frac{-1}{c^{2}+2ab} \ge 9$
Theo BDT (*) thi
 $\left[(a^{2}+2bc) + (b^{2}+2ca) + (c^{2}+2ab)\right]\left[\frac{1}{a^{2}+2bc} + \frac{1}{b^{2}+2ca} + \frac{1}{c^{2}+2ab}\right] \ge 9$
 $\Rightarrow (a+b+c)^{2}\left(\frac{1}{a^{2}+2bc} + \frac{1}{b^{2}+2ca} + \frac{1}{c^{2}+2ab}\right) \ge 9$
MA $0 < (a+b+c)^{2} \le 1 \Rightarrow \frac{1}{a^{2}+2bc} + \frac{1}{b^{2}+2ca} + \frac{1}{c^{2}+2ab} \ge 9$
7.13. Cho ΔABC . $CMR : \sum_{A,B,c} \frac{1}{(1+2cosA+4cosAcosB)} \ge 1$

VNMATH.COM

,10

Giải :

Theo BDT (*) thì

 $\sum_{B,C} (1 + 2\cos A + 4\cos A\cos B) \cdot \sum_{A,B,C} \frac{1}{1 + 2\cos A + 4\cos A\cos B} \ge 9$ $Ma \sum (1 + 2\cos A + 4\cos A\cos B) = 3 + 2 \sum \cos A + 4 \sum \cos A\cos B.$ A. B. C A. B. C De dang c/m duoc : $\sum \cos A = \cos A + \cos B + \cos C \le \frac{3}{2}$ Mặt khác dễ dàng ta chúng minh được $\cos A \cos B + \cos B \cos C + \cos C \cos A \le (\cos^2 A + \cos^2 B + \cos^2 C)$ \rightarrow 3(cosAcosB + cosBcosC + cosCcosA) \leq $\leq (\cos A + \cos B + \cos C)^2 \leq \left(\frac{3}{2}\right)^2 = \frac{9}{4}$ Do do $\sum_{n=0}^{\infty} (1 + 2\cos A + 4\cos A \cos B) \le 3 + 2 \cdot \frac{3}{2} + 3 = 9$ Vay thi : $\sum_{A \in B} \frac{1}{1 + 2\cos A + 4\cos A \cos B}$ 8. Ký thuật cặp nghịch đảo n số : $(X_1 + ... + X_n) \left(\frac{1}{X_1} + ... + \frac{1}{X_n} \right) \ge n^2 \forall X_1 ... X_n > 0$ (**) Dat S = $\hat{\Sigma}$ a_i. Häy chúng minh các BDT sau $\forall a_1, a_2, \dots a_n > 0$ 8.1. CMR: $\sum_{i=1}^{n} \frac{S-a_i}{a_i} \ge n^2 - n$ Giai $\leftrightarrow \sum_{i=1}^{n} \left(1 + \frac{S - a_i}{a_i}\right) \ge n^2 - n + n = n^2$

/NMATH.CON

$$\leftrightarrow \sum_{i=1}^{n} \frac{S}{a_i} \ge n^2 \leftrightarrow \sum_{i=1}^{n} a_i \sum_{i=1}^{n} \frac{1}{a_i} \ge n^2$$
 Dúng theo BDT (**)
8.2. CMR ;
$$\sum_{i=1}^{n} \frac{1}{S-a_i} \ge \frac{n^2}{(n-1)S}$$

Giải
Theo BDT (**) ta có
$$\sum_{i=1}^{n} (S-a_i) \sum_{i=1}^{n} \frac{1}{S-a_i} \ge n^2$$

Mặt khác $\sum_{i=1}^{n} (S - a_i) = nS$ $\sum_{i=1}^{n}$ = (n · - 1)S. a,

Vây
$$\sum_{i=1}^{n} \frac{1}{S-a_i} \ge \frac{n^2}{(n-1)S}$$

8.3 CMR : $\sum_{i=1}^{n} \frac{a_i}{S-a_i} \ge \frac{n}{n-1}$

Giải

$$\leftrightarrow \sum_{i=1}^{n} \left(1 + \frac{a_{i}}{S - a_{i}}\right) \geq \frac{n}{n-1} + n \neq \frac{n^{2}}{n-1}$$

$$\leftrightarrow (n-1) \sum_{i=1}^{n} \frac{S}{S - a_{i}} \geq n^{2} \leftrightarrow (n-1)S \cdot \sum_{i=1}^{n} \frac{1}{S - a_{i}} \geq n^{2}$$

$$\leftrightarrow \sum_{i=1}^{n} (S - a_{i}) \cdot \sum_{i=1}^{n} \frac{1}{S - a_{i}} \geq n^{2} \cdot Dung \text{ theo BDT (**)}$$

VNMATH.CON

8.4. CMR :
$$\sum_{i=1}^{n} \frac{a_i^2}{S-a_i} \ge \frac{S}{n-1}$$

Giải

$$\leftrightarrow \sum_{i=1}^{n} \left(\mathbf{a}_{i} + \frac{\mathbf{a}_{i}^{2}}{\mathbf{S} - \mathbf{a}_{i}} \right) \geq \frac{\mathbf{S}}{\mathbf{n} - 1} + \sum_{i=1}^{n} \mathbf{a}_{i} = \frac{\mathbf{S}}{\mathbf{n} - 1} + \mathbf{S}$$

$$\leftrightarrow \sum_{i=1}^{n} a_{i} \left(1 + \frac{a_{i}}{S - a_{i}} \right) \ge \frac{nS}{n-1} \leftrightarrow \sum_{i=1}^{n} \frac{a_{i}S}{S - a_{i}} \ge \frac{nS}{n-1}$$

 $\leftrightarrow \sum_{i=1}^{n} \frac{a_{i}}{S-a_{i}} \geq \frac{n}{n-1} \text{ Dung theo 8.3 (dpcm).}$

8.5. CMR :
$$\sum_{i=1}^{n} \frac{\sqrt{a_i}}{\sqrt{S-a_i}} \ge 2 \ (n \ge 2)$$

Giải

$$\sum_{i=1}^{n} \frac{\sqrt{a_{i}}}{\sqrt{S-a_{i}}} = \sum_{i=1}^{n} \frac{a_{i}}{\sqrt{(S-a_{i})a_{i}}} \ge \sum_{i=1}^{n} \frac{a_{i}}{\frac{(S-a_{i})+a_{i}}{2}}$$
$$= \sum_{i=1}^{n} \frac{2a_{i}}{S} = \frac{2}{S} \sum_{i=1}^{n} a_{i} = \frac{2}{S} S = 2$$
$$8.6. \text{ Cho } \begin{cases} a_{1}, \dots a_{n} < 0\\ a_{1} + \dots + a_{n} = 1 \end{cases} \quad CMR : \sum_{i=1}^{n} \frac{a_{i}}{2-a_{i}} \ge \frac{n}{2n-1}$$
(Vo dich UCRAINA)

Giải

$$\leftrightarrow \sum_{i=1}^{n} \left(1 + \frac{a_i}{2 - a_i}\right) \ge \frac{n}{2n - 1} + n = \frac{2n^2}{2n - 1}$$

$$\leftrightarrow \sum_{i=1}^{n} \frac{2}{2 - a_i} \ge \frac{2n^2}{2n - 1} \leftrightarrow \sum_{i=1}^{n} \frac{1}{2 - a_i} \ge \frac{n^2}{2n - 1}$$

$$\leftrightarrow (2n - 1) \sum_{i=1}^{n} \frac{1}{2 - a_i} \ge n^2 \leftrightarrow \sum_{i=1}^{n} (2 - a_i) \cdot \sum_{i=1}^{n} \frac{1}{2 - a_i} \ge n^2$$
Bat dang thus nay dung theo (**) \rightarrow (dpcm).

43

VNMATH.COM

9. Ki thuật dánh giả mẫu số
9.1 : CMR :
$$\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \le \frac{a + b + c}{2abc} \forall a, b, c > 0$$

Giải Áp dụng BDT Cô Si ta có

$$\begin{cases} \frac{1}{a^2 + bc} \le \frac{1}{2\sqrt{a^2bc}} = \frac{1}{2a\sqrt{bc}} = \frac{\sqrt{bc}}{2abc} \le \frac{1}{2}(b + c) \\ \frac{1}{a^2 + bc} \le \frac{1}{2\sqrt{b^2ca}} = \frac{1}{2b\sqrt{ca}} = \frac{\sqrt{bc}}{2abc} \le \frac{1}{2}(c + a) \\ \frac{1}{b^2 + ca} \le \frac{1}{2\sqrt{b^2ca}} = \frac{1}{2b\sqrt{ca}} = \frac{\sqrt{ca}}{2abc} \le \frac{1}{2abc} \end{cases}$$

$$\frac{1}{a^2 + bc} + \frac{1}{2\sqrt{c^2ab}} \le \frac{1}{2c\sqrt{ab}} = \frac{\sqrt{ca}}{2abc} \le \frac{1}{2(a + b)} \\ \frac{1}{c^2 + ab} \le \frac{1}{2\sqrt{c^2ab}} = \frac{1}{2c\sqrt{ab}} = \frac{\sqrt{ab}}{2abc} \le \frac{1}{2abc} \end{cases}$$
9.2. CMR : $\frac{1}{a^3 + b^3 + abc} = \frac{1}{b^2 + c^3 + a^2 + abc} + \frac{1}{c^3 + a^3 + abc} \le \frac{1}{abc} \forall a, b, c > 0$
Giải $\forall x, y > 0$ thi
 $x^3 + y^3 = (x + y)(x^2 + y^2 - x)(x + y) (2xy - xy) = (x + y)xy$
Do dó : $\frac{1}{a^3 + b^3 + abc} \le \frac{1}{(c + a)ca + abc} = \frac{1}{bc(a + b + c)}$
 $\frac{1}{a^3 + b^3 + abc} \le \frac{1}{(c + a)ca + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{a^3 + a^3 + abc} \le \frac{1}{(c + a)ca + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} \le \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} = \frac{1}{c^3 + a^3 + abc} \le \frac{1}{(a + b)ab + abc} \le \frac{1}{(a + b + c)}$

VNMATH.COM

$$\begin{cases} \frac{1}{ab(a+b+c)} + \frac{1}{bc(a+b+c)} + \frac{1}{ca(a+b+c)} \\ = \frac{a+b+c}{abc(a+b+c)} = \frac{1}{abc} \quad (dpcm) \end{cases}$$

$$9.3 : CMR \frac{1}{a^4+b^4+c^4+abcd} + \frac{1}{b^4+c^4+d^4+abcd} + \frac{1}{b^4+c^4+d^4+abcd} + \frac{1}{c^4+d^4+a^4+b^4+abcd} + \frac{1}{abcd} + \frac{1}{c^4+d^4+a^4+a^4+b^4+abcd} \leq \frac{1}{abcd} \\ \forall a, b, c, d \ge 0 \qquad (1) \end{cases}$$

$$Giāi : \forall x, y, z > 0 ta coi$$

$$x^4 + y^4 + z^4 = \frac{1}{2} (x^4 + y^4) + \frac{1}{2} (y^4 + z^4) + \frac{1}{2} (z^4 + x^4) \ge x^2y^2 + y^2z^2 + z^2x^2 = \frac{1}{2}(x^2y^2 + y^2z^2) + \frac{1}{2}(y^2z + z^2x^2) + \frac{1}{2}(z^2x^2 + x^2y^2)$$

$$> \sqrt{(x^2y^2)(y^2z^2)} + \sqrt{(y^2z^2)(x^2x^2)} + \sqrt{(z^2x^2)(x^2y^2)}$$

$$= y^4 x + y^4 + z^4 \ge xyz \ (x + y + z). \ Từ do ta coi$$

$$\frac{1}{a^4 + b^4 + c^4 + abcd} \le \frac{1}{abc(a+b+c+d) + abcd} = \frac{1}{abc(a+b+c+d)}$$

$$+ \frac{1}{c^4 + d^4 + a^4 + abcd} \le \frac{1}{cda(c+d+a) + abcd} = \frac{1}{cda(a+b+c+d)}$$

$$\frac{1}{d^4 + a^4 + b^4 + abcd} \le \frac{1}{abc(a+b+c+d) + abcd} = \frac{1}{abc(a+b+c+d)}$$

$$+ VT(1) \le \frac{1}{abc(a+b+c+d)} + \frac{1}{abcd} + \frac{1}{abcd} = \frac{1}{abcd}$$

VNMATH.COM

9.4. Cho $a_1, a_2, \dots a_n > 0$ $(n \ge 3)$ CMR

$$\frac{1}{a_{1}^{n} + \dots + a_{n-1}^{n} + a_{1}a_{2} \dots a_{n}} + \frac{1}{a_{2}^{n} + \dots + a_{n}^{n} + a_{1}a_{2} \dots a_{n}} + \frac{1}{a_{n}^{n} + a_{1}^{n} + \dots + a_{n-2}^{n} + a_{1}a_{2} \dots a_{n}} \leq \frac{1}{a_{1}a_{2} \dots a_{n}}$$

Chú ý: Kỉ thuật sử dụng Cô Si để đánh giá mẫu số rất nghệ thuật và hoàn toàn khác hản với các kỉ thuật ở 9.1, 9.2 và 9.3. Đế nghị bạn đọc tự giải.

9.5 [150 I. 2. Vo dich Mỹ 1980]. Cho a, b, $c \in [0,1]$. CMR

 $\frac{a}{b+c+1} + \frac{b}{c+a+1} + \frac{c}{a+b+1} + (1-a)(1-b)(1-c) \le 1 (1)$ Giải

Già sử a = max (a, b, c). Khi đó ta có

+;	$\begin{cases} \frac{a}{b+c+1} = \\ \frac{b}{c+a+1} \leq \\ \frac{c}{a+b+1} \leq \end{cases}$	$ \frac{a}{b+c+1} $ $ \frac{b}{c+b+1} $ $ \frac{c}{c+b+1} $			
-		b	+	a+b+c	(2)
<u>}-</u> -	$\overline{b+c+1}$	c+a+1	$+$ $\overline{a+b+1}$	$\overline{\mathbf{b}+\mathbf{c}+1}$	

/NMATH.CON

Ta sẽ chúng minh

 $(1 - a) (1 - b) (1 - c) \leq 1 - \frac{a + b + c}{b + c + 1} = \frac{1 - a}{b + c + 1} (3)$ Néu a = 1 thì (3) dúng. Néu $a \neq 1 \rightarrow 1 - a > 0$. Do đó (3) \leftrightarrow (b + c + 1) (1 - b) (1 - c) \leq 1. Theo BDT Ca Si : (b+c+1)(1-b)(1-c) $\leq \left[\frac{(b+c+1) + (1-b) + (1-c)}{3}\right]^3 = 1 \rightarrow 3$ dúng. Láy các vé của (2) + (3) \rightarrow (1) dúng (dpcm)

9.6.
$$CMR = \frac{a_1}{a_2 + \dots + a_n + 1} + \dots + \frac{a_n}{a_1 + \dots + a_{n-1} + 1} + \dots + (1 - a_1) (1 - a_2) \dots (1 - a_n) \le 1 \forall a_1 \dots a_n \in [0,1] (1)$$

Giải
Giả sử $a_1 = \max (a_1, a_2, \dots a_n)$. Khi đó ta có

$$= \begin{cases} \frac{a_1}{a_2 + \dots + a_n + 1} = \frac{a_1}{a_2 + \dots + a_n + 1} \\ \frac{a_n}{a_1 + \dots + a_{n-1} + 1} \le \frac{a_n}{a_2 + \dots + a_n + 1} \\ \frac{a_1}{a_2 + \dots + a_n + 1} + \dots + \frac{a_n}{a_1 + \dots + a_{n-1} + 1} \le \frac{a_1 + a_2 + \dots + a_n}{a_2 + \dots + a_n + 1} \end{cases}$$
Ta sẽ chúng minh
 $(1 - a_1)(1 - a_2) \dots (1 - a_n) \le 1 - \frac{a_1 + \dots + a_n}{a_2 + \dots + a_n + 1} = \frac{1 - a_1}{a_2 + \dots + a_n + 1}$ (3)
Nếu $a_1 = 1 \rightarrow (3)$ dúng. Nếu $a_1 \ne 1 \rightarrow 1 - a_1 > 0$. Do dó
 $(3) \leftrightarrow (a_2 + \dots + a_n + 1) (1 - a_2) \dots (1 \dots a_n) \le 1$.
Ta có VT $\le \left[\frac{(a_2 + 3 \dots + a_n + 1) + (1 - a_2) + \dots + (1 - a_n)}{n} \right]^n = 1$
 $\leftrightarrow (3)$ dúng. Lấy về của (2) + (3) $\rightarrow (1)$ dúng.
9.7 26 II.2 Cho $\begin{bmatrix} a, b, c > 0 \\ a^2 + b^2 + c^2 = 1 \end{bmatrix}$
 $CMR \qquad \frac{a}{b^2 + c^2} + \frac{b}{c^2 + a^2} + \frac{c}{a^2 + b^2} \ge \frac{3\sqrt{3}}{2}$ (1)
Giải
 $(1) \iff \frac{a}{1 - a^2} + \frac{b}{1 - b^2} + \frac{c}{1 - c^2} \ge \frac{3\sqrt{3}}{2} s^2$

VNMATH.COM

$$\frac{a^{2}}{a(1-a^{2})} + \frac{b^{2}}{b(1-b^{2})} + \frac{c^{2}}{c(1-c^{2})} \ge \frac{3\sqrt{3}}{2}$$
Ta sē c/m $\frac{a^{2}}{a(1-a^{2})} \ge \frac{3\sqrt{3}}{2}a^{2}$
 $\Rightarrow a(1-a^{2}) \le \frac{2}{3\sqrt{3}} \Rightarrow a^{2} (1-a^{2})^{2} \le \frac{4}{27}$
Ta có

$$a^{2}(1-a^{2})^{2} = \frac{1}{2}(2a^{2})(1-a^{2})(1-a^{2}) \leq \frac{1}{2} \left[\frac{2a^{2} + (1-a^{2}) + (1-a^{2})}{3}\right]^{3} = \frac{4}{27}$$

Tương tự $\frac{b^{2}}{b(1-b^{2})} \geq \frac{3\sqrt{3}}{2}b^{2}; \frac{c^{2}}{c(1-c^{2})} \geq \frac{3\sqrt{3}}{2}c^{2}$. Do đó
 $\frac{a^{2}}{a(1-a^{2})} + \frac{b^{2}}{b(1-b^{2})} + \frac{c^{2}}{c(1-c^{2})} \geq \frac{3\sqrt{3}}{2}(a^{2}+b^{2}+c^{2}) = \frac{3\sqrt{3}}{2}$
 $\rightarrow (1)$ dúng

/NMATH.COM

9.8 Cho
$$\begin{cases} a_1, \dots, a_n > 0 \\ a_1^{2k} + \dots + a_n^{2k} = 1 \end{cases} \quad \text{và } k, m, n \in \mathbb{Z}$$

$$CMR : \frac{a_1^{n}}{1-a_1^{2m}} + \ldots + \frac{a_n^{2m}}{1-a_n^{2n}} \ge \frac{(2m+1)^{-1}\sqrt{2m+1}}{2m}$$

Giái

 $\frac{a_n^{2k}}{a_n(1-a_n^{2m})} \ge \frac{(2m+1)^{2m}\sqrt{2m}+1}{2m}$ $\frac{a_1^{2k}}{a_1(1-a_1^{2m})} \ge \frac{(2m+1)^{2m}\sqrt{2m}+1}{2m}$ \mathbf{a}_1^{2k} $a_j(1-a)$

. a^{2k} (1)Ta sẽ chứng minh :

$$\leftrightarrow a_{1}(1-a_{1}^{2m}) \leq \frac{2m}{(2m+1)^{2m}\sqrt{2m+1}} \leftrightarrow a_{1}^{2m}(1-a_{1}^{2m})^{2m} \leq \frac{(2m)^{2m}}{(2m+1)^{2m+1}}$$

$$\mathbf{a}_{1}^{2m} (1 - \mathbf{a}_{1}^{2m})^{2m} = \frac{1}{2m} (2m\mathbf{a}_{1}^{2m})(1 - \mathbf{a}_{1}^{2m})(1 - \mathbf{a}_{1}^{2m}) \dots (1 - \mathbf{a}_{1}^{2m})$$

$$\sum_{\substack{n \in \mathbb{Z}^{2m} \\ n \in \mathbb{Z}^{2m} \\ n \in \mathbb{Z}^{2m}}} \left[\frac{(2ma_1^{2m}) + \frac{(1-a_1^{2m}) + \dots + (1-a_1^{2m})}{2m}}{2m+1} \right]^{2m+1} = \frac{(2m)^{2m}}{(2m+1)^{2m+1}}$$
 (dpcm)

Tương tự ta có $\frac{a_2^{2k}}{a_2(1-a_2^{2m})} \ge \frac{(2m+1)^{2m}\sqrt{2m+1}}{2m}a_2^{2k}$ (2)

$$\frac{a_n^{2k}}{a_n(1-a_n^{2m})} \ge \frac{(2m+1)^{2m}\sqrt{2m+1}}{2m} a_n^{2k}$$
(n)

Cộng các vế của (1), (2),... (n) và chủ ý $a_1^{2k} + ... + a_n^{2k} = 1 \rightarrow (dpcm)$

10. Ký thuật đổi biến số

2у

2x

Mục dích : Nhàm chuyển bài toán từ tình thế khó biến đối đại số (với các biến cũ) sang trạng thái dễ biến đổi Đại số hơn (với các biến mới)

$$10.1 : CMR \quad \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2} \quad \forall a, b, c > 0 \quad (1)$$

Giải : Đặt
$$\begin{cases} b+c=x>0\\ c+a=y>0\\ a+b=z>0 \end{cases} \Rightarrow \begin{cases} a=\frac{y+z-x}{2}\\ b=\frac{z+x-y}{2}\\ c=\frac{z+y-z}{2}\\ c=\frac{x+y-z}{2}\\ c=\frac{x+y+z+z}{2}\\ c=\frac{x+y-z}{2}\\ c=\frac{x+y+z}{2}\\ c=\frac{x+y-z}{2}\\ c=\frac{x+y-z}$$

2z

Theo BDT Co Si VT $\ge 2\sqrt{\frac{y}{x}} + 2\sqrt{\frac{z}{x}} + 2\sqrt{\frac{z}{y}} + 2\sqrt{\frac{z}{y}} = 6$ \rightarrow (dpcm) 10.3 Cho \triangle ABC (a, b, c).

 $CMR \ \frac{a^2}{b+c-a} + \frac{b^2}{c+a-b} + \frac{c^2}{a+b-c} \ge a+b+c$

Giai :

Dat
$$\begin{cases} b+c-a = x > 0\\ c+a-b = y > 0\\ a+b-c = z > 0 \end{cases} \rightarrow \begin{cases} a = \frac{y+z}{2}\\ b = \frac{z+x}{2}\\ c = \frac{x+y}{2} \end{cases}$$

Khi đó

(1)
$$\leftrightarrow \frac{(y+z)^2}{4x} + \frac{(z+x)^2}{4y} + \frac{(x+y)^2}{4z} \ge x + y + z$$
 (2) Ta co
VT (2)
$$\ge \frac{yz}{x} + \frac{zx}{y} + \frac{xy}{z} = \frac{1}{2} \left(\frac{yz}{x} + \frac{zx}{y} \right) + \frac{1}{2} \left(\frac{zx}{y} + \frac{xy}{z} \right) + \frac{1}{2} \left(\frac{xy}{z} + \frac{yz}{x} \right)$$

$$\ge \sqrt{\frac{yz}{x} \cdot \frac{zx}{y}} + \sqrt{\frac{zx}{y} \cdot \frac{xy}{z}} + \sqrt{\frac{xy}{z} \cdot \frac{yz}{x}} = z + x + y \leftrightarrow (dpcm)$$

10.4 : Cho \triangle ABC dient tich S.

$$CMR : \frac{1}{a+b-c} + \frac{1}{b+c-a} + \frac{1}{c+a-b} \ge \frac{3\sqrt[4]{3}}{2\sqrt{5}}$$
(1)

Giải

$$Dat \begin{cases} b + c - a = x > 0 \\ c + a - b = y > 0 \\ a + b - c = z > 0 \end{cases}$$

$$\rightarrow \sqrt{S} = \sqrt[4]{p(p - a)(p - b)(p - c)}$$

$$= \frac{14}{2}\sqrt{(a + b + c)(b + c - a)(c + a - b)(a + b - c)} = \frac{14}{2}\sqrt{(x + y + z)xyz}$$

VNMATH CON

Khi do (1)
$$\leftrightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{3\sqrt{3}}{2\sqrt{5}} = 3$$
. $\sqrt[4]{\frac{3}{(x+y+z)xyz}}$
Th co $(x+y+z)\left(\frac{1}{x} \cdot \frac{1}{y} + \frac{1}{z}\right) \ge 9 \rightarrow \frac{1}{3}\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge \frac{3}{x+y+z}$
Do do $\frac{4}{3}\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge \frac{3}{x+y+z} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 4$. $\sqrt[4]{\frac{3}{(x+y+z)xyz}}$
Suy ra $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3$. $\sqrt[4]{\frac{3}{(x+y+z)xyz}}$ (dpcm)
10.5 94 III.1 \triangle ABC.
CMR (b + c - a) (c + a - b) (a + b - c) \le abc (1)
Giài
 $\frac{1}{6}$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
Khi do ta co (1) \leftrightarrow xyz $\le \frac{y+z}{2} \cdot \frac{z+x}{2} \cdot \frac{x+y}{2}$.
Theo BDT Co Si ta co
 $\frac{y+z}{2} \cdot \frac{z+x}{2} \cdot \frac{x+y}{2} \ge \sqrt{yz} \cdot \sqrt{zx} \cdot \sqrt{xy} = xyz$ (dpcm)
10.6 Cho \triangle ABC. CMR $\frac{1}{(p-a)^2} + \frac{1}{(p-b)^2} + \frac{1}{(p-c)^2} \ge \frac{1}{r^2}$ (1)
Giài
Tha col $\begin{cases} S^2 = p(p-a)(p-b)(p-c) \\ S^2 = p^2r^2 \end{cases}$ \Rightarrow 0 thi (1) $\leftrightarrow \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \ge \frac{x+y+z}{xyz}$ (2)
 $p-c = z > 0$

VNMATH COM

$$Ta \ co \ VT \ (2) = \frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{y^2} \right) + \frac{1}{2} \left(\frac{1}{y^2} + \frac{1}{z^2} \right) + \frac{1}{2} \left(\frac{1}{z^2} + \frac{1}{x^2} \right)$$

$$\geqslant \sqrt{\frac{1}{x^2} \cdot \frac{1}{y^2}} + \sqrt{\frac{1}{y^2} \cdot \frac{1}{z^2}} + \sqrt{\frac{1}{z^2} \cdot \frac{1}{x^2}} + \frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} = \frac{x + y + z}{xyz}$$

$$0.7 \ CMR :$$

 $\frac{a}{b+2c+3d} + \frac{b}{c+2d+3a} + \frac{c}{d+2a+3b} + \frac{d}{a+2b+3c} \ge \frac{2}{3}$ \$\forall a, b, c, d > 0 (Dy bi quốc tế 93 - Mỹ)
Bạn đọc tự giải

Chú ý : Nếu giải bằng BCS thì dễ dàng hơn.

11. Ký thuật kiểm tra điều kiện xảy ra dấu bằng 11.1. Cho a, b, c. d > 0. Tìm giá trị nhỏ nhất của

$$S = \frac{a}{b+c+d} + \frac{b}{c+d+a} + \frac{c}{d+a+b} + \frac{d}{a+b+c} + \frac{b}{a+b+c} + \frac{b+c+d}{a+b+c} + \frac{b+c+d+a}{b} + \frac{d+a+b}{c} + \frac{a+b+c}{d}$$

Giải

1

Sai lâm thường gặp

Nhiều học sinh mác sai lấm khi biến đổi S thành tổng 4 cặp phân số nghịch đảo và áp dụng BDT Cô Si cho từng cặp : $\frac{x}{y} + \frac{y}{x} \ge 2\sqrt{\frac{x}{y}} \cdot \frac{y}{x} = 2$. Cụ thể là

$$S = \sum_{a, b, c, d} \left(\frac{a}{b+c+d} + \frac{b+c+d}{a} \right) \ge \sum_{a, b, c, d} 2\sqrt{\frac{a}{b+c+d}} \frac{b+c+d}{a} = 8$$

Rói vội vàng kết luận Min S = 8

Dể thấy sự sai lấm ta thấy nếu S = 8 thì $\begin{cases} a = b + c + d \\ b = c + d + a \\ c = d + a + b \\ d = a + b + c \end{cases}$

Suy ra a + b + c + d = $3(a + b + c + d) \leftrightarrow a + b + c + d = 0$ Vô lý vì a, b, c, d > 0

Lời giải dúng : Để tìm Min S ta cần chú ý S là một biểu thúc đối xứng với a, b, c, d do đó Min (Max) (nếu có) thường đạt được khi a \approx b = c = d.

Vậy đảo lại ta cho trước a = b = c = d dề dự đoán Min $S là bằng <math>\frac{4}{3} + 12 = \frac{40}{3}$ rồi sau đó dánh giá các BĐT có điều kiện dấu bằng là tập con của điều kiện a = b = c = d.

Dat :
$$S_1 = \frac{b+c+d}{a} + \frac{c+d+a}{b} + \frac{d+a+b}{c} + \frac{a+b+c}{d}$$

Theo BDT Cô Si ta có

$$S_{1} = \left(\frac{a}{b} + \frac{b}{a}\right) + \left(\frac{b}{c} + \frac{c}{b}\right) + \left(\frac{c}{d} + \frac{d}{c}\right) + \left(\frac{a}{c} + \frac{c}{a}\right) + \left(\frac{a}{d} + \frac{c}{a}\right) + \left(\frac{a}{d} + \frac{d}{a}\right) \ge 6.2 = 12$$

Dat $S_{2} = \frac{a}{b+c+d} + \frac{b}{c+d+a} + \frac{c}{d+a+b} + \frac{d}{a+b+c}$. Suy Ta

$$S_2 + 4 = \sum_{a, b, c, d} \left(1 + \frac{a}{b+c+d} \right) =$$

$$= (a + b + c + d) \left[\frac{1}{b + c + d} + \frac{1}{c + d + a} + \frac{1}{d + a + b} + \frac{1}{a + b + c} \right]$$

$$= \frac{1}{c} \left[(b + c + d) + (c + d + a) + (d + a + b) + (a + b + c) \right] \times$$

$$\times \left[\frac{1}{b+c+d} + \frac{1}{c+d+a} + \frac{1}{d+a+b} + \frac{1}{a+b+c}\right]$$

$$\ge \frac{1}{2} \cdot 4\sqrt{(b+c+d)(c+d+a)(d+a+b)(a+b+c)} \times$$

× 4
$$\sqrt[4]{\frac{1}{(b+c+d)(c+d+a)(d+a+b)(a+b+c)}} = \frac{16}{3}$$

+ S₂ ≥ $\frac{16}{3} - 4 = \frac{4}{3}$. Từ dó S = S₂ + S₁ ≥ $\frac{4}{3} + 12 = \frac{40}{3} = 13\frac{1}{3}$

Dấu bằng xảy ra khi a = b = c = d \rightarrow Min δ = $13\frac{1}{2}$ Vay Max S = $2\sqrt{3}$ dat duoc khi a = b = c = d = $\frac{1}{4}$ 11.2 : Tim Min S = $\left(1 + \frac{a}{3b}\right) \left(1 + \frac{b}{3c}\right) \left(1 + \frac{c}{3a}\right) \forall a, b, c > 0$ Sa. lam thường gạp : $S \ge 2\sqrt{\frac{a}{3b}} \cdot 2\sqrt{\frac{b}{3c}} \cdot 2\sqrt{\frac{b}{3c}} = \frac{8}{2\sqrt{3}} = \frac{8\sqrt{3}}{0}$ Suy ra Min S = $\frac{8\sqrt{3}}{2}$ $R\delta \ rang \ S = \frac{8\sqrt{3}}{9} \leftrightarrow \begin{cases} a = 3b \\ b = 3c \rightarrow a + b + c = 3 \ (a + b + c) \\ c = 3a \end{cases}$ → a + b + c = 0 Vô l Lời giải dúng : $\times \begin{cases} 1 + \frac{a}{3b} = \frac{b+b+b+a}{3b} \ge \frac{4\sqrt[4]{b.b.b.a}}{3b} = \frac{4\sqrt[4]{b^3a}}{3b} \ge 0\\ 1 + \frac{b}{3c} = \frac{c+c+c+b}{3c} \ge \frac{4\sqrt[4]{c.c.c.b}}{3c} = \frac{4\sqrt[4]{c^3.b}}{3c} \ge 0\\ 1 + \frac{c}{3a} = \frac{a+a+a+c}{3a} \ge \frac{4\sqrt[4]{a.a.a.c}}{3a} = \frac{4\sqrt[4]{a^3.c}}{3a} \ge 0 \end{cases}$ $\mathbf{S} = \left(1 + \frac{\mathbf{a}}{3\mathbf{b}}\right) \left(1 + \frac{\mathbf{b}}{3\mathbf{c}}\right) \left(1 + \frac{\mathbf{c}}{3\mathbf{a}}\right) \ge \frac{4^3 \mathbf{a} \mathbf{b} \mathbf{c}}{\mathbf{a}^3 - \mathbf{b} \mathbf{c}} = \left(\frac{4}{3}\right)^3 = \left(1 + \frac{1}{3}\right)^3$ Vây Min S = $\frac{64}{27}$. Dấu bằng \leftrightarrow a = b = c 11.3 : Cho $\begin{cases} a, b, c, d > 0 \\ a + b + c + d = 1 \end{cases}$ Tim Max S = $\sqrt{a+b+c} + \sqrt{b+c+d} + \sqrt{c+d+a} + \sqrt{d+a+b}$

/NMATH.CON

Sai làm thường gặp : Theo BDT Cô Si ta có

$$S \leq \frac{(a+b+c)+1}{2} + \frac{(b+c+d)+1}{2} + \frac{(c+d+a)+1}{2} + \frac{(d+a+b)+1}{2}$$

= $\frac{1}{2} [3 (a + b + c + d) + 4] = \frac{7}{2} \Rightarrow Max S = \frac{7}{2}$
Ro ràng $S = \frac{7}{2} \leftrightarrow \begin{cases} a+b+c=1\\ b+c+d=1\\ c+d+a=1 \end{cases} \Rightarrow 3(a+b+c+d) = 4 \leftrightarrow 3 = 4 \ Vo lý$

Lời giải dúng : Theo BDt Cô si ta có

+
$$\sqrt{(a+b+c) \cdot \frac{3}{4}} \leq \frac{(a+b+c+\frac{3}{4})}{2}$$
+
$$\sqrt{(b+c+d) \cdot \frac{3}{4}} \leq \frac{(b+c+d) + \frac{3}{4}}{2}$$

$$\sqrt{(c+d+a) \cdot \frac{3}{4}} \leq \frac{(c+d+a) + \frac{3}{4}}{2}$$

$$\sqrt{(d+a+b) \cdot \frac{3}{4}} \leq \frac{(d+a+b) + \frac{3}{4}}{2}$$

$$\sqrt{\frac{3}{4}} \cdot S \leq \frac{1}{2} [3 (a+b+c+d) + 3] = 3 \rightarrow S \leq 2\sqrt{3}$$

Các ví dụ sau đây chúng tôi cung cấp lời giải mà không bình luận. Bạn dọc hãy suy ngẫm vì sao dẫn đến những lời giải này

11.4. Cho
$$\begin{cases} a, b > 0 \\ a + b = 1 \end{cases}$$
CMR a) $\frac{1}{ab} + \frac{1}{a^2 + b^2} \ge 6$ b) $\frac{2}{ab} + \frac{3}{a^2 + b^2} \ge 14$
a) $\frac{1}{ab} + \frac{1}{a^2 + b^2} = \frac{2}{4ab} + \left(\frac{1}{2ab} + \frac{1}{a^2 + b^2}\right)^{(\cos i)} \ge \frac{2}{(a + b)^2} + \frac{2}{\sqrt{2ab(a^2 + b^2)}}$

$$\sum_{a=1}^{COSi} \frac{2}{2} + \frac{2}{\frac{[2ab + (a^2 + b^2)]}{2}} = 2 + \frac{4}{(a + b)^2} = 2 + 4 = 6$$
b) $\frac{2}{ab} + \frac{3}{a^2 + b^2} = \frac{4}{2ab} + \frac{3}{a^2 + b^2} = \frac{1}{2ab} + 3\left(\frac{1}{2ab} + \frac{1}{a^2 + b^2}\right)^{COSi} \ge \frac{2}{(a + b)^2} + 3 \cdot \frac{2}{\sqrt{2ab(a^2 + b^2)}} \ge 2 + \frac{6}{2ab + (a^2 + b^2)} = 2 + \frac{12}{(a + b)^2} = 14$

$$11.5 : Cho \left\{ \begin{array}{l} a, b, c > 0 \\ a + b + c = 1 \end{array} \right. CMR \frac{1}{a^2 + b^2 + c^2} + \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \ge 30 (1) \\ Gidi : Ta co (ab + bc + ca) \left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) \ge 9 \rightarrow \\ \rightarrow \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \ge \frac{9}{ab + bc + ca} \\ Khi do$$

$$VT(1) \ge \frac{1}{a^2 + b^2 + c^2} + \frac{9}{ab + bc + ca} = \frac{1}{a^2 + b^2 + c^2} + \frac{1}{ab + bc + ca} + \frac{1}{ab + bc + ca} \\ + \frac{7}{ab + bc + ca} \ge \frac{3}{\sqrt{(a^2 + b^2 + c^2)(ab + bc + ca)}} + \frac{21}{3(ab + bc + ca)^2} \\ \ge \frac{3}{(a^2 + b^2 + c^2) + (ab + bc + ca) + (ab + bc + ca)} + \frac{21}{3(ab + bc + ca)^2} \\ \ge \frac{9}{(a + b + c)^2} + \frac{21}{(a + b + c)^2} = \frac{30}{(a + b + c)^2} = 30 \\ 11.6 : Cho \left\{ \begin{array}{l} a, b, c > 0 \\ a + b + c = 1 \end{array} \right. CMR : \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{2}{ab} + \frac{2}{bc} + \frac{2}{c^p} \ge 81 \\ \end{array} \right\}$$

VNMATH.COM

Ban đọc tự giải

12. Dánh giá trên phương trình và bất phương trình 12.1 107 I : Gọi x_1 , x_2 là các nghiệm của phương trình :

$$12x^2 - 6mx + m^2 - 4 + \frac{12}{m^2} = 0$$

Tim m de $g = x_1^3 + x_2^3$ dat a) Max, b) Min Giải

De pt có nghiệm thì $0 \leq \Delta' = 9m^2 - 12(m^2 - 4 + \frac{12}{m^2})$ $\leftrightarrow m^4 - 16m^2 + 48 \le 0 \leftrightarrow 4 \le m^2 \le 12 \leftrightarrow 2 \le |m| \le 2\sqrt{3}.$ Khi đó

$$g = x_1^3 + x_2^3 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2) = \frac{m}{2} - \frac{3}{2m} = \frac{m^2 - 3}{2m}$$

$$\rightarrow g^6 = \frac{1}{(2m)^6 \cdot 9 \cdot 9} (m^2 - 3) \dots (m^2 - 3) \cdot 9 \cdot 9 \leq \frac{1}{2^6 \cdot 3^4 \cdot m^6} \left[\frac{6(m^2 - 3) + 9 + 9}{8}\right]^8$$

$$= \frac{3^4 \cdot m^{10}}{2^{22}} \leq \frac{3^4 \cdot (12)^5}{2^{22}} = \frac{3^9}{2^{12}} \rightarrow |g| \leq \frac{3\sqrt{3}}{4}.$$
 Từ đó

$$= \frac{3^4 \cdot m^{10}}{2^{22}} \le \frac{3^4 \cdot (12)^5}{2^{22}} = \frac{3^9}{2^{12}} \rightarrow |g| \le \frac{3\sqrt{3}}{4}.$$
 Từ đó

Max g = $\frac{3\sqrt{3}}{4}$ khi m = $2\sqrt{3}$ và Min g = $\frac{-3\sqrt{3}}{4}$ khi m = $-2\sqrt{3}$ 12.2 6911.2 : Thm m de $\sqrt{(4+x)(6-x)} \le x^2 - 2x + m$ dúng $\forall x \in [-4,6]$

Giải

DK cần : Giả sử Bpt thỏa mãn $\forall x \in [-4,6]$ Cho x = 1 \in [-4,6] \rightarrow 5 \leq m - 1 \rightarrow 5 \leq m - 1 \rightarrow m \geq 6 Dk Du : Già sử m \geq 6. Khi đó theo BDT Cô Si ta có

$$\sqrt{(4+x)(6-x)} \le \frac{(4+x)+(6-x)}{2} = 5$$

Mat khác $x^2 - 2x + m = x^2 - 2x + 1 + m - 1 = (x - 1)^2 +$ $m - 1 \ge 5$ Do đó với m \ge 6 thì $\sqrt{(4+x)(6-x)} \le x^2 - 2x + m$. Đáp số m ≥ 6 12.3 : Giả sử phương trình $x^4 + ax^3 + bx^2 + cx + 1 = 0$ có nghiêm thực CMR : $|a| + |b| + |c| \ge \frac{4}{2}$ 12.4 Giả sử phương trình $x^4 + ax^3 + bx^2 + ax + 1 = 0$ có nghiệm thực $CMR : |\mathbf{a}| + \frac{|\mathbf{b}|}{2} \ge 1$ Mời các bạn đọc tự giải 2 bài 12.3 và 12.4 13. Sử dụng trong Dáy số 13.1 : Dāy số $\{x_n\}_{n=1}^{\infty}$ xác định bởi $\begin{cases} 0 < x_n < 1 \ V \ n \\ x_{n+1}(1-x_n) > \frac{1}{4} \ V \ n \end{cases}$ CMR : $\lim x_n = \frac{1}{2}$ Giải Theo BDT Cô Si ta có : $x_{n+1} + (1 - x_n) \ge 2\sqrt{x_{n+1}(1 - x_n)} > 2\sqrt{\frac{1}{4}} = 1$ suy ra $x_{n+1} - x_n \ge 0$ hay $x_n \le x_{n+1} \forall n \rightarrow \{x_n\}$ đơn điệu tăng Mặt khác $0 < x_n < 1$ nên $\{x_n\}$ bị chặn trên. Từ đó tả có $\{x_n\}$ luôn có giới hạn hữu hạn. Đặt a = lim x 나는 것을 가지 않는 것을 했다. Ta có $\lim x_{n+1}(1-x_n) \ge \frac{1}{4}$ $n \rightarrow \infty$

/NMATH.CON

$$\Rightarrow a - a^{2} \ge \frac{1}{4} \Rightarrow a^{2} - a + \frac{1}{4} = \left(a - \frac{1}{2}\right)^{2} \le 0 \Rightarrow a = \frac{1}{2}$$

$$V_{Ay} \lim_{n \to \infty} x_{n} = \frac{1}{2}$$

$$I3.2 : Day \{x_{n}\} \text{ duge xác dịnh bởi} \\ \begin{cases} x_{0} = 1994 \\ x_{n}^{2} - 2x_{n} \cdot x_{n+1} + 1995 = 0 (n = 1, 2, ...) \end{cases}$$

$$Tim \lim_{n \to \infty} x_{n} \\ Giải$$

$$V_{1} x_{n}^{2} - 2x_{n} \cdot x_{n+1} + 1995 = 0 \text{ nên } x_{n+1} = \frac{1}{2} \left(x_{n} + \frac{1995}{x_{n}}\right)$$

$$Mà x_{0} = 1994 > 0 \Rightarrow \{x_{n}\} \text{ duong.}$$

$$Theo bất dẳng thức Có Si ta cơi$$

$$x_{n+1} = \frac{1}{2} \left(x_{n} + \frac{1995}{x_{n}}\right) \ge \sqrt{x_{n} \cdot \frac{1995}{x_{n}}} = \sqrt{1995} \Rightarrow \{x_{n}\} \text{ bị chặn dưới }$$

$$Mặt khác x_{n} \ge \sqrt{1995} \Rightarrow x_{n}^{2} \ge 1995 \forall n = 1, 2...$$

$$Từ do x_{n+1} = \frac{1}{2} \left(x_{n} + \frac{1995}{x_{n}}\right) \le \frac{1}{2} \left(x_{n} + \frac{x_{n}^{2}}{x_{n}}\right) = x_{n}$$

$$V_{Ay} \{x_{n}\} don diệu giảm và bị chặn dưới $\Rightarrow \{x_{n}\} có giới hạn$

$$hữu hạn a \ge \sqrt{1995}. Khi do \lim_{n+1} x_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(x_{n} + \frac{1995}{x_{n}}\right)$$

$$\Rightarrow a = \frac{1}{2} \left(a + \frac{1995}{a}\right) \Rightarrow a = \lim_{n \to \infty} x_{n}$$

$$V_{I995} = 0 \Rightarrow a = \pm \sqrt{1995}$$$$

VNMATH.COM

13.3. Dây $\{x_n\}$ được xác định bởi $\begin{cases} x_1 = 2 \\ x_{n+1} = \frac{x_n^4 + 1}{5x_n} CMR : \frac{1}{3} < x_n \le 2 \end{cases}$

13.4. 1051Va. Cho a, b là 2 số dương khác nhau. Người ta lập hai dãy số $\{u_n\}$, $\{v_n\}$ bằng cách đặt

 $u_{1} = a, v_{1} = b, u_{n+1} = \frac{u_{n} + v_{n}}{2}, v_{n+1} = \sqrt{u_{n}v_{n}} (n = 1, 2, 3, ...).$ *CMR*: $\lim_{n \to \infty} u_{n} = \lim_{n \to \infty} v_{n}$

14. Sử dụng trong lượng giác

14.1 [102 11.2.] CMR : new $0 < x < \frac{\pi}{4}$ thi $\frac{\cos x}{\sin^2 x (\cos x - \sin x)} > 8$

Giải

$$\frac{\cos x}{\sin^2 x (\cos x - \sin x)} = \frac{\cos x / \cos^3 x}{\frac{\sin^2 x}{\cos^2 x}} = \frac{1 + tg^2 x}{tg^2 x (1 - tgx)} \ge \frac{2tgx}{tg^2 x (1 - tgx)}$$
$$= \frac{2}{tgx (1 - tgx)} \ge \frac{2}{\left[\frac{tgx + (1 - tgx)}{2}\right]^2} = 8$$
$$Dau "=" \leftrightarrow \left\{ tgx = 1 \\ tgx = 1 - tgx \leftrightarrow \left\{ tgx = 1 \\ tgx = \frac{1}{2} \right\} Vo \text{ nghiệm}$$
$$\rightarrow \frac{\cos x}{\sin^2 x (\cos x - \sin x)} \ge 8$$
$$14.2 \left[10 \ II.1 - 88 \ II \right] Giả sử \land ABC có 3 góc nhọn$$
$$1) \ CMR : tgA + tgB + tgC = tgA.tgB.tgC$$

2) CMR : tgA + tgB + tgC \ge 3 $\sqrt{3}$

3) Tim Min P = tgA tgB tgC

Giải

(1) Ta co $-tgC = tg(\pi - C) = tg(A + B) = \frac{tgA + tgB}{1 - tgAtgB} \Leftrightarrow$ tgAtgBtgC - tgC = tgA + tgB \leftrightarrow tgA + tgB + tgC = tgAtgBtgC

2) Áp dụng Bất đẳng thức Cô Si cho 3 số tg
A, tg B, tgC > 0 ta có

tgA + tgB + tgC ≥ 3
$$\sqrt[3]{tgAtgBtgC}$$

 $\leftrightarrow (tgA + tgB + tgC)^3 \ge 27 tgA tgB tgC$
 $\leftrightarrow (tgA + tgB + tgC)^3 \ge 27 (tgA + tgB + tgC)$
 $\leftrightarrow (tgA + tgB + tgC)^2 \ge 27$
 $\leftrightarrow tgA + tgB + tgC \ge 3\sqrt{3}$
3) Theo phan (1) và (2) ta có tgAtgBtgC = tgA + tgB + tgC ≥ $3\sqrt{3}$
Dấu bằng xảy ra $\leftrightarrow tgA = tgB = tgC \leftrightarrow A = B = C = \frac{\pi}{3}$
 $\leftrightarrow \Delta ABC$ dêu. Vậy Min (tgAtgBtgC) = $3\sqrt{3}$
14.3 [18][[1]

1) $CMR \left(1 + \frac{1}{\sin A}\right) \left(1 + \frac{1}{\sin B}\right) \left(1 + \frac{1}{\sin C}\right) \ge \left(1 + \frac{2}{\sqrt{3}}\right)^3 \forall \Delta ABC$ 2) $CMR \left(1 + \frac{1}{\cos A}\right) \left(1 + \frac{1}{\cos B}\right) \left(1 + \frac{1}{\cos C}\right) \ge 27 \forall \Delta ABC$ nhọn Giải

Ta sẽ chứng minh nếu
$$\begin{cases} x, y, z > 0 \\ x + y + z \leq K \end{cases}$$
 thì
 $\left(1 + \frac{1}{x}\right) \left(1 + \frac{1}{y}\right) \left(1 + \frac{1}{z}\right) \geq \left(1 + \frac{3}{k}\right)^3$ (*). Thật vậy, ta cơ
VT (*) = $1 + \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) + \left(\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx}\right) + \frac{1}{xyz} \approx 1$
 $1 + \frac{3}{\sqrt[3]{xyz}} + \frac{3}{(\sqrt[3]{xyz})^2} + \frac{1}{(\sqrt[3]{xyz})^3} \approx 1$

$$1 + \frac{3}{\frac{x+y+z}{3}} + \frac{3}{\left(\frac{x+y+z}{3}\right)^2} + \frac{1}{\left(\frac{x+y+z}{3}\right)^3} \ge$$

$$1 + \frac{9}{k} + \frac{27}{k^2} + \frac{27}{k^3} = \left(1 + \frac{3}{k}\right)^3 \quad (\text{dpcm})$$
Sů dụng
$$\begin{cases} \sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2} \\ \cos A + \cos B + \cos C \le \frac{3}{2} \end{cases}$$
Xem thêm phương pháp 6 – Qui nạp Cô Si)

1) Ta có

(

$$\left(1+\frac{1}{\sin A}\right)\left(1+\frac{1}{\sin B}\right)\left(1+\frac{1}{\sin C}\right) \ge \left(1+\frac{3}{3\sqrt{3}}\right)^3 = \left(1+\frac{3}{\sqrt{5}}\right)^3$$

2) Vì $\triangle ABC$ nhọn nên cosA, cosB, cos C > 0 Áp dụng BĐT (*) ta có

$$\left(1+\frac{1}{\cos A}\right)\left(1+\frac{1}{\cos B}\right)\left(1+\frac{1}{\cos C}\right) \ge \left(1+\frac{3}{2}\right)^3 = (1+2)^3 = 27.$$

15. Kí thuật khoảng hữu tỉ trong tập số thực 15.1 Cho Δ ABC có các cạnh a, b, c với độ dài hữu tỉ.

$$CMR' \left(1 + \frac{b-c}{a}\right)^a \left(1 + \frac{c-a}{b}\right)^b \left(1 + \frac{a-b}{c}\right)^c \le 1$$

Giải

Dat
$$\mathbf{a} = \frac{\mathbf{m}}{\mathbf{k}}, \mathbf{b} = \frac{\mathbf{n}}{\mathbf{k}}, \mathbf{c} = \frac{\mathbf{p}}{\mathbf{k}} \text{ với } \mathbf{m}, \mathbf{n}, \mathbf{p}, \mathbf{k} \in \mathbf{Z}^{+}$$

Khi $d\delta : \left(1 + \frac{\mathbf{b} - \mathbf{c}}{\mathbf{a}}\right)^{\mathbf{a}} \left(1 + \frac{\mathbf{c} - \mathbf{a}}{\mathbf{b}}\right)^{\mathbf{b}} \left(1 + \frac{\mathbf{a} - \mathbf{b}}{\mathbf{c}}\right)^{\mathbf{c}} =$

$$= \sqrt[k]{\left(1 + \frac{\mathbf{n} - \mathbf{p}}{\mathbf{m}}\right)^{\mathbf{m}} \left(1 + \frac{\mathbf{p} - \mathbf{m}}{\mathbf{n}}\right)^{\mathbf{n}} \left(1 + \frac{\mathbf{m} - \mathbf{n}}{\mathbf{p}}\right)^{\mathbf{p}}} \stackrel{(Cosi)}{\geq}$$

VNMATH CON

$$\frac{m\left(1+\frac{n-p}{m}\right)+n\left(1+\frac{p-m}{n}\right)+p\left(1+\frac{m-n}{p}\right)}{m+n+p} = \frac{m+n+p}{m+n+p} = 1$$
15.2 : CMR : $a^{a} > \frac{1}{2} \forall a \in \mathbb{R}^{+}$
Giải
Rõ ràng với $a \ge 1$ thì $a^{a} \ge a^{1} = a > \frac{1}{2}$
Xét $0 < a \le 1$. Ta có $(0, 1] = \bigcup_{n=1}^{\infty} \left[\frac{1}{n+1}, \frac{1}{n}\right]$
Do đó $\exists k \in \mathbb{Z}^{+}$ sao cho $a \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$
 $\leftrightarrow \frac{1}{k+1} \le a \le \frac{1}{k}$ suy ra $a^{a} \ge \left(\frac{1}{k+1}\right)^{a} \ge \left(\frac{1}{k+1}\right)^{\frac{1}{k}}$
Ta sẽ chứng minh $\left(\frac{1}{k+1}\right)^{\frac{1}{k}} \ge \frac{1}{2} \leftrightarrow \sqrt{\frac{1}{k+1}} \ge \frac{1}{2}$
 $\leftrightarrow \frac{1}{k+1} \ge \left(\frac{1}{2}\right)^{k} \leftrightarrow 2^{k} \ge k+1 \leftrightarrow 2 > \sqrt{k+1}$
Áp dụng bắt dàng thức Cô Si ta có $\sqrt{k+1} = \sqrt{(k+1) \cdot 1 \dots 1}$
 $(k-1)$ số

Từ đó ta có $a^a > \frac{1}{2}$ (Vì các dấu bằng không đồng thời xảy ra).

$$15.3 \cdot CMR : \mathbf{a}^{\mathsf{p}} + \mathbf{b}^{\mathsf{a}} > 1 \forall \mathsf{a}, \mathsf{b} \in \mathbf{R}^{\mathsf{a}}$$

Bình luận : Tất cả các sách đều trình bày lời giải này dựa vào BDT Bec-nu-li là kiến thức ngoài chương trinh phổ thông Nhờ kỹ thuật này ta dễ dàng đưa về dạng sử dụng BDT Cô Si.

§2. BẤT ĐẢNG THỨC BUNHIACÔPSKI (B.C.S)

I. BẤT DẰNG THỨC BUNHIACÔPSKI

1. Dạng tổng quát : Cho $a_1, \dots a_n, b_1, \dots b_n$ là 2n số thực tùy ý. Khi đó

• Dang 1 :
$$(a_1^2 + ... + a_n^2)(b_1^2 + ... + b_n^2) \ge (a_1b_1 + ... + a_nb_n)^2$$
 (1)

• Dang 2
$$\sqrt{(a_1^2 + ... + a_n^2)(b_1^2 + ... + b_n^2)} \ge |a_1b_1 + ... + a_nb_n|$$
 (2)

• Dang 3
$$\sqrt{(a_1^2 + ... + a_n^2)(b_1^2 + ... + b_n^2)} \ge a_1 b_1 + ... + a_n b_n$$
 (3)

Dấu bằng ở (1), (2) xảy ra $\leftrightarrow \frac{a_1}{b_1} = ... = \frac{a_n}{b_n}$

Dấu bằng ở (3) xảy ra $\leftrightarrow \frac{a_1}{b_1} = ... = \frac{a_n}{b_n} \ge 0$

• Hệ quả 1 : Nếu $\mathbf{a}_1 \mathbf{x}_1 + \dots + \mathbf{a}_n \mathbf{x}_n = \mathbf{C} - \text{const thi}$

 $\operatorname{Min}(\mathbf{x}_1^2 + \ldots + \mathbf{x}_n^2) = \frac{\mathbf{c}^2}{\mathbf{a}_1^2 + \ldots + \mathbf{a}_n^2} \quad \operatorname{Dau \ bang} \leftrightarrow \frac{\mathbf{x}_1}{\mathbf{a}_1} = \ldots = \frac{\mathbf{x}_n}{\mathbf{a}_n}$

• Hệ quả 2 : Nếu $\mathbf{x}_1^2 + ... + \mathbf{x}_n^2 = \mathbf{c}^2$ thì $Max(\mathbf{a}_1\mathbf{x}_1 + ... + \mathbf{a}_n\mathbf{x}_n) = |\mathbf{c}| \sqrt{\mathbf{a}_1^2 + ... + \mathbf{a}_n^2}$

Dấu bằng $\leftrightarrow \frac{x_1}{a_1} = ... = \frac{x_n}{a_n} \ge 0$

$$Min(a_1x_1 + ... + a_nx_n) = -|C| \sqrt{a_1^2 + ... + a_n^2}$$

Dấu bằng $\leftrightarrow \frac{x_1}{a_1} = ... = \frac{x_n}{a_n} \leq 0$

2) Dang cụ thể

 $n = 2 : \forall a, b, c, d \in \mathbb{R} \qquad n = 3 : \forall a, b, c, m, n, p \in \mathbb{R}$ 1. $(a^2 + b^2)(c^2 + d^2) \ge (ac+bd)^2$ 1. $(a^2 + b^2 + c^2)(m^2 + n^2 + p^2) \ge (am+bn+cp)^2$ 2. $\sqrt{(a^2 + b^2)(c^2 + d^2)} \ge (ac+bd)$ 3. $\sqrt{(a^2 + b^2)(c^2 + d^2)} \ge ac+bd$ 3. $\sqrt{(a^2 + b^2)(c^2 + d^2)} \ge ac+bd$ Dáu "=" $\dot{\sigma}$ (1), (2) $\leftrightarrow \frac{a}{c} = \frac{b}{d}$ Dáu "=" $\dot{\sigma}$ (3) $\leftrightarrow \frac{a}{c} = \frac{b}{d} \ge 0$ Dáu "=" $\dot{\sigma}$ (3) $\leftrightarrow \frac{a}{c} = \frac{b}{d} \ge 0$

II. CÁC KÝ THUẬT SỬ DỤNG BĐT BUNHIACÔPSKI (B.C.S)

Xin trích giới thiệu 5 kỹ thuật trong 10 kỹ thuật sử dụng BĐT (B.C.S)

1. Dánh giả từ về lớn sang về nhỏ 1.1 CMR : a) $2(a^2 + b^2) \ge (a + b)^2$ b) $3(a^2 + b^2 + c^2) \ge (a + b + c)^2$ c) $n(a_1^2 + ... + a_n^2) \ge (a_1 + ... + a_n)^2$ Giải a) $2(a^2 + b^2) = (1^2 + 1^2) (a^2 + b^2) \ge (a + b)^2$ b) $3(a^2 + b^2 + c^2) = (1^2 + 1^2 + 1^2)(a^2 + b^2 + c^2) \ge (a + b + c)^2$ c) $n(a_1^2 + ... + a_n^2) = (1^2 + 1^2 + ... + 1^2)(a_1^2 + ... + a_n^2) \ge (a_1 + ... + a_n)^2$ 1.2 62 II.2 Cho a + b = 2. CMR : $a^4 + b^4 \ge 2$ Giải

$$a^{4} + b^{4} = \frac{1}{2} (1^{2} + 1^{2})[(a^{2})^{2} + (b^{2})^{2}] \ge \frac{1}{2} (a^{2} + b^{2})^{2} =$$
$$= \frac{1}{2} \cdot \frac{1}{4} [(1^{2} + 1^{2})(a^{2} + b^{2})]^{2} \ge \frac{1}{8} [(a+b)^{2}]^{2} = \frac{1}{8} (a+b)^{4} = \frac{1}{8} \cdot 2^{4} = 2$$

/NMATH.CON

1.3 : CMR : $a^4 + b^4 + c^4 \ge ab + bc + ca \forall a, b, c$

Giải

$$a^{2} + b^{2} + c^{2} = \sqrt{(a^{2} + b^{2} + c^{2})(b^{2} + c^{2} + a^{2})} \ge$$

 $\ge |ab + bc + ca| \ge ab + bc + ca$

1.4 CMR :
$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b}$$
 $\forall abc \neq 0$

Giải

$$\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} = \sqrt{\left(\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}}\right)\left(\frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} + \frac{a^{2}}{b^{2}}\right)}$$

$$\geqslant \left|\frac{a}{b} \cdot \frac{b}{c} + \frac{b}{c} \cdot \frac{c}{a} + \frac{c}{a} \cdot \frac{a}{b}\right| = \left|\frac{a}{c} + \frac{b}{a} + \frac{c}{b}\right| \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b}$$

$$1.5. \ 138 \ 1.2 : \ CMR \ \frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ \forall \ abc \neq 0$$

Giải : Sai lâm thường gặp :

$$\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} = \frac{1}{3}(1^{2} + 1^{2} + 1^{2})\left(\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}}\right) \stackrel{(B.C.S)}{\Rightarrow} \frac{1}{3}\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right)^{2}$$

$$\stackrel{Cosi}{\Rightarrow} \frac{1}{3} \cdot 3 \sqrt[3]{\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}}\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

Sai lâm là do ta đã sử dụng BĐT Cô Si cho các số $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$ chưa chác đã $\ge 0 \forall$ abc $\neq 0$

Lời giải dúng :

$$\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} = \frac{1}{3}(1^{2} + 1^{2} + 1^{2})\left(\left|\frac{a}{b}\right|^{2} + \left|\frac{b}{c}\right|^{2} + \left|\frac{c}{a}\right|^{2}\right)$$

$$\stackrel{\text{B.C.S)}}{\geq} \frac{1}{3}\left(\left|\frac{a}{b}\right| + \left|\frac{b}{c}\right| + \left|\frac{c}{a}\right|\right)^{\frac{2}{2}} \xrightarrow{\approx}$$

/NMATH.CON

$$\frac{1}{3} \cdot 3 \sqrt[3]{\left|\frac{a}{b}\right| \left|\frac{b}{c}\right| \left|\frac{c}{a}\right|} \left(\left|\frac{a}{b}\right| + \left|\frac{b}{c}\right| + \left|\frac{c}{a}\right|\right)} = \left|\frac{a}{b}\right| + \left|\frac{b}{c}\right| + \left|\frac{c}{a}\right| \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \quad (dpcm)$$

$$Ghi \ nho : \frac{x^2}{y^2} = \left(\frac{x}{y}\right)^2 = \left|\frac{x}{y}\right|^2$$

$$I \ 6 \ H5 \ H2 : Cho \ xy + yz + zx = 4 \ Tim \ Min \ F = x^4 + y^2 + z^4$$

$$Giài$$

$$F = \frac{1}{3} \left(1^2 + 1^2 + 1^2\right) \left(x^4 + y^4 + z^4\right) \stackrel{B.C.5}{=} \frac{1}{3} \left(x^2 + y^2 + z^2\right)^2 = \frac{16}{3}$$

$$Suy \ ra \ Min \ F = \frac{16}{3} \ dat \ duqc \ voi \ x = y = z = \frac{2}{3} \frac{2}{33}$$

$$I.7 \ Cho \ a + b + c = 6. \ CMR \ a^2 + b^2 + c^2 \ge 12$$

$$Giài$$

$$a^2 + b^2 + c^2 = \frac{1}{3} \left(1^2 + 1^2 + 1^2\right) \left(a^2 + b^2 + c^2 \ge 12$$

$$i.6 : \ Cho \ a(a - 1) + b(b - 1) + c(c - 1) \le \frac{4}{3}.$$

$$CMR \ a + b + c \le 4$$

$$Giài : \ Cach \ 1 : \ Ta \ col$$

$$\frac{4}{3} \ge a(a - 1) + b(b - 1) + c(c - 1) = a^2 + b^2 + c^2 - (a + b + c) = \frac{1}{3} \left(1^2 + 1^2 + 1^2\right) \left(a^2 + b^2 + c^2) - (a + b + c) \gg \frac{1}{3} \left(a + b + c\right)^2 - (a + b + c)$$

Suy ra
$$(a + b + c)^2 - 3(a + b + c) - 4 \le 0$$

 $\Rightarrow \{(a + b + c) + 1\} \{(a + b + c) - 4\} \le 0$
 $\Rightarrow -1 \le a + b + c \le 4 \Rightarrow a + b + c \le 4$
Cách 2 : a $(a - 1) + b (b - 1) + c (c - 1) \le \frac{4}{3}$
 $\Rightarrow (a + \frac{1}{2})^2 + (b - \frac{1}{2})^2 + (c - \frac{1}{2})^2 \le \frac{25}{12}$. Do dó ta có
 $a + b + c = (a - \frac{1}{2}) + (b - \frac{1}{2}) + (c - \frac{1}{2}) + \frac{3(B C.S)}{2} \le$
 $\le \sqrt{(1^2 + 1^2 + 1^2)} [(a - \frac{1}{2})^2 + (b - \frac{1}{2})^2 + (c - \frac{1}{2})^2] + \frac{3}{2} \le$
 $\le \sqrt{3 \cdot \frac{25}{12}} + \frac{3}{2} = \frac{5}{2} + \frac{3}{2} = 4$
1.9 94 II.2 Cho $\begin{cases} x^2 + y^2 = 16 \\ u^2 + v^2 = 25 \end{cases}$ Tim Max $(x + v)$
 $xu + yv \ge 20$

Giải .

$$400 = (x^{2} + y^{2})(u^{2} + v^{2}) \ge (xu + yv)^{2} \ge 400 \rightarrow \begin{cases} xu + yv = 20 \\ \frac{x}{u} = \frac{y}{v} \end{cases}$$

$$\Rightarrow \boxed{xv = uy.} \quad Mat \ khác$$

$$11 = x^2 + y^2 + u^2 + v^2 = (x^2 + v^2) + (u^2 + y^2) \Rightarrow x^2 + v^2 + 2uy$$

$$= x^2 + v^2 + 2xv = (x + v)^2 \rightarrow x + v \le \sqrt{41}$$
Do do Max (x + v) = $\sqrt{41}$ xáy ra với

$$u = y = \frac{20}{\sqrt{41}}, x = \frac{16}{\sqrt{41}}, v = \frac{25}{\sqrt{41}}$$

VNMATH.COM

2. Đánh giá từ về nhỏ sang về lớn 2.1 Cho $a^2 + b^2 + c^2 = 1$. CMR : $a + 3b + 5c \le \sqrt{35}$ Giải

 $a + 3b + 5c \le \sqrt{(1^2 + 3^2 5^2)(a^2 + b^2 + c^2)} = \sqrt{35}$ 2.2 Cho $a^2 + b^2 + c^2 + d^2 = 1$.

CMR : $(t^2 + at + b)^2 + (t^2 + ct + d)^2 \le (2t^2 + 1)^2$ Giải

Ap dung BDT Bunhiacôpski ta co

+ $\begin{cases} (t^{2} + at + b)^{2} = (t.t + a.t + b.1)^{2} \le (t^{2} + a^{2} + b^{2})(t^{2} + t^{2} + 1^{2}) \\ (t^{2} + ct + d)^{2} = (t.t + c.t + d.1)^{2} \le (t^{2} + c^{2} + d^{2})(t^{2} + t^{2} + 1^{2}) \end{cases}$

 $(t^{2}+at+b)^{2} + (t^{2}+ct+d)^{2} \le (2t^{2}+1)[(t^{2}+a^{2}+b^{2}) + (t^{2}+c^{2}+d^{2})]$ $\Leftrightarrow (t^{2}+at+b)^{2} + (t^{2}+ct+d) \le (2t^{2}+1)(2t^{2}+1) = (2t^{2}+1)^{2}$ 2.3. Cho x² + y² = u² + v² = 1.

$$CMR : -\sqrt{2} \le \mathbf{x} (\mathbf{u} + \mathbf{v}) + \mathbf{y} (\mathbf{u} - \mathbf{v}) \le \sqrt{2}$$

Giải

 $\leftrightarrow |\mathbf{x} (\mathbf{u} + \mathbf{v}) + \mathbf{y} (\mathbf{u} - \mathbf{v})| \leq \sqrt{2}$ $\leftrightarrow |\mathbf{x} (\mathbf{u} + \mathbf{v}) + \mathbf{y} (\mathbf{u} - \mathbf{v})|^{2} \leq 2$

 $Ta \ co \ [x(u + v) + y(u - v)]^2 \le (x^2 + y^2)[(u + v)^2 + (u - v)^2] =$ $= (x^2 + y^2) \ [2(u^2 + v^2)] = 2$ $Tu \ do \ -\sqrt{2} \le x(u + v) + y \ (u - v) \le \sqrt{2}$

2.4 148 III $\triangle ABC \text{ co } a^2 + b^2 \leq c^2$. CMR $0_i 4 < \frac{r}{h_c} < 0.5$

Giải

 $\Rightarrow \frac{2}{S} \stackrel{(1)}{<} \frac{S/P}{2S/c} = \frac{c}{2p} = \frac{c}{a+b+c} \stackrel{(2)}{<} \frac{1}{2}$ Ta có (2) $\Rightarrow 2c < a + b + c \Leftrightarrow c < a + b$ dúng \Rightarrow (dpcm) (1) $\Rightarrow 2(a+b+c) < 5c \Leftrightarrow 2(a+b) < 3c \leftrightarrow 4(a+b)^2 < 9c^2$

Ta có
$$4(a + b)^2 \le 4(1^2 + 1^2)(a^2 + b^2) = 8(a^2 + b^2) \le 8c^2 < 9c^2$$

 $\rightarrow (1)$ dúng. (dpcm)
2.5 Cho $\begin{cases} a > b c \\ b > c > 0 \end{cases}$ CMR $\sqrt{c(a - c)} + \sqrt{c(b - c)} \le \sqrt{ab}$
Giải
Ap dụng BDT Bunhiacôpski ta có
 $\sqrt{c(a - c)} + \sqrt{c(b - c)} = \sqrt{c} \cdot \sqrt{a - c} + \sqrt{b - c} \cdot \sqrt{c}$
 $\le \sqrt{[(\sqrt{c})^2 + (\sqrt{b - c})^2][(\sqrt{a - c})^2 + (\sqrt{c})^2]} = \sqrt{ab}$
2.6 13L2 Cho a, b ≥ 1 . CMR : $\sqrt{\log_2 a} + \sqrt{\log_2 b} \le 2\sqrt{\log_2 \frac{a + b}{2}}$
Giải
Theo BDT Bunhiacôpski ta có
 $\sqrt{\log_2 a} + \sqrt{\log_2 b} \le \sqrt{(1^2 + 1^2)[(\sqrt{\log_2 a})^2 + (\sqrt{\log_2 b})^2]}$
 $= \sqrt{2\log_2 ab} = \sqrt{4\log_2 \sqrt{ab}} = 2\sqrt{\log_2 \sqrt{ab}} \le 2\sqrt{\log_2 \frac{a + b}{2}}$
2.7 19 IL2 Cho $\triangle ABC$. CMR $\sqrt{p} < \sqrt{p - a} + \sqrt{p - b} + \sqrt{p - c} \le \sqrt{3p}$
Giải : (1) : Ta có
 $[\sqrt{p - a} + \sqrt{p - b} + \sqrt{p - c}]^2 = (p - a) + (p - b) + (p - c)$
 $+ 2[\sqrt{(p - a)(p - b)} + \sqrt{(p - b)(p - c)} + \sqrt{(p - c)(p - a)} > p$
Do dó $\sqrt{p} < \sqrt{p - a} + \sqrt{p - b} + \sqrt{p - c}$
2. Theo BDT Bunhiacôpski ta có
 $\sqrt{p - a} + \sqrt{p - b} + \sqrt{p - c} \le \sqrt{(1^2 + 1^2 + 1^2)}[(\sqrt{p - a})^2 + (\sqrt{p - b})^2 + (\sqrt{p - c})^2]$
 $= \sqrt{3[(p - a) + (p - b) + (p - c)]} = \sqrt{3p}$
2.8 54 L2 Cho cos²a + cos²b + cos²y = 1.
CMR : $\sqrt{4\cos^2 a + 1} + \sqrt{4\cos^2 b + 1} + \sqrt{4\cos^2 y + 1} \le \sqrt{21}$

VNMATH.COM

Giải

Ap dung BDT Bunhiacopski ta co

 $\sqrt{4\cos^2 \alpha + 1} + \sqrt{4\cos^2 \beta + 1} + \sqrt{4\cos^2 \beta + 1} \le$ $\leq \sqrt{(1^2+1^2+1^2)[(\sqrt{4\cos^2\alpha+1})^2+(\sqrt{4\cos^2\beta+1})^2+(\sqrt{4\cos^2\gamma+1})^2]}$ $= \sqrt{3[4(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) + 3]} = \sqrt{3.7} = \sqrt{21}$ 2.9 144 III.2 Cho $\begin{cases} \alpha, \beta, \gamma > 0 \\ \alpha + \beta + \gamma = \frac{\pi}{2} \end{cases}$ The Max $g = \sqrt{1 + tgatg\beta} + \sqrt{1 + tg\beta tgy} + \sqrt{1 + tgy tgg}$ Giải Ta có $\frac{1}{tg\alpha} = \cot g = tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$ $\leftrightarrow 1 - tgatg\beta = tgy(tga + tg\beta) \leftrightarrow tgatg\beta + tg\beta tgay + tgy tga = 1$ Ap dung BDT Bunhiacôpski ta co $g = \sqrt{1 + tgatg\beta} + \sqrt{1 + tg\beta tgy} + \sqrt{1 + tgy tga} \le$ $\leq \sqrt{(1^2+1^2+1^2)[(\sqrt{1+tgatgb})^2+(\sqrt{1+tgbtgy})^2+(\sqrt{1+tgytga})^2]}$ = $\sqrt{3[3 + tgatg\beta + tg\beta tgy + tgy tga]} = \sqrt{3.4} = \sqrt{12}$ \rightarrow Max g = $\sqrt{12}$ dat duoe khi $\alpha = \beta = \gamma = \frac{\pi}{6}$ 2.10. 33 III.2 Cho $x^2 + y^2 = 1$. Tim Max A = $x\sqrt{1+y} + y\sqrt{1+x}$ (Chú ý phần min A xét ở phương pháp hàm số) Giái $A = x\sqrt{1+y} + y\sqrt{1+x} \le \sqrt{(x^2+y^2)[(\sqrt{1+y})^2 + (\sqrt{1+x})^2]}$ $= \sqrt{x + y + 2} \leq \sqrt{\sqrt{(1^2 + 1^2)(x^2 + y^2)} + 2} = \sqrt{\sqrt{2} + 2}$ \rightarrow Max A = $\sqrt{2 + \sqrt{2}}$ đạt được khi x = y = $\frac{\sqrt{2}}{2}$

2.11 96 II.I Tìm Max, Min của y = $\sqrt{\cos x} + \sqrt{\sin x}$ Giải

Dế hàm số xác định thì $\begin{cases} 0 \le \cos x \le 1 \\ 0 \le \sin x \le 1 \end{cases}$ Khi đó

 $1 = \cos^{2}x + \sin^{2}x \le (\cos x)^{\frac{1}{2}} + (\sin x)^{\frac{1}{2}} = \sqrt{\cos x} + \sqrt{\sin x}$ Mặt khác theo BDT Bunhiacôpski ta có $y = \sqrt{\cos x} + \sqrt{\sin x} \le \sqrt{(1^{2} + 1^{2})(\cos x + \sin x)} =$ $= \sqrt{2\sqrt{2}\sin(x + \frac{\pi}{4})} \le \sqrt{2\sqrt{2}} = \sqrt[4]{8}$ Từ dó : Min y = 1 xảy ra với x = 2k\pi hoặc x = $\frac{\pi}{2} + 2k\pi$ Max y = 1 xảy ra với x = $\frac{\pi}{4} + 2k\pi$ 2.12 59 II.2 Thm Max của y = $\sqrt{a + \cos x} + \sqrt{a + \sin x}$ với a > 1 Giải

Áp dụng BĐT Bunhiacôpski ta có

 $y = \sqrt{a + \cos x} + \sqrt{a + \sin x} \le \sqrt{(1^2 + 1^2)[(\sqrt{a + \cos x})^2 + (\sqrt{a + \sin x})^2]}$ = $\sqrt{2(2a + \cos x + \sin x)} = \sqrt{2\left[2a + \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)\right]} \le \sqrt{2(2a + \sqrt{2})}$ Từ đó suy ra Max $y = \sqrt{2(2a + \sqrt{2})}$ xảy ra với $x = \frac{\pi}{4} + 2k\pi$ 2.13 II II.2. Tìm Max $y = \sqrt{x - 2} + \sqrt{4 - x}$. Sử dụng Gpt $\sqrt{x - 2} + \sqrt{4 - x} = x^2 - 6x + 11$

Giải

$$y = \sqrt{x-2} + \sqrt{4-x} \le \sqrt{(1^2+1^2)[(\sqrt{x-2})^2 + (\sqrt{4-x})^2]} = 2$$

 $\rightarrow Max \ y = 2 \ dat \ duợc \leftrightarrow \sqrt{x-2} = \sqrt{4-x} \leftrightarrow x = 3$
Mặt khác $x^2 - 6x + 11 = (x-3)^2 + 2 \ge 2$; dấu "=" $\leftrightarrow x = 3$
Từ đó suy ra pt $\sqrt{x-2} + \sqrt{4-x} = x^2 - 6x + 11$
chỉ có nghiệm duy nhất $x = 3$

3. Ký thuật dòn phối hợp 74 III.2 : Cho $36x^2 + 16y^2 = 9$. Tìm Max, Min của (y - 2x + 5) Giải

Áp dụng BĐT Bunhiacôpski ta có

$$(36x^{2} + 16y^{2}) \left[\left(-\frac{1}{3} \right)^{2} + \left(\frac{1}{4} \right)^{2} \right] \ge (-2x + y)^{2}$$

$$\leftrightarrow \frac{25}{16} \ge (y - 2x)^{2} \leftrightarrow -\frac{5}{4} \le y - 2x \le \frac{5}{4}$$

$$\leftrightarrow \frac{15}{4} \le y - 2x + 5 \le \frac{25}{4}$$

Từ dó ta có : Max $(y - 2x + 5) = \frac{25}{4}$
Min $(y - 2x + 5) = \frac{15}{4}$
3.2 : Cho 3x - 4y = 7. CMR : $3x^{2} + 4y^{2} \ge 7$
Giải

Theo BDT Bunhiacôpski ta có

$$(3x^{2} + 4y^{2}) [(\sqrt{3})^{2} + (-2)^{2}] \ge (3x - 4y)^{2} = 49$$

$$\leftrightarrow (3x^{2} + 4y^{2}) (3 + 4) \ge 49 \leftrightarrow (3x^{2} + 4y^{2}) \ge 7$$

8.3 : Cho x² + 4y² = 1. CMR : $|x - y| \le \frac{\sqrt{5}}{2}$

Giải

Áp dung BDT Bunhiacôpski ta có

$$(\mathbf{x}^2 + 4\mathbf{y}^2) \left(1^2 + \left(-\frac{1}{2} \right)^2 \right) \ge (\mathbf{x} - \mathbf{y})^2$$

$$\leftrightarrow 1 \left(1 + \frac{1}{4} \right) = \frac{5}{4} \ge (\mathbf{x} - \mathbf{y})^2 \iff |\mathbf{x} - \mathbf{y}| \le \frac{\sqrt{5}}{2}$$

/NMATH.CON

3.4 CMR :
$$a^3 + b^3 + c^3 \ge a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \forall a, b, c \ge 0$$

Giải

Ap dung BDT Bunhiacôpski ta có
(a³ + b³ + c³)(abc + abc + abc) =
=
$$[(\sqrt{a^3})^2 + (\sqrt{b^3})^2 + (\sqrt{c^3})^2] [(\sqrt{abc})^2 + (\sqrt{abc})^2 + (\sqrt{abc})^2]$$

 $\ge [\sqrt{a^3} \cdot \sqrt{abc} + \sqrt{b^3} \cdot \sqrt{abc} + \sqrt{c^3} \cdot \sqrt{abc}]^2$
= $(a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab})^2 \ge$
Cosi
 $\ge 3\sqrt[3]{(a^2\sqrt{bc})} \cdot (b^2\sqrt{ca}) \cdot (c^2\sqrt{ab}) \cdot (a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab})$
= $3abc(a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab})$
Từ dó : $a^3 + b^3 + c^3 \ge a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab}$
3.5 8 III.2 Tìm Min f = $(x - 2y + 1)^2 + (2x + ay + 5)^2$
Giải
Ap dụng BĐT Bunhiacôpski ta có
f = $\frac{1}{5}[(-2)^2 + 1^2][(x - 2y + 1)^2 + (2x + ay + 5)^2]$
 $\ge \frac{1}{5}[(-2)(x - 2y + 1) + 1.(2x + ay + 5)]^2$
 $= \frac{1}{5}[(a + 4)y + 3]^2 \ge \begin{bmatrix} 0 & néu a \ne -4 \\ 9 & néu = -4 \end{bmatrix}$

5

$$\int \frac{1}{5} \operatorname{neu} a = -$$

$$T\dot{u} \, d\delta : \operatorname{N\acute{e}u} a \neq -4 \rightarrow \operatorname{Min} f = 0$$

$$\operatorname{N\acute{e}u} a = -4 \rightarrow \operatorname{Min} f = \frac{9}{2}$$

VNMATH.COM

þ

4. Đánh giá trên phương trình và bất phương trình 4.1 [67 II.2]. CMR : Nếu pt $(x + a)^2 + (y + b)^2 + (x + y)^2 = c^2$ có nghiệm thì

$$(\mathbf{a} + \mathbf{b})^2 \leq 3\mathbf{c}^2$$

Giải

$$\leftrightarrow (\mathbf{x}_{0} + \mathbf{a})^{2} + (\mathbf{y}_{0} + \mathbf{b})^{2} + (\mathbf{x}_{0} + \mathbf{y}_{0})^{2} = c^{2}$$

Ta có $(\mathbf{a} + \mathbf{b})^{2} = [(\mathbf{x}_{0} + \mathbf{a})^{2} + (\mathbf{y}_{0} + \mathbf{b}) + (-\mathbf{x}_{0} - \mathbf{y}_{0})]^{2}$

(B.C.S)

 $\leq (1^2 + 1^2 + 1^2)[(\mathbf{x}_0 + \mathbf{a})^2 + (\mathbf{y}_0 + \mathbf{b})^2 + (-\mathbf{x}_0 - \mathbf{y}_0)^2] = 3c^2 (dpcm)$ 4.2 120 III.2 : CMR : Néu pt $\mathbf{x}^4 + \mathbf{b}\mathbf{x}^3 + \mathbf{c}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + 1 = 0$ có nghiệm thì $\mathbf{b}^2 + (\mathbf{c} - 2)^2 > 3$

Giải

Giả sử \mathbf{x}_{o} là nghiệm $\Rightarrow \mathbf{x}_{o} \neq 0$ và $\mathbf{x}_{o}^{4} + \mathbf{b}\mathbf{x}_{o}^{3} + \mathbf{c}\mathbf{x}_{o}^{2} + \mathbf{b}\mathbf{x}_{o} + 1 = 0$

$$\Rightarrow \mathbf{x}_{o}^{2} + \frac{1}{\mathbf{x}^{2}} + \mathbf{b} \left(\mathbf{x}_{o} + \frac{1}{\mathbf{x}_{o}} \right) + \mathbf{c} = 0$$

$$\Rightarrow \left(\mathbf{x}_{o} + \frac{1}{\mathbf{x}_{o}} \right)^{2} + \mathbf{b} \left(\mathbf{x}_{o} + \frac{1}{\mathbf{x}_{o}} \right) + \mathbf{c} - 2 = 0$$

$$\mathbf{D}\mathbf{x}\mathbf{t} \ \mathbf{t} = \mathbf{x}_{o} + \frac{1}{\mathbf{x}_{o}} \Rightarrow \mathbf{t}^{2} = \mathbf{x}_{o}^{2} + \frac{1}{\mathbf{x}_{o}^{2}} + 2 \ge 2\sqrt{\mathbf{x}_{o}^{2} \cdot \frac{1}{\mathbf{x}_{o}^{2}}} + 2 = 4$$

Khi đó ta có bt + c - 2 = $-t^2 \Rightarrow t^4 = [bt + (c - 2)]^2 \overset{(BCS)}{\leqslant}$ $\overset{(BCS)}{\leqslant} [b^2 + (c - 2)^2] (t^2 + 1) \Rightarrow b^2 + (c - 2)^2 \geqslant \frac{t^4}{t^2 + 1}$

$$\Leftrightarrow b^{2} + (c-2)^{2} \ge t^{2} - 1 + \frac{1}{t^{2} + 1} > 4 - 1 + 0 = 3$$

Làm chặt hơn nữa : Ta có thể chủng minh $b^2 + (c-2)^2 \ge \frac{16}{5}$,

Thật vậy theo trên $b^2 + (c-2)^2 \ge \frac{t^4}{t^2+1} = \frac{t^2}{1+\frac{1}{t^2}}$

Mà
$$t^2 \ge 4$$
 do đó $b^2 + (c-2)^2 \ge \frac{t^2}{1+\frac{1}{t^2}} \ge \frac{4}{1+\frac{1}{4}} = \frac{16}{5}$

Ngoài ra với giả thiết đã cho ta có thể chứng minh

$$b^2 + c^2 \ge \frac{4}{5}$$

: 109 11.1: Giải bất phương trình $\sqrt{x-1} + x - 3 \ge \sqrt{2(x-3)^2 + 2x - 2}$ Giải

Theo BDT Bunhiacôpski ta có

 $\sqrt{x-1} + x - 3 \le \sqrt{(1^2 + 1^2)[(\sqrt{x-1})^2 + (x-3)^2]} = \sqrt{2(x-3)^2 + 2x - 2}$ Do do bát phương trình (1) $\leftrightarrow \sqrt{x-1} + x - 3 = \sqrt{2(x-3)^2 + 2x - 2}$

$$\leftrightarrow \sqrt{x-1} = x-3 \iff \begin{cases} x \ge 3\\ x-1 = (x-3)^2 \end{cases} \iff \begin{cases} x \ge 3\\ x^2 - 7x + 10 = 0 \end{cases}$$
$$\leftrightarrow \begin{cases} x \ge 3\\ x = 2 \cup x = 5 \end{cases} \iff x = 5$$

1.13411.2 Trong các nghiệm của Bất phương trình $\log_{x^2+y^2}(x+y) \ge 1$

Tim nghiệm để tổng (x + 2y) max Giải

(1) Néu $x^2 + y^2 > 1$ thì Bpt

$$\Rightarrow x + y \ge x^{2} + y^{2} \Rightarrow \left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2} \le \frac{1}{2}$$

$$Ta \ co \ x + 2y = \left[\left(x - \frac{1}{2}\right) + 2\left(y - \frac{1}{2}\right)\right] + \frac{3}{2} \le$$

$$\sqrt{(1^{2} + 2^{2})} \left[\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2}\right] + \frac{3}{2} \le \sqrt{5 \cdot \frac{1}{2}} + \frac{3}{2} = \frac{3 + \sqrt{10}}{2}$$

/NMATH.CON

76

 $\rightarrow Max (x + 2y) = \frac{3 + \sqrt{10}}{2}$ Dấu bằng xảy ra khi $\frac{x-\frac{1}{2}}{1} = \frac{y-\frac{1}{2}}{2} và \left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{2}$ $\leftrightarrow \frac{x - \frac{1}{2}}{1} = \frac{2y - 1}{4} = \frac{(x + 2y)_{max} - \frac{3}{2}}{1 + 4} = \frac{\sqrt{10}}{10} \rightarrow \begin{cases} x = \frac{5 + \sqrt{10}}{10} \\ y = \frac{5 + 2\sqrt{10}}{10} \end{cases}$ Ro rang khi do $\left[\frac{5+\sqrt{10}}{10}-\frac{1}{2}\right]^2 + \left[\frac{5+2\sqrt{10}}{10}-\frac{1}{2}\right]^2 = \frac{1}{10} + \frac{4}{10} = \frac{1}{2}$ (2) Néu $x^2 + y^2 < 1$ thi Bpt $\leftrightarrow x + y < x^2 + y^2$ $V1 x^2 + y^2 < 1 \rightarrow y^2 < 1 \rightarrow |y| < 1$ Ta co x + 2y = (x + y) + y $\leq x^2 + y^2 + |y| < 1 + 1 < \frac{3 + \sqrt{10}}{2}$ $\rightarrow \text{Max} (\mathbf{x} + 2\mathbf{y}) < \frac{3 + \sqrt{10}}{2}.$ Kết hợp (1) và (2) \rightarrow Max (x + 2y) = $\frac{3 + \sqrt{10}}{2}$ i = 101 111.1 CMR phương trình sinx - $2\sin 2x - \sin 3x = 2\sqrt{2}$ vô nghiệm Giải The co sinx - $2\sin 2x$ - $\sin 3x$ = $\sin x$ - $\sin 3x$ - $\sin 2x$ $-2\cos 2x\sin x - 2\sin 2x \leq \sqrt{\left[(-2\cos 2x)^2 + (-2\sin 2x)^2\right] \left[\sin^2 x + 1\right]}$ $= \sqrt{4(\sin^2 x + 1)} \le \sqrt{4 \cdot 2} = 2\sqrt{2}$ Dau bàng xảy ra \leftrightarrow $\begin{cases} \sin^2 x = 1 \\ \frac{\cos 2x}{\sin x} = \frac{\sin 2x}{1} \\ \end{cases} \Leftrightarrow \begin{cases} \sin^2 x = 1 \text{ hay } \cos x = 0 \\ \frac{1 - 2\sin^2 x}{\sin x} = \frac{2\sin x \cos x}{1} \end{cases}$ $\rightarrow \frac{-1}{\sin x} = 0$. Vô lý. Vậy phương trình vô nghiệm

/NMATH.COM

4.6 136 11.2 Giai phuong trinh : $\left(\cos^2 x + \frac{1}{\cos^2 x}\right)^2 + \left(\sin^2 x + \frac{1}{x^2 - x^2}\right)^2 = 12 + 0.5 \sin y$ (1) Giải $Ta \ co. 12 + 0.5 \ sin \ y \le 12 + 0.5 = 12.5$ Theo BDT Bunhiacopski thi $\left(\cos^2 x + \frac{1}{2}\right)^2 + \left(\sin^2 x + \frac{1}{\sin^2 y}\right)^2 =$ $=\frac{1}{2}(1^{2}+1^{2})\left[\left(\cos^{2}x+\frac{1}{\cos^{2}x}\right)^{2}+\left(\sin^{2}x+\frac{1}{\sin^{2}x}\right)^{2}\right]^{2}$ $\frac{1}{2} \left[\left(\cos^2 x + \frac{1}{\cos^2 x} \right) + \left(\sin^2 x + \frac{1}{\sin^2 x} \right) \right]^2 = \frac{1}{2} \left[1 + \frac{1}{\sin^2 x \cos^2 x} \right]^2$ $= \frac{1}{2} \left[1 + \frac{4}{\sin^2 2x} \right]^2 \ge \frac{1}{2} [1 + 4]^2 = \frac{25}{2} = 12,5$ $\text{Do do} (1) \iff \begin{cases} \sin y = 1\\ \sin^2 2x = 1\\ \cos^2 x + \frac{1}{\cos^2 x} = \sin^2 x + \frac{1}{\sin^2 x} \end{cases} \iff \begin{cases} y = \frac{\pi}{2} + 2k\pi\\ x = \frac{\pi}{4} + m\frac{\pi}{2} \end{cases}$ $\geq \frac{1}{2} \left[\left(\cos^2 x + \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \right) + \left(\sin^2 x + \frac{1}{\sin^2 x} \right) \right]^2 = \frac{1}{2} \left[1 + \frac{1}{\sin^2 x \cos^2 x} \right]^2$ 7.7.24 H.I. Guio phuong truth $\cos 3x + \sqrt{2 - \cos^2 3x} = 2(1 + \sin^2 2x)$ (1)Giải Ta co 2 $(1 + \sin^2 2x) \ge 2$ $\cos 3x + \sqrt{2 - \cos^2 3x} \le \sqrt{(1^2 + 1^2)[\cos^2 3x + (\sqrt{2 - \cos^2 3x})^2]} = 2$ Do do (1) \leftrightarrow $\begin{cases} \sin^2 2x = 0\\ \cos 3x = \sqrt{2 - \cos^2 3x} \end{cases} \leftrightarrow \begin{cases} 2 \sin x \cos x = 0\\ \cos 3x = 1 \end{cases}$ $\leftrightarrow \begin{cases} \cos x = 0 \lor \cos x = \pm 1 \\ 4\cos^3 x - 3\cos x = 1 \end{cases} \leftrightarrow \cos x = 1 \leftrightarrow \boxed{x = 2k\pi}$

18 146 III "Good phuring trinh

$$\sin x + \sqrt{2 - \sin^2 x} + \sin x \sqrt{2 - \sin^2 x} = 3$$
 (1)
Giải

The co sinx + $\sqrt{2 - \sin^2 x} \le \sqrt{(1^2 + 1^2)(\sin^2 x + (\sqrt{2 - \sin^2 x})^2)} = 2$ $\sin x \sqrt{2 - \sin^2 x} \leq |\sin x| \sqrt{2 - \sin^2 x} =$ $= \sqrt{\sin^2 x (2 - \sin^2 x)} \le \frac{\sin^2 x + (2 - \sin^2 x)}{2} = 1$ Suy ra $\sin x + \sqrt{2 - \sin^2 x} + \sin \sqrt{2 - \sin^2 x} \le 3$ Do đó (1) ↔ Các điều kiện xảy ra các dấu bằng $\leftrightarrow \begin{cases} \sin x = \sqrt{2 - \sin^2 x} & \rightarrow \\ \sin x = |\sin x| & \leftrightarrow \sin x = 1 \leftrightarrow x = \frac{\pi}{2} + 2k\pi \\ \sin^2 x = 2 - \sin^2 x \end{cases}$ 1.9 BULL Che AABC their main $3(\cos B + 2\sin C) + 4(\sin B + 2\cos C) = 15$. CMR : $\triangle ABC$ vuong Giải $VT = 3\cos B + 4\sin B + 6\sin C + 8\cos C$ $\leq \sqrt{(3^2 + 4^2)(\cos^2 B + \sin^2 B)} + \sqrt{(6^2 + 8^2)(\sin^2 C + \cos^2 C)} = 15$ $Dau "=" \leftrightarrow \begin{cases} \frac{\cos B}{3} = \frac{\sin B}{4} \\ \frac{\sin C}{2} = \frac{\cos C}{2} \\ \hline \end{array} \rightarrow \cot gB = tgC = \cot g \left(\frac{\pi}{2} - C\right)$

$$\rightarrow B = \frac{\pi}{2} - C \rightarrow B + C = \frac{\pi}{2} \rightarrow A = \frac{\pi}{2}$$
 Vây $\triangle ABC$ vuông

$$\frac{2 + \cos x}{\sin x + \cos x} = \frac{2 + \cos x}{\sin x + \cos x - 2}$$

Giải

The column ysinx + (y-1)cosx = $2(1+y) \rightarrow 4(1+y)^2 = [ysinx + (y-1) cosx]^2 \le [y^2 + (y - 1)^2] [sin^2x + cos^2x] = y^2 + (y - 1)^2$

$$\Rightarrow 2y^{2} + 10y + 3 \leq 0 \Rightarrow \frac{-5 - \sqrt{9}}{2} \leq y \leq \frac{-5 + \sqrt{19}}{2}$$

$$\Rightarrow \begin{cases} Maxy = \frac{-5 + \sqrt{19}}{2} \\ Miny = \frac{-5 - \sqrt{19}}{2} \end{cases}$$

$$Miny = \frac{-5 - \sqrt{19}}{2} \end{cases}$$

$$Miny = \frac{-5 - \sqrt{19}}{2} \leq 1 + \sqrt{1 + 3a^{2}} \quad \forall x \in \mathbb{C}$$

Dat
$$y = \frac{\cos 3x + a \sin 3x + 1}{\cos 3x + 2}$$

 $\Rightarrow (y - 1)\cos 3x - a \sin 3x = 1 - 2y$
 $\Rightarrow (1 - 2y)^2 = [(y - 1)\cos 3x - a \sin 3x]^2 \le$
 $\le [(y - 1)^2 + (-a)^2][\cos^2 3x + \sin^2 3x] \Rightarrow 3y^2 - 2y - a^2 \le 0$
 $\Rightarrow \frac{1 + \sqrt{1 + 3a^2}}{3} \ge y \ge \frac{1 - \sqrt{1 + 3a^2}}{2} \ge \frac{-(1 + \sqrt{1 + 3a^2})}{3}$
Do do $|y| = \left|\frac{\cos 3x + a \sin 3x + 1}{\cos 3x + 2}\right| \le \frac{1 + \sqrt{1 + 3a^2}}{3}$

VNMATH.COM

5. Ký thuật nghịch đảo

A) Dang I:
$$\left(\sum_{i=1}^{n} \mathbf{y}_{i}\right) \left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i}^{2}}{\mathbf{y}_{i}}\right) \ge \left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{2} \quad \forall \mathbf{y}_{i} > 0$$

Chung minh : Theo BDT Bunhiacôpski ta co

$$\left(\sum_{i+1}^{n} \mathbf{y}_{i}\right)\left(\sum_{i=1}^{n} \frac{\mathbf{x}_{i}^{2}}{\mathbf{y}_{i}}\right) = \left[\sum_{i=1}^{n} \left(\sqrt{\mathbf{y}_{i}}\right)^{2}\right]\left[\sum_{i=1}^{n} \left(\frac{\mathbf{x}_{i}}{\sqrt{\mathbf{y}_{i}}}\right)^{2}\right]$$

$$\geq \left[\sum_{i=1}^{n} \left(\sqrt{\mathbf{y}_{i}} \cdot \frac{\mathbf{x}_{i}}{\sqrt{\mathbf{y}_{i}}}\right)\right]^{2} = \left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{2}$$

5.1 : CMR :
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{(a+b+c)}{2}$$
 $\forall a, b, c > 0$

Giải

Theo BDT Bunhicôpski ta có

$$[(b+c) + (c+a) + (a+b)] \left[\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \right] \ge (a + b + c)^2$$

$$\rightarrow \frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{(a + b + c)^2}{(b+c) + (c+a) + (a+b)} = \frac{a + b + c}{2}$$

5.2 : CMR $\frac{a}{b+c-a} + \frac{a}{c+a-b} + \frac{a+b-c}{a+b-c}$ \geq a+b+c $\forall \Delta ABC$ (a, b, c)

Giải

Theo BDT Bunhiacôpski ta có

$$[(b+c-a) + (c+a-b) + (a+b-c)] \left[\frac{a^2}{b+c-a} + \frac{b^2}{c+a-b} + \frac{c^2}{a+b-c} \right]$$

$$(a + b + c)^2 \rightarrow \frac{a^2}{b+c-a} + \frac{b^2}{c+a-b} + \frac{c^2}{a+b-c} \ge 0$$

$$\geq (a + b + c)^{2} \rightarrow \frac{b + c - a}{b + c - a} + \frac{c + a - b}{c + a - b} + \frac{a + b - c}{a + b - c} \geq (a + b + c)^{2}$$

$$\ge \frac{1}{(b+c-a) + (c+a-b) + (a+b-c)}$$

$$\frac{a^2 \qquad b^2 \qquad c^2 }{c^2}$$

$$\leftrightarrow \frac{1}{b+c-a} + \frac{1}{c+a-b} + \frac{1}{a+b-c} \ge a+b+c$$

5.3 : CMR :
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2} \forall a, b, c > 0$$

Giải

$$\frac{a^2}{ab+ac} + \frac{b^2}{bc+ba} + \frac{c^2}{ca+cb} \ge \frac{3}{2}$$

Theo BDT Bunhiacôpski ta có

$$[(ab + ac) + (bc + ba) + (ca + cb)] \left[\frac{a^2}{ab + ac} + \frac{b^2}{bc + ba} + \frac{c^2}{ca + cb} \right]$$

$$(a \pm b + c)^2$$

≤

5

Mật khác dễ dàng chúng minh $(a+b+c)^2 \ge 3(ab+bc+ca)$. Do đó

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{a^2}{ab+ac} + \frac{b^2}{bc+ba} + \frac{c^2}{ca+cb}$$

$$\ge \frac{3(ab+bc+ca)}{(ab+ac) + (bc+ba) + (ca+cb)} = \frac{3}{2}$$
5.4 : CMR : $\frac{a^3}{b+c} + \frac{b^3}{c+a} + \frac{c^3}{a+b} = \frac{a^2+b^2+c^2}{2} \forall a, b, c$

Giải

Theo BDT Bunhiacôpski ta có

$$[(ab+ac)+(bc+ba)+(ca+cb)]\left[\frac{a^4}{ab+ac}+\frac{b^4}{bc+ba}+\frac{c^4}{ca+cb}\right] \ge (a^2+b^2+c^2)^2$$

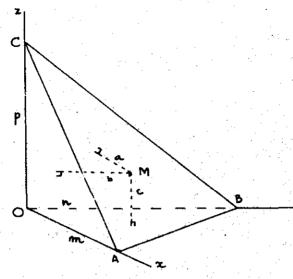
Mặt khác dễ dàng chứng minh $a^2 + b^2 + c^2 \ge ab + bc + ca$. Do đó

$$\frac{a^3}{b+c} + \frac{b^3}{c+a} + \frac{c^3}{a+b} = \frac{a^4}{ab+ac} + \frac{b^4}{bc+ba} + \frac{c^4}{ca+cb}$$

$$\ge \frac{(a^2+b^2+c^2)^2}{(ab+ac) + (bc+ba) + (ca+cb)} = \frac{(a^2+b^2+c^2)(ab+bc+ca)}{2(ab+bc+ca)} = \frac{a^2+b^2+c^2}{2}$$
5.5. : [651Vb] : Cho M là diểm có định \in tam diện vuông Oxyz.
Mật phẳng (α) qua M cát Ox, Oy, Oz tại A, B, C.
Gọi khoảng cách từ M tới các mặt a, b, c.
3) Tính OA, OB, OC để OA + OB + OC min
Giải
Dật OA = m, OB = n, OC = p

 $Ta \ co$ $V_{OABC} = \frac{1}{6}$ mnp

VNMATH.COM



Mặt khác $V_{OABC} = V_{MOAB} + V_{MOBC} + V_{MOAC}$ $\leftrightarrow \frac{1}{6} mnp = \frac{1}{6} (cmn + anp + bpm) \leftrightarrow 1 = \frac{cmn + anp + bpm}{mnp}$

 $\frac{a}{m} + \frac{b}{n} + \frac{c}{p} = 1$

Theo BDT Bunhiacopski ta co

 $OA + OB + OC = m + n + p = (m + n + p) \left(\frac{a}{m} + \frac{b}{n} + \frac{c}{p} = 1\right)$

 $> (\sqrt{a} + \sqrt{b} + \sqrt{c})^2.$

Dau "=" xày ra $\leftrightarrow \frac{\sqrt{m}}{\sqrt{a}/\sqrt{m}} = \frac{\sqrt{n}}{\sqrt{b}/\sqrt{n}} = \frac{\sqrt{p}}{\sqrt{c}/\sqrt{p}}$

 $\frac{\mathbf{m}}{\sqrt{\mathbf{a}}} = \frac{\mathbf{n}}{\sqrt{\mathbf{b}}} = \frac{\mathbf{p}}{\sqrt{\mathbf{c}}} = \frac{\mathbf{m} + \mathbf{n} + \mathbf{p}}{\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}} = \frac{(\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}})^2}{\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}} = \sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}$

$$\leftrightarrow \begin{cases} \mathbf{m} = \sqrt{\mathbf{a}}(\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}) \\ \mathbf{n} = \sqrt{\mathbf{b}}(\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}) \\ \mathbf{p} = \sqrt{\mathbf{c}}(\sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}) \end{cases}$$

5.6 : Cho $\triangle ABC$ (a, b, c). CMR : $a^{2}b$ (a - b) + $b^{2}c(b - c)$ + $c^{2}a(c - a) \ge 0$

(Bài 6 của Mỹ đề nghị - VDTQT lần 24 tại Pháp 1983)

VNMATH.CON

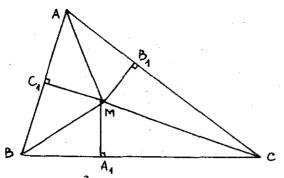
5.7 : CMR : $\frac{a}{b+a} + \frac{b}{a+a} + \frac{c}{a+b} \ge \frac{3}{2} \forall a, b, c > 0$ Giải Ap dung BDT Bunhiacôpski ta có $[\mathbf{a}(\mathbf{b}+\mathbf{c}) + \mathbf{b}(\mathbf{c}+\mathbf{a}) + \mathbf{c}(\mathbf{a}+\mathbf{b})] \left[\frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}} + \frac{\mathbf{b}}{\mathbf{c}+\mathbf{a}} + \frac{\mathbf{c}}{\mathbf{a}+\mathbf{b}}\right] \ge (\mathbf{a}+\mathbf{b}+\mathbf{c})^2$ Dē dàng chứng minh : $(a + b + c)^2 \ge 3(ab + bc + ca)$. Do đó $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{(a+b+c)^2}{a(b+c) + b(c+a) + c(a+b)} \ge \frac{3(ab+bc+ca)}{2(ab+bc+ca)}$ $\leftrightarrow \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$ 5.8 : CMR : $\frac{a}{mb+nc} + \frac{b}{mc+nq} + \frac{c}{ma+nb} \ge \frac{3}{m+n} \forall a, b, c, m, n > 0$ Giải Theo BDT Bunhiacôpski ta có $\sum a(mb+nc) \cdot \sum \frac{a}{mb+nc} \ge (a+b+c)^2 \ge 3(ab+bc+ca)$ Từ đó $\sum \frac{a}{mb+nc} \ge \frac{3(ab+bc+ca)}{\sum a(mb+nc)} = \frac{3(ab+bc+ca)}{(m+n)(ab+bc+ca)}$ $\leftrightarrow \frac{a}{mh+nc} + \frac{b}{mc+na} + \frac{c}{ma+nb} \ge \frac{3}{m+n}$ 5.9 : Điểm M nằm trong \triangle ABC. Hạ MA₁, MB₁, MC₁ \perp Bc, CA, AB Tìm vị trí của M để $\frac{BC}{MA_1} + \frac{CA}{MB_2} + \frac{AB}{MC_1}$ min (Bài 1 của Anh đề nghị - VĐTQT lần thứ 22 tại Mỹ 1981)

Giải

Theo BDT Bunhiacôpski ta có

 $\left[BC \cdot MA_1 + CA \cdot MB_1 + AB \cdot MC_1 \right] \left[\frac{BC}{MA_1} + \frac{CA}{MB_1} + \frac{AB}{MC_1} \right]$

.



$$\frac{a}{b+2c+d} + \frac{b}{c+2d+3a} + \frac{c}{d+2a+3b} + \frac{d}{a+2b+3c} \ge \frac{2}{3} \forall a, b, c, d > 0$$
(Dy bi Quốc tế 93 - Mỹ đế nghị)

Giải

Ta co
$$\sum a(b+2c+3d)$$
 $\sum \frac{a}{b+2c+3d} \ge (a+b+c+d)^2$

Ta se chúng minh : :

$$\sum a(b+2c+3d) \le \frac{3}{2}(a+b+c+d)^2$$

 $\Rightarrow 2(ab + ac + ad + bc + bd + cd) ≤ 3(a² + b² + c² + d²)$ $\Rightarrow (a - b)² + (a - c)² + (a - d)² + (b - c)² + (b - d)² + (c - d)² ≥ 0 dúng$ $Từ dơ <math>\sum \frac{a}{b+2c+3d} ≥ \frac{(a + b + c + d)^{2}}{\frac{3}{2}(a + b + c + d)^{2}} = \frac{2}{3}$

5.11 : Cho
$$\begin{cases} \mathbf{a}_{1}, \mathbf{a}_{2}, \dots \mathbf{a}_{n} > 0\\ \mathbf{a}_{1}\mathbf{a}_{2}^{*} + \mathbf{a}_{2}\mathbf{a}_{3} + \dots + \mathbf{a}_{n-1}\mathbf{a}_{n} + \mathbf{a}_{n}\mathbf{a}_{1} = 1 \end{cases} \quad \mathbf{v} \mathbf{\hat{a}} \quad \mathbf{S} = \sum_{i=1}^{n} \mathbf{a}_{i} \\ CMR : \sum_{i=1}^{n} \frac{\mathbf{a}_{i}^{3}}{\mathbf{S} - \mathbf{a}_{i}} \ge \frac{1}{n-1} \end{cases}$$

Giải

Theo Bunhiacôpski ta có

$$\begin{bmatrix} \sum_{i=1}^{n} a_{i} (S - a_{i}) \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} \frac{a_{i}^{3}}{S - a_{i}} \end{bmatrix} \ge \begin{bmatrix} \sum_{i=1}^{n} a_{i}^{2} \end{bmatrix}^{2}$$

$$Mat \ khac : \sum_{i=1}^{n} a_{i} (S - a_{i}) = S \cdot \sum_{i=1}^{n} a_{i} - \sum_{i=1}^{n} a_{i}^{2}$$

$$= \left(\sum_{i=1}^{n} a_{i}\right)^{2} - \sum_{i=1}^{n} a_{i}^{2} \le (1^{2} + 1^{2} + \dots + 1^{2})(a_{1}^{2} + \dots + a_{n}^{2}) - \sum_{i=1}^{n} a_{i}^{2}$$

$$= (n - 1) \sum_{i=1}^{n} a_{i}^{2} \cdot Tw \ do \sum_{i=1}^{n} \frac{a_{i}^{3}}{S - a_{i}} \ge \frac{\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{2}}{(n - 1) \sum_{i=1}^{n} a_{i}^{2}}$$

$$\leftrightarrow \sum_{i=1}^{n} \frac{a_{i}^{3}}{S - a_{i}} \ge \frac{\sum_{i=1}^{n} a_{i}^{2}}{n - 1}$$

$$Mat \ khac \sum_{i=1}^{n} a_{i}^{2} = \sqrt{(a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2})(a_{2}^{2} + a_{3}^{2} + \dots + a_{1}^{2})}$$

$$\ge a_{1}a_{2} = a_{2}a_{3} + \dots + a_{n}a_{1} = 1. \ Vay \ thi$$

$$\sum_{i=1}^{n} \frac{a_{i}^{3}}{S - a_{i}} \ge \frac{\sum_{i=1}^{n} a_{i}^{2}}{n - 1} \ge \frac{1}{n - 1}$$

§3. BẤT ĐẢNG THỨC TRÊBƯSÉP

1. Dạng Tổng quát

(1) Néu $\begin{cases} a_1 \ge a_2 \ge \dots \ge a_n \\ b_1 \ge b_2 \ge \dots \ge b_n \end{cases}$ hoặc $\begin{cases} a_1 \le a_2 \le \dots a_n \\ b_1 \le b_2 \le \dots \le b_n \end{cases}$ thì Dang 1: $\frac{a_1b_1 + a_2b_2 + ... + a_nb_n}{n} \ge \frac{a_1s + a_2 + ... + a_n}{n} \cdot \frac{b_1 + b_2 + ... + b_n}{n}$ Dang 2 : $n(a_1b_1+a_2b_2+...+a_nb_n) \ge (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)$ (2) Nếu $\begin{cases} a_1 \ge a_2 \ge \dots \ge a_n \\ b_1 \le b_2 \le \dots \le b_n \end{cases}$ hoặc $\begin{cases} a_1 \le a_2 \le \dots \le a_n \\ b_1 \le b_2 \le \dots \le b_n \end{cases}$ thì Dang 1: $\frac{a_1b_1 + a_2b_2 + ... + a_nb_n}{n} \leq \frac{a_1 + a_2 + ... + a_n}{n} \cdot \frac{b_1 + b_2 + ... + b_n}{n}$ Dang 2 : $n(a_1b_1+a_2b_2+...+a_nb_n) \leq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)$ Chúng minh : Xét hiệu Trêbusép $\mathbf{n} \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i}, -\sum_{i=1}^{n} \mathbf{a}_{i} \sum_{i=1}^{n} \mathbf{b}_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \mathbf{a}_{j} \mathbf{b}_{i} \right) - \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \mathbf{a}_{j} \mathbf{b}_{j} \right)$ $= \sum_{1 \le i \le j \le n} (\mathbf{a}_{i}\mathbf{b}_{j} + \mathbf{a}_{j}\mathbf{b}_{j} - \mathbf{a}_{j}\mathbf{b}_{j} - \mathbf{a}_{j}\mathbf{b}_{i}) = \sum_{1 \le i \le j \le n} (\mathbf{a}_{i} - \mathbf{a}_{j})(\mathbf{b}_{i} - \mathbf{b}_{j})$ Rö ràng $\sum_{1 \le i \le n} (a_i - a_j)(b_i - b_j) \ge 0$ với điều kiện (1)

và

 $\sum (\mathbf{a}_i - \mathbf{a}_j)(\mathbf{b}_i - \mathbf{b}_j) \leq 0 \text{ với điều kiện (2)}$

Từ đó → (đpcm)

/NMATH.CON

2. Dang cụ thế :

n = 2
a) Néu $\begin{cases} a > c \\ b > d \end{cases}$ $\begin{cases} a < c \\ b_{3} < d \end{cases}$
Dang 1: $\frac{ab+cd}{2} \ge \frac{a+c}{2} \cdot \frac{b+d}{2}$
Dang 2 : $2(ab+cd) \ge (a+c)(b+d)$
b) Néu $\begin{cases} a \ge c \\ b \le d \end{cases} \begin{cases} a \le c \\ b \ge d \end{cases}$
Dang 1: $\frac{ab+cd}{2} < \frac{a+c}{2} \cdot \frac{b+d}{2}$
Dang 2 : $2(ab+cd) \leq (a+c)(b+d)$
Chung minh
Xét hiệu Trê bư Sép
2(ab + cd) - (a + c)(b + d)
= (a - c)(b - d)
Rố ràng (a - c)(b - d) ≥ 0
$ N \acute{e}_{a} \begin{cases} a \ge c \\ b \ge d \end{cases} \begin{cases} a \le c \\ b \le d \end{cases} $
$va(a - c)(b - d) \le 0$
$\mathbf{N} \stackrel{d}{\leftarrow} \mathbf{u} \begin{cases} \mathbf{a} \ge \mathbf{c} \\ \mathbf{b} \le \mathbf{d} \end{cases} \bigvee \begin{cases} \mathbf{a} \le \mathbf{c} \\ \mathbf{b} \ge \mathbf{d} \end{cases}$
Từ đó → (dpcm)

a) Non badter v lacce Doing 1 : $\frac{ab+cd+cf}{3} \ge \frac{a+c+c}{3} \cdot \frac{b+d+f}{3}$ Dang 2 : $3(ab+cd+ef) \ge (a+c+e)(b+d+f)$ b) Néu $\begin{cases} a \ge c \ge e \\ b \le d \le f \end{cases}$ $\begin{cases} a \le c \le e \\ b \ge d \ge f \end{cases}$ Dang 1 : $\frac{ab+cd+ef}{3} < \frac{a+c+e}{3} \cdot \frac{b+d+f}{3}$ $Dang 2: 3(ab+cd+ef) \le (a+c+e)(b+d+f)$ Chứng minh Xét hiệu Trê bụ Sép 3(ab + cd + ef) - (a + c + e)(b + d + f) == (a - c)(b - d) + (c - e)(d - f) + (e - a)(f - b)(+) Rö ràng biểu thức (+) ≥ 0 Néu $\begin{cases} a \ge c \ge e \\ b \ge d \ge f \end{cases}$ $\begin{cases} a < c < e \\ b < d < f \end{cases}$ và biểu thức (•) < 0 Néu $\begin{cases} a \ge c \ge e \\ b \le d \le f \end{cases}$ $\begin{cases} a \le c \le e \\ b \ge d \ge f \end{cases}$ Từ đó 🛶 (đạcm)

Í q

Chú ý': (1) Bất đẳng thức Trê bư Sép không được sử dụng trực tiếp (khi thi Đại học) mà phải chúng minh lại bằng cách xét hiệu Trêbusép.

(2) Bất dẫng thức Trẻ bư sép là BĐT cho dây số sắp thứ tự, đo đó nếu các số chưa sắp thứ tự thì ta phải giả sử có quan hệ thứ tự giữa các số.

3.1 (14 V b) : Cho a + b \ge 2. CMR aⁿ + bⁿ \le aⁿ⁺¹ + bⁿ⁺¹ Giải Giả sử a \ge b. Theo (gt) a + b \ge 2 > 0 \rightarrow a > -b Do đó $a \ge |b| \rightarrow a^n \ge |b|^n \ge b^n$. Như vậy $\begin{cases} a \ge b \\ a^n \ge b^n \end{cases}$ Xét hiêu : $2(a^{n+1}+b^{n+1}) - (a+b)(a^n+b^n) = 2(a,a^n+b,b^n) - (a+b)(a^n+b^n)$ $= (a - b) (a^n - b^n) \ge 0$. Từ đó $\mathbf{a}^{n+1} + \mathbf{b}^{n+1} \ge \frac{\mathbf{a} + \mathbf{b}}{2} (\mathbf{a}^n + \mathbf{b}^n)^{\ge 2} \ge \mathbf{a}^n + \mathbf{b}^n$ 3.2 (7 V) : CMR : Néu a + b \ge 0 thì $(a + b)(a^3 + b^3)(a^5 + b^5) \leq 4(a^9 + b^9)$ Giải Ta sẽ chứng minh $\begin{cases} \forall m, n \in \mathbb{N} \\ a+b \ge 0 \end{cases}$ thì $\frac{\mathbf{a}^{m} + \mathbf{b}^{m}}{2} \cdot \frac{\mathbf{a}^{n} + \mathbf{b}^{n}}{2} \leq \mathbf{a}^{m+n} + \frac{\mathbf{b}^{m+n}}{2}$ $(a^{m+n} + b^{m+n}) - (a^m + b^m)(a^n + b^n) = (a^m - b^m)(a^n - b^n) \ge 0$ $G^{(a)}$ sử $a \ge b$. Ta có $a + b \ge 0 \rightarrow a \ge -b$. Từ đó $a \ge |b|$ suy "a $\begin{cases} a^m \ge |b|^m \ge b^m \\ a^n \ge |b|^n \ge b^n \end{cases} (a^m - b^m) (a^n - b^n) \ge 0 (dpcm)$ Áp dụ 1g vào bài toán $(a + b)(a^{3} + b^{3})(a^{5} + b^{5}) = 8 \cdot \frac{a + b}{2} \cdot \frac{a^{3} + b^{3}}{2} \cdot \frac{a^{3} + b^{3}}{2}$ $\leq 8 \cdot \frac{a^3 + b^4}{2} \cdot \frac{a^5 + b^5}{2} \leq 8 \cdot \frac{a^9 + b^9}{2} = 4(a^9 + b^9)$ 3.3. CMR : Neu a + b ≥ 0 thì $\frac{a+b}{2} \cdot \frac{a^2+b^2}{2} \cdot \frac{a^3+b^3}{2} \le \frac{a^6+b^6}{2}$ Ban độc tự giải (Vo dich Ba Lan 1958 - 1959)

VNMATH.CON

3.4. 1811.2 : CMR $(abc)^{\frac{1}{3}(a+b+c)} \le a^{a}b^{b}c^{c} \forall a, b, c > 0$ Giải

$$BDT \leftrightarrow \ln(abc)^{\frac{1}{3}(a+b+c)} \leq \ln (a^{a}b^{b}c^{c})$$

$$\leftrightarrow \frac{1}{3} (a + b + c) (lna + lnb + lnc) \leq alna + blnb + clnc$$

$$\leftrightarrow (a + b + c) (lna + lnb + lnc) \leq 3 (alna + blnb + clnc)$$

$$X\acute{et} hi\acute{eu} : 3(alna + blnb + clnc) - (a+b+c) (lna + lnb + lnc)$$

$$= (a-b)(lna - lnb) + (b-c)(lnb - lnc) + (c-a)(lnc - lna) \quad (*)$$

Giả sử a $\geq b \geq c > 0 \rightarrow lna \geq lnb \geq lnc \rightarrow (*) \geq 0$
Từ đó $\rightarrow (dpcm)$

3.5.
$$CMR$$
 : $(a_1a_2...a_n)_n^{1}(a_1+a_2+...+a_n) \leq a_1^{a_1}a_2^{a_2}...a_n^{a_n} \forall a_1...a_n > 0$

Bạn đọc tự giải

3.6 149 11.2 CMR $\frac{aA + bB + cC}{a + b + c} \ge \frac{\pi}{3} \forall \Delta ABC$

Giải

$$BDT \leftrightarrow \frac{aA + bB + cC}{a + b + c} \ge \frac{A + B + C}{3}$$

$$\Rightarrow 3(aA + bB + cC) \ge (a + b + c)(A + B + C)$$

Xét hiệu $3(aA + bB + cC) - (a + b + c)(A + B + C)$

$$\equiv (a - b)(A - B) + (b - c)(B - C) + (c - a)(C - A) \quad (*)$$

Giả sử $a \ge b \ge c \Rightarrow A \ge B \ge C \Rightarrow (*) \ge 0$
Từ đó $\Rightarrow (dpcm)$

3.7 136 II.1 - Bộ Đề 91

Cho
$$\triangle ABC$$
. $CMR \sum_{A, B, C} \frac{A \sin A + B \sin B}{A + B} \ge \sum_{A, B, C} \sin A$

Giải

$$\Rightarrow 2R\left(\sum_{A,B,C} \frac{AsinA + BsinB}{A + B}\right) \ge 2R\left(\sum_{A,B,C} sinA\right)$$

$$\Rightarrow \sum_{a,b,c} \frac{Aa + Bb}{A + B} \ge \sum_{a,b,c} a = \sum_{a,b,c} \frac{a + b}{2}$$

Ta co : $\sum_{a,b,c} \frac{Aa + Bb}{A + B} = \sum_{a,b,c} \frac{a + b}{2} = \sum_{a,b,c} \left(\frac{Aa + Bb}{A + B} - \frac{a + b}{2}\right)$
$$= \sum_{a,b,c} \frac{2(Aa + Bb) - (A + B)(a + b)}{2(A + B)} = \sum_{a,b,c} \frac{(A - B)(a - b)}{2(A + B)}$$

Giá sử a $\ge b \ge c \Rightarrow A \ge B \ge C \Rightarrow \sum_{a,b,c} \frac{(A - B)(a - b)}{2(A + B)} \ge 0$
Từ do $\Rightarrow (dpcm)$

/NMATH.COM

3.8. 27 II.2 : CMR : $a+b+c \ge 2(a\cos A + b\cos B + c\cos C) \forall \Delta ABC$ Ta có c = $a\cos B + b\cos A$ do dó BDT $\rightarrow \sum (a\cos B + b\cos A) \ge \sum (a\cos A + b\cos B)$ a, b, c a, b, c a, b, cGià sử $A \ge B \ge C \rightarrow \begin{cases} a \ge b \ge c \\ cos A \le cos B \le cos C \end{cases}$

Từ đó → (đpcm)

3.9. $CMR \frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} \leq \frac{tgA \cdot tgB \cdot tgC}{3} \quad \forall \Delta ABC \text{ nhon}$ Giải Dễ dàng chúng minh tgA.tgB.tgC = tgA+tgB+tgC Do đó BĐT $\leftrightarrow 3(\sin A + \sin B + \sin C) \leq (\cos A + \cos B + \cos C)(tgA + tgB + tgC)$ $\leftrightarrow 3 (\cos A.tgA + \cos B.tgB + \cos C.tgC) \leq$ $\leq (\cos A + \cos B + \cos C)(tgA + tgB + tgC)$

Xét hiệu

 $3(\cos A.tgA + \cos B.tgB + \cos C.tgC) -$

 $- (\cos A + \cos B + \cos C)(tgA + tgB + tgC)$

 $= (\cos A - \cos B)(tgA - tgB) + (\cos B - \cos C)(tgB - tgC) +$ $+ (\cos C - \cos A)(tgC - tgA)$

Giả sử A > B > C. Vì $\triangle ABC$ nhọn nên $\begin{cases} tgA \ge tg \ge tgC \\ \cos A \le \cos B \le \cos C \end{cases}$ Do đó hiệu nói trên ≤ 0 . Từ đó \rightarrow (dpcm)

3.10. CMR : $\sin 2A + \sin 2B + \sin 2C \le \sin A + \sin B + \sin C \forall \Delta ABC$ Giải

Ta sẽ chứng minh

 $3(\sin A \cos A + \sin B \cos B + \sin C \cos C) \leq$

 \leq (sinA + sinB + sinC)(cosA + cosB + cosC) Xét hiệu

 $3(\sin A \cos A + \sin B \cos B + \sin C \cos C) -$

 $- (\sin A + \sin B + \sin C)(\cos A + \cos B + \cos C)$ $= (\sin A - \sin B)(\cos A - \cos B) + (\sin B - \sin C)(\cos B - \cos C) +$ $+ (\sin C - \sin A)(\cos C - \cos A)$ Già sử A > B > C $\rightarrow \begin{cases} \sin A > \sin B > \sin C \\ \cos A \le \cos B \le \csc C \end{cases} \rightarrow Hiệu \le 0 \rightarrow (dpcm)$ The có :

 $\sin 2A + \sin 2B + \sin 2C = \frac{2}{3} \cdot 3 (\sin A \cos A + \sin B \cos B + \sin C \cos C)$

- $\leq \frac{z}{3} (\cos A + \cos B + \cos C)(\sin A + \sin B + \sin C) \leq$ $\leq \frac{2}{3} \cdot \frac{3}{2} \cdot (\sin A + \sin B + \sin C) = \sin A + \sin B + \sin C \cdot (dpcm)$ (ở đây ta đã sử dụng BDT cosA + cosB + cosC $\leq \frac{3}{2}$) 3.11. 15HI.2 : CMR $3 \sum \sin A \cdot \sin 2A \leq \sum \sin A \cdot \sum \sin 2A \forall \Delta ABC$ A. B, C A, b, C A.B.C Giải Xét các khả năng sau 1) $\triangle ABC \ nhon : Gia sử A \ge B \ge C \rightarrow \begin{cases} \sin A \ge \sin B \ge \sin C \\ \sin 2A \le \sin 2B \le \sin 2C \end{cases}$ Ta có 3 $\sum \sin A \cdot \sin 2A - \sum \sin A \cdot \sum \sin 2A$ A, B, C A, B, C A, B, C $= \sum (\sin A - \sin B)(\sin 2A - \sin 2B) \le 0 \rightarrow (dpcm)$ A. B. C 2) $\triangle ABC$ không nhọn : Giả sử $C \ge \frac{\pi}{2} \rightarrow A, B < \frac{\pi}{2}$ Khi đó $\begin{cases} \sin A < \sin C \\ \sin B < \sin C \end{cases} \leftrightarrow \begin{cases} \sin A - \sin C < 0 \\ \sin B - \sin C < 0 \end{cases}$ (1). Mặt khác $2\sin 2A - \sin 2B - \sin 2C = \sin 2A + (\sin 2A - \sin 2B - \sin 2C)$ $= \sin 2A - 4\sin A\cos B\cos C > 0$ (2) $2\sin 2B - \sin 2C - \sin 2A = \sin 2B + (\sin 2B - \sin 2C - \sin 2A)$ = sin2B - 4sinBcosAcosC > 0 (3) Kết hợp (1), (2) và (3) ta có $3\sum \sin A \cdot \sin 2A - \sum \sin A \cdot \sum \sin 2A =$ A. B. C A.B.C A. B. C
- VNMATH CON

A. 3. C

= $\sum (\sin A - \sin B) (\sin 2A - \sin 2B)$

 $= (\sin A - \sin C)(2\sin 2A - \sin 2B - \sin 2C) +$ + (sinB - sinC)(2sin2B - sin2C - sin2A) = (sinA - sinC)(sin2A - 4sinAcosBcosC) + + (sinB - sinC)(sin2B - 4sinBcosAcosC) < 0 \rightarrow 3 \sum sinA. sin2A \leq \sum sinA . \sum sin2A

ŝ

Tôm lại ta luôn có BĐT luôn đúng VAABC.

A.B.C

§4. PHƯƠNG PHÁP SỬ DỤNG TAM THỨC BẬC 2

A.B.C.A.B.C

Có 8 kỉ thuật sử dụng tam thức bậc 2, ở đây xin trích 4 kỉ thuật thường được sử dụng.

1. So dô 1 : $A \ge B (\forall) \leftrightarrow A - B \ge 0$

Biến đối A - B = f(x) = $ax^2 + bx + c \ge 0 \quad \forall x \leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}$

4.1. 211.1 Cho $\triangle ABC$. CMR $1 + \frac{1}{2}x^2 \ge \cos A + x(\cos B + \cos C) \forall x$ Giải

$$\leftrightarrow f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^2 - (\cos B + \cos C)\mathbf{x} + 2\sin^2 \frac{A}{2} \ge 0 \quad \forall \mathbf{x}$$

Ta co :

$$\Delta = (\cos B + \cos C)^2 - 4\sin^2 \frac{A}{2} = 4\cos^2 \frac{B+C}{2}\cos^2 \frac{B-C}{2} - 4\sin^2 \frac{A}{2}$$
$$= 4\sin^2 \frac{A}{2}\left(\cos^2 \frac{B-C}{2} - 1\right) \le 0$$

Do do $\frac{1}{2}$. $f(\mathbf{x}) \ge 0 \quad \forall \mathbf{x} \leftrightarrow f(\mathbf{x}) \ge 0 \quad \forall \mathbf{x} \rightarrow (dpcm)$

/NMATH.COM

1.2 13.2111 Cho ΔΑΒC.

•,•

CMR : $pa^2 + cb^2 > pqc^2 \forall p, q : p + q = 1$ Giải

BDT \rightarrow **pa**² + (1 - p)b² - p(1 - p)c² > 0 $\forall p$ $\leftrightarrow f(p) = (c^{2})p^{2} + (a^{2} - b^{2} - c^{2})p + b^{2} > 0 \ \forall p$ Ta có $\Delta = (a^2 - b^2 - c^2)^2 - 4b^2c^2 = [a^2 - (b+c)^2][a^2 - (b-c)^2] =$ = (a - b - c)(a + b + c)(a + b - c)(a - b + c) < 0Do do $c^2.f(p) > 0 \forall p \leftrightarrow f(p) > 0^{\ell} \forall p \rightarrow (dpcm)$ 1.3 2311.2 : CMR. Vx. y ta luon co : $x^{2}(1 + \sin^{2}y) + 2x(\sin y + \cos y) + 2x(\sin y + \cos y) + 1 + \cos^{2}y > 0$

Giai

BDT \leftrightarrow f(x) > 0 \forall x (\forall y)

Theo BDT Bunhiacopski ta có $(siny + cosy)^2 \le (1 + sin^2y)(cos^2y + 1)$ siny = 1cosy = 1 vô nghiệm nên dấu bằng không xảy ra Do do $\Delta' = (\sin y + \cos y)^2 - (1 + \sin^2 y)(\cos^2 y + 1) < 0$ Vay $f(x) = x^2(1 + \sin^2 y) + 2x(\sin y + \cos y) + 1 + \cos^2 y > 0$ $\forall \mathbf{x} \ (\forall \mathbf{y})$ 1511.1 : CMR : $a^{2} + b^{2} + c^{2} + d^{2} + e^{2} \ge a(b+c+d+e) \forall a, b, c, d, e$ Giải BDT $\leftrightarrow f(a) = a^2 - (b + c + d + e)a + (b^2 + c^2 + d^2 + e^2) \le 0$ ∀a (∀b, c, d, e)

Theo BDT Bunhiacôpski ta có

 $(\mathbf{b} + \mathbf{c} + \mathbf{d} + \mathbf{e})^2 \le (1^2 + 1^2 + 1^2 + 1^2)(\mathbf{b}^2 + \mathbf{c}^2 + \mathbf{d}^2 + \mathbf{e}^2)$ Do đó $\Delta = (b + c + d + e)^2 - 4(b^2 + c^2 + d^2 + e^2) \le 0$ suy ra $f(a) \ge 0 \forall a (\forall b, c, d, e) \rightarrow (dpcm)$

/NMATH.CON

- 140111.1 : Cho cấp số cộng ÷ a, b, c, d và 2m ≥ |ad bc|CMR : (x - a)(x - b)(x - c)(x - d) + m² ≥ 0 ∀x (1) Giải
 - $VT = (x a)(x b)(x c)(x d) + m^{2} =$ =(x² - (a + d)x + ad)[x² - (b + c)x + bc] + m² Dat t = x² - (b + c)x + bc. V] b + c = a + d nén VT (1) = f(t) = [t + (ad - bc)]t + m² \leftrightarrow f(t) = t² + (ad - bc)t + m²

Ta có $\Delta = (ad - bc)^2 - 4m^2 \le 0$ (theo gt) \rightarrow f(t) $\ge 0 \rightarrow$ (dpcm) 8311.2 : CMR : $19x^2 + 54y^2 + 16z^2 - 16xz - 24y + 36xy \ge 0$ $\forall x, y, z$

Giải

Dat $f(x) = 19x^2 + 2(8z - 18y)x + 54y^2 + 16z^2 - 24y$ Ta có $\Delta'x = g(y) = -702y^2 + 168y - 240z^2$ g(y) có $\Delta'y = (84z)^2 - 702.240z^2 = -161424z^2 \le 0$ $\Rightarrow \Delta'x = g(y) \le 0 \Rightarrow f(x) \ge 0 \forall x, y, z$ Tức là $19x^2 + 54y^2 + 16z^2 - 16xz - 24yz + 36xy \ge 0 \forall x, y, z$

2. So do 2 A
$$\geq$$
 B \leftrightarrow A - B = $\begin{vmatrix} b^2 - 4ac \\ b'^2 - ac \end{vmatrix} \geq 0$

Dật $f(x) = ax^2 + bx = c$ và chứng minh f(x) có nghiệm theo tiêu chuẩn $af(\alpha) \le 0$ hoặc $f(\alpha)f(\beta) \le 0$

2.1 : 53111.2 Cho
$$p^2 + q^2 - a^2 - b^2 - c^2 - d^2 > 0$$
.
CMR : $(p^2 - a^2 - b^2)(q^2 - c^2 - d^2) \le (pq - ac - bd)^2$

Giải

BDT ↔ $\Delta' = (pq-ac-bd)^2 - (p^2 - a^2 - b^2)(q^2 - c^2 - d^2) \ge 0$ Theo (gt) → $(p^2 - a^2 - b^2) + (q^2 - c^2 - d^2) > 0 \rightarrow \exists 1$ hiểu thức chẳng hạn $p^2 - a^2 - b^2 > 0$.

Xét $f(x) = (p^2 - a^2 - b^2)x^2 - 2(pq - ac - bd)x + (q^2 - c^2 - d^2)$

$$\begin{array}{l} \overset{(1)}{\mapsto} f(\mathbf{x})^{(1)} = f(\mathbf{x})^{(1)} \overset{(2)}{=} (\mathbf{g})^{2} \overset{(1)}{=} (\mathbf{a}\mathbf{x}^{(1)} - \mathbf{c})^{2} \cdot (\mathbf{a}^{(1)})^{(1)} \overset{(1)}{=} \mathbf{d}^{(2)} (\mathbf{c}^{(1)})^{(1)} \cdot (\mathbf{h}^{(1)})^{(1)} \\ \rightarrow f\left(\frac{\mathbf{a}}{\mathbf{p}}\right)^{(1)} = -\left[\left(\frac{\mathbf{a}\mathbf{d}}{\mathbf{p}} - \mathbf{c}\right)^{2} + \left(\frac{\mathbf{b}\mathbf{q}}{\mathbf{p}} - \mathbf{d}\right)^{2}\right] \leq 0 \\ & \text{ind} \\ (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{b}^{2})f\left(\frac{\mathbf{q}}{\mathbf{p}}\right)^{(1)} \overset{(1)}{=} (\mathbf{b}^{(1)} - \mathbf{g}^{(1)})^{(1)} \cdot \mathbf{g}^{(1)} - \mathbf{g}^{(1)})^{(1)} - \mathbf{g}^{(1)} = \mathbf{g}^{(1)} \\ (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{b}^{2})f\left(\frac{\mathbf{q}}{\mathbf{p}}\right)^{(1)} \overset{(1)}{=} (\mathbf{b}^{(1)} - \mathbf{g}^{(1)})^{(1)} \cdot \mathbf{g}^{(1)} - \mathbf{g}^{(1)} = \mathbf{g}^{(1)} = \mathbf{h}^{(1)} \\ \text{Do} \ \mathbf{d}\mathbf{d}_{1} \overset{(1)}{\to} \overset{(1)}{\to} (\mathbf{p})^{(1)} \overset{(1)}{=} (\mathbf{g}\mathbf{q} - \mathbf{a}\mathbf{c} - \mathbf{b}\mathbf{d})^{2} + \mathbf{h}^{(1)} \overset{(1)}{\to} (\mathbf{g}^{(1)})^{(1)} + \mathbf{g}^{(1)} \overset{(1)}{\to} (\mathbf{g}^{(2)} - \mathbf{g}^{(2)} + \mathbf{g}^{(2)}) \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{b}^{2})^{(1)}\mathbf{q}^{2} + \mathbf{c}^{2}\mathbf{f}^{(1)}\mathbf{d}^{2} + \mathbf{g}^{2}\mathbf{g}^{(1)} \overset{(1)}{\to} (\mathbf{g}^{(1)} + \mathbf{g}^{(1)}\mathbf{g}^{(2)}) \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{b}^{2})^{(1)}\mathbf{q}^{2} + \mathbf{c}^{2}\mathbf{f}^{(1)}\mathbf{d}^{2} + \mathbf{g}^{2}\mathbf{g}^{(1)} \overset{(1)}{\to} (\mathbf{g}^{(1)} + \mathbf{g}^{(1)}\mathbf{g}^{(2)}) \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{b}^{2})^{(1)}\mathbf{q}^{2} + \mathbf{c}^{2}\mathbf{f}^{(1)}\mathbf{d}^{2} + \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} + \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{a}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2} - \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g}^{(1)} \\ \Rightarrow (\mathbf{p}^{2} - \mathbf{g}^{2}\mathbf{g}^{(1)}\mathbf{g$$

Ban dọc tự giải tương tự với cách giải trên 2.3 CMR = $[x_{01} + [y_{1}] + [y_{1}] + [y_{1}y_{2}] + [x_{0}y_{2}] = [x_{0}] = [x_{0}] + 40]$ (1 + a_{1} + a_{2} + $[y_{1}y_{2}] + [y_{1}y_{2}] + [x_{0}y_{2}] + [x_{0}y_{2}] + [y_{1}y_{2}] + [y_{1}y_{1}] + [y_$ **VNMATH CON**

$$\frac{1}{2(d_0 + a_{b_0} + a_{-pq} + a_{-pq} + a_{0})}{0 < a \le a_p, a_2, \dots, a_n \le A}$$

$$\frac{1}{2(d_0 + a_{b_0} + a_{-pq} + a_{-p$$

2.4 : Cho $0 \le b \le b_{111}b_{01} = b_{111} = 1$ (bd-the-pg) = $2 \leftrightarrow TGB$ u = 1 $0 \le c_{11} = 1$ $b_{11} = \frac{1}{4} = \frac{1}{4}$

iil.

VNMATH.COM

Cách 1: Theo định lị Viết thì y, z là nghiêm của phương trình

$$u^2 - (t - x)u + (x^2 - tx + 4) = 0$$

Vì y, z luôn $\exists \rightarrow$ phương trình luôn có nghiệm. do đó
 $\Delta = (t-x)^2 - 4(x^2 - tx + 4) \ge 0 \Leftrightarrow 3x^2 - 2tx + (16 - t^2) \le 0$
Cách 2: Tạ có $(y + z)^2 \ge 4yz$ nên $(t - x)^2 \ge 4(x^2 - tx + 4)$
 $\Rightarrow 3x^2 - 2tx + (16 - t^2) \le 0$
Mà $|t| = 4 \rightarrow t^2 = 6$ nên ta có $3x^2 - 2tx \le 0$
 $\Rightarrow x(3x - 2t) \le 0 \Rightarrow \begin{bmatrix} -\frac{8}{3} \le x \le 0\\ 0 \le x \le \frac{8}{3} \end{bmatrix} \Rightarrow \begin{bmatrix} -\frac{8}{3} \le x \le \frac{8}{3}\\ 0 \le x \le \frac{8}{3} \end{bmatrix}$
Tương tự $-\frac{8}{3} \le y, z \le \frac{8}{3} \Rightarrow -\frac{8}{3} \le x, y, z \le \frac{8}{3}$
3.2: Cho (x, y, z) là nghiệm của hệ $\begin{cases} x^2 + y^2 + z^2 = 2\\ xy + yz + zx = 4 \end{cases}$
 $CMR : -\frac{4}{3} \le x, y, z \le \frac{4}{3}$
3.3: Cho (x, y, z) là nghiệm của hệ $\begin{cases} x + y + z = a\\ xy + yz + zx = a \end{cases}$
 $CMR : \frac{a - 2\sqrt{a^2 - 3b}}{3} \le x, y, z \le \frac{a + 2\sqrt{a^2 - 3b}}{3}$
4. Sơ đổ 4: Phương phép miến giá trị
701: Tìm miến giá trị của $y = \frac{2x - 1}{x^2 + x + 4}$
Giải
 $y_0 \in MGT \rightarrow y_0x^2 + (y_0 - 2)x + 4y_0 + 1 = 0$ (*)
Nếu $y_0 = 0$ thì $x = \frac{1}{2}$
Nếu $y_0 \neq 0$ thì để pt (*) có nghiệm ta có

VNMATH.COM

$$0 \leq \Delta = 15y_{0}^{2} - 8y_{0} + 4 \leftrightarrow \frac{-4 + 2\sqrt{19}}{15} \leq y_{0} \leq \frac{-4 - 2\sqrt{19}}{15}$$

Từ dó \rightarrow MGT là $\left[\frac{-4 - 2\sqrt{19}}{15}, \frac{-4 + 2\sqrt{19}}{15}\right]$
10911.1 : Cho $y = \frac{x^{2}\cos\alpha - 2x + \cos\alpha}{x^{2} - 2x\cos\alpha + 1}$ với $\alpha \in (0, \pi)$
 CMR : $\forall x$ ta có $-1 \leq y \leq 1$
Giải
 $y_{0} \in MGT \leftrightarrow (y_{0} - \cos\alpha)x^{2} - 2(y_{0}\cos\alpha - 1)x + y_{0} - \cos\alpha = 0$
Nếu $y_{0} = \cos\alpha \rightarrow x = 0$
Nếu $y_{0} \neq \cos\alpha \rightarrow 0 \leq \Delta' = -\sin^{2}\alpha(y^{2} - 1) \leftrightarrow -1 \leq y \leq 1$
115111.1 Tìm Max $y = \left[\frac{12x(x - a)}{x^{2} + 36}\right]^{3/4}$
Giải
Dật $t = \frac{12x(x - a)}{x^{2} + 36} \rightarrow (12 - t)x^{2} - 12ax - 36t = 0$ có nghiệm
 $\leftrightarrow 0 \leq \Delta' = 36a^{2} + 36t(12 - t)$

 $\leftrightarrow 6 - \sqrt{36 + a^2} \le t \le 6 + \sqrt{36 + a^2}$ Từ đó suy ra Max y = $\left[6 + \sqrt{36 + a^2}\right]^{3/4}$ 7511.2 : Tìm a, b để y = $\frac{ax + b}{x^2 + 1}$ đạt Max bằng 4, Min bằng -1

Giải

$$y_{o} \in MGT \leftrightarrow y_{o}x^{2} -ax + y_{o} - b = 0 \quad (1)$$
Néu $y_{o} = 0 \leftrightarrow \begin{bmatrix} a = b = 0 \\ a \neq 0, x = -\frac{b}{a} \end{bmatrix}$
Néu $y_{o} \neq 0 \rightarrow$ phương trình (1) phải có nghiệm. Khi đó
$$0 \leq \Delta = -4y_{o}^{2} + 4by_{o} + a^{2}$$

10)

VNMATH COM

De Max y = 4 và Min y = -1 ta phải có phương trình $-4y_0^2 + 4by_0^2 + a^2 = 0$ cơ 2 nghiệm (-1) và 4 Khi do a = $\pm \frac{91}{4} \frac{91}{2} \frac{1}{6} = 3 \frac{91}{6} \frac{1}{6} = 3 \frac{1}{6} \frac{1}{6} \frac{1}{6} = 3 \frac{1}{6} \frac{1}{6}$ 32 IV.a : Cho phương trình : $x^2 + (2a \rightarrow \theta)x^{164} = 13 = 0$ (F & $a^{1/2} + b)^{1201}$ $1 + 3200x^2 - x$ Tìm a để nghiệm lớn của phượng trình nhận giá trị mạx Giải (新日) 0 = ve2Phugng+telnh-++eat(2;02+-1).x=>e+x²-+y6x-+13M = ...y $= \frac{-\mathbf{x}_{o}^{2} - 4\mathbf{x}_{o} - 12}{2\mathbf{x}_{o} + 1} \stackrel{\text{iff}}{=} \frac{\left(\frac{(R - x)\mathbf{x}_{o}^{2}\mathbf{p}}{\partial \mathbf{x}_{o}\mathbf{x}^{2}}\right)^{2}}{\left(-\frac{1}{2} < \mathbf{x}_{o} \le 6\right)} \stackrel{\text{iff}}{=} \frac{1}{2} \stackrel{\text$ $\iint_{x_{1}} t = \frac{12x(x - a)}{x_{1} \pm \frac{81}{2} + \frac{6}{2}} \frac{(\frac{3}{2} + \frac{2}{6})}{2} = a \leftarrow b = (ax - 36) = 0$ of aghies of $x_{1} \pm \frac{81}{2} \pm \frac{6}{2} + \frac{6}$ $\frac{1}{100} = \frac{1}{2} \cdot \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}$ -+ 6 - V26 + a = 1 = 1 = - 8 + V36 + a §5. PHUONG PHAP SU DUNG DINH NGHIA "T 7511.2 : Thu BUNG DIOUT AND TANG ANA NANG & Min hang -1 5.1 ISH.2 : CMR : isi) $\mathbf{a}^2 + (\mathbf{b}^2 + \mathbf{c}^2) + \mathbf{d}^2 + \mathbf{e}^2 \vee \gg \mathbf{a} \mathbf{a} \mathbf{b} + \mathbf{e} + \mathbf{c} + \mathbf{c} + \mathbf{e} \mathbf{b} \vee \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{c}, \mathbf{d}, \mathbf{e}$ Giải $0 \doteq d = e$

/NMATH.CON

Ta co $a^2 + b^2 + c^2 + d^2 + \frac{b^2}{2} = a(b, t) \in t$ $a^2 + b^2 + c^2 + d^2 + \frac{b^2}{2} = a(b, t) \in t$ $a^2 + b^2 + c^2 + d^2 + \frac{b^2}{2} = a(b, t) \in t$ b = b = b b = c, d, e c = c, d, ec = c, d, e

5.2. 2111.2 : Cho $a^2 + b^2 + c_2^2 = \frac{1}{2} + c_2 = \frac{1}{2$
Giải
Ta co abc + $2(1 + a + b + c + ab + bc + ca) \neq$
$= (1+a)(1+b)(1+c) + a^{2} + b^{2} + c^{2} + a + b + c + ab + bc + ca$ $= (1+a)(1+b)(1+c) + a^{2} + b^{2} + c^{2} + a + b + c + ab + bc + ca$ $= (1 + a)(1+b)(1+c) + c + c + b + c)^{2}$ $= (1 + a)(1+b)(1+c) + c + c + c + b + c)^{2}$
-
(Ở đây ta đã sử dụng giả thiết $a^{1} + b^{2} + c^{2} = 1$ để suy ra a^{2} , b^{2} , $c^{2} \leq 1 \Rightarrow -1 \leq a$, $b = c \Rightarrow 1 + a + d \neq b$, $b \neq c \geqslant 0$
5.3. 19611.2 Chg a, b, c, $\in [0, 1]$ to determine and the second in =
$CMR : a^{2} + b^{2} + c^{2} \le 1 + a^{2}b + b^{2}c + \mathfrak{S}_{HAL} + 1.11\delta_{HAL}$
Giải $f_{d} = f_{B} = f_{cd} = a_{BD} + f_{C} = a_{B} + f_{C} = d_{BD} + MC$
Vi a, b, c \in [0, 1] nên 0 $\leq \iota^2 \leq a \leq 1$, 0 $\leq b^2 \leq b \leq \frac{1}{16}$
$0 \leq c^2 \leq c \leq 1$. Do đó ta có i ta có i ta có i ta có i ta co dia
$0 \leq (1 - a^{2})(1 - b^{2})(1 - c^{2}) =$ $= 1 - (a^{2} + b^{2} + c^{2}) + a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} - a^{2}b^{2}c^{2}$ $= a^{2} + b^{2} + c^{2}) + a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} - a^{2}b^{2}c^{2}$ $\Rightarrow a^{2} + b^{2} + c^{2} \leq 1 + a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} \leq$
$\Rightarrow \mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{i} + \mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{c} + \mathbf{c} = \mathbf{i} + \mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{c} + \mathbf{c} = \mathbf{i} + \mathbf{i} + \mathbf{c} = \mathbf{i} + \mathbf{i} + \mathbf{c} = \mathbf{i} + \mathbf{i} + \mathbf{i} + \mathbf{c} = \mathbf{i} + \mathbf{i} +$
5.4. 1281.2 Cho'a, b, $c \in [0, 2]$ va'a $+ b + c = 3.5 - d = -2.5$
CMR : $a^{2} + b^{2} + c^{2} \leq 5$ is a b + is - old + is - dis
5.7. $430R.2$ SABC CMR at + b ² 5 or < 203b + bc + ciaiD
$ \begin{array}{l} \text{Dat} \begin{cases} \mathbf{a} = 1 + \alpha \\ \mathbf{b} = 1 + \beta \\ \mathbf{c} = 1 + \gamma \end{cases} \stackrel{(\alpha + \beta + \gamma = 0)}{\underset{\alpha, \beta \neq \gamma' \in \{[\sigma 1, -1\}: 0 > + [\gamma 0] + [\gamma 0]\} \leq 2}{\underset{\beta \neq \gamma' \in \{[\sigma 1, -1]: 0 > + [\gamma 0] + [\gamma 0]\} \leq 2}} \end{cases} $
Trong 3 số \vec{a} , $\vec{\beta}$, $\vec{\gamma}$ luôn $\vec{B}^{(1)}_{2}$ số hoặc cùng ≥ 0 hoặc cùng ≤ 0 ,
già sử 2 số đó là α , β . (Khi đố $\omega_{1} - \beta + \delta \omega_{2} + (\beta - \delta + \beta) = 0$

 $\alpha^2 + \beta^2 + \gamma^2 \leq \alpha^2 + \beta^2 + 2\alpha\beta + \gamma^2 = (\alpha + \beta)^2 + \gamma^2 = 2\gamma^2 \leq 2$

VNMATH.COM

5.5. 11211.2 : $\triangle ABC \text{ co } a < b < c.$ $CMR : a^{3}(b^{2} - c^{2}) + b^{3}(c^{2} - a^{2}) + c^{3}(a^{2} - b^{2}) < 0$ Giái

$$a^{3}(b^{2} - c^{2}) + b^{3}(c^{2} - a^{2}) + c^{3}(a^{2} - b^{2}) =$$

$$= a^{3}(b^{2} - c^{2}) - a^{2}(b^{3} - c^{3}) + b^{2}c^{2}(b - c)$$

$$= (b - c)[a^{3}(b + e) - a^{2}(b^{2} + bc + c^{2}) + b^{2}c^{2}]$$

$$= (b - c)[a^{2}b(a - b) + a^{2}c(a - b) - c^{2}(a^{2} - b^{2})]$$

$$= (b^{2} + c)(a - b)[a^{2}b + a^{2}c - c^{2}(a + b)]$$

$$= (b - c)(a - b)(a - c)(ab + bc + ca) < 0 (V) 0 < a < b < c)$$
5.6. 13611.1 : ΔABC .
CMR : $a(b - c)^{2} + b(c - a)^{2} + c(a + b)^{2} > a^{3} + b^{3} + c^{3}$
Giải
 $a(b - c)^{2} + b(c - a)^{2} + c(a + b)^{2} - (a^{3} + b^{3} + c^{3})$

$$= a[(b - c)^{2} - a^{2}] + b[(c - a)^{2} - b^{2}] + c[(a + b)^{2} - c^{2}]$$

$$= (b - c + a)[a(b - c - a) - b(c - a + b) + c(a + b + c)]$$

$$= (b - c + a)[c^{2} - (a - b)^{2}]$$

$$= (b - c + a)(c + a - b)(c - a + b) > 0. Do do'$$
 $a(b - c)^{2} + b(c - a)^{2} + c(a + b)^{2} > a^{3} + b^{3} + c^{3}$
5.7. 13011.2 ΔABC . CMR $a^{2} + b^{2} + c^{2} < 2(ab + bc + ca)$
Giải

/NMATH.COM

= c(a + b - c) + a(b + c - a) + b(c + a - b) > 0Up do $a^2 + b^2 + c^2 < 2(ab + bc + ca)$

5.8. 17111.2 : $\triangle ABC$ có $a \le b \le c$. CMR : $(a + b + c)^2 \le 9b$. Giải

Ta co $(a + b + c)^2 \le (b + b + c)^2 = (2b + c)^2$ Ta sẽ chứng minh $(2b + c)^2 \le 9bc \iff (2b + c)^2 - 8bc \le bc$ $\iff (2b - c)^2 \le bc$. Ta co $\begin{cases} 2b - c \le b \Rightarrow b \le c \\ 2b - c \le c \Rightarrow b \le c \end{cases}$ Do đó $(2b - c)^2 \le bc$. Từ đó $(a + b + c)^2 \le 9bc$ o.9. 92111 : $\triangle ABC$ có $A \ge B \ge C$.

 $CMR : \frac{h_a}{h} + \frac{h_b}{h} + \frac{h_c}{h} \ge \frac{h_b}{h} + \frac{h_c}{h} + \frac{h_a}{h}$ Giải $\leftrightarrow \frac{2S/a}{2S/b} + \frac{2S/b}{2S/c} + \frac{2S/c}{2S/a} \ge \frac{2S/b}{2S/a} + \frac{2S/c}{2S/b} + \frac{2S/a}{2S/a}$ $\leftrightarrow \frac{b}{a} + \frac{c}{b} + \frac{a}{a} \ge \frac{a}{b} + \frac{b}{a} + \frac{c}{a}$ $\leftrightarrow b^2c + c^2a + a^2b \ge a^2c + b^2a + c^2b$ $\leftrightarrow b^2(c - a) + ca(c - a) - b(c^2 - a^2) \ge 0$ $\leftrightarrow (\mathbf{c} - \mathbf{a})[\mathbf{b}^2 + \mathbf{c}\mathbf{a} - \mathbf{b}(\mathbf{c} + \mathbf{a})] \ge 0$ $\leftrightarrow (\mathbf{c} - \mathbf{a})(\mathbf{b} - \mathbf{c})(\mathbf{b} - \mathbf{a}) \ge 0$ Theo (gt) $A \ge B \ge C \iff a \ge b \ge c \implies \begin{cases} c -a \le 0 \\ b -a \le 0 \\ b -c \ge 0 \end{cases}$ Do do $(c - a)(b - c)(b - a) \ge 0 \rightarrow (dpem)$ 5.10 (140111.2) $\triangle ABC$ (a, b, c). $CMR : \left| \frac{a}{b} + \frac{b}{c} + \frac{c}{a} - \frac{a}{c} - \frac{b}{b} - \frac{b}{c} \right| < 1$ Giải Biến đổi tương tự như bài trên ta có $\left|\frac{a}{a} + \frac{b}{b} + \frac{c}{a} - \frac{a}{c} - \frac{c}{b}\right| = \left|\frac{(a-c)(c-b)(a-b)}{(a-b)}\right|$

$$= \frac{|\mathbf{b} - \mathbf{c}| \cdot |\mathbf{c} - \mathbf{a}| \cdot |\mathbf{a} - \mathbf{b}|}{\mathbf{a}\mathbf{b}\mathbf{c}} < \frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}}{\mathbf{a}\mathbf{b}\mathbf{c}} = 1 \quad (\mathbf{d}\mathbf{p}\mathbf{c}\mathbf{m})$$

VNMATH.CON

22][.2, ΔABC (a, b, c) dian tich bang 1. CMR $:= a^4 + b^4 + (c^4) \ge 16$ 81111.3 : ABC diện tích S. Tìm số thực p nhỏ nhất thỏa mặn $(a_1^+, (c_2^+, s_2^+)) = p(a_1^+, b_1^+, b_1^+, b_2^+) = b(a_1^+, b_2^+) = b(a_2^+, b_2^+) = b(a_2^$ Ta se chúng minh (2b + c)² < She - e (2b + c)² - ShéiD Ta se chứng minh $(\mathbf{a}^{+}) \neq \mathbf{b}_{0}^{+} \neq \mathbf{b}_{0}^{+} \neq \mathbf{b}_{0}^{+} \Rightarrow 16S^{2}$. Thật, $16S^2 = \frac{2\pi n c}{16p(p - a)(p - b)(p - b)} \frac{dS}{dS} c) =$ $= (\mathbf{b}^{-1} + \mathbf{c}^{-1} + \mathbf{a}^{-1})(\mathbf{b}^{-1} + \mathbf{c}^{-1} - \mathbf{a})(\mathbf{c}^{-1} + \mathbf{b}^{-1} + \mathbf{a}^{-1})(\mathbf{a}^{-1} + \mathbf{b}^{-1} - \mathbf{c})^{-1}$ $= [(b + c)^{2} - a^{2}][a - (b - c)^{2}] \leq [(1^{2} + 1^{2})(b^{2} + c^{2}) - a^{2}]a^{2}$ $= (2b^{2} + 2c^{2} - a^{2})a^{2} = (2b^{2}a^{2d} + 2c^{2}a^{2} = a^{2} = a^{2})a^{2} = (2b^{2}a^{2} + 2c^{2}a^{2} = a^{2})a^{2} = a^{2}$ CMR - $\leq (b^{4} + a^{4}) + (c^{4} + a^{4}) \stackrel{d}{\rightarrow} a^{4} \stackrel{d}{=} a^{4} + b^{4} + c^{4}$ isid Vay $a^4 + b^4 + e^2 \ge 16s^2$ $d \ge 0.22 + d \ge 0.22$ Ap dung : 2211.2 : Vi S = 1 \Rightarrow a¹ + b¹ + c² > 16¹² 81UII.3 : Ta có S² $\leq \frac{1}{16}(a^4 + b^4 \frac{a}{b^4} c^4 \frac{a}{b} + c^5 \frac{b}{c^4} + c^5 \frac{b}{c^4} + c^6 \frac{b}{c^6} + c^6 \frac{b}{c$ o d=s + s=d + s=s s d=s + s=s = s=d ↔ Dây bàng xảy rat \leftrightarrow a = b = dc - Vậy -Min = $\frac{1}{16}$ - $\frac{1}{16}$ Giải $0 \ge n - 1$ Theo (gt) A = B > C ++ a = b > c ++ (1) $\leftrightarrow -(x^2 + y^2 + z^2) \leq 2(xy + yz + zx)$ $\leftrightarrow 0 \leq x^{2} + y^{2} + y^{2} + 2(xy+yz+zx) = (x+y+z)^{2} + 2(xy+z+zx) = (x+z+z)^{2} + 2(xy+z+zx) = (x+z+z)^{2} + 2(x+z+z)^{2} + 2(x+z$ (2) $\underset{\leftrightarrow}{\overset{i}{\leftrightarrow}} xy + \underset{yz}{\overset{o}{\approx}} \frac{z}{z} \overset{d}{t} \overset{d}{t} \overset{i}{t} \frac{z}{z} + \frac{z}{z} \overset{d}{t} z \overset{i}{t} + \frac{z}{z} \overset{d}{t} z \overset{i}{t} + \frac{z}{z} \overset{d}{t} z \overset{i}{t} z \overset{i}{t} \overset{i}{t} z \overset{i}{t} \overset{i}{t$ $\leftrightarrow x^2 + y^2 + z^2 - (xy + yz + zx) \ge 0$ (iiai) $= \frac{[x^2 + y^2 - 2xy] + [y^2 + s^2 - (2y_2] + (y^2 + s^2 - (2y_2) + (2y_$ $\leftrightarrow \frac{1}{2} \frac{(d-\alpha)(d-\beta)(\beta-\beta)^2}{(d-\beta)^2 + (y-2)^2 + (z-x)^2} = \frac{d-\beta}{\beta} \frac{$ angli i = ada. ode

NNMATH.CON

5.12. 77V () BA de 90 : Cha) at + b A e^{-2} (0 CMR e^{-1}) e^{-1} (1 e^{-2} - 3abc Giải 0 < d - B. Theo gia thiết a > b > 0 và c > Vab -+ Ta co $a^{3} + b^{3} + c^{3} - 3abc = (a+b)^{3} + c^{3} - 3a^{2}b - 3ab^{2} - 3abc =$ = $[(\mathbf{a} + \mathbf{b}) \neq^{tt} c][\mathbf{a} \neq \mathbf{b}^{\mathbf{b}} \stackrel{\underline{v}^{T}}{=} (\mathbf{a}^{0} + \mathbf{b}^{\mathbf{c}} c^{2}] \stackrel{\underline{v}^{T}}{=} \mathbf{b}^{\mathbf{b}} \stackrel{\underline{v}^{T}}{=} \mathbf{c}$ = $[a + b + c][a^2 + b^2 + c^2 - ab - bc - ca]$ CAU CHUYÊN VÊ LOI GIAI NGÂN NHĂH+A TRONG BAC'RT THI THAN GUODITE 2 Do đố: $\frac{a^{3} + b^{3} + c^{3} - 3abc}{(1 \le a + b + 5c_{B,15} + (1 - b)^{2} + (2 - a)^{2} + (2 - a)^{2}} = \frac{(a - b)^{2} + (2 - a)^{2}}{(1 - c_{B})^{2} + (2 - a)^{2}} = 0 \text{ dpent}$ 5.13. 127.14 Chowa, bit $a \ge 0$, théay màn $a = \frac{1}{a} = \frac{2}{b^{2}}$

Nhan xet ve ket qua thi Chu tich bof ting antan Brogei Pháp đà có nhân xet mang abiéu y nghta 2 Cd -688 ài thi giải bài toau số 6 của 6 ho- sinh Mỹ đều giống nhau và gióngliện an i cach is la' Thân ca bài toàn và Đáp án của Mỹ đều rất hay, tính an của Mỹ dựa vhố nhận xết về tạnh sain biến tro trong A de suy ra phep dop tien so renz Dasse

Cu thể tả trong $\Delta 48 dn^2 cơ (4 dn^2)$ trên thết thểi trên độ độ dố đã Δx , và 2z, $\overline{b} (4 - 2z)^2 (x, as <math>z = \overline{x} - 2z)^2$ then them

 $\frac{\mathbf{a} + \mathbf{b}}{\mathbf{c} + \mathbf{b}} = \frac{\mathbf{a} + 3\mathbf{c}}{\mathbf{c} + 3\mathbf{a}} = \frac{2\mathbf{a}\mathbf{c}^{(\frac{1}{2})}\mathbf{s}(\mathbf{a}^{(\frac{1}{2})}\mathbf{s}^{(\frac{1}{2})}\mathbf{$ CHUB Due da doat giải nhất tối đa 12 12 và đoạt giải đạc biết nho lời giảo độc di (nhật) bộ ti ngườn bhết lý ngu các kỳ thi Toán Quốc Tế cu thể là: Quốc Tế cụ thể là:

5.14 32841.2 $B_{0}d_{0}91$ Cheia d k b > 0 $ka_{R} > 10$ aib $+ c - aib - ci^{+} + bia - \frac{b+2}{cb+2} \ll (\frac{a+2}{2} c) \approx SMR$ Lời giải này làm ta nhớ đến cấu chuyện ngụ ngôn :

Một người triệu phủ hồi mua tranh và người bản tranh đã nei gif angig (c tranh lasgiot trieu (c fala.) gifte agi u hai bei hời ông vệ bức tranh mạy mặt bảo mhiếu hai mặn thi Thiếdi iranh dát Bus the hey méghi bok 64+183 anin cuoi và na rang : "Thua ong, nhưng để về được bức tranh nượ trong b từan thi toi da phai auv nghi mất ba nam"

VNMATH.COM

 $\leftrightarrow c^{2}(a - b) - ab(a - b) \ge 0 \iff (a - b)(c^{2} - ab) \ge 0$ Theo gia thiết a > b > 0 và $c \ge \sqrt{ab} \rightarrow \begin{cases} a - b > 0 \\ c^{2} - ab \ge 0 \end{cases}$ Do đó $(a - b)(c^{2} - ab) \ge 0$. Từ đó \Rightarrow (dpcm)

CÂU CHUYỆN VỀ LỜI GIẢI NGẮN NHẤT TRONG CÁC KÌ THI TOÁN QUỐC TẾ

5.15 Cho
$$\triangle ABC$$
 (a, b, c).
CMR : $a^{2}b(a - b) + b^{2}c(b - c) + c^{2}a(c - b) \ge 0$

(Bài 6 - 6 diềm - Mỹ để nghị - VDTQT 1983 tại Pháp)

VNMATH.COM

Nhận xét về kết quả thi. Chủ tịch hội đóng giám khảo người Pháp đã có nhận xét mang nhiều ý nghĩa : "Cả 6 bài thi giải bài toán số 6 của 6 học sinh Mỹ đều giống nhau và giống đáp án 1 cách kỉ lạ". Thật ra bài toán và Đáp án của Mỹ đều rất hay. Đáp án của Mỹ dựa vào nhận xết về quan hệ hình học trong Δ để suy ra phép đổi biến số trong Đại số.

Cụ thể là trong Δ luôn có vòng tròn nội tiếp do đó luôn $\exists x, y, z > 0$ để a = x + z, b = z + x, c = x + y (Xem thêm phân Bunhiacôpaki).

Diều hấp dẫn trong kỳ thi này là 1 học sinh 14 tuổi của CHLB Đức đã đoạt giải nhất tối đa 42/42 và đoạt giải đặc biệt nhờ lời giải độc đáo bài số 6: "Ngắn nhất trong các kỳ thi Toán Quốc Tế" cụ thể là:

Giả sử a = max (a, b, c) khi đó biến đổi về trái ta được

 $a(b + c - a)(b - c)^{2} + b(a - b)(a - c)(a + b - c) \ge 0$

Lời giải này làm ta nhớ đến câu chuyện ngụ ngôn :

Một người triệu phủ hỏi mua tranh và người bán tranh đã nói giá của bức tranh là một triệu đôla. Người triệu phú bèn hỏi ông vẽ bức tranh này mất bao nhiều thời gian thỉ người bán tranh nổi tôi vẽ trong 1 tuần. Người mua tranh bèn chê tranh đất quá, còn người họa sĩ thì mim cười và nói rằng : "Thưa ông, nhưng để vẽ được bức tranh này trong 1 tuần thì tôi đã phải suy nghĩ mất ba năm".

§6. QUY NAP CÔSI

Dể chứng minh để (BDT) đúng với n = 3 ta chứng minh theo các bước :

Bucc 1 : Chung minh cho n = 2

Bước 2 : Sử dụng kết quả cho n = 2 để chứng minh cho n = 3Bước 3 : Sử dụng kết quả cho n = 4 để chứng minh cho n = 3 bằng cách biểu diễn 1 biến số theo 3 biến số còn lại.

6.1. [12011] CMR : Neu $0 \le x$, y, $z \le \pi$ thi

1) a) $\frac{\sin x + \sin y}{2} \le \sin \frac{x + y}{2}$ b) $\frac{\sin x + \sin y + \sin z}{3} \le \sin \left(\frac{x + y + z}{3}\right)$ 2) Sử dụng kết quả trên để chứng minh

a)
$$(1 - \cos A)(1 - \cos B)(1 - \cos C) \le \frac{1}{8}$$

b) $(1 - \sin A)(1 - \sin B)(1 - \sin C) \leq (1 - \frac{\sqrt{3}}{2})^3 \forall \Delta ABC$ không tù

Giải

1) a)
$$\frac{\sin x + \sin y}{2} = \sin \frac{x + y}{2} \cos \frac{x - y}{2} \le \sin \frac{x + y}{2}$$

b) $\hat{\mathbf{V}}$ ới $\mathbf{t} \in \{0, \pi\}$ thỉ :

$$\frac{\sin x + \sin y + \sin z + \sin t}{4} = \frac{\frac{\sin x + \sin y}{2} + \frac{\sin z}{3} + \sin t}{2}$$

$$\leq \frac{\sin\left(\frac{x+y}{2}\right) + \sin\left(\frac{z+t}{2}\right)}{2} \leq \sin\left(\frac{\frac{x+y}{2} + \frac{z+t}{2}}{2}\right) = \sin\frac{x+y+z+t}{4}$$

Chon $t = \frac{x+y+z}{3} \in [0, \pi] \forall x, y, z \in [0, \pi]$. Khi do

 $\frac{1800 \text{ 4}\text{ X} \text{ Y} \text{ 1}\text{ Q} \quad 38}{x + y + z + \frac{x + y + z}{3}}$ $\frac{\sin x + \sin y + \sin z + \sin \frac{x + y + z}{\sin 9b}}{\sin 9b} + \frac{3}{5} \frac{$ $= 4\sin\frac{x+y+z}{3} \leftrightarrow \frac{\sin x + \sin y + \sin z}{2} \leftrightarrow \frac{\sin x + \sin y + \sin z}{2} \leftrightarrow \frac{\sin x + y + z}{2}$ $\partial \Omega_{cc} = \frac{1}{4} \cdot \frac{S_{c}A_{c}}{mis} + \frac{1}{mis} \cdot \frac{S_{c}A_{c}}{mis} + \frac{1}{2} \cdot \frac{1}{2} \cdot$ urapiedung BART Costilivao BOAIdo i praile unali dobo gabe 8 = $(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2} = \frac{1$ b) Theo giả thiết $\frac{1}{2}$ ABC) shôngi từ $[\frac{1}{2} + 3]$ ($\frac{\pi}{2}$) OBDAt $\forall t = \frac{BV}{4} - \frac{A}{2} \cdot \beta = \frac{\pi}{4} - \frac{B}{2} \cdot \gamma = \frac{\pi}{4} - \frac{C}{4} - \frac{C}{4} + \frac{C$ suy ra α , β , $\gamma \in \left[0, \frac{\pi}{4}\right)$ và $\alpha + \beta + \gamma = \frac{\pi}{4}$. Khi đổ kil) $(1 - \sin A)(1 - \sin B)(1 - \sin B)(1 - \sin C) = \frac{\pi}{2}$ $= \left[1 - \cos\left(\frac{\pi}{2} - A\right)\right] \left[1 - \cos\left(\frac{\pi}{2} - B\right)\right] \left[1 - \cos\left(\frac{\pi}{2} - B\right)\right] \left[1 - \cos\left(\frac{\pi}{2} - C\right)\right]$ $8\sin^{2}\left(\frac{\pi}{14}+\frac{A}{2}\sin^{2}\sin^{2}\left(\frac{\pi}{\sqrt{4}}+\frac{B}{2}\right)\sin^{2}\left(\frac{\pi}{\sqrt{4}}+\frac{B}{2}\right)\sin^{2}\left(\frac{\pi}{4}+\frac{C}{2}\right) = 8\sin^{2}\alpha\sin^{2}\beta\sin^{2}\gamma$ Åp dung BDT Gosi va BDT = mie + snie + ynie + znie $\operatorname{sincsin}\rho\sin\gamma \leq \left[\frac{\sin(\tau+\sin\theta+\sin\theta+\sin)}{3}\right]^{3} \leq \frac{\sin(\tau+\sin\theta+\sin)}{2} = \sin^{3}\frac{\pi}{12}$ Tù do () int sinf (; - sinf) ik > sinC) = tsin asin //sin // $= \frac{8\sin^{6}\frac{\pi}{12}}{\operatorname{ob}\left[\operatorname{id}\frac{\pi}{12}\right] \operatorname{in}\left(\frac{2\sin^{2}\frac{\pi}{12}}{\operatorname{ob}\left[\frac{\pi}{12}\right]^{3}}\right)^{\frac{1}{2}} = \left(\frac{1-\cos\frac{\pi}{12}}{\sqrt{1-\cos\frac{\pi}{12}}}\right)^{\frac{3}{2}} = \frac{1}{2}\left(\frac{\sqrt{3}}{12}\right)^{\frac{3}{2}}$ Sử dụng phương pháp tương tự tả có thể chẳng ninh các BDT.

VNMATH CON

6.2 : $CMR \le \forall \Delta ABC$ ta luga con $\le \gamma \ge 100\%$ MMC . Sillari (t + 1 1 . . . $\int_{1}^{1} \frac{3\sqrt{3}}{\sqrt{2}\pi} \frac{3\sqrt{3}}{\alpha x} + \int_{2}^{1} \frac{1}{\alpha x} + \frac{1}{\alpha x} +$ a) $sinA + sinB + sinC \leq$ b) $\cos A + \cos B + \cos C \leq \frac{3}{2}$ if the there is only of the formula of the basis of c) $tg\frac{A}{2} + tg\frac{B}{2} + tg\frac{C}{2} \ge \sqrt{3} d + 1$ (b + 1 (b + 1 (b + 1)) 65 (ho a, a, a, a d) $\cot gA + \cot gB + \cot gC \ge \sqrt{3}$ 6.3 110H 17 Cho ab ≥ 1 CMR : $\frac{-1}{1+a^2} + \frac{-1}{1+b^2} \ge \frac{23N^3}{1+ab}$ $20^{\circ} Cho^{2} a, ih) c (add so CMR so that the second so CMR so that the second so CMR so that the second so the second so the second so that the second so that the second so that the second so the second so$ Giải dnim yabis 2néh áll -1) BDT \leftrightarrow [(1+a²) + (1+b²)](ab+1) \geq 2(1+a²+b⁻+a²b²) $\leftrightarrow [(1+a^2) + (1+b^2)](ab-1) \ge 2(1+a^2+b^2+a^2b^2) - 2[(1+a^2) + (1+b^2)]$ staf(1 fai) drith +bfaltaber 1/ ≥/2ta²b² fry 100 pb 27abit 1Mab 3 1) $\leftrightarrow (ab-1)(a^2+b^2-2ab) = (ab-1)(a-b)^2 \ge 0^2 d\bar{u}ng^2 \rightarrow (d\bar{p}lm)$ Sidding her and BBT time of a star of n = 2 to co 2) Với $d \ge 1$ tạ có $\frac{1}{1+a^3} + \frac{1}{1+b^3} + \frac{1}{1+c^4} + \frac{1}{1+d^4} \ge 1$ $\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} + \frac{1}{2^{n+1$ $=\frac{2}{1+\sqrt{a^{3}b^{3}}}+\frac{2}{1+\sqrt{c^{3}d^{3}}}=2\left(\frac{1}{1+\sqrt{a^{3}b^{3}}}+\frac{1}{1+\sqrt{c^{3}d^{3}}}\right)$ $\geq 2\frac{2}{1+\sqrt[4]{a^3b^3c^3d^3}} = \frac{1}{1+\sqrt[4]{a^2b^3e^3d^3}}$ * I + Vala, 14 Chọn d = $\sqrt[3]{a^3b^3c^3}$ = abc. Khi đó ta có $\frac{1}{1+a^{3}} + \frac{1}{1+b^{3}} + \frac{1}{1+c^{3}} + \frac{1}{1+abc} + \frac{1}{1+abc} + \frac{1}{1+\sqrt{a^{3}b^{3}c^{4}}} + \frac{1}{1+abc} + \frac{1}{\sqrt{a^{3}b^{3}c^{4}}} + \frac{1}{1+abc} + \frac{1}{\sqrt{a^{3}b^{3}b^{3}c^{4}}} + \frac{1}{1+abc} + \frac{1}{\sqrt{a^{3}b^{3}b^{3}c^{4}}} + \frac{1}{1+abc} + \frac{1}{\sqrt{a^{3}b^{3}b^{3}c^{4}}} + \frac{1}{\sqrt{a^{3}b^{3}b^{3}c^{4$ $\xrightarrow{\text{angle}_1} 1 + a^3 + b^3 + c^3 + c^3$

/NMATH.CON

6.4. 1161112: CMR: New $x \cdot y \ge 0$ to $x \cdot y \ge 1$ to $x \cdot y \ge 1$

Giải

Dat
$$\mathbf{a} = 2^x$$
, $\mathbf{u} = 2^y - \mathbf{ab} = 2^{x+y} \ge 1$

Do do theo liouil 1 thi :

$$\frac{1}{1+4^{x}} + \frac{1}{1+4^{y}} = \frac{1}{1+a^{2}} + \frac{1}{1+b^{2}} \ge \frac{2}{1+ab} = \frac{2}{1+2^{x+y}}$$

6.5 Cho $a_1 a_2, \dots a_n \ge 1$.

$$CMR : \frac{1}{1+a_1} + \frac{1}{1+a_2} + \frac{1}{1+a_n} \neq \frac{n}{1+\sqrt[n]{a_1a_2...a_n}}$$

Giải

Ta sẽ chứng minh BDT bảng phương pháp Qui Nạp Cô Si tổng quát

n = 2: Dễ dàng chứng minh

$$\frac{1}{1+a_1} + \frac{1}{1+a_2} \ge \frac{2}{1+\sqrt{a_1a_2}} \forall a_1, a_2 \ge 1$$

Giả sử BĐT dùng với n = k. Ta sẽ chứng minh BDT cùng dung với n = 2k

Sử dụng kết quả BDT đúng với n = k và với n = 2 ta có

$$\frac{1}{1+a_{1}} + \frac{1}{1+a_{2}} + \dots + \frac{1}{1+a_{2k}} = \left(\frac{1}{1+a_{1}} + \frac{1}{1+a_{2}} + \dots + \frac{1}{1+a_{k}}\right) + \left(\frac{1}{1+a_{1}+1} + \frac{1}{1+a_{2}} + \dots + \frac{1}{1+a_{k}}\right) + \left(\frac{1}{1+a_{1}+1} + \frac{1}{1+a_{k+1}} + \frac{1}{1+a_{k+2}}\right) + \left(\frac{1}{1+a_{1}+1} + \frac{1}{1+a_{2k}}\right) + \frac{1}{1+a_{1}+a_{2k}}\right) + \frac{1}{1+\sqrt{a_{1}a_{2}\dots a_{k}}} + \frac{k}{1+\sqrt{a_{1}a_{2}\dots a_{2k}}} = k\left(\frac{1}{1+\sqrt{a_{1}a_{2}\dots a_{k}}} + \frac{1}{1+\sqrt{a_{k+1}\dots a_{2k}}}\right) + \frac{1}{1+\sqrt{a_{1}\dots a_{k}}} + \frac{1}{1+\sqrt{a_{k+1}\dots a_{2k}}}\right) + \frac{2k}{1+\sqrt{a_{1}a_{2}\dots a_{2k}}} + \frac{2k}{1+\sqrt{a_{1}a_{2}\dots a_{2k}}} (dpcm)$$

Giả sử BĐT dúng với n = h. Ta sẽ chủng minh BĐT dúng với n = h - 1 Ta có $\frac{1}{1+a_1} + \frac{1}{1+a_2} + ... + \frac{1}{1+a_h} \ge \frac{h}{1+\sqrt[h]{a_1a_2...a_h}}$ Chọn $a_h = \sqrt[h]{-\sqrt[h]{a_1a_2...a_{h-1}}}$. Khi đó $\frac{1}{1+a_1} + \frac{1}{1+a_2} + ... + \frac{1}{1+a_{h-1}} + \frac{1}{1+\sqrt[h]{a_1a_2...a_{h-1}}} \ge$ $\ge \frac{h}{1+\sqrt[h]{a_1a_2...a_{h-1}}}$ $\Rightarrow \frac{h}{1+a_1} + ... + \frac{1}{1+a_{h-1}} \ge \frac{h-1}{1+\sqrt[h]{a_1a_2...a_{h-1}}}$ (dpcm) Rõ räng theo nguyên lý qui nạp thì BĐT đã cho đúng \forall n $\in \mathbb{N}$ (n ≥ 2)

6.6 CMR :
$$\frac{a_1a_2a_3}{(a_1+a_2+a_3)^2} \le \frac{(1-a_1)(1-a_2)(1-a_3)}{(3-a_1-a_2-a_3)^2} \quad \forall 0 \le a_1, a_2, a_3 \le \frac{1}{2}$$

Giải

Bước 1 : n = 2 : Ta phải chứng minh (Ban đọc tự chứng minh)

$$\frac{\mathbf{a}_{1}\mathbf{a}_{2}}{(\mathbf{a}_{1}+\mathbf{a}_{2})^{2}} \leq \frac{(1-\mathbf{a}_{1})(1-\mathbf{a}_{2})}{(2-\mathbf{a}_{1}-\mathbf{a}_{2})^{2}} \forall 0 \leq \mathbf{a}_{1}, \ \mathbf{a}_{2} \leq \frac{1}{2}$$

Bucc 2 : n = 4. Ta phải chứng minh $\forall 0 \le u_1, u_2, u_3, u_4 \le \frac{1}{2}$ thì

$$\frac{\mathbf{a}_{1}\mathbf{a}_{2}\mathbf{a}_{3}\mathbf{a}_{4}}{(\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}+\mathbf{a}_{4})^{4}} \leq \frac{(1-\mathbf{a}_{1})(1-\mathbf{a}_{2})(1-\mathbf{a}_{3})(1-\mathbf{a}_{4})}{(4-\mathbf{a}_{1}-\mathbf{a}_{2}-\mathbf{a}_{3}-\mathbf{a}_{4})^{4}}$$

Sử dụng với n = 2 ta có $\sqrt{\frac{a_1a_2}{(1-a_1)(1-a_2)}} \le \frac{a_1+a_2}{(2-a_1-a_2)}$ $\forall 0 \le a_1, a_2 \le \frac{1}{2}.$

/NMATH.CON

suy ra
$$\sqrt{\frac{a_1a_2a_3a_4}{(1-a_1)(1-a_2)(1-a_3)(1-a_4)}} \le \frac{(a_1+a_2)(a_3+a_4)}{(2-a_1-a_2)(2-a_3-a_4)} =$$

$$= \frac{\frac{a_1+a_2}{2} \cdot \frac{a_1+a_4}{2}}{(1-\frac{a_1+a_2}{2})(1-\frac{a_3+a_4}{2})}$$

$$\le \left[\frac{\frac{a_1+a_2}{2} + \frac{a_3+a_4}{2}}{(1-\frac{a_1+a_2}{2} + \frac{a_3+a_4}{2})^2}\right]^2 = \left[\frac{a_1+a_2+a_3+a_4}{(1-a_1-a_2-a_3-a_4)^2}\right]^2 \to (dpcm)$$

Bude 3 : n = 3 : Chon $a_4 = \frac{a_1 + a_2 + a_3}{3}$ và thay vào BDT wới n = 4 ta có VNMATH.COM

$$\frac{a_{1}a_{2}a_{3}\left(\frac{a_{1}+a_{2}+a_{3}}{3}\right)}{(1-a_{1})(1-a_{2})(1-a_{3})\left(1-\frac{a_{1}+a_{2}+a_{3}}{3}\right)} \leq \frac{a_{1}+a_{2}+a_{3}}{3}$$

$$\leq \left[\frac{a_{1}+a_{2}+a_{3}+\frac{a_{1}+a_{2}+a_{3}}{3}}{3-a_{1}-a_{2}-a_{3}+1-\frac{a_{1}+a_{2}+a_{3}}{3}}\right]^{4}$$

$$\equiv \left[\frac{a_{1}+a_{2}+a_{3}}{3-a_{1}-a_{2}-a_{3}}\right]^{4} \leftrightarrow \frac{a_{1}a_{2}a_{3}}{(1-a_{1})(1-a_{2})(1-a_{3})} \leq \left[\frac{a_{1}+a_{2}+a_{3}}{3-a_{1}-a_{2}-a_{3}}\right]^{3}$$

$$\leq \left[\frac{a_{1}+a_{2}+a_{3}}{(a_{1}+a_{2}+a_{3})^{2}}\right]^{3}$$
Từ dó $\Rightarrow \frac{a_{1}a_{2}a_{3}}{(a_{1}+a_{2}+a_{3})^{2}} \leq \frac{(1-a_{1})(1-a_{2})(1-a_{3})}{3-a_{1}-a_{2}-a_{3}}^{3}$

 $6.7 : CMR : \frac{a_1 a_2 \dots a_n}{(a_1 + a_2 + \dots + a_n)^2} \le \frac{(1 - a_1)(1 - a_2) \dots (1 - a_n)}{(n - a_1 - a_2 - \dots - a_n)^2},$ $\forall a_i \in \left[0, \frac{1}{2}\right]$

§7. PHƯƠNG PHÁP ĐÁNH GIÁ ĐẠI DIỆN

7.1 : 139 III

 $CMR: 1 < \frac{a}{a+b+c} + \frac{b}{b+c+d} + \frac{c}{c+d+a} + \frac{d}{d+a+b} < 2$ \(\forall a, b, c, d > 0 Giải

Theo qui tắc so sánh nhân số tạ c

		ิล่	a	
	$\overline{a+b+c+1}$	a+b+c	< <u>a+c</u>	
	b	b	b	
	$\overline{a+b+c+d}$	b+c+d	< <u>-</u> + d	
+	<u>ل</u>	c	c	
	$\frac{1}{a+b+c+d}$	c+d+a	c+a	
	d	d	ď	· · · · ·
-	a+b+c+d	d+a+b	< <u>d + b</u>	이 같은 것 같은 것 같아.

$$1 = \frac{a+b+c+d}{a+b+c+d} < \frac{a}{a+b+c} + \frac{b}{b+c+d} + \frac{c}{c+d+a} + \frac{d}{d+a+b} < \frac{a+c}{a+c} + \frac{b+d}{b+d} = 2$$

$$CMR: \frac{a^{3}}{a^{2} + ab + b^{2}} + \frac{b^{3}}{b^{2} + bc + c^{2}} + \frac{c^{3}}{c^{2} + ca + a^{2}} \ge \frac{a + b + c}{3} \forall$$

a, b, c > 0
Giải

Ta sẽ chứng minh $\frac{a^3}{a^2 + ab + b^2} > \frac{2a - b}{3}$. Thật vậy

VNMATH.COM

$$\frac{a^{3}}{a^{2} + ab + b^{2}} - \frac{2a - b}{3} = \frac{3a^{3} - a(a^{2} + ab + b^{2}) - (a^{3} - b^{3})}{3(a^{2} + ab + b^{2})}$$

$$= \frac{(a + b)(a^{2} - ab + b^{2}) - ab(a + b)}{3(a^{2} + ab + b^{2})} = \frac{(a + b)(a - b)^{2}}{3(a^{2} + ab + b^{2})} \ge 0 \rightarrow (dpcm)$$
Tuong tự ta cơ $\frac{b^{3}}{b^{2} + ab + c^{2}} \ge \frac{2b - c}{3} \quad va = \frac{c^{3}}{c^{2} + ca + a^{2}} \ge \frac{2c - a}{3}$
Vây $\frac{a^{3}}{a^{2} + ab + b^{2}} + \frac{b^{3}}{b^{2} + bc + c^{2}} \Rightarrow \frac{2b - c}{3} \quad va = \frac{c^{3}}{c^{2} + ca + a^{2}} \ge \frac{2c - a}{3}$
Vây $\frac{a^{3}}{a^{2} + ab + b^{2}} + \frac{b^{3}}{b^{2} + bc + c^{2}} + \frac{c^{3}}{c^{2} + ca + a^{2}} \ge \frac{2a - b}{3} + \frac{2b - c}{3} + \frac{2c - a}{3}$

$$= \frac{a + b + c}{3}$$
7.3 *CMR* $\frac{a}{bc + 1} + \frac{b}{ca + 1} + \frac{c}{ab + 1} \le 2 \quad \forall a, b, c, \in [0, 1]$
Bận dọc tự giải
7.4 Cho $\begin{cases} a, b, c \ge 0\\ a + b + c = 1 \end{cases}$
CMR : $\frac{a}{1 + b - a} + \frac{b}{1 + c - b} + \frac{c}{1 + a - c} \ge 1$
Bận dọc tự giải
7.5 (55III.2) *CMR* : $\frac{1}{2} + \frac{1}{3\sqrt{2}} + \dots + \frac{1}{(n + 1)\sqrt{n}} < 2$
Giải :
Ta cơ $\frac{1}{(k + 1)\sqrt{k}} = \frac{(k + 1) - k}{(k + 1)\sqrt{k}} = \frac{(\sqrt{k + 1} + \sqrt{k})(\sqrt{k + 1} - \sqrt{k})}{(k + 1)\sqrt{k}}$
 $< \frac{2\sqrt{k} + T(\sqrt{k} + 1) - \sqrt{k}}{(k + 1)\sqrt{k}} = 2(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k} + 1})$. Do dó
 $\frac{1}{2} + \frac{1}{3\sqrt{2}} + \dots + \frac{k}{(n + 1)\sqrt{n}} < 116$

VNMATH.COM

$$< 2\left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + 2\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \dots + 2\left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$$

$$= 2\left(1 - \frac{1}{\sqrt{n+1}}\right) < 2$$
7.6 : CMR $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} < 2$
The cd $\frac{1}{k^2} < \frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}$. Do do
$$= \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} < \frac{1}{1^2} + \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)n}$$

$$= 1 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 2 - \frac{1}{n} < 2$$
7.7 CMR : $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} < \frac{5}{3}$
Giải
The cd $\frac{1}{k^2} = \frac{4}{4k^2} < \frac{4}{4k^2 - 1} = 2\left(\frac{1}{2k-1} - \frac{1}{2k+1}\right)$. Do do
$$= \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} < \frac{1}{2\cdot 2 - 1} - \frac{1}{2\cdot 2 + 1} + 2\left(\frac{1}{2\cdot 3 - 1} - \frac{1}{2\cdot 3 + 1}\right)$$

+...+ $2\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right) = 1 + 2\left(\frac{1}{2\cdot 2-1}-\frac{1}{2n+1}\right) < 1 + \frac{2}{3} = \frac{5}{3}$ 7.8 : CMR : $\frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{n^3} < \frac{5}{4}$

Giải

Ta có (k - 1) k $(k + 1) = k (k^2 - 1) < k^3$. Do đó

$$\sum_{k=1}^{\infty} \frac{1}{k^3} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^3} < 1 + \sum_{k=2}^{\infty} \frac{1}{(k-1)k(k+1)}$$

117

VNMATH.COM

$$= 1 + \sum_{k=2}^{n} \frac{1}{2} \left[\frac{1}{(k-1)k} - \frac{1}{k(k+1)} \right] = 1 + \frac{1}{2} \left[\frac{1}{2} - \frac{1}{n(n+1)} \right] < \frac{5}{4}$$

7.9: CMR : $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{1994}{1995!} < 1$
Gidi : Ta có $\frac{k}{(k+1)!} = \frac{(k+1)-1}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!}$. Do dó
 $\sum_{k=1}^{100} \frac{1}{(k+1)!} = \sum_{k=1}^{100} \left(\frac{1}{k!} - \frac{1}{(n+1)!} \right) = 1 - \frac{1}{1994} < 1$
7.10 CMR $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2} > 1 \forall : n \in \mathbb{N}$
Gidi :
VT = $\left[\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n^2 + n} \right] + \left[\frac{3}{n^2 - n + 1} + \frac{1}{n^2 - n + 2} + \dots + \frac{1}{n^2} \right]$
 $(n^2 - 2n + 1) s\delta$ n só
 $> (n^2 - 2n + 1) \frac{1}{n^2 - n} + n \cdot \frac{1}{n^2} = \frac{(n - 4)}{n} + \frac{1}{n} = 1$.

VNMATH.COM

÷

§8. PHƯƠNG PHÁP LƯỢNG GIÁC

CÁC PHƯƠNG PHÁP LƯỢNG GIÁC

Dạng la Nếu $x^2 + y^2 = 1$ thì đặt $\begin{cases} x = \sin \alpha \\ y = \cos \alpha \end{cases}$ với $\alpha \in [0, 2\pi]$ Dạng 16 Nếu $x^2 + y^2 = m^2$ (m > 0) thì đặt $\begin{cases} x = m \sin \alpha \\ y = m \cos \alpha \end{cases}$ với $\alpha \in [0, 2\pi]$. The set of t Dang 2a Néu $|\mathbf{x}| \leq 1$ thì đặt $\begin{vmatrix} \mathbf{x} = \sin\alpha & \text{vôi } \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ $\mathbf{x} = \cos\alpha & \text{vôi } \alpha \in \{0, \pi\}$ Dạng 2a Nếu $|\mathbf{x}| \leq 1$ thì đặt $\begin{bmatrix} \mathbf{x} = \sin \alpha \text{ với } \alpha \in [2, 2] \\ \mathbf{x} = \cos \alpha \text{ với } \alpha \in [0, \pi] \end{bmatrix}$ Dạng 2b Nếu $|\mathbf{x}| \leq m$ thì đặt $\begin{bmatrix} \mathbf{x} = \min \alpha \text{ với } \alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ \mathbf{x} = \max \alpha \text{ với } \alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{bmatrix}$ Dạng 3a : Nếu $|\mathbf{x}| \geq 1$ hoặc bài toán có chứa biểu thức $\sqrt{\mathbf{x}^2 - 1}$ thì đặt $\mathbf{x} = \frac{1}{\cos \alpha}$ với $\alpha \in [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{2})$ Dang 3b : Nếu $|\mathbf{x}| \geq m$ hoặc bài toán có chứa biểu thức $\sqrt{\mathbf{x}^2 - 1}$ Dạng 3b : Nếu $|x| \ge m$ hoặc bài toán có chứa biểu thức $\sqrt{x^2 - m^2}$ thì đặt $\mathbf{x} = \frac{\mathbf{m}}{\cos \alpha}$ với $\alpha \in \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$ Dang 4a : Nếu không ràng buộc điệu kiện cho biến số thì đặt

$$\mathbf{x} = \mathbf{t}\mathbf{g}\alpha$$
 với $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Dạng 4b : Nếu không ràng buộc điều kiện cho biến số và bài toán có chứa biểu thức $(x^2 + m^2)$ thì đặt

 $\mathbf{x} = \mathbf{m}\mathbf{t}\mathbf{g}\alpha$ với $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

7.1 122 III.2 ; CMR : Néu $|\mathbf{x}| < 1$ và $2 \le n \in \mathbb{N}$ thì $(1 + \mathbf{x})^n + (1 - \mathbf{x})^n < 2^n$

Giải :

Dật $x = \cos \alpha$ với $\alpha \in (0, \pi)$. Khi đó

$$(1 + x)^{n} + (1 - x)^{n} = (1 + \cos\alpha)^{n} + (1 - \cos\alpha)^{n} =$$

$$= \left(2\cos^2\frac{\alpha}{2}\right)^n + \left(2\sin^2\frac{\alpha}{2}\right)^n = 2^n \left(\cos^{2n}\frac{\alpha}{2} + \sin^{2n}\frac{\alpha}{2}\right) \leq$$

$$\leq 2^n \left(\cos^2\frac{\alpha}{2} + \sin^2\frac{\alpha}{2}\right) = 2^n$$

Rõ ràng dấu bằng không xảy ra với $\alpha \in (0, \pi)$

$$\rightarrow (1 + x)'' + (1 - x)'' < 2''$$

2: 146 4.1 : CMR :
$$-\frac{1}{2} \le \frac{1}{(1 + a^2)(1 + b^2)} \le \frac{1}{2} \forall a, b$$

Dat
$$a = tg\alpha$$
, $b = tg\beta$. Khi do
 $\left|\frac{(a + b)(1 - ab)}{(1 + a^2)(1 + b^2)}\right| = \left|\frac{(tg\alpha + tg\beta)(1 - tg\alpha tg\beta)}{(1 + tg^2\alpha)(1 + tg^2\beta)}\right|$
 $= \left|\cos^2\alpha\cos^2\beta - \frac{\sin(\alpha + \beta)}{\cos\alpha\cos\beta} - \frac{\cos\alpha\cos\beta - \sin\alpha\sin\beta}{\cos\alpha\cos\beta}\right|$
 $= \left|\sin(\alpha + \beta)\cos(\alpha + \beta)\right| = \left|\frac{1}{2}\sin\left[2(\alpha + \beta)\right]\right| < \frac{1}{2}$

7.3 : Chứng minh các bất đẳng thức sau đúng \forall a, b

a)
$$\left| \frac{(a^2 - b^2)(1 - a^2b^2)}{(1 + a^2)^2(1 + b^2)^2} \right| \le \frac{1}{4}$$

b)
$$\left| \frac{(1-ab)^2 - (a+b)^2}{(1+a^2)(1+b^2)} \right| \le 1$$

c)
$$\left| \frac{2(a + b)(1 - ab)}{(1 + a^2)(1 + b^2)} \right| \le 1$$

Ban dọc tự giải bằng cách đặt a = tga, $b = tg\beta$

/NMATH.COM

7.4 : Goi $f(x, y) = \frac{|x - y|}{\sqrt{(1 + x^2)(1 + y^2)}}$ CMR : f(a, b) + f(b, c) \ge f(a, c) Dat $a = tg\alpha$, $b = tg\beta$, $c = tg\gamma$. Khi do $f(a, b) = \frac{|tg\alpha - tg\beta|}{\sqrt{(1+t\sigma^2\alpha)(1+t\sigma^2\beta)}} = |\cos\alpha\cos\beta, \frac{\sin(\alpha-\beta)}{\cos\alpha\cos\beta}| = |\sin(\alpha-\beta)|$ $f(b, c) = \frac{|tg\beta - tg\gamma|}{\sqrt{(1 + tg^2\beta)(1 + tg^2\gamma)}} = |\cos\beta \cos\gamma \cdot \frac{\sin(\beta - \gamma)}{\cos\beta \cos\gamma}| = |\sin(\beta - \gamma)|$ $f(a, c) = \frac{|tg\alpha - tg\gamma|}{\sqrt{(1 + tg^2\alpha)(1 + tg^2\alpha)}} = |\cos\alpha \cos\gamma, \frac{\sin(\alpha - \gamma)}{\cos\alpha \cos\gamma}| = |\sin(\alpha - \gamma)|$ /NMATH.COM To $c \alpha$: $|\sin (\alpha - \gamma)| = |\sin [(\alpha - \beta) + (\beta - \gamma)]|$ $= \left| \sin(\alpha - \beta) \cos(\beta - \gamma) + \sin(\beta - \gamma) \cos(\alpha - \beta) \right| \le 1$ $\leq |\sin(\alpha - \beta)\cos(\beta - \gamma)| + |\sin(\beta - \gamma)\cos(\alpha - \beta)|$ $= |\sin(\alpha - \beta)| \cdot |\cos(\beta - \gamma)| + |\sin(\beta - \gamma)| \cdot |\cos(\alpha - \beta)|$ $\leq |\sin(\alpha - \beta)| + |\sin(\beta - \gamma)|.$ Vậy $f(a, b) + f(b, c) \ge f(a, c)$ 7.5 291.2. Cho m, n nguyên dưng thỏa mãn $\sqrt{7}$ a) $CMR : \sqrt{7}n - m > \frac{1}{m}$

b) Giả sử thêm rằng $n \leq m$. Hãy chứng minh

$$\sqrt{m^2 - n^2} + \sqrt{2mn - n^2} > \frac{1}{\sqrt{7n - m}}$$

(Vê dịch Rumani)

Giải

Giải

a) Ta có
$$\sqrt{7} - \frac{m}{n} > 0 \leftrightarrow 7n^2 > m^2 \leftrightarrow 7n^2 - m^2 > 0$$

Mà m, $n \in \mathbb{Z}^{*} \rightarrow 7n^{2} - m^{2} \ge 1$ hay $7n^{2} \ge m^{2} \pm 1$. Mật khác $7n^{2}$: 7 nhưng $(m^{2} \pm 1)$ và $(m^{2} \pm 2)$ đều ? 7 $\forall m \in \mathbb{Z}^{+}$ Do đó $7n^{2} \ge m^{2} \pm 3 \Rightarrow 7n^{2} \ge m^{2} \pm \frac{1}{m^{2}} \pm 2 = \left(m \pm \frac{1}{m}\right)^{2}$ Vậy $\sqrt{7}n - m > \frac{1}{m}$ b) Vì $\sqrt{7}n - m > \frac{1}{m} \Rightarrow \frac{1}{\sqrt{7}n - m} < m$ Ta sẽ chúng minh $\sqrt{m^{2} - n^{2}} \pm \sqrt{2mn - n^{2}} \ge m$ $\Rightarrow \sqrt{\frac{m^{2}}{n^{2}} - 1} \pm \sqrt{2\frac{m}{n} - 1} \ge \frac{m}{n}$. Đật $\frac{m}{n} = tg\alpha \ge 1$ $\Rightarrow \sqrt{tg^{2}\alpha - 1} \pm \sqrt{2tg\alpha - 1} \ge tg\alpha$ $\Rightarrow (tg^{2}\alpha - 1) \pm (2tg\alpha - 1) \pm 2\sqrt{(tg^{2}\alpha - 1)(2tg\alpha - 1)} \ge tg^{2}\alpha$ $\Rightarrow 2(tg\alpha - 1) \pm 2\sqrt{(tg^{2}\alpha - 1)(2tg\alpha - 1)} \ge 0$ Luôn dúng vì $tg\alpha \ge 1$ (n $\le m$). Vậy

$$\sqrt{\mathbf{m}^2 - \mathbf{n}^2} + \sqrt{2\mathbf{m}\mathbf{n} - \mathbf{n}^2} \ge \mathbf{m} > \frac{1}{\sqrt{7\mathbf{n}} - \mathbf{m}}$$

/NMATH.CON

7.6 12.11.2 : CMR : Từ bốn số cho trước luôn luôn có thể chọn được 2 số x, y sao cho

$$0 \leq \frac{\mathbf{x} - \mathbf{y}}{\Gamma + \mathbf{x}\mathbf{y}} \leq 1$$

) Giải : Giả sử ta có 4 số a \leq b \leq c \leq d.

Khi đó luôn $\exists \alpha \leq \beta \leq \gamma \leq \varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ sao cho

$$\mathbf{a} = \mathbf{t} \mathbf{g} \mathbf{a}, \mathbf{b} = \mathbf{t} \mathbf{g} \mathbf{\beta}, \mathbf{c} = \mathbf{t} \mathbf{g} \mathbf{\gamma}, \mathbf{d} = \mathbf{t} \mathbf{g} \mathbf{\varphi}$$

$$-\frac{\pi}{2} \quad \alpha \quad \beta \quad \mathbf{\gamma} \quad \mathbf{\varphi} \quad \frac{\pi}{2} \quad \alpha + \pi$$

Các điểm β , γ , φ chia $[\alpha, \alpha + \pi]$ làm 4 đoạn $\Rightarrow \exists$ it nhất 1 đoạn có độ dài $\leq \frac{\pi}{4}$. Xét 2 khả năng sau :

1) Doan có độ dài
$$\leq \frac{\pi}{4}$$
 có 2 dấu mút $\in \{\beta, \gamma, \varphi\}$ chẳng hạn
 $0 \leq \varphi - \gamma \leq \frac{\pi}{4} \to 0 \leq tg(\varphi - \gamma) = \frac{tg\varphi - tg\gamma}{1 + tg\varphi tg\gamma} \leq 1$
Khi đó chọn $\mathbf{x} = tg\varphi = d, \ \mathbf{y} = tg\gamma = c \to 0 \leq \frac{\mathbf{x} - \mathbf{y}}{1 + \mathbf{xy}} \leq 1$
2) Đoạn có độ dài $\leq \frac{\pi}{4}$ là doạn $\{\varphi, \alpha + \pi\}$
 $\Rightarrow 0 \leq (\alpha + \pi) = \varphi \leq \frac{\pi}{4}$

$$\Rightarrow 0 \leq tg[(\alpha + \pi) - \varphi] = tg(\alpha - \varphi) = \frac{tg\alpha - tg\varphi}{1 + tg\alpha tg\varphi} \leq 1$$

Khi đó chọn x = tg α = a, y = tg φ = d thì $0 \le \frac{x - y}{1 + xy} \le 1$ Kết hợp (1) và (2) \rightarrow (dpcm)

7.7 : Cho 13 số thực phân biệt a_1 , a_2 , ... a_{13} .

 $CMR \neq ton tei a_k, a_l 1 \leq k \neq 1 \leq 13$ sao cho: 2000 te

$$< \frac{a_k - a_l}{1 + a_k a_l} < \sqrt{\frac{2 - \sqrt{3}}{2 + \sqrt{3}}}$$

Giải

Dat
$$\mathbf{a}_i = \mathbf{t} \mathbf{g} \alpha_i$$
 với $\alpha_i \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (i = 1, 2, ... 13)
Giả sử $\mathbf{a}_1 < \mathbf{a}_2 < \dots < \mathbf{a}_{13}$. Khi đó

$$-\frac{\pi}{2} < \alpha_1 < \alpha_2 < \ldots < \alpha_1 < \frac{\pi}{2} < \alpha_1 + \pi$$

Các điểm $\alpha_2, \alpha_3, \dots, \alpha_{13}$ chia đoạn $[\alpha_1 + \alpha_1 + \pi]$ thành 13 đoạn do đó luôn tồn tại đoạn có độ dài $\leq \frac{\pi}{13}$. Xét 2 khả năng

1) Néu 0 <
$$a_i - a_{i-1} \le \frac{\pi}{13} < \frac{\pi}{12}$$
 (i $\in \{2, 3, ..., 13\}$) thi
0 < $tg(a_i - a_{i-1}) = \frac{tga_i - tga_{i-1}}{1 + tga_i + tga_{i-1}} < tg \frac{\pi}{12}$
 $\Rightarrow 0 < \frac{a_i - a_{i-1}}{1 + a_i a_{i-1}} < tg \frac{\pi}{12} = tg(\frac{\pi}{3} - \frac{\pi}{4}) = \sqrt{\frac{2 - \sqrt{3}}{2 + \sqrt{3}}}$
2) Néu 0 < $(a_1 + \pi) - a_{13} \le \frac{\pi}{13} < \frac{\pi}{13} < \frac{\pi}{12}$ thi
0 < $tg(a_1 + \pi) - a_{13}$] = $tg(a_1 - a_{13}) = \frac{a_1 - a_{13}}{1 + a_1 a_{13}} < tg \frac{\pi}{12} \neq \sqrt{\frac{2 - \sqrt{3}}{2 + \sqrt{3}}}$
Tom lai trong cá 2 trường hợp luôn $\exists a_k$, a_1 sao cho

$$0 < \frac{a_k - a_1}{1 + a_k a_1} < \sqrt{\frac{2 - \sqrt{3}}{2 + \sqrt{3}}}$$

§9. PHƯƠNG PHÁP TOA ĐỘ :

VNMATH.COM

Phương pháp : Sử dụng tính chất $|\overline{a}| + |\overline{b}| \ge |\overline{a}| + |\overline{b}|$ 6Vb : CMR : $\sqrt{x^2 + xy + y^2} + \sqrt{x^2 + xz + z^2} \ge \sqrt{y^2 + yz + z^2}$ Giải

$$VT = \sqrt{\left(x + \frac{y}{2}\right)^{2} + \frac{3}{4}y^{2}} + \sqrt{\left(x + \frac{z}{2}\right)^{2} + \frac{3}{4}z^{2}}.$$

Xét vécto $\vec{u} = \left(x + \frac{y}{2}, \frac{\sqrt{3}}{2}y\right), \vec{v} = \left(-\left(x + \frac{z}{2}\right), \frac{\sqrt{3}}{2}z\right)$
 $\Rightarrow \vec{u} + \vec{v} = \left(\frac{y - z}{2}, \frac{\sqrt{3}}{2}(y + z)\right) \Rightarrow$
 $\Rightarrow |\vec{u}| + |\vec{v}| = \sqrt{\left(x + \frac{y}{2}\right)^{2} + \frac{3}{4}y^{2}} + \sqrt{\left(x + \frac{z}{2}\right)^{2} + \frac{3}{4}z^{2}} \Rightarrow$

$$|\vec{u} + \vec{v}| = \sqrt{\left(\frac{y-z}{2}\right)^2 + \frac{3}{4}(y+z)^2} = \sqrt{y^2 + yz + z^2}$$

4511.2 : CMR ∀x, y ta déu có

 $\sqrt{4\cos^2 x \cos^2 y} + \sin^2 (x - y) + \sqrt{4\sin^2 x \sin^2 y} + \sin^2 (x - y) \ge 2$ Dat $\vec{u} = (2\cos x \cos y, \sin(x - y))$; $\vec{v} = (2\sin x \sin y, \sin(x - y))$ $\rightarrow \vec{u} + \vec{v} = (2\cos(x - y), 2\sin(x - y))$

 $\rightarrow |\vec{u}| + |\vec{v}| = \sqrt{4\cos^2\cos^2 y + \sin^2(x-y)} + \sqrt{4\sin^2 x \sin^2 x + \sin^2(x-y)} \ge$

$$\geq \sqrt{4\cos^2(x-y) + 4\sin^2(x-y)} = 2 = |\overline{u} + \overline{v}|$$

89111.2 : Tim Min của $y = \sqrt{x^2 - 2px + 2p^2} + \sqrt{x^2 - 2qx + 2q^2}$ trong đó $p \neq q$

y =
$$\sqrt{(x-p)^2 + p^2} + \sqrt{(x-q)^2 + q^2}$$
.

Dat A(x-p, |p|) và B(x-q, -|q|) $\rightarrow \overrightarrow{AB}(p-q, -(|p| + |q|))$ Ta có $|\overrightarrow{OA}| + |\overrightarrow{OB}| \ge |\overrightarrow{AB}| \leftrightarrow y = \sqrt{(x-p)^2 + p^2} + \sqrt{(x-q)^2 + q^2} \ge \sqrt{(p-q)^2 + (|p| + |q|)^2} = |\overrightarrow{AB}| \rightarrow Miny = \sqrt{(p-q)^2 + (|p| + |q|)^2}$

§10. ĐÁNH GIÁ TRÊN ĐA THỨC

104V(B\$ de 91) : Cho $f(x) = ax^2 + bx + c$ thòa mãn $|f(x)| \le 1 \forall x \in [-1, 1]$.

Tim Max $A = \frac{8}{3}a^2 + 2b^2$

Giải

Ta co
$$|f(-1)| = |a - b + c| \le 1$$
;
 $|f(1)| = |a + b + c| \le 1$ và
 $|f(0)| = |c| \le 1$

$$|a + b| = |(a + b + c) - c \le |a + b + c| + |c| \le 2 \rightarrow$$

$$(a + b)^{2} = |a + b|^{2} \le 4$$

$$|a - b| = |(a - 5 + c) - | \le |a - b + c| + |c| \le - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 - 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4 + 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4$$

$$(a - b)^{2} = |a - b|^{2} \le 4$$

$$(a - b)^{2} = |a - b|^{2} = |a - b|^{2} = |a - b|^{2} = |a - b|^{2} + |a - b|^{2} = |a - b|^{2} + |a - b|^{2} + |a - b|^{2} = |a - b - b|^{2} + |a - b|^{2} + |a - b|^{2} + |a - b|^{2} + |a - b|^{2} = |a - b - b|^{2} + |a - b - b|^{2} = |a - b - b|^{2} + |a -$$

Vi
$$x \in [-1, 1] \rightarrow (x^2 + x)(x^2 - x) = x^2(x^2 - 1) \le 0 \rightarrow (*) = \frac{1}{2} |(x^2 + x) - (x^2 - x)| + (1 - x^2) =$$

$$= |x| + 1 - x^2 = -(|x| - \frac{1}{2})^2 + \frac{5}{4} \le \frac{5}{4}$$
471.2. Cho $y = 4x^3 + mx$. Xác dịnh m để $|y| \le 1$ khi $|x| \le 1$
 $|y(1)| = |m + 4| \le 1 \leftrightarrow -1 \le m + 4 \le 1 \leftrightarrow -5 \le m \le -3$
 $|y(\frac{1}{2})| = |\frac{1}{2} + \frac{1}{2}m| \le 1 \leftrightarrow -2 \le m + 1 \le 2 \leftrightarrow -3 \le m \le 1$
 $\rightarrow m = -3$. Với $m = -3$. Đật $x = \cos \alpha$
khi đó |y| $= |4\cos^3 n - 2\cos 1 = 1 = 0$

khi do $|y| = |4\cos^3\alpha - 3\cos\alpha| = |\cos 3\alpha| \le 1$ 841.2. Cho y = $4x^3 + (a + 3)x^2 + ax$. Xác định a để $|y| \le 1$ khi $|x| \le 1$

Giải

 $\begin{aligned} |\mathbf{y}(1)| &= |7+2\mathbf{a}| \leq 1 \leftrightarrow -1 \leq 7+2\mathbf{a} \leq 1 \leftrightarrow -4 \leq \mathbf{a} \leq -3 \\ \left|\mathbf{y}\left(\frac{1}{2}\right)\right| &= \left|\frac{5}{4} + \frac{3}{4}\mathbf{a}\right| \leq 1 \leftrightarrow -4 \leq 5+3\mathbf{a} \leq 4 \leftrightarrow -3 \leq \mathbf{a} \leq -\frac{1}{3} \end{aligned} \\ \Rightarrow \mathbf{a} = -3. \text{ Dat } \mathbf{x} = \cos\alpha, \text{ khi do } |\mathbf{y}| = |4\cos^2\alpha - 3\cos\alpha| = |\cos 3\alpha| \leq 1 \\ \textbf{137II}: \text{ Tim } \mathbf{a}, \mathbf{b}, \mathbf{c} \text{ de } |4\mathbf{x}^3 + \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}| \leq 1 \forall \mathbf{x} \in [-1, -1] \\ \text{Giai} \end{aligned}$

Ta c/m mệnh để $|4x^3 + bx| \le 1 \forall x \in [-1, 1] \leftrightarrow b = -3$ (xem 471.2)

Dat $f(x) = 4x^3 + ax^2 + bx + c \rightarrow f(-x) = -4x^3 + ax^2 - bx + c$ $\rightarrow \frac{f(x) - f(-x)}{2} = 4x^3 + bx$. Ta co $\begin{cases} |f(x)| \leq 1 \\ |f(-x)| \leq 1 \end{cases} \forall x \in [-1, 1]$ Do do

$$|4x^{3}+bx| = \left|\frac{f(x) - f(-x)}{2}\right| \le \frac{|f(x)| + |f(-x)|}{2} \le 1 \forall x \in [-1, 1]$$

 $\rightarrow b = -3. \quad \text{Vay} - 1 \le 4x^{3} + ax^{2} - 3x + c \le 1 \quad \forall x \in [-1, 1]$

/NMATH (

$$\begin{array}{l} Voix = 1 \rightarrow -1 \leqslant 4 + a - 3 + c \leqslant 1 \rightarrow a + c \leqslant 0 \\ Voix = -1 \rightarrow -1 \leqslant -4 + a + 3 + c \leqslant -a + c \geqslant 0 \\ x = \frac{1}{2} : -1 \leqslant \frac{1}{2} + \frac{a}{4} - \frac{3}{2} + c \leqslant 1 \rightarrow \frac{a}{4} + c \geqslant 0 \\ x = -\frac{1}{2} : -1 \leqslant -\frac{1}{2} + \frac{a}{4} + \frac{3}{2} + c \leqslant 1 \rightarrow \frac{a}{4} + c \leqslant 0 \\ T \dot{u} \ a + c \neq 0 \ v\dot{a} \ \frac{a}{4} + c = 0 \rightarrow a = c = 0. \\ D \dot{a} p \ so \ a = c = 0, \ b = -3 \\ 5811 \ (bo \ d\bar{e} \ 91) \ Cho \ pt \ ax^3 + bx^2 + cx + d = 0 \ (ad \neq 0) \\ Goi \ \alpha = max \left(\left| \frac{b}{a} \right|, \left| \frac{c}{a} \right|, \left| \frac{d}{a} \right| \right) \ v\dot{a} \\ \beta = max \left(\left| \frac{a}{d} \right|, \left| \frac{b}{d} \right|, \left| \frac{c}{d} \right| \right). \\ CMR : N \dot{e} u \ x_{o} \ l\dot{a} \ nghiem \ phu \ ong \ trinh \ thi \ \frac{1}{1 + \beta} < |x_{o}| < 1 + c < 1 + c \\ \end{array}$$

The set chung minh $|\mathbf{x}_0| < 1 + \alpha$. Thậy vậy nếu $|\mathbf{x}_0| \le 1 \rightarrow (dpcm)$ Nếu $|\mathbf{x}_0| > 1$ khi đó $a\mathbf{x}_0^3 + b\mathbf{x}_0^2 + c\mathbf{x}_0 + d = 0$

$$\Rightarrow \mathbf{x}_{o}^{3} = -\left(\frac{\mathbf{b}}{\mathbf{a}}\mathbf{x}_{o}^{2} + \frac{\mathbf{c}}{\mathbf{a}}\mathbf{x}_{o} + \frac{\mathbf{d}}{\mathbf{a}}\right) \rightarrow |\mathbf{x}_{o}^{3}| = \left|\frac{\mathbf{b}}{\mathbf{a}}\mathbf{x}_{o}^{2} + \frac{\mathbf{c}}{\mathbf{a}}\mathbf{x}_{o} + \frac{\mathbf{d}}{\mathbf{a}} + \mathbf{c}\right|$$

$$\leq \left|\frac{\mathbf{b}}{\mathbf{a}}\right||\mathbf{x}_{o}^{2}| + \left|\frac{\mathbf{c}}{\mathbf{a}}\right||\mathbf{x}_{o}| + \left|\frac{\mathbf{d}}{\mathbf{a}}\right| \leq \alpha(|\mathbf{x}_{o}|^{2} + |\mathbf{x}_{o}| + 1) = 1$$

$$= \alpha. \frac{|\mathbf{x}_{o}|^{3} - 1}{|\mathbf{x}_{o}| - 1} < \frac{|\mathbf{x}_{o}|^{3}}{|\mathbf{x}_{o}| - 1} \cdot \alpha \rightarrow |\mathbf{x}_{o}| < 1 + \alpha$$

Dể ý rằng $y_0 = \frac{1}{x_0}$ là nghiệm của phương trình

 $dx^3 + cx^2 + bx + a = 0$

 \rightarrow làm tương tự \rightarrow $|\mathbf{y}_0| = \frac{1}{|\mathbf{x}_0|} < 1 + \beta \rightarrow \frac{1}{1+\beta} < |\mathbf{x}_0|$

120111.2 : CMR : Néu phương trình $x^4 + bx^3 + cx^2 + bx + 1 = 0$ có nghiệm thì

1)
$$b^{2} + (c - 2)^{2} > 3$$

2) $b^{2} + (c - 2)^{2} > \frac{16}{5}$
3) $b^{2} + c^{2} \ge \frac{4}{5}$

§11. SỬ DỤNG ĐẠO HÀM

1. Sử dụng tỉnh dơn điệu của hàm số 1131.2 : CMR : $x - \frac{x^3}{6} \stackrel{(1)}{<} \sin x < x \forall x > 0$

Giải

The co 2) \Leftrightarrow f(x) = x - sinx > 0 \forall x > 0 V1 f'(x) = 1 - cosx > 0 \forall x > 0 nên f(0) = 0 \Rightarrow sinx < x (1) \Leftrightarrow g(x) = sin x + $\frac{x^3}{6}$ - x > 0

Ta co g'(x) = $\frac{x^2}{2} + \cos x - 1 \Rightarrow$ g''(x) = x - sinx > 0

Do do g'(x) dong bién \rightarrow g'(x) > g'(0) = $\frac{0^2}{2} + \cos 0 - 1 = 0$

$$\Rightarrow$$
 g(x) dong biến \Rightarrow g(x) > g(0) = sin0 + $\frac{0^3}{6} - 0 = 0$

Vay $x - \frac{x^3}{6} < \sin x$. Từ đó \rightarrow (dpcm)

7811.2 : CMR now $0 < x < \frac{\pi}{2}$ thi $2^{\sin x} + 2^{\log x} \ge 2^{x+1}$

Giải

Theo BDT Cosi +a có $2^{\sin x} + 2^{\log x} \ge 2\sqrt{2^{\sin x} \cdot 2^{\log x}} = 2^{\frac{\sin x + \log x}{2} + 1}$ Ta sẽ chứng minh

 $\frac{\sin x + tgx}{2} + 1 \ge 2^{x+1} \iff \sin x + tgx > 2x \quad \forall x \in \left(0, \frac{\pi}{2}\right)$ $\Leftrightarrow f(x) = \sin x + tgx - 2x > 0 \quad \forall x \in \left(0, \frac{\pi}{2}\right)$

The coint f'(x) =
$$\cos x + \frac{1}{\cos^2 x} - 2 > \cos^2 x + \frac{1}{\cos^2 x} - 2 \ge 2\sqrt{\cos^2 x \cdot \frac{1}{\cos^2 x}} - 2 = 0$$

 $\Rightarrow f(x) \text{ dong bien } \Rightarrow f(x) > f(0) = \sin 0 + tg0 - 2.0 = 0$ $\Rightarrow \sin x + tgx > 2x. \text{ Từ do } \Rightarrow (\text{dpcm})$ /NMATH.CO

113111.2 : CMR. Now $0 < x < \frac{\pi}{2}$ the $2^{2\sin x} + 2^{4gx} > 2\frac{3x}{2} + 1$

Giải

Theo BDT Côsi ta có

$$2^{2 \operatorname{sinx}} + 2^{\operatorname{tgx}} \ge 2 \sqrt{2^{2 \operatorname{sinx}} \cdot 2^{\operatorname{tgx}}} = 2^{\frac{2 \operatorname{sinx} + \operatorname{tgx}}{2} + 1}$$

Ta sẽ chứng minh

 $\leftrightarrow 2\sin x + tgx > 3x \forall x \in \left(0, \frac{\pi}{2}\right)$

 $\leftrightarrow f(\mathbf{x}) = 2 \sin \mathbf{x} + t g \mathbf{x} - 3 \mathbf{x} > 0 \quad \forall \mathbf{x} \in \left(0, \frac{\pi}{2}\right)$

The cd
$$\mathbf{f}(\mathbf{x}) = 2\cos \mathbf{x} + \frac{1}{\cos^2 \mathbf{x}} - 3 = \cos \mathbf{x} + \cos \mathbf{x} + \frac{1}{\cos^2 \mathbf{x}} - 3 \ge \frac{1}{3} = \frac{1}{3} \sqrt{1 \cos x \cdot \cos x \cdot \frac{1}{\cos^2 \mathbf{x}}} - 3 = 0$$

 $\Rightarrow \mathbf{f}(\mathbf{x}) \operatorname{dong} \operatorname{bien} \Rightarrow \mathbf{f}(\mathbf{x}) > \mathbf{f}(0) = 0 \Rightarrow 2\sin \mathbf{x} + \operatorname{tgx} > 3\mathbf{x}$
Từ dó $\Rightarrow (\operatorname{dpcm})$
1011Va : CMR nếu $\mathbf{x} > 0$ thi $\mathbf{e}^{\mathbf{x}} > 1 + \mathbf{x} + \frac{\mathbf{x}^2}{2!} + \dots + \frac{\mathbf{x}^n}{n!} \forall \mathbf{n} \in \mathbf{N}$
Giải
Ta số chứng minh
 $\mathbf{f}_n(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} - \left(1 + \mathbf{x} + \frac{\mathbf{x}^2}{2!} + \dots + \frac{\mathbf{x}^n}{n!}\right) > 0 \forall \mathbf{x} > 0$
Với $\mathbf{n} = 0$ ta cơ $\mathbf{f}_0(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} - 1 > 0 \forall \mathbf{x} > 0$
Giả sử ta cơ $\mathbf{f}_{\mathbf{x}}(\mathbf{x}) > 0 \forall \mathbf{x} > 0$.
Khi dớ $\mathbf{f}_{\mathbf{k}+1}(\mathbf{x}) = \mathbf{f}_{\mathbf{x}}(\mathbf{x}) > 0 \forall \mathbf{x} > 0$.
Khi dớ $\mathbf{f}_{\mathbf{k}+1}(\mathbf{x}) = \mathbf{f}_{\mathbf{x}}(\mathbf{x}) > 0 \forall \mathbf{x} > 0$.
Theo nguyên lí qui nạp thi $\mathbf{f}_n(\mathbf{x}) > 0 \forall \mathbf{x} > 0$, $\forall \mathbf{n} \in \mathbf{N}$
Vây $\mathbf{e}^{\mathbf{x}} > 1 + \mathbf{x} + \frac{\mathbf{x}^2}{2!} + \dots + \frac{\mathbf{x}^n}{n!} \forall \mathbf{n} \in \mathbf{N}$
1511.2 : Cho $\mathbf{a} \le 6$, $\mathbf{b} \le -8$, $\mathbf{c} \le 3$.
CMR. $\mathbf{x}^4 - \mathbf{a}\mathbf{x}^2 - \mathbf{b}\mathbf{x} \ge \mathbf{c} \forall \mathbf{x} \ge 1$
 $\Rightarrow \mathbf{f}'(\mathbf{x}) = 2(6\mathbf{x}^2 - \mathbf{a}) \ge 2(6.1^2 - 6) = 0$
 $\Rightarrow \mathbf{f}'(\mathbf{x}) \operatorname{dong} \operatorname{bien}/[1, +\infty) \Rightarrow \mathbf{f}(\mathbf{x}) \ge \mathbf{f}(1) = 4 - (2\mathbf{a} + \mathbf{b}) \gg 3 + 4 - (2.6 - 8) = 0$
Do dó $\mathbf{f}(\mathbf{x}) \operatorname{dong} \operatorname{bien}/[1, +\infty)$
 $\Rightarrow \mathbf{f}(\mathbf{x}) \ge \mathbf{f}(1) = 1 - (\mathbf{a} + \mathbf{b}) \ge 3 \ge \mathbf{c}$
 \mathbf{tat}

VNMATH COM

771 : CMR $f(x) = x^4 + px + q \ge 0 \quad \forall x \in \mathbb{R} \leftrightarrow 256q^3 \ge 27p^4$ Giải

$$f'(x) = 4x^3 + p \rightarrow f'(x) = 0 \leftrightarrow x_0 = -\sqrt[3]{\frac{p}{4}}$$

Khi di qua $x = x_0$ dấu f'(x) đổi dấu từ - sang + do đó

Min
$$f(x) = f\left(-\frac{3p}{4}\right) = x_0(x_0^3 + p) + q = -\frac{3p}{4}\sqrt[3]{\frac{p}{4}} + q$$

The co $f(x) \ge 0 \ \forall x \in \mathbb{R} \leftrightarrow \text{Min } f(x) \ge 0 \leftrightarrow q \ge \frac{3p}{4} \sqrt{\frac{p}{4}}$ $\leftrightarrow 256q^3 \ge 27p^4$

 $10I : CMR f(\mathbf{x}) = \mathbf{x}^4 + p\mathbf{x}^3 + q \ge 0 \ \forall \mathbf{x} \in \mathbf{R} \leftrightarrow 256 \ q \ge 27p^4$ Giải

 $f'(x) = x^2(4x + 3p) \Rightarrow f'(x)$ triệt tiêu và đổi dấu từ - sang + Khi x đi qua $x_0 = -\frac{3p}{4}$. Do đó

Min
$$f(x) = f(-\frac{3p}{4}) = \frac{256q - 27p^4}{256}$$

/NMATH.COM

Ta có $f(x) \ge 0 \quad \forall x \in \mathbb{R} \leftrightarrow \text{Min } f(x) \ge 0 \leftrightarrow 256q \ge 27p^4$ 69IVa : CMR arctgx $-\frac{\pi}{4} \ge \ln(x^2 + 1)$, $-\ln 2 \quad \forall x \in \left[\frac{1}{2}, \mathbb{L}\right]$ Giải

Xét $f(x) = \arctan(x^2 + 1) \quad \forall x \in \left[\frac{1}{2}, 1\right]$ Ta có $f'(x) = \frac{1}{1+x^2} - \frac{2x}{1+x^2} = \frac{1-2x}{1+x^2} \le 0 \quad \forall x \in \left[\frac{1}{2}, 1\right] \Rightarrow$ f(x) dông biến

 \rightarrow Min f(x) = f(1) = arctg1 - ln(1+1) = $\frac{\pi}{4}$ - ln2. Từ đó \rightarrow (dpcm)

121. Cho hàm số $f(x) = x^n + (c - x)^n$ với c > 0 và $2 \le n \in Z^+$ Khảo sát sự biến thiên và từ đó chúng minh

$$\left(\frac{\mathbf{a}+\mathbf{b}}{2}\right)^{\mathbf{n}} \leq \frac{\mathbf{a}^{\mathbf{n}}+\mathbf{b}^{\mathbf{n}}}{2} \forall \mathbf{a}+\mathbf{b} \geq 0$$

Giải

$$f^{*}(x) = n [x^{n-1} - (c - x)^{n-1}].$$

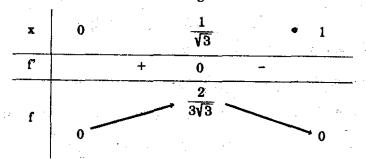
The co $f'(x) = 0 \leftrightarrow x^{n-1} = (c - x)^{n-1}$ Nếu n chẳn \rightarrow (n - 1) lẻ \rightarrow pt \leftrightarrow x = c - x \leftrightarrow x = $\frac{c}{2}$ Nếu n lẻ \rightarrow (n - 1) chẳn \rightarrow pt \leftrightarrow $|\mathbf{x}| = |\mathbf{c}-\mathbf{x}| \leftrightarrow \mathbf{x}^2 = (\mathbf{c}-\mathbf{x})^2$ $\leftrightarrow \mathbf{x}^2 - (\mathbf{c} - \mathbf{x})^2 = (2\mathbf{x} - \mathbf{c})\mathbf{c} = \mathbf{0} \leftrightarrow \mathbf{x} = \frac{\mathbf{c}}{2}$ Mặt khác f''(x) = $n(n - 1)[x^{n-2} + (c - x)^{n-2}]$ $\Rightarrow f^{*}\left(\frac{c}{2}\right) = 2n(2n-1)\left(\frac{c}{2}\right)^{n-2} > 0$ \rightarrow f(x) đạt cực tiểu tại x = $\frac{c}{2}$ và f $\left(\frac{c}{2}\right) = 2\left(\frac{c}{2}\right)^n$ Theo khảo sát \Rightarrow f(x) = xⁿ + (c - x)ⁿ $\ge 2\left(\frac{c}{2}\right)^n$. Lấy $\begin{cases} x = a \\ c = a + b \end{cases}$ $\mathbf{a}^{n} + \mathbf{b}^{n} \ge 2\left(\frac{\mathbf{a} + \mathbf{b}}{2}\right)^{n} \leftrightarrow \left(\frac{\mathbf{a} + \mathbf{b}}{2}\right)^{n} \le \frac{\mathbf{a}^{n} + \mathbf{b}^{n}}{2}$ (dpcm) thi 2611.2: Cho $\begin{cases} a, b, c > 0 \\ a^2 + b^2 + c^2 = 1 \end{cases}$ $CMR : \frac{a}{b^2 + c^2} + \frac{b}{c^2 + a^2} + \frac{c}{a^2 + b^2} \ge \frac{3\sqrt{3}}{2}$ Giai

Từ giả thiết suy ra 0 < a, b, c < 1

Ta có 1
$$\leftrightarrow \frac{a^2}{a(1-a^2)} + \frac{b^2}{b(1-b^2)} + \frac{c^2}{c(1-c^2)} \ge \frac{3\sqrt{3}}{2}$$

Ta sẽ chúng minh $\frac{a^2}{a(1-a^2)} \ge \frac{3\sqrt{3}}{2}a^2 \leftrightarrow 0 < a(1-a^2) < \frac{2}{3\sqrt{3}}$

Xét hàm số $f(x) = x(1 - x^2)$ với 0 < x < 1Ta có f'(x) = $-3x^2 + 1 \Rightarrow$ Bảng biến thiên



Nhìn vào bảng biến thiên tạ có

$$0 < f(x) = x(1 - x^2) \le \frac{2}{3\sqrt{3}}$$

/NMATH COI

$$T \dot{u} d o \frac{a^2}{a(1-a^2)} \ge \frac{3\sqrt{3}}{2}a^2$$

Do do
$$\frac{a^2}{a(1-a^2)} + \frac{b^2}{b(1-b^2)} + \frac{c^2}{c(1-c^2)} \ge \frac{3\sqrt{3}}{2}(a^2+b^2+c^2) = \frac{3\sqrt{3}}{2}$$

2. Sử dụng Định lý Lagrange

Dinh lý Lagrange : Nếu y = f(x) liên tục/[a, b] và có đạo hàm/(a,b) thì $\exists c \in (a, b)$ để

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 hay $f(b) - f(a) = (b - a) f'(c)$

2.1 (72 IV a) : CMR Nếu 0 < b < a thì

$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$$

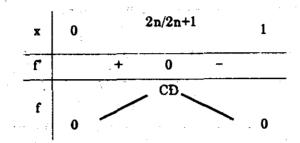
Giai

Xết hàm $f(x) = \ln x$ với $x \in (0, +\infty)$. Ta có y = f(x) liên tuc/(b. a) và $f'(x) = \frac{1}{x}$ nên theo định lý Lagrange thì $\exists c \in (b, a)$ để $f(a)-f(b) = f'(c)(a-b) \Leftrightarrow \ln a - \ln b = \frac{1}{c}(a-b) \Leftrightarrow \ln \frac{a}{b} = \frac{a-b}{c}$ $V_1 0 < b < c < a nen \frac{a-b}{a} < \frac{a-b}{c} = \ln \frac{a}{b} < \frac{a-b}{b}$ 2.2 (100 IV a) : CMR |arc tga - arc tgb| \leq |a - b| \forall a, b Giải Không mất tính tổng quát giả sử a \ge b. Xét hàm f(x) = arctgx. Theo dinh lý Lagrange thì $\exists c \in (b, a)$ sao cho $f(a) - f(b) = f'(c)(a - b) \leftrightarrow \arctan a = \frac{1}{1 + a^2} (a + b)$ suy ra |arc tga + arc tgb| = $\left|\frac{1}{1+c^2}\right|$ |a - b| $\leq |a + b|$ 2.3 : CMR $\frac{1}{1 + (n + 1)^2} < \arctan \frac{1}{n^2 + n + 1} < \frac{1}{1 + n^2}$ Giải Xet $f(x) = \operatorname{arc} \operatorname{tgx} \to f'(x) \Rightarrow \frac{1}{1 + x^2}$. Theo dinh lý Lagrange thì $\exists c \in [n, n + 1]$ sao cho $f(n+1) - f(n) = f'(c)[(n+1) - n] \leftrightarrow arctg(n+1) - arctgn = \frac{1}{1 + c^2}$ Mà tg (arc tg α - arc tg β) = $\frac{\alpha - \beta}{1 + \alpha\beta}$ \rightarrow arc tg α - arc tg β = arctg $\frac{\alpha - \beta}{1 + \alpha\beta}$ Do d β $\operatorname{arctg} \frac{1}{n^2 + n + 1} = \operatorname{arctg} (n + 1) - \operatorname{arctgn} = \frac{1}{1 + c^2}$

Ma
$$n < c < n + 1 \rightarrow \frac{1}{1 + (n + 1)^2} < anctg \frac{1}{n^2 + n + 1} < \frac{1}{1 + n^2}$$

8*IVa*: Cho n $\in \mathbb{Z}^+$. CMR : $x^n \sqrt{1-x} < \frac{1}{\sqrt{2ne}} \forall x \in (0, 1)$

Giải



 $BDT \leftrightarrow 2nx^{2n}(1 - x) < \frac{1}{e}. Dat f(x) = 2nx^{2n} (1 - x) v \delta i$ $x \in (0, 1)$ $Ta c o f'(x) = 2nx^{2n-1} [2n - (2n + 1) x]$ $\rightarrow f'(x) = 0 \leftrightarrow x = \frac{2n}{2n + 1}$ $T\tilde{u} do f(x) \leq f \left(\frac{2n}{2n + 1}\right) = \left(\frac{2n}{2n + 1}\right)^{2n + 1} \forall x \in (0, 1).$ $Dat m = 2n ta s \tilde{e} c/m \left(\frac{m}{m + 1}\right)^{m+1} < \frac{1}{e}$ /NMATH.CON

$$\leftrightarrow (m + 1) \ln \frac{m}{m+1} < \ln \frac{1}{e} = -1$$

$$\leftrightarrow \ln(m + 1) - \ln m > \frac{1}{1+e}$$

Sử dụng định lý Lagrange : $\exists c \in [m, m + 1]$ sao cho g(m + 1) - g(m) = g'(c) [(m + 1) - m] với $g(x) = \ln x$ $\leftrightarrow \ln(m + 1) - \ln m = \frac{1}{c} > \frac{1}{m + 1}$. Từ đó \rightarrow (dpcm)

§ 12. BẤT ĐẰNG THÚC TÍCH PHÂN

Phương pháp: Sử dụng các tỉnh chất sau

1. Neu $f(x) \le g(x)$ thi $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$

2. New $m \le f(x) \le M$ thì $m(b - a) \le \int^b f(x) dx \le M(b - a)$

3. Nếu f(x) là một hàm số liên tục và f(x) $\ge 0 \forall x \in [a, b]$ khi đó nếu f(x) không đồng nhất bằng $0 \forall x \in [a, b]$ thì

 $\int_{a}^{b} f(x) dx > 0 \qquad (Tức là không xảy ra dấu bằng)$ Hệ quả : Nếu f(x) và g(x) liên tục và f(x) \leq g(x) đồng thời f(x) \neq g(x) \forall x \in [a, b] thì $\int_{a}^{b} f(x) dx < \int_{a}^{b} g(x) dx$

Chứng minh tính chất 3 :

 $\begin{array}{l} \forall i \ f(x) \not\equiv 0 \quad \forall x \in [a, b] \ nen \ \exists x_o \in [a, b] \ see \ cho \ f(x_o) > 0 \ . \\ \mbox{Mà } f(x) \ liên \ tục \ nen \ \exists \ l \ lan \ chn \ của \ x_o \ la \ (x_o - \xi, \ x_o + \xi) \ see \ cho \ f(x) \geq \frac{1}{2} f(x_o) \ \forall x \in (x_o - \xi, \ x_o + \xi) \end{array}$

 $(Chú \ \dot{y} : \mathbf{x}_0 = a \ thì lấy lân cận bên phải <math>\mathbf{x}_0, \mathbf{x}_0 = b \ thì lấy lân cận bên trái <math>\mathbf{x}_0$)

Từ đó tạ có

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{o}-\delta} f(x) dx + \int_{x_{o+}\delta}^{x_{o+}+\delta} f(x) dx + \int_{x_{o+}+\delta}^{b} f(x) dx \ge$$

$$\geq 0 + \int_{x_{o}+z}^{x_{o}+z} \frac{1}{2} f(x_{o}) dx + 0 = \frac{1}{2} f(x_{o}) 2z = f(x_{o}) z > 0$$

Chúng minh hệ quả: Đặt $h(x) = g(x) - f(x) \ge 0 \forall x \in [a, b]$ và $h(x) \neq 0 \forall x \in [a, b]$

$$\int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) dx = \int_{a}^{b} h(x) dx > 0$$

Ý nghĩa hình học: Hình thang cong chấn về phía trên trục hoành bởi đồ thị hàm số y = f(x) có điện tích dương

12.1 [43IVa] :

CMR
$$\frac{1}{2} < \int_{0}^{2} \frac{dx}{\sqrt{1-x^{2n}}} < \frac{1}{6}$$
 (n^t = 2, 3, 4, ...)

Giai

0

$$\forall \mathbf{x} \in \left[0, \frac{1}{2}\right] \text{ ta } co \ 0 < 1 - \mathbf{x}^2 \le 1 - \mathbf{x}^{2n} \le 1$$
$$\Rightarrow 1 \le \frac{1}{\sqrt{1 - \mathbf{x}^{2n}}} \le \sqrt{\frac{1}{1 - \mathbf{x}^2}}$$

`**J**`` 0 $\sqrt{1-x^2}$

VNMATH CON

$$\Leftrightarrow \frac{1}{2} = \mathbf{x} \Big|_{0}^{\frac{1}{2}} < \int_{0}^{\frac{1}{2}} \frac{d\mathbf{x}}{\sqrt{1 - \mathbf{x}^{2n}}} < \arcsin \mathbf{x} \Big|_{0}^{\frac{1}{2}} = \frac{\pi}{6}$$

 $-\mathbf{x}^{2n}$

n

12.2 [71IVa]

CMR
$$\frac{\pi}{6} < \int_{0}^{1} \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{\pi\sqrt{2}}{8}$$

Giải

$$\forall \mathbf{x} \in [0, 1] \implies 0 \le \mathbf{x}^3 \le \mathbf{x}^2 \le 1$$
$$\implies 4 - \mathbf{x}^2 - \mathbf{x}^2 \le 4 - \mathbf{x}^2 - \mathbf{x}^3 \le 4 - \mathbf{x}^2$$

$$\Rightarrow \frac{1}{\sqrt{4 - x^2}} \le \frac{dx}{\sqrt{4 - x^2 - x^3}} \le \frac{1}{\sqrt{4 - 2x^2}}$$

$$\Rightarrow \int_0^1 \frac{dx}{\sqrt{4 - x^2}} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}} < \frac{dx}{\sqrt{4 - 2x^2}}$$

$$\Rightarrow \left(\arcsin\frac{x}{2}\right) \Big|_0^1 = \frac{\pi}{6} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 - x^3}} < \left(\frac{1}{\sqrt{2}}\arcsin\frac{x}{\sqrt{2}}\right) \Big|_0^1$$

$$= \frac{\pi\sqrt{2}}{8}$$

12.3 [281Va]
CMR :
$$\frac{\sqrt{3}}{4} < \int_{1}^{3} \frac{\sin x}{x} dx < \frac{1}{2}$$

х

$$CMR : \frac{\sqrt{3}}{4} < \int_{7}^{3} \frac{\sin x}{x} dx < \frac{1}{2}$$

Giải
Đặt g(x) = $\frac{\sin x}{x}$ với $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \Rightarrow g'(x) = \frac{x\cos x - \sin x}{x^{2}} = \frac{h(x)}{x^{2}}$

Ta có:
h'(x) = $\cos x - x\sin x - \cos x = -x\sin x < 0 \ \forall x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

 $\Rightarrow h(x) \text{ nghich hiến } \Rightarrow h(x) < h\left(\frac{\pi}{6}\right) = \frac{1}{2}\left[\frac{\pi\sqrt{3}}{6} - 1\right] < 0$

 $\Rightarrow f'(x) < 0 \Rightarrow f\left(\frac{\pi}{3}\right) \le f(x) \le f\left(\frac{\pi}{6}\right)$

$$\Rightarrow \frac{3\sqrt{3}}{2\pi} \le \frac{\sin x}{x} \le \frac{3}{\pi} \Rightarrow \int_{\pi}^{3} \frac{3\sqrt{3}}{2\pi} dx < \int_{\pi}^{\frac{3}{3}} \frac{\sin x}{x} dx < \int_{\frac{\pi}{3}}^{\frac{3}{3}} \frac{3}{\pi} dx$$
$$\Rightarrow \frac{\sqrt{3}}{4} < \int_{\pi}^{\frac{7}{3}} \frac{\sin x}{x} dx < \frac{1}{2}$$

139

5 2 C

12.4 [102Va]

Cho hai hàm số liên tục f, g : [0, 1] → [0, 1]

CMR :
$$\left(\int_{0}^{1} f(x)g(x) dx\right)^{2} \leq \int_{0}^{1} f(x) dx = \int_{0}^{1} g(x) dx$$

Giài

 \Rightarrow (dpcm)

12.5 [106IVa]

CMR Nếu f(x), g(x) là hai hàm số liên tục xác định trên [a, b] thi

$$\left(\int_{a}^{b} f(x)g(x)\,dx\right)^{2} \leq \int_{a}^{b} f^{2}(x)\,dx\int_{a}^{b} g^{2}(x)\,dx$$

Bất đằng thức Bunhiacôpski

0

Giải

$$0 \leq [tl(x) + g(x)]^{2} = t^{2}f^{2}(x) + 2tf(x)g(x) + g^{2}(x) \quad \forall t \in \mathbb{R}$$

$$\Rightarrow 0 \leq t^{2} \int_{a}^{b} (x) dx + 2t \int_{a}^{b} f(x)g(x) dx + \int_{a}^{b} g^{2}(x) dx$$

Coi yế phải là tam thức bậc 2 ẩn t ta có

$$\Delta = \left(\int_{a}^{b} f(x)g(x) dx\right)^{2} - \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx \leq 0$$

$$\Rightarrow (dpcm)$$

12.6 [21IVa]

1. CMR
$$\forall n \in N$$
 thi $\int_{0}^{n} \sqrt{x} \, dx < \sum_{k=1}^{n} \sqrt{k} < \int_{1}^{n-1} \sqrt{x} \, dx$
2. Từ đó suy ra : a) 666.6 $< \sum_{k=1}^{100} \sqrt{k} < 676$
b) $\lim_{n \to +\infty} \left(\sqrt{\frac{1}{n^{3}}} \cdot \sum_{k=1}^{n} \sqrt{k} \right) = \frac{2}{3}$

Ta co :
$$\sqrt{\mathbf{x}} \le \sqrt{\mathbf{k}}$$
 $\forall \mathbf{x} \in [\mathbf{k} - 1, \mathbf{k}]$
 $\sqrt{\mathbf{k}} \le \sqrt{\mathbf{x}}$ $\forall \mathbf{x} \in [\mathbf{k}, \mathbf{k} + 1]$ $(\mathbf{k} = 1, 2, ...)$

Suy ra :

$$\int_{k=1}^{k} \sqrt{x} \, dx < \int_{k=1}^{k} \sqrt{k} \, dx = \sqrt{k} = \int_{k}^{k+1} \sqrt{k} \, dx < \int_{k}^{k+1} \sqrt{x} \, dx$$

$$\implies \int_{0}^{n} \sqrt{x} \, dx = \sum_{k=1}^{n} \left(\int_{k=1}^{k} \sqrt{x} \, dx \right) < \sum_{k=1}^{n} \sqrt{k} < \sum_{k=1}^{n} \sqrt{k} < \sum_{k=1-k}^{n} \left(\int_{k}^{k+1} \sqrt{x} \, dx \right) = \int_{1}^{n+1} \sqrt{x} \, dx \, (dpcm)$$
2. Every $\int_{0}^{n} \sqrt{x} \, dx = \frac{2}{3} (x^{2}) \Big|_{0}^{n} = \frac{2}{3} n^{\frac{3}{2}}$

$$\int_{3}^{n+1} \sqrt{x} \, dx = \frac{2}{3} (x^{2}) \Big|_{1}^{n+1} = \frac{2}{3} \Big[(n+1)^{\frac{3}{2}} - 1 \Big]$$

do do theo 1) $\Rightarrow \frac{2}{3} n^2 < \sum_{k=1}^{\infty} \sqrt{k} < \frac{4}{3} \left[(n+1)^2 - 1 \right]$ (5)

VNMATH.COM

a) Cho n = 100
$$\Rightarrow \sum_{k=1}^{100} \sqrt{k} > \frac{2}{3} (100)^{\frac{3}{2}} > 666.6$$

Với n = 99
$$\Rightarrow \sum_{k=1}^{36} \sqrt{k} < \frac{2}{3} \left[(99 + 1)^2 - 1 \right] < 666$$

Do dó 666.6 < $\sum_{k=1}^{100} \sqrt{k} = \sum_{k=1}^{99} \sqrt{k} + \sqrt{100} < 666 + 10 = 676$

b) Theo kết quả (*) -

$$\Rightarrow \frac{2}{3} < \frac{1}{n^2} \sum_{k=1}^{n} \sqrt{k} < \frac{2}{3} \left[\left(\frac{n+1}{n} \right)^2 - \frac{1}{\frac{3}{n^2}} \right]$$

Theo nguyên lý giới hạn kẹp giữa $\Rightarrow \lim_{n \to +\infty} \left(\frac{1}{\sqrt{n^3} k_{z,1}} \sqrt{k_z} \right) = \frac{2}{3}$

MỘT SAI LẦM CƠ BẢN CỦA BỘ ĐỀ

33 III.2 : Tìm Max, Min A = $x\sqrt{1+y} + y\sqrt{1+x} \sqrt{3} x^2 + y^2 = 1$ 1) Max A [Bộ để làm đúng nhưng quá dài] Giải

$$A = x\sqrt{1+y} + y\sqrt{1+x} \leq \sqrt{(x^2+y^2)[(\sqrt{1+y})^2 + (\sqrt{1+x})^2]} = \sqrt{2+x+y} \leq \sqrt{2} + \sqrt{(1^2+1^2)(x^2+y^2)} = \sqrt{2+\sqrt{2}}$$

Từ dó Max A = $\sqrt{2+\sqrt{2}} + \sqrt{2}$ với x = y = $\frac{\sqrt{2}}{2}$
2) Min A : Đáp số Bộ Đế :
Min A = -1 dạt được khi $\begin{bmatrix} x = 0 , y = -1 \\ x = -1 , y = 0 \end{bmatrix}$
Dáp số này sai vì với phản ví dụ : x = $\frac{1}{4}$, y = $\frac{-\sqrt{15}}{4} \rightarrow$
A < -1 \rightarrow Min A < -1
Lới giải dúng : Xết 2 trường hợp sau
2.1 xy $\ge 0 \leftrightarrow \begin{bmatrix} x \ge 0 , y \ge 0 \\ x \le 0 , y \le 0 \end{bmatrix}$
Dế tìm Min A ta chỉ cần xết với $\begin{vmatrix} x \le 0 \\ y \le 0 \end{bmatrix}$
Khi đó dễ c/m Mịn A = -1 khi $\begin{bmatrix} x = 0 , y = -1 \\ x = -1 , y = 0 \end{bmatrix}$
2.2 xy < 0 : Đật $\begin{cases} x + y = t \\ -xy = \frac{t^2 - 1}{2} & \sqrt{1 + y} + \sqrt{1 + x} \end{bmatrix}^2 = \frac{t^2 - 1}{2} = \frac{t^2 - 1}{2} < 0 \rightarrow -1 < t < 1$
Khi đó A² = $\begin{bmatrix} x\sqrt{1+y} + y\sqrt{1+x} \end{bmatrix}^2 = \frac{t^2 + y^2}{2} + xy (x + y) + 2xy \sqrt{(1 + x)(1 + y)}$

VNMATH.CON

 $\rightarrow f(t) = 2A^2 = (\sqrt{2} + 1)t^3 + \sqrt{2}t^2 - (\sqrt{2} + 1)t + (2 - \sqrt{2})$ với -1 < t < 1 $f'(t) = 3(\sqrt{2} + 1)t^2 + 2\sqrt{2}t - (\sqrt{2} + 1)t^2$ $f'(t) = 0 \operatorname{co} 2 \operatorname{nghiem}$ $t_1 = \frac{-\sqrt{2} - \sqrt{11 + 6\sqrt{2}}}{3(\sqrt{2} + 1)}, t_2 = \frac{-\sqrt{2} + \sqrt{11 + 6\sqrt{2}}}{3(\sqrt{2} + 1)}$ -1 t ť f Do do Max $f(t) = f(t_1) = f\left(\frac{-\sqrt{2} - \sqrt{11 + 6\sqrt{2}}}{3(\sqrt{2} + 1)}\right)$ Ta có $f(t) = \left(\frac{t}{3} + \frac{\sqrt{2}}{9(\sqrt{2}+1)}\right)f'(t) - \left[\frac{2(\sqrt{2}+1)}{3} + \frac{4}{9(\sqrt{2}+1)}\right]t + 2(\sqrt{2}) + \frac{\sqrt{2}}{9}$ $\rightarrow f(t_1) = -\left[\frac{6(\sqrt{2}+1)^2+4}{9(\sqrt{2}+1)}\right] \cdot \left(\frac{-\sqrt{2}-\sqrt{11}+6\sqrt{2}}{3(\sqrt{2}+1)}\right) + 2-\sqrt{2} + \frac{\sqrt{2}}{9}$ $f(t_1) = \frac{2\sqrt{11+6\sqrt{2}} \left[\sqrt{22+12\sqrt{2}} + (11+6\sqrt{2})\right] + (3+2\sqrt{2})(27-24\sqrt{2})}{54(3+2\sqrt{2})}$ Từ đo $|A| \leq \sqrt{\frac{2\sqrt{11+6\sqrt{2}} \left[\sqrt{22+12\sqrt{2}} + (11+6\sqrt{2})\right] + 66+26\sqrt{2}}{11+6\sqrt{2}}}$ 54(3 + 212) $\rightarrow \text{Min A} = -\sqrt{\frac{2\sqrt{11+6\sqrt{2}} \left[\sqrt{22+12\sqrt{2}} + (11+6\sqrt{2})\right] + 66+26\sqrt{2}}{11+6\sqrt{2}}}$ $54(3 + 2\sqrt{2})$ Rö ràng kết quả này < -1. Kết hợp 2.1 và 2.2 Suy ra

/NMATH CON

$$Min A = -\sqrt{\frac{2\sqrt{11+6\sqrt{2} \left[\sqrt{22+12\sqrt{2} + (11+6\sqrt{2})}\right]+66+26\sqrt{2}}{54(3+2\sqrt{2})}}$$

MỘT SỐ BẤT ĐẢNG THỨC CỦA CÁC NHÀ TOÁN HỌC

1)
$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n} \lor a_1 \dots a_n \ge 0$$

Bất đẳng thức Có Si
Có 20 cách chứng minh Bất đẳng thức này
2) $(a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2) \ge (a_1b_1 + \dots + a_nb_n)^2 \lor a_i, b_i \in \mathbb{R}$
Bất đẳng thức Bunhiacôpski
Có 6 cách chứng minh Bất đẳng thức này
3) Giả sử -1 < x $\ne 0$. Khi đó
 $(1 + x)^a \ge 1 + ax$ nếu $a \ge 1$ hoặc $a \le 0$
 $(1 + x)^a < 1 + ax$ nếu $a < 1$
Bai dàng thứ Bic nư lị

4) Cho $\frac{1}{p} + \frac{1}{q} = 1$ với p, $q \in \mathbf{Q}^+$ và $\mathbf{a}_i, \mathbf{b}_i \ge 0$ $(i = \overline{1, n})$ khi đó

$$\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i} \leq \left(\sum_{i=1}^{n} \mathbf{a}_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} \mathbf{b}_{i}^{q}\right)^{1/q}$$

Bất đẳng thức HöLDer

5) Cho 1 \in \mathbf{Q} và
$$\mathbf{a}_i, \mathbf{b}_i \ge 0$$
 $(i = 1, n)$. Khi đơ

$$\sum_{i=1}^{n} (\mathbf{a}_{i}^{p} + \mathbf{b}_{i}^{p})^{1/p} \ge \left(\sum_{i=1}^{n} \mathbf{a}_{i}^{p} + \sum_{i=1}^{n} \mathbf{b}_{i}^{p}\right)^{1/p}$$

Bất đẳng thức Mincôpski

6) Cho
$$a_1, ..., a_n > 0$$
. Dât : $m = \min_{i=1,n} \{a_i\}, M = \max_{i=1,n} \{a_i\}$
 $CMR : n^2 \leq \sum_{i=1}^n a_i, \sum_{i=1}^n \frac{1}{a_i} \leq \frac{n^2(m+M)^2}{4mM}$
Bút dång thức Kantôrôvich
7) Cho $\begin{cases} 0 < a \leq a_1, a_2, ..., a_n \leq A \\ 0 < b \leq b_1, b_2, ..., b_n \leq B \end{cases}$ Khi đó
 $\sum_{i=1}^n a_i^2, \sum_{i=1}^n b_i^2 \leq \frac{1}{4} \left(\sqrt{\frac{AB}{ab}} + \sqrt{\frac{ab}{AB}}\right)^2, \left(\sum_{i=1}^n a_i b_i\right)^2$
Bốt dầng thức G.Polya - G.Szegð
8) Cho $a_1^2 - a_2^2 - ... - a_n^2 > 0$. Khi đó $\forall b_1, ..., b_n \in \mathbf{R}$ ta có
 $(a_1^2 - a_2^2 - ... - a_n^2)(b_1^2 - b_2^2 - ... - b_n^2) \leq (a_1b_1 - ... - a_nb_n)^2$
Bất đẳng thức Aczela
9) Cho 2 bộ số $a_1, ..., a_n$ và $b_1 ..., b_n$ ($b_1 \ge b_2 \ge ... \ge b_n \ge 0$)
Dật $S_k = \sum_{i=1}^k a_i (k = \overline{1, n})$. Gọi $m = \min\{S_k\}, M = \max\{S_k\}$
Khi đó $mb_1 \le \sum_{i=1}^n a_i b_i \le Mb_1$
Bất đẳng thức Abel
10) Cho $a_i \in \mathbf{R}^+$ ($i = \overline{1, n}$) và $n \ge Dai$ số $S_n = \sum_{i=1}^n a_i$.
Khi đó
1) $(1 + a_1) (1 + a_2) ... (1 + a_n) > 1 + S_n$
2) $(1 - a_1)(1 - a_2) ... (1 - a_n) > 1 - S_n (0 < a_i < 1 \forall i = \overline{1, n})$

VNMATH.COM

3)
$$(1 + a_1)(1 + a_2) \dots (1 + a_n) < \frac{1}{1 - S_n} (S_n < 1)$$

4) $(1 - a_1)(1 - a_2) \dots (1 - a_n) < \frac{1}{1 - S_n} (0 < a_i < 1; S_n < 1)$

Bất đẳng thức Vâyetstrat

11) Cho 0 < a < a₁, a₂, ... a_n < A. 0 < b < b₁, b₂, ... b_n < B. Khi dó ta có $\left|\frac{1}{n}\sum_{i=1}^{n}a_{i}b_{i}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n}a_{i}\right)\left(\sum_{i=1}^{n}b_{i}\right)\right| \leq \frac{1}{4}$ (A-a)(B-b)

Bất đẳng thức Grüssa

12) Cho $a_1, a_2, ..., a_n \in \mathbf{R}$. Khi đơ

$$(\mathbf{n} - 1)\sum_{i=1}^{n} \mathbf{a}_{i}^{2} + \mathbf{n} \quad \sqrt[n]{\prod_{i=1}^{n} \mathbf{a}_{i}^{2}} \geq \left(\sum_{i=1}^{n} \mathbf{a}_{i}\right)^{2}$$

Bất đẳng thức Sieyfer

13) Cho a_i , $b_i > 0$ $(i = \overline{1, n})$ và $1 \le p \le 2$. Khi đơ

$$\frac{\sum_{i=1}^{n} (\mathbf{a}_{i} + \mathbf{b}_{i})^{p}}{\sum_{i=1}^{n} (\mathbf{a}_{i} + \mathbf{b}_{i})^{p-1}} \leqslant \frac{\sum_{i=1}^{n} \mathbf{a}_{i}^{p}}{\sum_{i=1}^{n} \mathbf{a}_{i}^{p-1}} + \frac{\sum_{i=1}^{n} \mathbf{b}_{i}^{p}}{\sum_{i=1}^{n} \mathbf{b}_{i}^{p-1}}$$

Bất đẳng thức BeckenBuch

14) Cho 2 dãy $\{a_1, ..., a_n\}$ và $\{b_1, ..., b_n\}$ Khi đó

 $1 \quad n(a_1b_1 + a_2b_2 + ... + a_nb_n) \ge (a_1 + a_2 + ... + a_n)(b_1 + b_2 + ... + b_n)$ néu 2 dãy đã cho đơn điệu cùng chiếu

2 $n(a_1b_1 + a_2b_2 + ... + a_nb_n) \le (a_1 + a_2 + ... + a_n)(b_1 + b_2 + ... + b_n)$ Nếu 2 đãy đã cho đơn diệu ngược chiếu với nhau

Bất đẳng thức Trê Bư sep

15) Cho 0 < $|\alpha| \leq \frac{\pi}{2}$. Khi đó $\frac{2}{\pi} \leq \frac{\sin\alpha}{\alpha} < 1$

Bất đẳng thức Jordana

16) Cho hàm y = f(x) đơn điệu tăng và liên tục trên đoạn [0, c] (c > 0)

Néu f(0) = 0, $a \in [0, c]$ và $b \in [0, f(c)]$ thì

$$\int_{0}^{a} f(x)dx + \int_{0}^{b} f^{-1}(x)dx \ge ab$$

Bất đẳng thức Younga

17) 1 Cho a, b, c, $d \ge 0$. Khi đó

 $\sqrt{\frac{ab + ac + ad + bc + bd + cd}{6}} \ge \sqrt[3]{\frac{abc + abd + acd + bcd}{4}}$ 2. Cho $a_1, \dots a_n \ge 0$. Dạt $A_k^n = \sum_{i=1}^n a_i a_{i_1} \dots a_{i_k}$ $i \le i_1 \le i_2 \le \dots \le i_k \le n^{1/2}$

và $S_k^n = \left(\frac{A_k^u}{C_n^k}\right)^{1/k}$. Khi đó $\forall k = \overline{1, n-1}$ ta có

 $S_k^n \ge S_{k+1}^n$

Bất đẳng thức Niu Tơn - Macloranh

Chú ý: Nói chung tất cả các sách xuất bản trong và ngoài nước đều dẫn ra cách chứng minh dựa trên định lý Lagrange. Tuy nhiên có thể sử dụng Bất đẳng thức Cô Si để chứng minh Bất đẳng thức này. Cách chứng minh mang đẩy tính nghệ thuật này sẽ được trình bảy ở Tập 2.

MUC LUC

19111.3 - 14811.2 - 87Vb - 1091.1 - 1091Va - 1461 - 10011.2

13I.2 - 144II.1 - 103II.3 - 108III - 94III - 115Va - 53III(91)101V(91) - 141Vb - 103IV(91) - 114Va - 150I.2 - 26II.2107I - 69II.2 - 105IVa - 102II.2 - 10II.1 - 88II - 118III.1 2. Bất đẳng thức Bunhiacôpski 62II.2 - 138I.2 - 115II.2 - 94II.2 - 148III - 13I.2 - 19II.2 144111.2 - 33111.2 - 9611.1 - 5911.2 - 1111.2 - 74111.2 - 8111.2 67II.2 - 120III.2 - 109II.1 - 34II.2 110III.1 - 136II.2 - 24II.1 146III - 131II.1 - 31III.1 - 65IVb 3. Bất đẳng thức Trêbusep 14Vb - 7V - 18II.2 - 149II.2 - 136II.1 - 27II.2 - 15III.2 4. Tam thức Bậc hai 2II.1 - 132III - 23II.2 - 15II.1 - 140III.1 - 83II.2 - 53III.2 125III.1 - 70I - 109II.1 - 115III.1 - 75II.2 - 32IVa 5. Sử dụng Đinh nghĩa và biến đổi tương đương . 15II.2 – 2III.2 – 106II.2 – 128I.2 – 112II.2 – 136II.1 – 130II.2

17III.2 - 92III - 140III.2 - 22II.2 - 81III.3 - 136III.2 - 77V(91) 127II - 128II.2(91)

6. Quy nạp Côsi 120II - 110II - 116III.2

1 Bất đẳng thức Côsi

48II.1

7. Phương pháp đánh giá đại diện 139III - 35III.2 - 55IIL2

7

64

88

95

102

Trang

MATH CON

8. Phương pháp lượng giác 146I.1 – 29I.2 – 12II.2 – 122III.2

- 9. Phương pháp tọa độ 6Vb - 4511,2 - 89111.2
- 10. Đánh giá trên đa thức 104V(91) - 65II - 61Vb - 47I.2 - 84I.2 - 137II - 120III.2 58II(91)

119

124

137

- 11. Phương pháp hàm số 113I.2 – 78II.2 – 113III.2 – 101Va – 15II.2 – 77I – 10I – 69IVa 12I – 26II.2 – 72IVa – 100IVa – 8IVa
- 12. Bât đẳng thức Tích phân 7IVa - 28IVa - 102Va - 106IVa - 21IVa - 43IVa

Sổ tay Đại số cấp III CÁC PHƯƠNG PHÁP VÀ KỸ THUẬT CHỨNG MINH BẤT ĐẰNG THỨC

Tập 1 :

TRÂN PHƯƠNG

/NMATH CON

Chịu trách nhiệm xuất bản VƯƠNG LAN

Chịu trách nhiệm bản thảo : PHẠM HẬU

Biên tập ;

ĐỨC NHÂN

Súa bán in :

DUONG LY

Bìa :

NGUYỆN NƯƠNG MINH HƯƠNG

NHẢ XUẤT BẢN THÀNH PHỐ HỒ CHÍ MINH

62 Nguyễn Thị Minh Khai - Q. 1 Dây nói : 225340 - 296764 - 296713 - 222726

Số lượng in 3000 cuốn (đợt l in 1500 cuốn), khổ 14,5 x 20,5cm tại Xi nghiệp in Trường Văn Hóa. Số xuất bản : 75 TK/TP ngày 5 - 3 - 1994 Cục xuất bản. In xong và nộp lưu chiếu tháng 6.1994