Do all five problems.

1. Let $f: \mathbf{R} \to \mathbf{R}$ be any function. Let E be the set of points x such that the limits

$$f'_{+}(x) = \lim_{h > 0, h \to 0} \frac{f(x+h) - f(x)}{h} \quad , \quad f'_{-}(x) = \lim_{h < 0, h \to 0} \frac{f(x+h) - f(x)}{h}$$

exist and are not equal. That is, $E = \{x : f'_+(x), f'_-(x) \text{ exist and } f'_+(x) \neq f'_-(x)\}$. Prove that E is countable.

Hint: for any fixed λ , consider the x for which $f'_+(x) > \lambda > f'_-(x)$.

- 2. Consider functions $f_n, g_n \in \mathcal{L}^2[0, 1]$ such that $f_n \to f$ and $g_n \to g$ weakly in \mathcal{L}^2 .
 - (a) Show that the \mathcal{L}^2 norms of the f_n are uniformly bounded.
 - (b) Show by example that $f_n g_n$ need not converge to fg in the weak star topology of \mathcal{L}^1 (where \mathcal{L}^1 is regarded as part of the dual space of C[0, 1].)
 - (c) Suppose h_n (n = 1, 2, ...) and h are in $\mathcal{L}^1[0, 1]$, and that the \mathcal{L}^1 norms of the h_n are uniformly bounded. Show that $h_n \to h$ in the weak star topology of \mathcal{L}^1 if and only if each Fourier coefficient of h_n converges to the corresponding Fourier coefficient of h.
 - (d) Suppose that f_n and g_n each have Fourier series of the form $\sum_{k\geq 0} c_k e^{2\pi i kx}$. Prove that $f_n g_n \to fg$ in the weak star topology of \mathcal{L}^1 .

3. Consider a C^{∞} function $f : \mathbf{R} \to \mathbf{R}$ with the following property: for every $x, f^{(k)}(x) = 0$ for some k. Let $U = \{x : f \text{ is equal to a polynomial in some neighborhood of } x\}$.

- (a) Prove that U is a dense open set.
- (b) Prove that the complement of U contains no isolated points.

Remark: one can prove that U must be all of \mathbf{R} , i.e., that f must be a polynomial.

4. Prove the inequality

$$\sum_{m} \left| \sum_{n \neq m} \frac{a_n}{n - m} \right|^2 \le \pi^2 \sum_{n} |a_n|^2$$

for all sequences $a_n \in \ell^2(\mathbf{Z})$. Also, show that π^2 cannot be replaced by any smaller constant.

Hint: First show that $x - \frac{1}{2}$ has Fourier series $-\sum_{n \neq 0} \frac{e^{2\pi i n x}}{2\pi i n}$.

5. Let K(x, y) be an \mathcal{L}^1 function on the unit square $[0, 1] \times [0, 1]$. Suppose for every continuous function f on [0, 1], we have

$$\int_{x} K(x, y) f(y) \, dy = 0 \text{ for almost every } x.$$

Prove that K = 0 almost everywhere.

Do all five problems.

1. Show that there do not exist measurable sets A and B in **R**, each of positive measure, such that $A \cap (B - r) = \emptyset$ for all rational r.

2. Let $f_n : [0,1] \to \mathbf{R}$ be a sequence of Lebesgue measurable functions. Let E be the set of x such that $\sum_n f_n(x)$ converges. Show that for every $\epsilon > 0$, there is a set F and a $k < \infty$ such that

- (i) F is in the ring of sets generated by sets of the form $f_i^{-1}(A)$, where $i \le k$ and A is a Borel set, and
- (ii) $m(E\Delta F) < \epsilon$.

3. Let 0 < C < 1. Show that there are numbers δ_N (depending on C) with the following properties:

(i) If A_k $(1 \le k \le N)$ are measurable sets in [0, 1] each with measure C, then

$$m(A_i \cap A_j) \ge (1 - \delta_N)C^2$$

for some pair i, j with $i \neq j$.

(ii) $\delta_N \to 0$ as $N \to \infty$.

Hint: Let f_k be the characteristic function of A_k , let $F = f_1 + \cdots + f_k$, and consider F^2 .

4. Suppose the Banach space X is uniformly convex. That is, suppose for every $\epsilon > 0$, there is an $\delta > 0$ with the following property:

If
$$||x|| = ||y|| = 1$$
 and $||x - y|| > \delta$, then $||(x + y)/2|| < 1 - \epsilon$.

Let f be a linear functional on X with norm 1. Prove that there is a unique point $x \in X$ such that ||x|| = 1 and f(x) = 1.

5.

- (a) Let μ be a finite measure on **R**, and let ν be the measure given by $d\nu(x) = e^{-x^2} d\mu(x)$. Show that the Fourier transform of ν is the restriction to **R** of an entire holomorphic function F.
- (b) Express the *n*th derivative $F^n(0)$ of F at 0 in terms of μ .
- (c) Show that the set

$$S = \{p(x) \exp(-x^2) : p \text{ a polynomial}\}\$$

is dense in $\mathcal{C}_0(\mathbf{R})$, the space of continuous functions $f : \mathbf{R} \to \mathbf{R}$ such that $\lim_{x\to\infty} f(x) = 0$ (with the sup norm).