


Junior problems

J67. Prove that among seven arbitrary perfect squares there are two whose difference
is divisible by 20.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

It is easy to check that perfect squares can give one of the following residues:

1, 2, 4, 8, 16 (mod 20).

By the Pigeonhole principle we conclude that among seven perfect squares we
must have at least two that have the same residue modulo 20. Hence their
difference is divisible by 20 and our proof is complete.

Second solution by Vicente Vicario Garca, Huelva, Spain

Note that for all integer x we have x2 ≡ 1, 2, 4, 8, 16 (mod 20) and we have six
distinct possible residues. If we have seven arbitrary perfect squares x2

1, x2
2, x2

3,
x2

4, x2
5, x2

6, x2
7, by the pigeonhole principle, there are two squares x2

i and x2
j with

the same residue and they satisfy the requirement.

Third solution by Vishal Lama, Southern Utah University, USA

Observe that by the Pigeonhole Principle, there are at least four perfect squares
which all have the same parity. Now, note that for any integer n, we have
n2 ≡ −1, 0, 1 (mod 5). Again by the Pigeonhole Principle, out of these four
perfect squares, we have at least two perfect squares, say a2 and b2, such that
a2 ≡ b2 (mod 5). This implies that 5 | a2− b2. Also, 2 | a− b and 2 | a+ b since
both a and b have the same parity. Hence, 4 | a2 − b2, but gcd(5, 4) = 1, thus
we have 20 | a2 − b2, and we are done.

Also solved by Andrea Munaro, Italy; Arkady Alt, San Jose, California, USA;
Brian Bradie, VA, USA; Daniel Campos Salas, Costa Rica; Daniel Lasaosa,
Universidad Publica de Navarra, Spain; Ganesh Ajjanagadde Acharya Vidya
Kula, Mysore, India; Jose Hernandez Santiago, UTM, Oaxaca, Mexico; Oleh
Faynshteyn, Leipzig, Germany; G.R.A.20 Math Problems Group, Roma, Italy.
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J68. Let ABC be a triangle with circumradius R. Prove that if the length of one
of the medians is equal to R, then the triangle is not acute. Characterize all
triangles for which the lengths of two medians are equal to R.

Proposed by Daniel Lasaosa, Universidad Publica de Navarra, Spain

First solution by Vicente Vicario Garca, Huelva, Spain

Let O be the circumcenter and M be the midpoint of the side BC. Without
loss of generality we have that a ≥ b ≥ c, we have

mA =
1
2

√
2b2 + 2c2 − a2, mB =

1
2

√
2a2 + 2c2 − b2, mC =

1
2

√
2a2 + 2b2 − c2,

and we deduce that mA ≤ mB ≤ mC . On the other hand, if the triangle is
acute angled, then its circumcenter lies int the interior of the triangle. Note
that mA > R, because ∠AOM is obtuse, and the equality does not occur. Thus
triangle ABC is not acute angled.

For the second part it is not difficult to see that if two medians in a triangle are
equal, then the triangle is isosceles, because

mB = mC ⇔ 1
2

√
2a2 + 2c2 − b2 =

1
2

√
2a2 + 2b2 − c2 ⇔ b = c.

Let the ABC be isosceles triangle with b = c. By the Law of Sines and the Law
of Cosines we have

R =
a

2 sinA
, cos A =

b2 + c2 − a2

2bc
=

2b2 − a2

2b2

and if mB = mC = R, we have

m2
B = R2,⇒ 1

4
(2a2 + 2b2 − b2) = R2,⇒ 2a2 + b2 = 4R2 (1)

and finally

R2 =
a2

4 sin2 A
=

a2

4(1− cos2 A)
=

a2

4
[
1−

(
2b2−c2

2b2

)2
] ,⇒ 4R2 =

4b4

4b2 − a2
.

Finally, using (1) we get

2a2 + b2 =
4b4

4b2 − a2
,⇒ 7a2b2 − 2a4 = 0 ⇒ a2(7b2 − 2a2) = 0,

yielding b = c =
√

2
7 a, and we are done.

Mathematical Reflections 1 (2008) 3



Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Without loss of generality, let us assume that the length of the median from A
equals R. The square of the length of this median is given by

b2 + c2

2
− a2

4
=

a2

4
+ bc cos A = R2 sin2 A + 4R2 sinB sinC cos A.

Equating this result to R2 and grouping terms in one side of the equality yields

cos A (cos A− 4 sinB sinC) = 0.

One possible solution is that triangle ABC is right triangle at A, in which case
the midpoint of BC is also the circumcenter, and the median from A is a radius
of the circumcircle. Otherwise,

4 sinB sinC = − cos (B + C) = − cos B cos C + sinB sinC,

yielding

tanB tanC = −1
3
.

Clearly, B and C cannot be simultaneously acute, and ABC is either rectangle
or obtuse.

If the lengths of two medians are equal to R, say ma = mb, then

b2 + c2

2
− a2

4
=

c2 + a2

2
− b2

4
,

yielding a = b, or ABC is isosceles at C. Since A = B, C is obtuse, and using
the well known identity tanA + tan B + tan C = tanA tanB tanC, we find
2 tanA − 1

3 tan A = − tan A
3 , and tan2 A = tan2 B = 1

7 , tan2 C = 7
9 . Using that

sin2 α = tan2 α
1+tan2 α

, we find that

sinA = sinB =
√

2
4

,

sinC =
√

7
4

,

or the lengths of two medians in a triangle are equal to R if and only if it is
similar to a triangle with sides

√
2,
√

2,
√

7.
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J69. Consider a convex polygon A1A2 . . . An and a point P in its interior. Find
the least number of triangles AiAjAk that contain P on their sides or in their
interiors.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

We prove that a point P may be found such that it is not contained in the
interior or on the sides of more than n − 2 triangles. The result is true for
n = 3, since P will be in the interior of A1A2A3 only. If n ≥ 4, denote by Q the
point where diagonals A1A3 and A2A4 intersect. Clearly, each triangle AiAjAk

will have non void intersection with the interior of A2A3Q if and only if one
of its sides is A2A3, in which case A2A3Q is contained in it. Since there are
exactly n − 2 different triangles A2A3Ak that contain P in their interior, and
no other triangle AiAjAk may contain P on its sides or in its interior, the least
number is no larger than n− 2.

The number cannot be less than n− 2, we prove this by induction. The result
is true for the case n = 3. If the result is true for n− 1 ≥ 3, consider triangles
A1A2A3 and A3A4A5 in an n-gon, n ≥ 4 (if n = 4, then A5 = A1).

If n = 4, P is either on the common boundary A1A3 of these triangles, or
completely outside one of them. If n ≥ 5, P cannot be simultaneously on the
sides or in the interior of both triangles, since they only have one common
vertex A3 which cannot be P . Therefore, either (n − 1)-gon A1A3A4 . . . An,
or (n − 1)-gon A1A2A3A5 . . . An, contains P in their interior. Assume without
loss of generality, and by hypothesis of induction n − 3 triangles AiAjAk may
be found that contain P on their sides or in their interiors, where i, j, k 6= 2.
Consider now the partition of the n-sided polygon on triangles by drawing all
diagonals A2Ak. Clearly, P is on the sides or in the interior of at least one of
the triangles thus generated, and this triangle is different to the n−3 previously
considered, or the number of triangles that contain P on their sides and in their
interior is no less than n− 2, and so this is the least number.
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J70. Let la, lb, lc be the lengths of the angle bisectors of a triangle. Prove the following
identity

sin α−β
2

lc
+

sin β−γ
2

la
+

sin γ−α
2

lb
= 0,

where α, β, γ are the angles of the triangle.

Proposed by Oleh Faynshteyn, Leipzig, Germany

First solution by Courtis G. Chryssostomos, Larissa, Greece

Using the fact that lc = 2R sin a sin b
cos(a−b

2 ) , we get

sin
(

a−b
2

)
lc

+
sin
(

b−γ
2

)
la

+
sin
(γ−a

2

)
lb

=
sin
(

a−b
2

)
2R sin a sin b
cos(a−b

2 )
+

sin
(

b−γ
2

)
2R sin b sin γ

cos( b−γ
2 )

+
sin
(γ−a

2

)
2R sin a sin γ

cos( γ−a
2 )

=
1
2 sin(a− b)
2R sin a sin b

+
1
2 sin(b− γ)
2R sin b sin γ

+
1
2 sin(γ − a)
2R sin a sin γ

=
1

4R

[
sin(a− b)
sin a sin b

+
sin(b− γ)
sin b sin γ

+
sin(γ − a)
sin γ sin a

]
=

1
4R

·
∑

cyc(sin a cos b− cos a sin b) sin γ

sin a sin b sin γ

=
1

4R
· 0
sin a sin b sin γ

= 0.

Second solution by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain

By Mollweide’s formula we have

a− b

c
=

sinα− sinβ

sin γ
=

2 cos α+β
2 sin α−β

2

2 sin γ
2 cos γ

2

=
sin α−β

2

cos γ
2

and
lc =

2ab

a + b
cos

γ

2
,

where a, b, c are the sides of the triangle; hence,

sin α−β
2

lc
=

a2 − b2

2abc
.

With this and the two similar results, we obtain

sin α−β
2

lc
+

sin β−γ
2

la
+

sin γ−α
2

lb
=

(a2 − b2) + (b2 − c2) + (c2 − a2)
2abc

= 0,

as desired.
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Also solved by Andrea Munaro, Italy; Arkady Alt, San Jose, California, USA;
Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad Publica de
Navarra, Spain; Mihai Miculita, Oradea, Romania; Nguyen Manh Dung, Hanoi
University of Science, Vietnam; Prithwijit De, ICFAI Business School, Cal-
cutta, India; Vicente Vicario Garca, Huelva, Spain; Son Hong Ta, High School
for Gifted Students, Hanoi University of Education, Hanoi, Vietnam.
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J71. In the Cartesian plane call a line “good” if it contains infinitely many lattice
points. Two lines intersect at a lattice point at an angle of 45◦ degrees. Prove
that if one of the lines is good, then so is the other.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh

First solution by Brian Bradie, Newport University, VA, USA

Let `1 and `2 be lines that intersect at a lattice point at an angle of 45◦. Further,
suppose that `1 is good. As `1 contains two lattice points, its slope must either
be undefined or rational. If the slope of `1 is undefined, then the slope of `2

is ±1; in either situation, `2 contains one lattice point and has rational slope
so must therefore contain infinitely many lattice points and is good. If, on the
other hand, the slope of `1 is ±1, then `2 is either a horizontal line or a vertical
line; again, in either situation, because `2 is known to contain one lattice point
it must therefore contain infinitely many lattice points and is good. Finally,
suppose the slope of `1 is rational but neither ±1, and let θ denote the angle of
inclination of `1. Then tan θ is rational and

tan(θ ± 45◦) =
tan θ ± tan 45◦

1∓ tan θ tan 45◦
=

tan θ ± 1
1−∓ tan θ

is also rational. Once again, `2 contains one lattice point and has rational slope
so must therefore contain infinitely many lattice points and is good.

Second solution by Jose Hernandez Santiago, UTM, Oaxaca, Mexico

Let us suppose that l and l are two lines that satisfy the conditions stated in
the hypothesis. Without loss of generality we may assume that l is a “good”
line, and that the coordinates of the lattice point at which those lines meet are
(m,n).

The purported result clearly holds in any one of the following cases:

(a) The slope of line l is 1.
(b) The slope of line is l is −1.
(c) Line l is vertical.
(d) Line l is horizontal.

If line l falls into neither of those categories below, we infer that its slope is a
rational number of the form a

b , where a, b ∈ Z\{0}, a + b 6= 0, and a − b 6= 0.
Furthermore, the hypothesis that lines l and l intersect at an angle of 45◦

imply that one and only one of above relations holds

α2 = α1 + 45 (1)
α2 = α1 − 45, (2)
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where α1 and α2 are the elevation angles of lines l and l, respectively.

Now, assuming that (1) holds (similarly we can do for (2)), we get

tanα2 = tan(α1 + 45)

=
tanα1 + tan 45

1− tanα1 tan 45

=
a
b + 1
1− a

b

=
a + b

b− a
.

Hence, line l is represented by the equation

y − n = tanα2(x−m)

=
(

a + b

b− a

)
(x−m),

or equivalently,

(b− a)y − (a + b)x = (b− a)n− (a + b)m. (3)

Since gcd(b− a,−(a + b)) | (b− a)n− (a + b)m, the diophantine equation in (3)
possesses an infinite number of solutions in integers. Each one of these solutions
corresponds with a lattice point in l, and we are done.

Third solution by Vishal Lama, Southern Utah University, USA

Let the two lines, say, l1 and l2, intersect at a lattice point P (a, b) at an angle
of 45◦. Without loss of generality we may assume that line l1 is “good”, i.e. l1
contains an infinite number of lattice points.

Let Q(c, d) be an arbitrary lattice point on l1. Construct a perpendicular on l1
passing through Q such that it intersects l2 at R(c′, d′). We show that R itself
is a lattice point.

Note that triangle PQR is a right isosceles triangle, with QP = QR and
∠PQR = 90◦. Now, consider the points on this plane as complex numbers.
Recall that a complex number a + ib when multiplied by eiθ rotates it by
an angle θ in the counterclockwise direction. We note that

−−→
QR rotated by

90◦ in the counterclockwise direction coincides with
−−→
QP . Therefore we have

(c′ − c + i(d′ − d))eiπ/2 = a − c + i(b − d), which implies d − d′ + i(c′ − c) =
a− c+ i(b−d). Solving for c′ and d′, we obtain c′ = b+ c−d and d′ = c+d−a.
Now, since a, b, c and d are all integers, so are c′ and d′, thus proving that
R(c′, d′) is a lattice point.

Hence, if an arbitrary point Q(c, d) on line l1 is a lattice point, then so is R(c′, d′)
on line l2. This implies if l1 is “good”, then so is line l2.
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J72. Let a, b, c be real numbers such that |a|3 ≤ bc. Prove that b2 + c2 ≥ 1
3 whenever

a6 + b6 + c6 ≥ 1
27 .

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

Assume the contrary that b2 + c2 < 1
3 . Then note that a6 ≤ (bc)2, thus

1
27

≤ a6 + b6 + c6 ≤ (bc)2 + b6 + c6

= (b2 + c2)3 + (bc)2(1− 3(b2 + c2))

≤ (b2 + c2)3 +
(

b2 + c2

2

)2

(1− 3(b2 + c2))

=
(b2 + c2)2

4
(4(b2 + c2) + 1− 3(b2 + c2))

=
(b2 + c2)2

4
(1 + b2 + c2) <

(
1
3

)2
4

(
1 +

1
3

)
=

1
27

,

a contradiction. Thus b2 + c2 ≥ 1
3 , and we are done.

Also solved by Arkady Alt, San Jose, California, USA; Daniel Campos Salas,
Costa Rica; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Oleh Fayn-
shteyn, Leipzig, Germany; Vishal Lama, Southern Utah University, USA
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Senior problems

S67. Let ABC be a triangle. Prove that

cos3 A + cos3 B + cos3 C + 5 cos A cos B cos C ≤ 1.

Proposed by Daniel Campos Salas, Costa Rica

First solution by Son Hong Ta, Hanoi, Vietnam

Using the equality

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1

the initial inequality becomes equivalent to∑
cos3 A + 3

∏
cos A ≤

∑
cos2 A,

or
3
∏

cos A ≤
∑

cos2 A (1− cos A)

Now, by the AM-GM inequality, we have∑
cos2 A (1− cos A) ≥ 3 3

√∏
cos2 A ·

∏
(1− cos A)

Thus, it suffices to prove that∏
cos A ≤

∏
(1− cos A) .

When triangle ABC is obtuse, the above inequality is clearly true. So we will
consider the case it is acute. We have

∏
cos A ≤

∏
(1− cos A)

⇐⇒
∏

cos A (1 + cos A) ≤
∏(

1− cos2 A
)

⇐⇒ 8
∏

cos A ·
∏

cos2
A

2
≤
∏

sin2 A

⇐⇒
∏

cos2 A
2∏

sin A
2 cos A

2

≤
∏

sinA∏
cos A

⇐⇒ cot
A

2
cot

B

2
cot

C

2
≤ tanA tanB tanC

⇐⇒ cot
A

2
+ cot

B

2
+ cot

C

2
≤ tanA + tanB + tanC
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Indeed, we have∑
tanA =

∑ tanB + tanC

2
≥
∑

tan
B + C

2
=
∑

cot
A

2
,

and the equality holds if and only if triangle ABC is equilateral.

Second solution by Arkady Alt, San Jose, California, USA

Since cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1 we will prove that∑
cyc

cos2 A (1− cos A) ≥ 3 cos A cos B cos C.

By the AM-GM Inequality we have∑
cyc

cos2 A (1− cos A) ≥ 3 3

√∏
cyc

cos2 A (1− cos A),

then it suffices to prove

3 3

√∏
cyc

cos2 A (1− cos A) ≥ 3 cos A cos B cos C

⇐⇒
∏
cyc

(1− cos A) ≥ cos A cos B cos C

⇐⇒ cos A cos B cos C ≤ 8 sin2 A

2
sin2 B

2
sin2 B

2
.

Using that cos A =
b2 + c2 − a2

2bc
and 2 sin2 A

2
=

a2 − (b− c)2

2bc
we get

cos A cos B cos C ≤ 8 sin2 A

2
sin2 B

2
sin2 C

2

⇐⇒
∏
cyc

b2 + c2 − a2

2bc
≤
∏
cyc

a2 − (b− c)2

2bc

⇐⇒
∏
cyc

(
b2 + c2 − a2

)
≤
∏
cyc

(b + c− a)2 .

Without loss of generality we can assume that
∏
cyc

(
b2 + c2 − a2

)
> 0.

Then b2 + c2 > a2, c2 + a2 > b2, a2 + b2 > c2 and, therefore,∏
cyc

(
b2 + c2 − a2

)
≤
∏
cyc

(b + c− a)2 ⇐⇒
∏
cyc

(
b2 + c2 − a2

)2 ≤ ∏
cyc

(b + c− a)4 .
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Because ∏
cyc

(
b2 + c2 − a2

)2 =
∏
cyc

(
b4 −

(
c2 − a2

)2)
and ∏

cyc

(b + c− a)4 =
∏
cyc

(
b2 − (c− a)2

)2
,

it is enough to prove b4 −
(
c2 − a2

)2 ≤ (b2 − (c− a)2
)2

. We have

(
b2 − (c− a)2

)2
− b4 +

(
c2 − a2

)2 = b4 − 2b2 (c− a)2 + (c− a)4 − b4 +
(
c2 − a2

)2
= (c− a)2

(
(c + a)2 − 2b2 + (c− a)2

)
= (c− a)2

(
2c2 + 2a2 − 2b2

)
= 2 (c− a)2

(
c2 + a2 − b2

)
≥ 0,

and we are done.

Also solved by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
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S68. Let ABC be an isosceles triangle with AB = AC. Let X ad Y be points on sides
BC and CA such that XY ‖ AB. Denote by D the circumcenter of triangle
CXY and by E be the midpoint of BY . Prove that ∠AED = 90◦.

Proposed by Francisco Javier Garcia Capitan, Spain

First solution by Andrea Munaro, Italy

Let M , N and H be the midpoints of CY , XY and BC, respectively. Then
E, N and M are collinear. Note that ∠EMD = 90◦ − ∠BCA = ∠DCA.
Since AB ‖ XY , triangles CHA and DMC are similar and so BC

2AC = DM
DC , or

equivalently DC
AC = DM

BC
2

. Thus triangles ADC and EDM are similar and

∠AED = ∠ABE + ∠BAE + ∠Y BC + ∠DEM

= ∠ABC + ∠BAE + ∠DAM

= ∠ABC + ∠BAC − ∠EAD.

Then ∠AED + ∠EAD = ∠ABC + ∠BAC and so ∠EDA = ∠ABC = ∠EMA.
Thus AEDM is a cyclic quadrilateral and the result follows.

Second solution by Dinh Cao Phan, Pleiku, Vietnam

Senior problems 
S68. Let ABC be an isosceles triangle with AB = AC. Let X ad Y be points on sides BC 
and CA such that XY // AB. Denote by D the circumcenter of triangle CXY and by E be 

the midpoint of BY . Prove that ∠AED = 900 
Proposed by Francisco Javier Garcia Capitan, Spain 

 
 
Solution by Dinh Cao Phan, Gia Lai Education and Training Department, Pleiku, Vietnam 

 
 
Draw BF || AY. Let YX meet BF in F.  
We have BF || AY and AB || FY, hence  ABFY is a  
parallelogram. Because E be the midpoint of BY,  

⇒ E be the midpoint of AF. Because ∆ABC is isosceles 

⇒ ∠ABC= ∠ACB, so ∠YXC = ∠ABC ⇒ ∠YXC = ∠YCX  
Hence ∆YXC is isosceles . 

From point D the circumcenter of triangle CXY⇒ D then 
lies on the perpendicular bisector of XC, Consequently 

YD is the bisector of ∠XYC   ⇒ ∠FYD =  ∠CYD 

We have AC = YF, DY = DC, ∠DCA =  ∠DYF  

⇒ ∆ADC = ∆FDY (By SAS) , therefore DA = DF 

⇒ ∆ADF is isosceles , since DE is a median it is also 
perpendicular bisector of AF.  

So DE ⊥ AF ⇒ ∠AED = 900. (The proof is complete) 
 
 
 
   

A

B C

D

F

X

Y

E

Draw BF ‖ AY . Let Y X meet BF in F . We have BF ‖ AY and AB ‖ FY ,
hence ABFY is a parallelogram. Because E is the midpoint of BY , then E is the
midpoint of AF, and since ∆ABC is isosceles it follows that ∠ABC = ∠ACB.
Thus ∠Y XC = ∠ABC, yielding ∠Y XC = ∠Y CX and we can conclude that
∆Y XC is isosceles.
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From point D we draw the circumcircle of the triangle ∆CXY , and D lies on the
perpendicular bisector of XC. Consequently, Y D is the angle bisector of ∠XY C,
hence ∠FY D = ∠CY D. We have AC = Y F , DY = DC, ∠DCA = ∠DY F ,
therefore ∆ADC = ∆FDY . Thus DA = DF and 4ADF is isosceles. Since
DE is a median, it is also a perpendicular bisector of AF. Finally, DE ⊥ AF ,
hence ∠AED = 90◦, and we are done.

Third solution by Oleh Faynshteyn, Leipzig, Germany

Let the vertices of a triangle ABC correspond to the complex numbers A(a), B(b), C(c).
Assume that the circumcircle of triangle ABC is the unit circle, and denote by
M its center, which will also be the origin of the complex plane.

Tel: 0341/6992056 Oleh Faynshteyn  E-Mail: ofaynshteyn@gmx.de 
Klasingstrasse 19 

04315 Leipzig, Germany 
 

„Mathematical Reflections“ 
Solutions 

 
 
 

 
Solution 
 
Let's apply for a solution of this problem a method of complex numbers. 
Let to tops of an isosceles triangle ABC there correspond complex numbers 

( ) ( ) ( ), ,A a B b C c . 
The circumscribed circle of a triangle ABC we shall accept for unit, and its center, M for the 
beginning of a complex frame (see. Fig.).  
 

 
 

1, 1, 1a a b b c c⋅ = ⋅ = ⋅ = . 
As AB XY& , that triangle andYX similar with similar ratio ABC C

BX AY
XC YC

λ = = . 

Besides as a triangle  isosceles, we have ABC
 2a bc= , (1) 
(Necessary and a sufficient condition of that a triangle isosceles). 
 
 
 

  1 

a · a = 1, b · b = 1, c · c = 1.

As AB ‖ XY, the triangles ABC and XY Z are similar, yielding

λ =
BX

XC
=

AY

Y C
.

In addition, since ABC is isosceles, we have a2 = bc. Knowing the complex
coordinates of A,B, C we can calculate the corresponding complex coordinates
of points X(x), Y (y), E(e), D(d). We obtain

x =
b + λc

1 + λ
, y =

a + λc

1 + λ
, e =

b + y

2
=

(a + b) + λ(b + c)
2(1 + λ)

, d =
0 + λc

1 + λ
,=

λc

1 + λ
.

Further, we get

e =
(a + c) + λ(b + c)

2a2(1 + λ)
, d =

λ

(1 + λ)c
.
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For the triangle XY Z, the necessary and sufficient condition for it to be isosceles
is y2 = xc, or using the above identities we can rewrite it as(

a + λc

1 + λ

)2

=
b + λc

1 + λ
· c.

Wince λ 6= 0, we obtain c + b− 2a = 0. Using the above relations we calculate
the slope between the lines AE and DE. We have

kAE =
e− a

e− a
=

a2(a− b)
a− c

, kDE =
e− d

e− d
=

a2(a + b + λ(b− c))
a + c + λ(b− c)

.

We have that

kAE + kDE =
e− a

e− a
=

a2(a− b)
a− c

+
e− d

e− d
=

a2(a + b + λ(b− c))
a + c + λ(b− c)

=
a2(a− b)(a + c + λ(b− c)) + a2(a− c)(a + b + λ(b− c))

(a− c)(a + c + λ(b− c))
= 0.

Therefore, AE ⊥ DE, and we are done.

Also solved by Ricardo Barroso Campos, Universidad de Sevilla, Spain; Andrei
Iliasenco, Chisinau, Moldova; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; Daniel Campos Salas, Costa Rica; Miguel Amengual Covas, Mallorca,
Spain; Mihai Miculita, Oradea, Romania; Courtis G. Chryssostomos, Larissa,
Greece; Son Hong Ta, Ha Noi University, Vietnam; Vicente Vicario Garca,
Huelva, Spain; Vishal Lama, Southern Utah University, USA.
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S69. Circles ω1 and ω2 intersect at X and Y . Let AB be a common tangent with
A ∈ ω1, B ∈ ω2. Point Y lies inside triangle ABX. Let C and D be the
intersections of an arbitrary line, parallel to AB, with ω1 and ω2, such that
C ∈ ω1, D ∈ ω2, C is not inside ω2, and D is not inside ω1. Denote by Z the
intersection of lines AC and BD. Prove that XZ is the bisector of angle CXD.

Proposed by Son Hong Ta, Ha Noi University, Vietnam

Solution by Andrei Iliasenco, Chisinau, Moldova

Denote α = ∠ZCD, by β = ∠ZDC, by γ = ∠XCZ, and by δ = ∠XDZ.

2R1 sin γ

2R2 sin δ
=

AX

BX
=

sin∠ABX

sin∠BAX
=

sin δ

sin γ
,⇒ R1

R2
=

sin2 δ

sin2 γ
.

Denote by E and F the second intersections of line CD with circles ω1 and ω2

respectively. Note that CD is parallel to AD, thus ∠CEA ≡ ∠ECA ≡ α and
by analogy ∠DFB ≡ ∠FDB ≡ β. Let d be the distance between CD and AB.
We have

1 =
d

d
=

CA sinα

BD sinβ
=

2R1 sin2 α

2R2 sin2 β
,⇒ sin2 δ

sin2 γ
=

R1

R2
=

sin2 β

sin2 α
.

Because sin α, sinβ, sin γ, and sin δ have positive values, we get that sin α
sin β = sin γ

sin δ .
Now we will use the Law of Sines for the triangles CXZ and DXZ:

CZ

sinCXZ
=

XZ

sinXCZ
and

DZ

sinDXZ
=

XZ

sinXDZ
,

sinα

sinβ
=

DZ

CZ
=

sin γ

sin δ

sinDXZ

sinCXZ
.

Hence sin CXZ = sinDXZ. It follows that either ∠CXZ = ∠DXZ or ∠CXZ+
∠DXZ = π. If CD does not pass through X, then ∠CXZ + ∠DXZ 6= π and
therefore ∠CXZ = ∠DXZ. If CD passes through X and X = E = F, then let
T be the point on the line perpendicular to CD, passing through the point X,
such that XT = 2d. Let A1 and B1 be the projections of the points A and B
on the line CD. Because of the similarity of triangles 4CAA1 and 4CTX we
get that the points C,A, and T are collinear. Analogously, points D,B, and T
are collinear. This means that T = Z and ∠CXZ = ∠DXZ = 90◦.
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S70. Find the least odd positive integer n such that for each prime p, n2−1
4 +np4 +p8

is divisible by at least four primes.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Andrea Munaro, Italy

Let n = 2k + 1 with k nonnegative integer. For k = 0, 1, 2, 3 it is easy to see
that when p = 2 there are less than four prime divisors.

M = p8 + np4 +
n2 − 1

4

=
(
p4 +

n

2

)2
− 1

4

=
(

p4 +
n− 1

2

)(
p4 +

n + 1
2

)
= (p4 + k)(p4 + k + 1).

Let k = 4, then M = (p4 + 4)(p4 + 5) = (p2 + 2p + 2)(p2 − 2p + 2)(p4 + 5).

If p = 2, then M is divisible by 2, 3, 5, 7. If p is odd we have

(p2 + 2p + 2, p2 − 2p + 2) = (p2 + 2p + 2, 4p) = 1,

(p2 + 2p + 2, p4 + 5) = (p2 + 2p + 2, p4 + 5− p4 − 8p2 − 4− 4p3 − 4p)
= (p2 + 2p + 2, 4p3 + 8p2 + 4p + 1)
= (p2 + 2p + 2, 4p3 + 8p2 + 4p + 1− 4p3 − 8p2 − 4p)
= (p2 + 2p + 2, 1) = 1,

and

(p2 − 2p + 2, p4 + 5) = (p2 − 2p + 2, 4p3 − 8p2 + 4p + 1) = (p2 − 2p + 2, 1) = 1.

Thus p2 + 2p + 2, p2 − 2p + 2 and p4 + 5 are pairwise coprime. As p4 + 5 ≡ 2
(mod 4) for all odd p, then 21 is the greatest power of 2 dividing p4 + 5. Since
both p2 + 2p + 2 and p2 − 2p + 2 are odd, there is another prime different from
2 and from all the divisors of p2 + 2p + 2 and p2 − 2p + 2 which divides p4 + 5,
and so n = 9 is the least desired number.

Second solution by Daniel Campos Salas, Costa Rica

Let n = 2k + 1, then

n2−1
4 + np4 + p8 = k(k + 1) + (2k + 1)p4 + p8 = (p4 + k)(p4 + k + 1).
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Note that for k = 0, 1, 2, 3 the result does not hold for p = 2. We prove that
k = 4 is the least integer that satisfies the condition. For k = 4 we have

(p4 + 4)(p4 + 5) = (p2 + 2p + 2)(p2 − 2p + 2)(p4 + 5).

Since (p2 + 2p + 2)(p2 − 2p + 2) = (p4 + 5)− 1 we have that

(p2 + 2p + 2, p4 + 5) = (p2 − 2p + 2, p4 + 5) = 1.

This implies that any prime that divides (p2 + 2p + 2)(p2 − 2p + 2) does not
divide p4 + 5 and viceversa. Then, it is enough to prove that two primes divide
(p2 + 2p + 2)(p2 − 2p + 2) and another two divide p4 + 5.

For p = 2 the result holds. Assume that p is an odd prime. Note that 2|p4 + 5.
To prove that another prime divides p4 + 5 it is enough to prove that 4 - p4 + 5.
This results follows from the fact that 4|p4 + 3.

In order to prove that two primes divide (p2 +2p+2)(p2−2p+2) it is enough to
prove that (p2 +2p+2, p2−2p+2) = 1. Let (p2 +2p+2, p2−2p+2) = d. Note
that d is odd and that d|4p. This implies that d|p. If d = p then p|p2 + 2p + 2,
which is a contradiction. Therefore, d = 1, as we wanted to prove. This implies
that k = 4 is the least integer value, from where we conclude that n = 9 is the
least odd positive integer that satisfies the condition.

Also solved by Andrei Iliasenco, Chisinau, Moldova; G.R.A.20 Math Problems
Group,Roma, Italy; Salem Malikic, Sarajevo, Bosnia and Herzegovina.
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S71. Let ABC be a triangle and let P be a point inside the triangle. Denote by
α = ∠BPC

2 , β = ∠CPA
2 , γ = ∠APB

2 . Prove that if I is the incenter of ABC, then

sinα sinβ sin γ

sinA sinB sinC
≥ R

2(r + PI)
,

where R and r are the circumcenter and incenter, respectively.

Proposed by Khoa Lu Nguyen, Massachusetts Institute of Technology, USA

Solution by Khoa Lu Nguyen, Massachusetts Institute of Technology, USA

First of all we prove the following lemma:

Lemma. Given a triangle ABC with sidelengths a, b, c and a fixed point P .
Then for all the point Q in the same plane,

a · PA ·QA + b · PB ·QB + c · PC ·QC ≥ abc.

Moreover, if P lies inside ABC, the equality happens only at the isogonal con-
jugate P ∗ of P with respect to ABC.

Proof. Consider two cases

1st case: P is inside the triangle ABC.

Without loss of generality, we may assume P is not A. It is easy to easy that
f(Q) > abc for every point Q lying outside the closed disk centered at A with
radius bc

PA . Since the disk is compact and f is continuous, we obtain that f
must have a minimum value.

Suppose Q lies inside triangle ABC. Denote by A′, B′, C ′ the projections of P
onto BC, CA, AB. Because Q is inside triangle ABC, we must have

a · PA ·QA = 2R sinA · PA ·QA = 2R ·B′C ′ ·QA ≥ 4R · SAB′QC′ ,

where SAB′QC′ denotes the area of the quadrilateral AB′QC ′. Similarly, we
obtain

b · PB ·QB ≥ 4R. · SBC′QA′

c · PC ·QC ≥ 4R · SCA′QB′ .

Summing up, we obtain

a · PA ·QA + b · PB ·QB + c · PC ·QC ≥ 4R · SABC = abc.

The equality holds if and only if (QA,B′C ′), (QB, C ′A′), (QC, A′B′) are pairs
of perpendicular lines. This means that Q is the isogonal conjugate of P .
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Suppose now that there is a point Q0 lying outside triangle ABC and Q0 is
a critical point of f . Since Q0 is outside ABC, we can set up a Cartesian
coordinate Oxy such that xQ0 > max{xA, xB, xC}. Then we have

f(Q) = m
√

(x− xA)2 + (y − yA)2 + n
√

(x− xB)2 + (y − yB)2

+ p
√

(x− xC)2 + (y − yC)2

where Q = (x, y),m = a · PA, n = b · PB, p = c · PC. Since

xQ0 − xA > 0, xQ0 − xB > 0, xQO
− xC > 0,

we must have
∂f

∂x
(xQ0 , yQ0) > 0.

Hence Q0 cannot be a critical point of f . Thus f(Q) ≥ abc and the equality
occurs when Q = P ∗.

2nd case: P is outside the triangle ABC.

By a similar argument, one can show that f(Q) has a minimal value when
Q = Q0 and Q0 cannot be outside ABC. Thus by interchanging the role of Q0

and P and applying the result in case 1, we obtain

f(Q) ≥ f(Q0) ≥ abc,

and the lemma is proved.

Returning to the problem we know that P is inside a triangle ABC. Denote
by A′, B′, C ′ the projections of P onto BC, CA,AB, respectively. Clearly, P is
inside the triangle A′B′C ′. Now by applying the lemma to triangle A′B′C ′ and
P , we obtain f(I) ≥ B′C ′ · C ′A′ ·A′B′. By replacing

B′C ′ = PA · sinA, C ′A′ = PB · sinB, C ′A′ = PC · sinC

and PA′ =
PB · PC sin∠BPC

a
, PB′ =

PC · PA · sin∠CPA

b
,

PC ′ =
PA · PB · sin∠APB

c
, we obtain

1
2R

(IA′ sin 2α + IB′ sin 2β + IC ′ sin 2γ) ≥ sinA sinB sinC,

where α = ∠BPC
2 , β = ∠CPA

2 , γ = ∠APB
2 .

By triangle inequality, we have max{IA′, IB′, IC ′} ≤ r + PI. Hence

r + PI

2R
(sin 2α + sin 2β + sin 2γ) ≥ sinA sinB sinC.

To obtain the inequality in the problem, it is now sufficient to show that sin 2α+
sin 2β + sin 2γ = 4 sin α sinβ sin γ. This is true because α + β + γ = π.

The equality of the inequality occurs only if P is I.
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Undergraduate problems

U67. Let (an)n≥0 be a decreasing sequence of positive real numbers. Prove that if

the series
∞∑

k=1

ak diverges, then so does the series
∞∑

k=1

(
a0

a1
+ · · ·+ ak−1

ak

)−1

.

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

Solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

As (an)n≥0 is a decreasing sequence, we have(
a0

a1
+ · · ·+ ak−1

ak

)−1

≥
(

a0

ak
+ · · ·+ ak−1

ak

)−1

=
ak

Sk−1
≥ ak

Sk
,

where Sk =
∑k

i=1 ai. Further, using Abel-Dini Theorem, if ak ≥ 0 and
∑

ak

diverges, then
∑ ak

Sk
also diverges. This can proved writing

ak

Sk
+ . . . +

an

Sn
≥ Sn − Sk−1

Sn
= 1− Sk−1

Sn
,

the last quantity that can is close to one as n goes to infinity. This assures the
divergence of the series

∑ ak
Sk

, and we are done.
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U68. In the plane consider two lines d1 and d2 and let B,C ∈ d1 and A ∈ d2. Denote
by M the midpoint of BC and by A′ the orthogonal projection of A onto d1.
Let P be a point on d2 such that T = PM ∩AA′ lies in the halfplane bounded
by d1 and containing A. Prove that there is a point Q on segment AP such
that the angle bisector of the angle BQC passes through T .

Proposed by Nicolae Nica and Cristina Nica, Romania

Solution by Nicolae Nica and Cristina Nica, Romania

Recall the well known fact - the angle bisector always lies between the altitude
and the median with respect to the same vertex. Now let us consider the
function f : [AP ] → R, f(x) = d(T,XC) − d(T,XB), where d(U, V W ) is the
distance from U to the line V W . Clearly, this function is continuous and has
Darboux property. We have

f(A) = d(T,AC)− d(T,AB), f(P ) = d(T, PC)− d(T, PB)

and using the above observation f(A) · f(P ) < 0. From the Darboux property
it follows that there is a point Q such that f(Q) = 0, or d(T,QC) = d(T,QB).
Thus point Q lies on the angle bisector of triangle QBC.
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U69. Evaluate

lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

.

Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Brian Bradie, VA, USA

Using Taylor series,

sin
1

n + k
=

∞∑
j=0

(−1)j 1
(n + k)2j+1

.

For j > 0,

lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
1

(n + k)2j+1
=

= lim
n→∞

1
n2j

n∑
k=1

1
n

(
1 + arctan

k

n

)
1

(1 + k
n)2j+1

= lim
n→∞

1
n2j

· lim
n→∞

n∑
k=1

1
n

(
1 + arctan

k

n

)
1

(1 + k
n)2j+1

= lim
n→∞

1
nj−1

·
∫ 1

0

1 + arctan x

(1 + x)2j+1
dx

= 0.

Thus,

lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

= lim
n→∞

n∑
k=1

1 + arctan k
n

1 + k
n

· 1
n

=
∫ 1

0

1 + arctan x

1 + x
dx

= ln 2 +
∫ 1

0

arctanx

1 + x
dx.

By integration by parts,∫ 1

0

arctanx

1 + x
dx = ln(1 + x) arctanx

∣∣∣1
0
−
∫ 1

0

ln(1 + x)
1 + x2

dx

=
π

4
ln 2−

∫ 1

0

ln(1 + x)
1 + x2

dx
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Now, making the substitution x = tan θ into the above integral on the right-
hand side, we find∫ 1

0

ln(1 + x)
1 + x2

dx =
∫ π/4

0
ln(1 + tan θ) dθ =

∫ π/4

0
ln
(

sin θ + cos θ

cos θ

)
dθ

=
∫ π/4

0
ln
√

2 cos(θ − π/4)
cos θ

dθ

=
π

8
ln 2 +

∫ π/4

0
ln cos(θ − π/4) dθ −

∫ π/4

0
ln cos θ dθ. (4)

Finally, with the substitution w = π/4− θ, we find∫ π/4

0
ln cos(θ − π/4) dθ = −

∫ 0

π/4
ln cos w dw =

∫ π/4

0
ln cos w dw. (5)

Combining all the results above we have

lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

= ln 2 +
π

4
ln 2− π

8
ln 2 =

(
1 +

π

8

)
ln 2.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Note that we may substitute sin 1
n+k by 1

n+k without altering the value of the
limit, since

sin
1

n + k
=

∞∑
m=0

(−1)m

(2m + 1)! (n + k)2m+1 ,

or the difference between the proposed limit and the result of the proposed
substitution is, in absolute value,

0 ≤

∣∣∣∣∣ lim
n→∞

n∑
k=1

(
1 + arctan

k

n

) ∞∑
m=1

(−1)m 1
(2m + 1)! (n + k)2m+1

∣∣∣∣∣
≤ lim

n→∞

∞∑
m=1

n∑
k=1

∣∣∣∣ 1 + arctan 1
(2m + 1)!n2m+1

∣∣∣∣ ≤ lim
n→∞

∞∑
m=1

2
n2m

= lim
n→∞

2
n2 − 1

= 0.

Let us write now the limit obtained after performing the substitution in the
following way:

lim
n→∞

n∑
k=1

1 + arctan k
n

1 + k
n

· 1
n

.

This is clearly the Riemann sum of the function 1+arctan x
1+x , evaluating the func-

tion at all upper extrema of intervals
(

k−1
n , k

n

)
, each interval with length 1

n , for
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k = 1, 2, ..., n, i.e, when x goes from 0 to 1. Therefore, the proposed limit is
equal to ∫ 1

0

1 + arctanx

1 + x
dx = ln 2 +

∫ 1

0

arctanx

1 + x
dx.

In order to calculate this second integral, we perform first the substitution
x = tan α

2 , yielding arctanx = α
2 , dx = dα

2 cos2 α
2
, and lower and upper integration

limits over α equal to 0 and π
2 . Therefore,∫ 1

0

arctanx

1 + x
dx =

1
2

∫ π
2

0

αdα

2 cos2 α
2 + 2 sin α

2 cos α
2

=
1
2

∫ π
2

0

αdα

1 + cos α + sin α

1
2

∫ π
4

0

αdα

1 + cos α + sinα
− 1

2

∫ 0

π
4

(
π
2 − β

)
dβ

1 + sinβ + cos β
=

π

4

∫ π
4

0

dα

1 + cos α + sinα
,

where we have substituted α = π
2 − β in the interval

(
π
4 , π

2

)
first, and we have

then substituted β = α.

This final integral is east to find after performing the standard substitution
tan α

2 = y, resulting in cos α = 1−y2

1+y2 , sinα = 2y
1+y2 , dα = 2dy

1+y2 , and lower and
upper integration limits of 0 and tan π

8 :∫ 1

0

arctanx

1 + x
dx =

π

4

∫ tan π
8

0

2dy

(1 + y2) + (1− y2) + 2y
=

π

4

∫ tan π
8

0

dy

1 + y

=
π

4
ln
(
1 + tan

π

8

)
=

π

8
ln 2,

since tan π
8 =

√
2 − 1. This last result may be found by setting 2γ = π

4

(and therefore tan (2γ) = 1 in the well-known relation tan (2γ) = 2 tan γ
1−tan2 γ

,
and solving for tan γ = tan π

8 , keeping the positive root since π
8 is in the first

quadrant. We thus finally arrive to

lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

=
(
1 +

π

8

)
ln 2.

Third solution by G.R.A.20 Math Problems Group, Roma, Italy

First we note that

L = lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

= lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
1

n + k
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because | sinx− x| ≤ x2 and∣∣∣∣∣
n∑

k=1

(
1 + arctan

k

n

)(
sin

1
n + k

− 1
n + k

)∣∣∣∣∣ ≤
n∑

k=1

(
1 +

π

4

) 1
(n + k)2

≤ n
(
1 +

π

4

) 1
n2

→ 0.

Moreover, the new limit is a limit of Riemann sums

L = lim
n→∞

n∑
k=1

1 + arctan k
n

1 + k
n

· 1
n

=
∫ 1

0

1 + arctanx

1 + x
dx

= ln 2 +
∫ 1

0

arctanx

1 + x
dx

= ln 2 + [arctanx log(1 + x)]10 −
∫ 1

0

ln(1 + x)
1 + x2

dx

=
(
1 +

π

4

)
ln 2−

∫ 1

0

ln(1 + x)
1 + x2

dx.

Now, letting x = tan(θ) we have that∫ 1

0

ln(1 + x)
1 + x2

dx =
∫ π/4

0
ln(1 + tan θ) dθ

=
∫ π/4

0
ln(cos θ + sin θ) dθ −

∫ π/4

0
ln(cos θ) dθ

=
∫ π/4

0
ln
(√

2 cos(
π

4
− θ)

)
dθ −

∫ π/4

0
ln(cos θ) dθ

=
∫ π

4

0
ln
√

2 dθ +
∫ π

4

0
ln cos(

π

4
− θ) dθ −

∫ π
4

0
ln cos θ dθ

=
∫ π/4

0
ln
√

2 dθ =
π

8
ln 2.

Finally,
L =

(
1 +

π

4

)
ln 2− π

8
ln 2 =

(
1 +

π

8

)
ln 2.

Fourth solution by Vishal Lama, Southern Utah University, USA

Let L = lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
sin

1
n + k

.

Now, let E = {1, 2, . . . , n}, and let {fn}, n = 1, 2, . . . , be a sequence of func-
tions defined by

fn(k) = (n + k) sin
(

1
n + k

)
, ∀k ∈ E.
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We prove that {fn} uniformly converges to 1. Indeed, using the Taylor series
expansion for sin x, for any k ∈ E, we have∣∣∣∣(n + k) sin

(
1

n + k

)
− 1
∣∣∣∣ = ∣∣∣∣(n + k)

(
1

n + k
− 1

3!(n + k)3
+ . . .

)
− 1
∣∣∣∣

=
∣∣∣∣ 1
3!(n + k)2

− 1
5!(n + k)4

+ . . .

∣∣∣∣
<

1
6(n + k)2

<
1
n

.

Now, for ε > 0, we choose the least integer N > 1/ε. Note that our choice for
N is independent of k. So, for any ε > 0, |fn(k)− 1| < ε∀n ≥ N , for all k ∈ E.
Hence, {fn} uniformly converges to 1.

Thus

L = lim
n→∞

n∑
k=1

(
1 + arctan

k

n

)
1

n + k
.

Now, setting x = k/n and considering the above summation as a Riemann sum,
we have

L =
∫ 1

0

1 + tan−1 x

1 + x
dx =

∫ 1

0
(1 + tan−1 x) d(ln(1 + x))

= (1 + tan−1 x) ln(1 + x)
∣∣1
0
−
∫ 1

0

ln(1 + x)
1 + x2

dx

= (1 +
π

4
) ln 2− I

To evaluate I, we use the substitution x = tan θ, to get

I =
∫ π/4

0
ln(1 + tan θ) dθ

=
∫ π

4

0
ln(1 + tan(π/4− θ))dθ using the identity

∫ a

0
f(x)dx =

∫ a

0
f(a− x)dx

=
∫ π/4

0
ln(

2
1 + tan θ

) dθ

=
π

4
ln 2− I.

Thus I =
π

8
ln 2, and therefore L = (1 +

π

4
) ln 2− π

8
ln 2 = (1 +

π

8
) ln 2.

Remark. The evaluation of I above was Problem A5 in the Putnam Competition
2005.

Also solved by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
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U70. For all integers k, n ≥ 2 prove that

n

√
1 +

n

k
≤ 1

n
log
(

1 +
n

k − 1

)
+ 1.

Proposed by Oleg Golberg, Massachusetts Institute of Technology, USA

First solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

Let n/k = x, 0 < x ≤ n/2. Consider the function

f(x) =
1
n

ln
(
1 +

nx

n− x

)
+ 1− (1 + x)1/n

and we study it for all n ≥ 2. We have

1) lim
x→0

f(x) = 0, 2) f ′(x) =
1
n

( n2

(nx + n− x)(n− x)
−

n
√

1 + x

1 + x

)
.

Recall Bernoulli’s inequality: (1 + x)a ≤ 1 + ax for 0 ≤ a ≤ 1. Hence

n
√

1 + x ≤ 1 +
x

n
.

To prove that the derivative of f is positive for any 0 < x < n and for any fixed
n ≥ 2, it is enough to prove that

n2

(nx + n− x)(n− x)
≥

1 + x
n

1 + x
,

n3(x + 1) ≥ (nx + n− x)(n2 − x2),

n3x + n3 ≥ n3x + n3 − n2x− nx3 − nx2 + x3,

n2x + nx2 + nx3 ≥ x3,

which is clearly true. Thus the derivative is positive and therefore f(x) ≥ 0.
The proof is completed.

Second solution by Oleg Golberg, Massachusetts Institute of Technology, USA

We will use the following simple result.

Lemma. For all positive a

1
a + 1

< log(a + 1)− log a <
1
a
.
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Let f(x) = log x. Then f ′(x) = 1
x and due to the Mean-Value theorem there

exists c ∈ (a, a + 1) such that

1
c

= f ′(c) =
log(a + 1)− log a

(a + 1)− a
= log(a + 1)− log a.

Since c ∈ (a, a + 1), it must be that

1
a + 1

<
1
c

<
1
a
.

Combining these two results yields the desired inequalities.

Returning to the problem, by the AM-GM inequality we have

k + 1
k

+
k + 2
k + 1

+ · · ·+ k + n

k + n− 1
≥ n n

√
k + 1

k
· k + 2
k + 1

· · · k + n

k + n− 1
= n

n

√
k + n

k
.

We also have

k + 1
k

+
k + 2
k + 1

+ · · ·+ k + n

k + n− 1
= 1 +

1
k

+ 1 +
1

k + 2
+ · · ·+ 1 +

1
k + n− 1

= n +
(

1
k

+
1

k + 1
+ . . . +

1
k + n− 1

)
.

Due to the result of the lemma, we have

1
k

+
1

k + 1
+ . . . +

1
k + n− 1

≤ log k − log(k − 1) + log(k + 1)− log k + · · ·

+ log(k + n− 1)− log(k + n− 2)

= log(k + n− 1)− log(k − 1) = log
(

1 +
n

k − 1

)
.

Combining the obtained results, we finally obtain

n

√
1 +

n

k
≤ 1

n

(
k + 1

k
+

k + 2
k + 1

+ · · ·+ k + n

k + n− 1

)
≤ 1

n

(
n + log

(
1 +

n

k − 1

))
= 1 +

1
n

log
(

1 +
n

k − 1

)
,

and the inequality is proved.
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U71. A polynomial p ∈ R[X] is called a “mirror” if |p(x)| = |p(−x)|. Let f ∈
R[X] and consider polynomials p, q ∈ R[X] such that p(x)− p′(x) = f(x), and
q(x) + q′(x) = f(x). Prove that p + q is a mirror polynomial if and only if f is
a mirror polynomial.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It is well known that a polynomial p ∈ R [X] has nonzero coefficients only for
terms with even degree of x if and only if p(x) = p(−x) for all x; we call
such a polynomial an “even” polynomial (or polynomial with even symmetry).
Similarly, a polynomial p ∈ R [X] has nonzero coefficients only for terms with
odd degree of x if and only if p(x) = −p(−x) for all x; we call such a polynomial
an “odd”polynomial (or polynomial with odd symmetry).

Lemma. p is a mirror polynomial if and only if it is either odd or even.

Proof. if p is either odd or even, it is clearly a mirror. If p is a mirror, then either
p(x) = p(−x) for an infinitude of values of x, or p(x) = −p(−x) for an infinite
of values of x. In either case, either finite-degree polynomial p(x) − p(−x) or
finite-degree polynomial p(x) + p(−x) has an infinite number of real roots, and
needs to be thus identically zero, ie, either p(x)− p(−x) = 0 for all x (and p is
even), or p(x)+p(−x) = 0 for all x (and p is odd), or both (and p is identically
zero).

We prove our statement using induction on the degree n of f , which is by
definition equal to the degree of p and q, since the degree of p′ and q′ is less
than the degree of p and q, unless p and q, and therefore also f , are constant.
By the previous argument, it is also clearly true that the highest degree of x has
the same coefficient in f, p, q. When n = 0, f(x) = p(x) = q(x) = p(x)+q(x)

2 are
constant, thus even, thus mirrors. When n = 1, write without loss of generality
f(x) = a1x+a0 with a1 6= 0. Then p(x) = a1x+a0+a1 and q(x) = a1x+a0−a1,
and p(x) + q(x) = 2f(x) = 2a1x + 2a0. Since neither f nor p + q may be even,
and f is odd if and only if a0 = 0 or p+ q is odd, then f is a mirror polynomial
if and only if p + q is a mirror polynomial.

Assume now that the proposed result is true for all polynomials of degree less
than n ≥ 2, and write without loss of generality f(x) =

∑n
k=0 akx

k, where an 6=
0. Define now polynomials r, s,∆f,∆p, ∆q as follows: ∆f(x) = f(x) − anxn,
∆p(x) = p(x)− r(x), ∆q(x) = q(x)− s(x), where

r(x) = an

n∑
k=0

(
n

k

)
k!xn−k,
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s(x) = an

n∑
k=0

(
n

k

)
(−1)k k!xn−k.

Note that

r′(x) = an

n−1∑
k=0

(
n

k

)
(n− k) k!xn−(k+1) = an

n∑
l=1

(
n

l

)
l!xn−l = r(x)− anxn,

s′(x) = −an

n∑
l=1

(
n

l

)
(−1)l l!xn−l = anxn − s(x),

where we have performed the substitution k = l − 1. With this definitions, it
is clear that the degree of ∆f,∆p, ∆q is less than the degree of f, p, q, while

∆p(x)−∆p′(x) = p(x)− p′(x)− r(x) + r′(x) = f(x)− anxn = ∆f(x),

∆q(x) + ∆q′(x) = q(x) + q′(x)− s(x)− s′(x) = f(x)− anxn = ∆f(x),

∆p(x) + ∆q(x) = p(x) + q(x)− an

n∑
k=0

(
n

k

)(
1− (−1)k

)
k!xn−k.

From the first two of the last relations, we find that ∆f,∆p, ∆q satisfy the
conditions given in the problem, and from the third that the only terms that
are different in ∆p + ∆q with respect to p + q are those whose degree has the
same parity as n. Therefore, f is a mirror if and only if f is even or odd, if
and only if ∆f is even or odd (we obtain ∆f by making 0 one coefficient in f
which has the same parity of all other nonzero coefficients in f), if and only if
∆p+∆q is even or odd (by hypothesis of induction), if and only if p+ q is even
or odd (because ∆p + ∆q is obtained by modifying only coefficients of p + q
that have the same parity as n), if and only if p + q is a mirror, and we are
done.

Second solution by Iurie Boreico, Harvard University, USA

The condition |p(x)| = |p(−x)| is equivalent to p2(x) = p2(−x) i.e. (p(x) −
p(−x))(p(x) + p(−x)) = 0. This can happen only when one of the two factors
is identically 0, so either p(x) = p(−x), or p(x) = −p(−x). By comparing the
coefficients of the two polynomials, this can happen if and only if all monomials
appearing if f are either of even degree, or of odd degree. Thus f is a mirror
polynomial if and only if f(x) = g(x2) or f(x) = xg(x2) for some polynomial
g.

The next idea is that p and q can be exhibited in a rather explicit form. For
example, p must be unique, because if p1 − p′1 = p2 − p′2, then (p1 − p2) =
(p1 − p2)′ and a polynomial equals its derivative if and only if it is identically
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zero. Then, clearly the sum p = f(x) + f ′(x) + f ′′(x) + . . . is finite, as the
higher-order derivatives of a polynomials are all eventually zero. Moreover,
p − p′ = (f + f ′ + . . .) − (f ′ + f” + . . .) = f . Thus we have found p, and
analogously q = f − f ′ + f ′′ − . . . and hence p + q = 2(f + f ′′ + . . .) (the sum
of all derivatives of even order).

We are left to prove that f is a mirror polynomial if and only if f + f ′′ + . . . is
a mirror polynomial.

If f is a mirror polynomial, then all monomials appearing in f have either even
degree, or odd. Since differentiating twice preserves the parity of the degree, all
monomials appearing in f ′′, . . . are also all even or odd (according to whether
f is even or odd), and so the sum of all these polynomials has all monomials of
even degree, or odd degree, thus p + q is a mirror polynomial.

For the converse, observe that 2f = (p + q) − (p + q)′′. If p + q is mirror
polynomial, then (p + q)′′ is a mirror polynomial of the same type, and hence
so is their difference 2f .

Remark. It can be proved directly that 2f = (p+q)−(p+q)′′, by differentiating
the initial relations and manipulating, and by the method exposed above of
computing p and q, we can conclude that p + q = 2(f + f ′′ + . . .).

Mathematical Reflections 1 (2008) 33



U72. Let n be an even integer. Evaluate

lim
x→−1

[
n(xn + 1)

(x2 − 1)(xn − 1)
− 1

(x + 1)2

]
.

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by Daniel Campos Salas, Costa Rica
Since n is even we have that

lim
x→−1

[
n(xn + 1)

(x2 − 1)(xn − 1)
− 1

(x + 1)2

]
= lim

x→1

[
n(xn + 1)

(x2 − 1)(xn − 1)
− 1

(x− 1)2

]
.

Note that for x 6= 1 we have that

n(xn + 1)
(x2 − 1)(xn − 1)

− 1
(x− 1)2

=

n(xn + 1)− (x + 1)
n−1∑
i=0

xi

(x− 1)2(x + 1)
n−1∑
i=0

xi

=

n−1∑
i=0

xn + 1− xi − xn−i

(x− 1)2(x + 1)
n−1∑
i=0

xi

=

n−1∑
i=0

(xi − 1)(xn−i − 1)

(x− 1)2(x + 1)
n−1∑
i=0

xi

=

n−1∑
i=1

(xi − 1)(xn−i − 1)

(x− 1)2(x + 1)
n−1∑
i=0

xi
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=

(x− 1)2
n−1∑
i=1

 i−1∑
j=0

xj

(n−i−1∑
k=0

xk

)

(x− 1)2(x + 1)
n−1∑
i=0

xi

=

n−1∑
i=1

 i−1∑
j=0

xj

(n−i−1∑
k=0

xk

)

(x + 1)
n−1∑
i=0

xi

.

It follows that

lim
x→1

[
n(xn + 1)

(x2 − 1)(xn − 1)
− 1

(x− 1)2

]
= lim

x→1



n−1∑
i=1

 i−1∑
j=0

xj

(n−i−1∑
k=0

xk

)

(x + 1)
n−1∑
i=0

xi



=

n−1∑
i=1

i · (n− i)

2n

=
n · n(n− 1)

2
− n(n− 1)(2n− 1)

6
2n

=
n2 − 1

12
,

and we are done.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy
Let

fn(x) =
n(xn + 1)

(x2 − 1)(xn − 1)
− 1

(x + 1)2
.
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Let y = −1− x then, since n is even,

fn(x) =
n((1 + y)n + 1)

((1 + y)2 − 1)((1 + y)n − 1)
− 1

y2

=
n(2 + y

∑n
k=1

(
n
k

)
yk−1))

y2(y + 2)(
∑n

k=1

(
n
k

)
yk−1)

− 1
y2

=
n(2 + y

∑n
k=1

(
n
k

)
yk−1))− (y + 2)(

∑n
k=1

(
n
k

)
yk−1)

y2(y + 2)(
∑n

k=1

(
n
k

)
yk−1)

=
2n + ((n− 1)y − 2)(n +

(
n
2

)
y +

(
n
3

)
y2 + o(y2))

2ny2 + o(y2)

=
2n + n(n− 1)y +

(
n
2

)
(n− 1)y2 − 2n− n(n− 1)y − 2

(
n
3

)
y2 + o(y2))

2ny2 + o(y2)

=

(
n
2

)
(n− 1)y2 − 2

(
n
3

)
y2 + o(y2))

2ny2 + o(y2)
.

Therefore

lim
x→−1

fn(x) = lim
y→0

((
n
2

)
(n− 1)y2 − 2

(
n
3

)
y2 + o(y2))

2ny2 + o(y2)

)

=

(
n
2

)
(n− 1)− 2

(
n
3

)
2n

=
n2 − 1

12
.

Also solved by Arkady Alt, San Jose, California, USA; Paolo Perfetti, Universita
degli studi di Tor Vergata, Italy; Courtis G. Chryssostomos, Larissa, Greece; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; Vicente Vicario Garca, Huelva,
Spain; Brian Bradie, VA, USA.
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Olympiad problems

O67. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 + . . . + an = 0.

Prove that for a ≥ 0, a + a2
1 + a2

2 + . . . + a2
n ≥ m(|a1|+ |a2|+ . . . + |an|),

where m = 2
√

a

n
, if n is even, and m = 2

√
an

n2 − 1
, if n is odd.

Proposed by Pham Kim Hung, Stanford University, USA

Solution by Pham Kim Hung, Stanford University, USA

The first step is to dismiss the absolute value sign. We separate the sequence
a1, a2, . . . , an into a sequence of non-negative real numbers x1, x2, ..., xk and
a sequence of negative real numbers y1, y2, . . . , yn−k. Denote zj = −yj , j ∈
{1, 2, . . . , n− k}, we have to prove that

k∑
i=1

x2
i +

n−k∑
j=1

z2
j + a ≥ m

k∑
i=1

xi + m
n−k∑
j=1

zj .

Denote x =
1
k

k∑
i=1

zi and z =
1

n− k

n−k∑
j=1

zj . Clearly,

k∑
i=1

x2
i ≥ k

(
x1 + x2 + ... + xk

k

)2

= kx2,

n−k∑
j=1

z2
i ≥ (n− k)

(
z1 + z2 + ... + zn−k

n− k

)2

= (n− k)z2.

After all, we would like to prove that

kx2 + (n− k)z2 + a ≥ m(kx + (n− k)z).

From the the condition kx = (n − k)z, as a1 + a2 + ... + an = 0, the above
inequality becomes

kx2

(
1 +

k

n− k

)
+ a ≥ 2mkx.

Using the AM-GM inequality we get

LHS ≥ 2
√

ax

√
k

(
1 +

k

n− k

)
=

2k
√

anx√
k(n− k)

.
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If n is even, the maximum of k(n − k) is
n2

4
. If n is odd, the maximum of

k(n− k) is
n2 − 1

4
. The conclusion follows.

Also solved by Kee Wai Lau, Hong Kong, China; Paolo Perfetti, Universita
degli studi di Tor Vergata, Italy
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O68. Let ABCD be a quadrilateral and let P be a point in its interior. Denote by
K, L, M, N the orthogonal projections of P onto lines AB,BC,CD,DA, and
by Ha, Hb, Hc, Hd the orthocenters of triangles AKN , BKL, CLM , DMN,
respectively. Prove that Ha,Hb,Hc,Hd are the vertices of a parallelogram.

Proposed by Mihai Miculita, Oradea, Romania

First solution by Son Hong Ta, Hanoi University of Education, Vietnam

We have PK ⊥ AB and NHa ⊥ AK, so PK ‖ NHa. We also have PN ⊥ AD,
KHa ⊥ AN , so PN ‖ KHa. Hence, we deduce that the quadrilateral PKHaN
is a parallelogram. Similarly, the quadrilateral PLHbK is also a parallelogram.
It implies that NHa is parallel and equal to LHb (both are parallel and equal
to PK). Thus means NHaHbL is a parallelogram. Similarly, NHdHcL is a
parallelogram. Therefore we conclude that HaHb and HcHd are parallel and
equal. Hence, Ha, Hb, Hc, Hd are the vertices of a parallelogram, as desired.

Second solution by Daniel Campos Salas, Costa Rica

Note that HaN ||KP and HaK||NP , hence HaKPN is a parallelogram. This
implies that HaK = PN and HaK||PN . Analogously, it follows that HdM =
PN and HdM ||PN . Thus t HaK = HdM and HaK||HdM .

Similarly, HbK = HcM and HbK||HcM . Therefore, triangles HaHbK and
HdHcM are congruent and with all of its correspondent sides parallel. In
particular, HaHb is parallel to HdHc. Analogously, we prove that HaHd is
parallel to HbHc and this completes the proof.

Third solution by Andrei Iliasenco, Chisinau, Moldova

Let us prove that HaHb ‖ NL. Denote by Oa, Ob, Oc, Od the circumcircles of
triangles AKN,BKL, CLM, and DMN, respectively, and by Ga, Gb, Gc, Gd

the gravity gravity of these triangles, respectively.

Using following properties:

• G is between H and O and OH = 3OG

• Oa is midpoint of AP and Ob is midpoint of BP

Mathematical Reflections 1 (2008) 39



we get

−−−→
HaHb =

−−−→
HaOa +

−−→
OaA +

−−→
AB +

−−→
BOb +

−−−→
ObHb

3
−−−→
GaOa +

−−→
OaA +

−−→
AB +

−−→
BOb + 3

−−−→
ObGb

= 3
−−→
AOa +

−−−→
KOa +

−−−→
NOa

3
+
−−→
OaA +

−−→
AB +

−−→
BOb + 3

~ObB +
−−→
ObK +

−−→
ObL

3
=
−−→
AOa +

−−−→
KOa +

−−−→
NOa +

−−→
OaA + ~AB +

−−→
BOb +

−−→
ObB +

−−→
ObK +

−−→
ObL

=
−−→
AOa +

−−→
OAa

2
+
−−→
KP +

−−→
KA

2
+
−−→
NP +

−−→
NA

2

+
~AB + ~AB

2
+

~BOb + ~ObB

2
+

~PK + ~BK

2
+

~PL + ~BL

2

=
−−→
KP +

−−→
PK

2
+
−−→
KA +

−−→
AB +

−−→
BK

2
+
−−→
NP +

−→
PL

2
+
−−→
NA +

−−→
AB +

−→
BL

2

=
−−→
NL

2
+
−−→
NL

2
=
−−→
NL.

Analogously, HcHd ‖ NL ‖ HaHb and HaHc ‖ KM ‖ HbHd, hence HaHbHcHd

is a parallelogram.

Also solved by Salem Malikic, Sarajevo, Bosnia and Herzegovina; Daniel Lasaosa,
Universidad Publica de Navarra, Spain
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O69. Find all integers a, b, c for which there is a positive integer n such that(
a + bi

√
3

2

)n

= c + i
√

3.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and
Dorin Andrica, Babes-Bolyai University, Romania

Solution by Titu Andreescu, University of Texas at Dallas, USA and
Dorin Andrica, Babes-Bolyai University, Romania

If n = 1, then we get a = 2c, b = 2, where c is any integer.

If n ≥ 2, then taking the absolute values in both sides we obtain(
a2 + 3b2

2

)n

= c2 + 3

which is a Diophantine equation of the form

x2 + 3 = yn (1)

For n = 2 the solutions (x, y) are (1, 2), (1,−2), (−1, 2) and (−1,−2). In this
case we get (a, b, c) = (±1,±1, 1), (±1,±1,−1), (±2, 0, 1), (±2, 0,−1).

For n even, n ≥ 4, the equation is not solvable, since no other squares differ by
3. For n odd, n ≥ 3, we may assume that n is a prime p. Indeed, if n = qk,
where q is an odd prime, we obtain an equation of the same type:

x2 + 3 = (yk)q.

We will use the uniqueness of prime factorization in the ring R of integers of

Q[
√
−3]. It is known that the integers in Q[

√
−3] are

α + β
√
−3

2
, where α and

β are integers of the same parity. Write the equation as

(x +
√
−3)(x−

√
−3) = yp,

where u =
α + 3β2

4
.

Clearly, x must be even, otherwise x2 + 3 ≡ 4 (mod 8), while yp ≡ 0 (mod 8).

The equation x2 − x + 1 = y3 is equivalent to

(2x− 1)2 + 3 = 4y3,
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that is
(2x− 1) +

√
−3

2
· (2x− 1)−

√
−3

2
= y3. (2)

Let

d = gcd
(

2x− 1 +
√
−3

2
,
2x− 1−

√
−3

2

)
.

Then

d|
(

2x− 1 +
√
−3

2
− 2x− 1−

√
−3

2

)
=
√
−3.

Hence N(d)|N(
√
−3), that is d2|3. It follows that d = 1, i.e. the integers

2x− 1 +
√
−3

2
and

2x− 1−
√
−3

2
are relatively prime in R, the ring of integers

of Q[
√
−3].

Using the uniqueness of prime factorization in R, we get

2x− 1 +
√
−3

2
= wk

(
α + β

√
−3

2

)3

(3)

and
2x− 1−

√
−3

2
= w6−k

(
α− β

√
−3

2

)3

,

where w =
−1 +

√
−3

2
and

α2 + 3β2

4
= y.

Then gcd(x +
√
−3, x−

√
−3) = 1 and

x +
√
−3 = wk

(
α + β

√
−3

2

)p

, x−
√
−3 = w6−k

(
α− β

√
−3

2

)p

,

where w =
−1 +

√
−3

2
. The first relation can be written as

x +
√
−3 =

(
m + n

√
−3

2

)p

, (4)

for some integers m and n of the same parity.

Indeed, for each k ∈ {0, 1, . . . , 5}, there is a positive integer s such that wk =
wsp. The choice of s depends upon the residue of p modulo 6. If p ≡ 1 (mod 6)
we take s = k, while for p ≡ 5 (mod 6) we take s = 6− k.

Taking the conjugate in (4) we obtain

x−
√
−3 =

(
m− n

√
−3

2

)p

,
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hence

2
√
−3 =

(
m + n

√
−3

2

)p

−
(

m− n
√
−3

2

)p

.

Factoring the expression in the right-hand side as

Ap −Bp = (A−B)(Ap−1 + Ap−2B + · · ·+ ABp−2 + Bp−1)

we get 2
√
−3 = n

√
−3 · u, where u is an integer in Q[

√
−3]. It follows that

2 = n · u, and so N(2) = N(n · u) = N(n) ·N(u), i.e. 4 = n2N(u). Hence n|2.

For n = ±1, from (1) we obtain

±2p =
(

p

1

)
mp−1 − 3

(
p

3

)
mp−3 + · · ·+ (−3)

p−1
2 . (5)

Looking modulo p, from Fermat’s Little Theorem we get

±2 ≡ (−3)
p−1
2 (mod p),

hence 4 ≡ (−3)p−1 ≡ 1 (mod p), so p = 3.

The equation becomes x2 + 3 = y3. This equation is not solvable for y ≡ 1
(mod 4). Hence y ≡ 3 (mod 4) and x2 +4 = y3 +1 = (y +1)(y2−y +1), which
is again impossible, since y2 − y + 1 is of the form 4m + 3 and it cannot divide
the sum of squares x2 + 4.

For n = ±2, m = 2a and (4) becomes

x +
√
−3 = (a +

√
−3)p,

so

1 =
(

p

1

)
ap−1 − 3

(
p

3

)
ap−3 + 9

(
p

5

)
ap−5 − · · ·+ (−3)

p−1
2 . (6)

Clearly, 3 - a, so a2 ≡ 1 (mod 3). From (6), we get 1 ≡ pap−1 (mod 3), hence
p ≡ 1 (mod 3). Let p = 3u · 2q + 1, where 3 - q. Looking at (6) modulo 3µ+2

we get

1 ≡ pap−1 +
p− 1

2
ap−3 (mod 3µ+2). (7)

Indeed, 3µ+2|9
(

p

5

)
and

3
(

p

3

)
=

p− 1
2

p(p− 2) =
p− 1

2
[(p− 1)2 − 1] ≡ −p− 1

2
(mod 3µ+2).

We have

ap−1 = (a2)
p−1
2 = (1 + 3k)3

µq ≡ 1 + 3µ+1kq (mod 3µ+2).
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Multiplying (7) by a2 = 1 + 3k and looking mod 3µ+2, we obtain

p− 1
2

ap−1 ≡ 3µq(1 + 3µ+1kq) ≡ 3µq (mod 3µ+2). (8)

On the other hand,

a2(pap−1 − 1) ≡ −p− 1
2

ap−1 (mod 3µ+2),

and

a2(pap−1 − 1) = (1 + 3k)[p(1 + 3k)
p−1
2 − 1] = (1 + 3k)[p(1 + 3k)3

µq − 1]

≡ (1 + 3k)p + (1 + 3k)p · 3µ+1kq − (1 + 3k) (mod 3µ+2)

≡ (1 + 3k)(p− 1) + pkq · 3µ+1 (mod 3µ+2)

≡ 3µ · 2q + 3µ+1 · 2kq + (3µ · 2q + 1)kq3µ+1 (mod 3µ+2)

≡ 3µ · 2q + 3µ+1(2kq + kq) (mod 3µ+2) ≡ 3µ · 2q (mod 3µ+2).

Using (8) we obtain
−3µq ≡ 3µ · 2q (mod 3µ+2),

hence 3µ+2|3µ+1q, i.e. 3|q, a contradiction.

In conclusion, the equation is not solvable for n ≥ 3.
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O70. In triangle ABC let Ma,Mb,Mc be the midpoints of BC, CA,AB, respec-
tively. The incircle (I) of triangle ABC touches the sides BC, AC,AB at
points A′, B′, C ′. The line r1 is the reflection of line BC in AI, and line r2

is the perpendicular from A′ to IMa. Denote by Xa the intersection of r1 and
r2, and define Xb and Xc analogously. Prove that Xa, Xb, Xc lie on a line that
is tangent to the incircle of triangle ABC.

Proposed by Jan Vonk, Ghent University, Belgium

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The theorem of Thales ensures that MaMb ‖ AB, MbMc ‖ BC and McMa ‖
CA, or triangles MaMbMc and ABC are homothetic. Denote by A′′, B′′, C ′′

the respective reflections of A′, B′, C ′ in AI, BI, CI. By symmetry with respect
to AI, it is clear that A′′ is the point where r1 touches the incircle. The
lines r1, AB, AC determine a triangle equal to ABC, where the side on r1

corresponds to BC, the side on AB corresponds to AC and the side on AC
corresponds to AB. Furthermore, the length of the segment on r1 between its
intersection with AC and A′′ has the same length as BA′ by the symmetry
with respect to AI. Since r1 and AC form an angle equal to ∠B also by
symmetry around AI, then the distance from A′′ to AC is BA′ sinB. Similarly,
we may show that the distance from C ′′ to AC is BC ′ sinB. Using the fact that
BA′ = BC ′ = c+a−b

2 , we conclude that C ′′A′′ ‖ CA. Analogously, A′′B′′ ‖ AB
and B′′C ′′ ‖ BC, or triangles A′′B′′C ′′ and ABC are homothetic. Therefore
triangle A′′B′′C ′′ and MaMbMc are also homothetic. Lines MaA

′′, MbB
′′ and

McC
′′ meet at a point U ; with respect to P , the circumcircle of MaMbMc (i.e.,

the nine-point circle) is the result of scaling the circumcircle of A′′B′′C ′′ (i.e.,
the incircle). Since the nine-point circle and the incircle touch at the Feuerbach
point, then U is the Feuerbach point, and it is clearly on the incircle.

Denote by Pa, Pb, Pc the respective midpoints of IMa, IMb, IMc. By Thales’
theorem, PbPc ‖ MbMc ‖ BC, and similarly PcPa ‖ McMa ‖ CA and PaPb ‖
MaMb ‖ AB. Denote by Qa, Qb, Qc the respective midpoints of IA′′, IB′′, IC ′′.
Again by Thales’ theorem, QaQb ‖ A′′B′′ ‖ AB, QbQc ‖ B′′C ′′ ‖ BC, and
QcQa ‖ C ′′A′′ ‖ CA, or triangles ABC, MaMbMc, A′′B′′C ′′, PaPbPc and
QaQbQc are pairwise homothetic. Furthermore, since triangles PaPbPc, QaQbQc

are the result of scaling triangles MaMbMc and A′′B′′C ′′ with respect to the
incenter with scale factor 1

2 , then the point V, where lines PaQa, PbQb and PcQc

meet, is the midpoint of IU , i.e., the midpoint between the incenter and the
Feuerbach point.

Consider now the inversion of r1 and r2 with respect to the incircle. Since
r1 is tangent to the incircle at A′′, the result of performing the inversion is a
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circle through I and touching the incircle at A′′, or the inversion of r1 yields
the circle with diameter IA′′, ie, the circle with center Qa and radius r

2 , r
being the inradius of ABC. Since ∠IA′Ma = π

2 , A′ is on the circle with
diameter IMa. Thus, r2 is the line that contains a chord of this circle, and
by symmetry around IMa, the reflection of A′ in IMa is on r2, on the circle
diameter IMa, and on the incircle. Therefore, the inversion of r2 with respect
to the incircle yields the circle with diameter IMa, or the circle through I with
center Pa. Now, the circles through I with centers Pa and Qa, meet at I,
and at a second point that we will call Ya, which is the result of performing the
inversion of Xa with respect to the incircle. Note that PaQa is the perpendicular
bisector of IYa. The circles through I with centers Pb and Qb meet at I and
at Yb, and the circles through I with centers Pc and Qc meet at I and at Yc,
where Yb, Yc are the results of inverting Xb, Xc with respect to the incircle;
furthermore, PbQb and PcQc are the respective perpendicular bisectors of IYb,
IYc. Therefore, since the perpendicular bisectors PaQa, PbQb and PcQc of IYa,
IYb and IYc meet at V , then V is the circumcenter of IYaYbYC , or the inverse of
the circumcircle of IYaYbYC with respect to the incircle is a line through Xa, Xb

and Xc. Furthermore, the circumcircle of IYaYbYC has center V at a distance
r
2 of I, and radius IV = r

2 , where r is the inradius of ABC, or the circumcircle
of IYaYbYC touches the incircle at U , and its inverse, the line through Xa, Xb

and Xc, touches the incircle at the Feuerbach point U .

Mathematical Reflections 1 (2008) 46



O71. Let n be a positive integer. Prove that
n−1∑
k=1

1
cos2 kπ

2n

=
2
3
(n2 − 1).

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by John Mangual, New York, USA

From De Moivre’s fomula and calculus one can show:

sin 2nθ

sin θ
= (−1)n+1

[
2n cos θ − 23n(n2 − 1)

3!
cos3 θ + . . .

]
Then we can define a function

f(x) = (−1)n+12nx

[
1− 22(n2 − 1)

3!
x2 +

24(n2 − 1)(n2 − 22)
5!

x4 − . . .

]
In fact, f(x) is a polynomial of degree 2n− 1 with the roots x = cos kπ

2n , where
1 ≤ k ≤ 2n− 1.

Consider 1
xf( 1

x) and substitute y = 1
x2 , then

xf(x) = g(y) = yn−1 − 22(n2 − 1)
3!

yn−3 +
24(n2 − 1)(n2 − 22)

5!
x2n−5 − . . .

This is a polynomial of degree n − 1 in y whose roots are y = sec2 kπ
2n with

1 ≤ k ≤ n− 1. Using Vieté’s theorem we find that the sum of coefficients is

2
3
(n2 − 1) =

22(n2 − 1)
3!

=
n−1∑
i=1

sec2 kπ

2n
,

and we are done.

Second solution by Arkady Alt, California, USA

Note that for any polynomial P (x) = a0x
n + a1x

n−1 + ... + an−1x + an, a0 6= 0
with non-zero roots x1, x2, . . . , xn we have

n∑
i=1

1
xi

= −P ′ (0)
P (0)

. (1)

Let P (x) = a0 (x− x1) (x− x2) ... (x− xn) , then

n∑
i=1

1
x− xi

=
n∑

i=1

(ln (x− xi))
′ =

(
n∑

i=1

ln (x− xi)

)′
=
(

ln
P (x)

a0

)′
=

P ′ (x)
P (x)

,
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and plugging x = 0 the conclusion follows.

Let Un(x) :=
T ′

n+1 (x)
n + 1

=
sin (n + 1) ϕ

sinϕ
be the Chebishev Polynomial of the

Second Kind. Then Un(x) satisfies to recurrence

Un+1(x) = 2xUn(x)− Un−1(x), n ∈ N and U0(x) = 1, U1(x) = 2x.

Because
sinnϕ

sinϕ
= 0 if and only if ϕ =

kπ

n
, n ∈ Z, we get Un−1(x) = 0 if and

only if x = cos
kπ

n
, k = 1, 2, . . . , n− 1 and

Un−1(x) = 2n−1
(
x− cos

π

n

)(
x− cos

2π

n

)
. . .

(
x− cos

(n− 1) π

n

)
,

as the coefficient of xn in Un (x) is 2n−1.

In particular,

U2n−1 (x) = 22n−1
2n−1∏
k=1

(
x− cos

kπ

2n

)

= 22n−1
(
x− cos

nπ

2n

) n−1∏
k=1

(
x− cos

kπ

2n

) n−1∏
k=1

(
x− cos

(2n− k) π

2n

)

= 22n−1x

n−1∏
k=1

(
x2 − cos2

kπ

2n

)
.

Let Pn (x) :=
U2n−1 (

√
x)

2
√

x
, then Pn (x) = 4n−1

n−1∏
k=1

(
x− cos2

kπ

2n

)
.

Note that U2n−1 (x) can be defined by the recurrence

U2n+1 (x) = 2
(
2x2 − 1

)
U2n−1 (x)− U2n−3 (x) , with U−1 (x) = 0, U1 (x) = 2x.

Since U2n−1 (x) is divisible by 2x, then polynomial Pn (x) satisfy the recurrence

Pn+1 (x) = 2 (2x− 1) Pn (x)−Pn−1 (x) , n ∈ N with P0 (x) = 0, P1 (x) = 1. (2)

Thus applying (1) to the polynomial Pn (x) we obtain

n−1∑
k=1

1

cos2
kπ

2n

= −P ′
n (0)

Pn (0)
.
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In particularly, from (2) follows recurrence

Pn+1 (0) + 2Pn (0) + Pn−1 (0) = 0, n ∈ N with P0 (0) = 0, P1 (0) = 1. (3)

Let bn :=
Pn (0)
(−1)n , then (3) can be rewritten as

bn+1 − 2bn + bn−1 = 0, n ∈ N b0 = 0, b1 = −1.

Since bn+1− bn = bn− bn−1 we have bn− bn−1 = −1 and
n∑

k=1

(bk − bk−1) = −n.

Therefore bn − b0 = −n, implying bn = −n.

From the other hand,

P ′
n+1 (x) = 2 (2x− 1) P ′

n (x) + 4Pn (x)− P ′
n−1 (x) ,with P ′

0 (x) = 0, P ′
1 (x) = 0,

then

P ′
n+1 (0) + 2P ′

n (0) + P ′
n−1 (0) = 4Pn (0) , with P ′

0 (0) = 0, P ′
1 (0) = 0. (4)

Let an :=
P ′

n (0)
(−1)n , then

Pn (0)
(−1)n+1 = −bn = n and (4) can be rewritten as

an+1 − 2an + an−1 = 4n, n ∈ N with a0 = a1 = 0. (5)

Since sequence
2n
(
n2 − 1

)
3

is particular solution of nonhomogeneous recurrence

(5), then an =
2n
(
n2 − 1

)
3

+ αn + β, where α = β = 0, because a0 = a1 = 0.

Thus an =
2n
(
n2 − 1

)
3

and

n−1∑
k=1

1

cos2
kπ

2n

= −P ′
n (0)

Pn (0)
=

P ′
n (0)

(−1)n

Pn (0)
(−1)n+1

=
an

n
=

2
3
(n2 − 1).
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Third solution by Brian Bradie, Christopher Newport University, USA

Using the double angle formula

cos2
kπ

2n
=

1 + cos kπ
n

2
,

we can rewrite the indicated sum as

n−1∑
k=1

1
cos2 kπ

2n

=
n−1∑
k=1

2
1 + cos kπ

n

=
n−1∑
k=1

2(1− cos kπ
n )

1− cos2 kπ
n

= 2
n−1∑
k=1

csc2 kπ

n
− 2

n−1∑
k=1

csc
kπ

n
cot

kπ

n
.

From K.R. Stromberg, Introduction to Classical Real Analysis, 1981 we know
that

n−1∑
k=1

csc2 kπ

n
=

1
3
(n2 − 1).

Now, if n is even, then

n−1∑
k=1

csc
kπ

n
cot

kπ

n
=

n/2−1∑
k=1

csc
kπ

n
cot

kπ

n
+ csc

π

2
cot

π

2
+

n−1∑
k=n/2+1

csc
kπ

n
cot

kπ

n

=
n/2−1∑
k=1

csc
kπ

n
cot

kπ

n
+ 0 +

n/2−1∑
k=1

csc
(n− k)π

n
cot

(n− k)π
n

=
n/2−1∑
k=1

csc
kπ

n
cot

kπ

n
−

n/2−1∑
k=1

csc
kπ

n
cot

kπ

n

= 0.

On the other hand, if n is odd, then

n−1∑
k=1

csc
kπ

n
cot

kπ

n
=

(n−1)/2∑
k=1

csc
kπ

n
cot

kπ

n
+

n−1∑
k=(n+1)/2

csc
kπ

n
cot

kπ

n

=
(n−1)/2∑

k=1

csc
kπ

n
cot

kπ

n
+

(n−1)/2∑
k=1

csc
(n− k)π

n
cot

(n− k)π
n

=
(n−1)/2∑

k=1

csc
kπ

n
cot

kπ

n
−

(n−1)/2∑
k=1

csc
kπ

n
cot

kπ

n

= 0.
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Thus,
n−1∑
k=1

1
cos2 kπ

2n

=
2
3
(n2 − 1),

and we are done.

Remark. Kunihiko Chikaya point out that the similar problem was proposed
in the Tokyo Institute of Technology entrance exam in 1990.

Also solved by Jingjun Han, Shanghai, China; Paolo Perfetti, Universita degli
studi di Tor Vergata, Italy; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; Oleh Faynstein, Leipzig, Germany; G.R.A.20 Math Problems Group,
Roma, Italy
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O72. For n ≥ 2, let Sn be the set of divisors of all polynomials of degree n with
coefficients in {−1, 0, 1}. Let C(n) be the greatest coefficient of a polynomial
with integer coefficients that belongs to Sn. Prove that there is a positive
integer k such that for all n > k,

n2007 < C(n) < 2n.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Gabriel
Dospinescu, Ecole Normale Superieure, France

Solution by Titu Andreescu, University of Texas at Dallas, USA and
Gabriel Dospinescu, Ecole Normale Superieure, France

For a polynomial f(x) with coefficients in {0, 1} and degree at most n we define
a function φ(f(x)) = (f(1), f ′(1), . . . , fN−1(1)). Because all the coefficients of
f(x) are 0 or 1, using mathematical induction we can deduce that f (j)(1) ≤
(1 + n)j+1, for all j. Thus the image of φ(f(x)) has at most

(1 + n)1+2+...+N < (1 + n)N2

elements. On the other hand, f(x) is defined on a set of 2n+1 elements. There-
fore, if 2n+1 > (1 + n)N2

, by the Pigeonhole Principle there exist two polyno-
mials f1(x), f2(x) that have the same image. Clearly, their difference has all
coefficients in {−1, 0, 1} and its degree is at most n. Also from the construction
we get f1(x) − f2(x) is divisible by (x − 1)N . Thus C(n) ≥

(
2N
N

)
, because the

largest coefficient of (x−1)N is
(
2N
N

)
. It is not difficult to prove that

(
2N
N

)
> 2N ,

for N ≥ 2. Thus taking N =
⌊√

n
log2(n+1)

⌋
, we assure that (1 + n)N2

< 2n+1,

and therefore C(n) > 2N . Thus for a sufficiently large n we have 2N > n2007.

The right part is much more subtle. For a polynomial f(x) = anxn + . . . +

a1x+a0 define its Mahler measure by M(f(x)) = |an|
n∏

i=1
max(1, |xi|), where xi

are the roots of the polynomial f(x). The following inequality is true and due
to Landau

M(f(x)) ≤
√
|a0|2 + |a1|2 + . . . + |an|2.

Thus polynomials with all coefficients of absolute value at most 1 have Mahler
measure at most

√
n + 1. Take now any divisor g(x) of a polynomial f(x) with

all coefficients in {−1, 0, 1} and write f(x) = g(x)h(x). Suppose that g(x) has
integer coefficients. It is not difficult to see that

M(f(x)) = M(g(x))M(h(x)) ≥ M(g(x)).

Mathematical Reflections 1 (2008) 52



Therefore M(g(x)) ≤
√

n + 1. Now, observe that by Viete’s formula, the tri-
angular inequality, and the fact that |xi1xi2 · · ·xis | ≤ M(f(x)) for all distinct
i1, . . . , is and all s, we get that all coefficients of f are bounded in absolute
value by

( n
bn

2 c
)
M(f(x)). Thus C(n) ≤

( n
bn

2 c
)
M(f(x)) ≤

√
n + 1 ·

(
n
bn

2
c
)

< 2n,

for n sufficiently large, and we are done.
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