
CAVITATION: A POSSIBLE SOLUTION

TSOGTGEREL GANTUMUR

Note: The chosen units might be a bit different from the “official” problem statement.
For instance, we might write 1µm for 10−6m. “Table 1” refers to the “notation table”
from the statement.

A1. By performing a simple dimensional analysis, estimate the collapse time τ of a pure
vapour bubble, in terms of bubble’s initial radius R0, water density ρ, water pressure p∞,
and the vapour pressure pv. Evaluate the formula when R0 = 1mm and the quantities ρ,
p∞ and pv take their typical values from Table 1. Assume no surface tension: σ = 0.

Solution. It is reasonable to expect that the bubble would not collapse if p∞ ≤ pv. Hence
we take p∞ > pv, and presume that the difference p∞−pv will feature in the final formula.
The dimensions of the quantities are

[R0] = m, [ρ] = kg/m3, [p∞ − pv] = N/m2 = kg/(m · s2). (1)

The only combination of these that has the dimension of time is

τ ∼ R0

√
ρ

p∞ − pv
≈ 0.1 s. (2)

A2. Suppose that a micro-bubble consisting of air and vapour, with radius R0 = 10µm,
is in equilibrium when the external pressure p∞ = 100 kPa. Find the partial pressure q0
of air in the bubble. Now suppose that the external pressure p∞ was gradually decreased,
and that the air inside the bubble follows an isothermal process. Find the critical pressure
pc, defined by the condition that if p∞ < pc the bubble size grows without bound. The
quantities pv and σ take their typical values from Table 1.

Solution. The pressure equilibrium condition is

pv + q = p∞ +
2σ

R
, (3)

which, under R = R0 and q = q0, yields

q0 = p∞ − pv +
2σ

R0

≈ 170 kPa. (4)

On the other hand, taking into account the isothermal law

q0R
3
0 = qR3, (5)

we get

p∞ = pv +
q0R

3
0

R3
− 2σ

R
. (6)

The critical pressure corresponds to the minimum of p∞ as a function of R. The radius
at the minimum is easily found to be

Rc = R0

√
3q0R0

2σ
≈ 60µm, (7)
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and the corresponding pressure is

pc = pv − 2q0
(R0

Rc

)3 ≈ 700Pa. (8)

B1. Suppose that a single spherical bubble resides within water that fills space uniformly,
and that the bubble may evolve in size without distorting its spherical shape, due to
changes, e.g., in the external pressure p∞. Derive an equation that relates the bubble
radius R(t) and its time derivatives R′(t) and R′′(t), surface tension σ, water density ρ,
the pressure far from the bubble p∞, and the pressure inside the bubble p. Then split the
pressure p into two terms, by assuming that the bubble has both vapour and air in it, and
that the air follows an adiabatic process with exponent γ. To give a reference point, the
partial air pressure must be q0 when the bubble size equals R0. Assume that evaporation,
condensation, or transfer of air between the bubble cavity and the surrounding water has
no effect on the water volume.

Solution. Let v(r, t) denote the radial velocity of the fluid element at the distance r from
the bubble center and at the time moment t. Let also u(t) = v(R, t), that is,

u(t) = R′(t). (9)

Then the incompressibility condition yields

v(r, t) =
R2u(t)

r2
, (10)

and hence
∂v

∂t
=

∂

∂t

R2u

r2
=

2R

r2
u2 +

R2

r2
u′. (11)

The radial acceleration can now be computed as

a =
∂v

∂t
+

∂v

∂r
v =

R2

r2
u′ +

2R

r2
u2 − 2R4

r5
u2. (12)

With p = p(r) denoting the pressure field (where possible time dependence is suppressed
in the notation), Newton’s law reads

ρa = −p′, (13)

or
R2

r2
u′ +

(2R
r2

− 2R4

r5
)
u2 = −p′

ρ
. (14)

We integrate it from r = R to r = ∞, to get

Ru′ +
3

2
u2 =

p(R)− p∞
ρ

. (15)

Since the pressure inside the bubble satisfies

p = p(R) +
2σ

R
, (16)

we conclude that

RR′′ +
3

2
(R′)2 +

2σ

ρR
=

p− p∞
ρ

. (17)

Finally, taking into account the fact that the bubble pressure p consists of the vapour
pressure pv and the partial air pressure q, as

p = pv + q = pv + q0
(R0

R

)3γ
, (18)
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we have

ρRR′′ +
3

2
ρ(R′)2 +

2σ

R
− q0R

3γ
0

R3γ
= pv − p∞. (19)

B2. A water tank under the external pressure p−∞ = 100 kPa, containing a nucleus of
radius R0 = 10µm initially in equilibrium, was exposed to vacuum, so that the system
suddenly has p∞ = 0. Estimate the terminal (asymptotic) value of the growth speed R′,
as well as the time it reaches this terminal value.

Solution. Putting R′′ = 0 and R → ∞ in (19) yields

R′(∞) =

√
2(pv − p∞)

3ρ
=

√
2pv
3ρ

≈ 1.24m/s. (20)

The initial acceleration can also be found from (19) as

R′′(0) =
q0 + pv − 2σ/R0

ρR0

=
p−∞
ρR0

≈ 107 m/s2, (21)

and hence the time for the speed to be stabilized can be estimated as

t =
R′(∞)

R′′(0)
≈ 0.1µs. (22)

B3. A water tank under the external pressure p−∞ = 1600Pa, containing a gas bubble
of radius R0 = 10µm initially in equilibrium, was suddenly exposed to the atmospheric
pressure p∞ = 100 kPa. Estimate the minimum radius of the bubble before it rebounds.

Solution. Multiply (19) by 2R2R′ to get

ρ[R3(R′)2]′ + 4σRR′ − 2q0R
3γ
0 R2−3γR′ = 2(pv − p∞)R2R′, (23)

or

ρ[R3(R′)2]′ + 2σ(R2)′ +
2q0R

3γ
0 (R3−3γ)′

3(γ − 1)
=

2

3
(pv − p∞)(R3)′. (24)

This can easily be integrated, from R(0) = R0 and R′(0) = 0 to R(t) = R and R′(t) = R′,
which yields

ρR3(R′)2 + 2σ(R2 −R2
0) +

2q0R
3γ
0 (R3−3γ −R3−3γ

0 )

3(γ − 1)
=

2

3
(pv − p∞)(R3 −R3

0), (25)

or

ρ(R′)2 =
2(pv − p∞)

3
− 2σ

R
+

2R3
0

R3

(
σ

R0

+
p∞ − pv

3
+

q0
3(γ − 1)

− q0R
3γ−3
0

3(γ − 1)R3γ−3

)
. (26)

When R ≪ R0, it shows first that

R′ ∼ −R−3/2, (27)

and moreover that the rebound radius satisfies(R0

R

)3(γ−1)

=
(γ − 1)(p∞ − pv + 3σ/R0)

q0
+ 1. (28)

Taking into account that

q0 = p−∞ − pv + 2σ/R0 ≈ 10Pa, (29)

we conclude that the rebound radius is

R ≈ 0.4µm. (30)
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B4. If there is no gas other than water vapour present in a bubble, the bubble completely
collapses in finite time. Determine the characteristic exponent α in

R(t) ∼ (T − t)α, (31)

where T is the collapse time.

Solution. We have found in the previous part that

R′ ∼ −R−3/2. (32)

Putting R(t) ∼ (T − t)α into it we get

(T − t)α−1 ∼ −(T − t)−3α/2, (33)

or

α =
2

5
. (34)

B5. Based on the equation derived in Part 3, find the natural frequency of the spherical
oscillation of a bubble of radius R0 = 0.1mm.

Solution. Introducing the new variable x by R = R0x, we write (19) as

ρR2
0xx

′′ +
3

2
ρR2

0(x
′)2 +

2σ

R0x
− q0x

−3γ = pv − p∞. (35)

Now put x = 1 + y and retain the terms up to linear in y, to have

ρR2
0y

′′ +
2σ

R0

(1− y)− q0(1− 3γy) = pv − p∞. (36)

Taking into account the equilibrium condition

2σ

R0

− q0 = pv − p∞, (37)

we infer

y′′ +
3γq0 − 2σ/R0

ρR2
0

y = 0. (38)

Thus the bubble is unstable if

3γq0 ≤ 2σ/R0 = q0 + pv − p∞, (39)

or equivalently, if
p∞ ≤ pv − (3γ − 1)q0. (40)

On the other hand, if p∞ > pv − (3γ − 1)q0 then the bubble oscillates with the natural
frequency

f0 =
1

2πR0

√
(3γ − 1)q0 + p∞ − pv

ρ
≈ 33 kHz. (41)

B6. Suppose that the bubble described in the previous part is subjected to a standing
sound wave along the x-axis, whose pressure field is given by

p(x, t) = p0 + A sin
(2πf

c
(x+ a)

)
sin(2πft), (42)

where f is the frequency, and c is the speed of sound. The parameters p0, A, and a are
constants, whose meanings may readily be deduced from the equation. Find the average
force exerted upon the bubble. The bubble is situated at the origin of the xyz coordinate
system, and its size is much smaller than the wavelength of the sound.
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Solution. Small oscillation of the bubble is described by

ρR2
0(y

′′ + 4π2f 2
0 y) = A sin

(2πf
c

a
)
sin(2πft). (43)

Looking for the solution in the form

y(t) = B sin(2πft), (44)

we find

B =
A sin(2πfa/c)

4π2ρR2
0(f

2
0 − f 2)

. (45)

Since
R(t) = R0 +R0y(t), (46)

the volume of the bubble is

V (t) =
4π

3
R(t)3 ≈ 4π

3
R3

0[1 + 3y(t)]. (47)

Now recalling that the average force is

F = −⟨V ∂p

∂x
⟩, (48)

where the average is taken over time, and that the pressure gradient is

∂p

∂x
=

2πfA

c
cos

(2πf
c

a
)
sin(2πft), (49)

we conclude

F = − fA2R0

2ρc(f 2
0 − f 2)

sin
(4πfa

c

)
. (50)

C1. Suppose that a nucleus consisting of air and vapour, with radius R0 = 10µm, is
placed in water-air solution, in which the dissolved air is in equilibrium with the atmo-
spheric pressure above the water. The partial pressure of air in the bubble is q = 170 kPa,
and the vapour pressure can be neglected. Estimate the time required for the bubble to
be completely resorbed into water. The quantities p∞, κ, δ and σ take their typical values
from Table 1. Assume that the region surrounding the bubble in which air diffusion takes
place immediately gets much larger than the bubble itself.

Solution. From Henry’s law, the initial concentration of dissolved air in the body of
water is

ui = Hp∞ ≈ 0.024 kg/m3, (51)

and the initial concentration of dissolved air in the immediate vicinity of the bubble is

u = Hq ≈ 0.041 kg/m3. (52)

Since u > ui, there will be diffusive flux directed away from the bubble, and the bubble
will start losing air. As a result, the bubble shrinks and the surface tension term 2σ/R
increases. Since the external pressure p∞ is constant, the partial air pressure q increases,
which leads to more diffusive flux. In the end, the bubble will get completely resorbed
into water.
To quantify the diffusion of air, let us consider the region enclosed by concentric spheres

of radii r and r +∆r with ∆r small. The rate of change of air mass in this region is

dm

dt
= 4πr2∆r

∂u

∂t
, (53)
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Figure 1. (a) Initial configuration of the system (b) The geometry used
in the solution

where 4πr2∆r is the volume of the region and the air concentration u = u(r, t) is a
function of r and t. On the other hand, the same quantity can be computed as the
difference between the diffusive fluxes through the concentric spheres:

dm

dt
= 4π(r +∆r)2J(r +∆r)− 4πr2J(r)

= 4π(r +∆r)2κ
∂u

∂r
(r +∆r)− 4πr2κ

∂u

∂r
(r)

≈ 4πr2κ∆r
∂2u

∂r2
(r) + 8πrκ∆r

∂u

∂r
(r),

(54)

where we have taken into account the directions of the fluxes, and the fact that

∂u

∂r
(r +∆r) ≈ ∂u

∂r
(r) + ∆r

∂2u

∂r2
(r). (55)

Comparing the two equations, we infer

∂u

∂t
= κ

∂2u

∂r2
+

2κ

r

∂u

∂r
. (56)

The dissolved air concentration in water at the initial time moment t = 0 is uniformly ui,
and assuming that the radius R of the bubble remains constant, the air concentration in
the immediate vicinity of the bubble should be equal to Hq:{

u(r, 0) = ui for r > R,

u(R, t) = Hq for t > 0.
(57)

Introducing a new variable v = r(u−qH), and a new time parameter τ = κt, the diffusion
equation (56) becomes

∂v

∂τ
=

∂2v

∂r2
, (58)

with {
v(r, 0) = r(ui − qH) for r > R,

v(R, τ) = 0 for τ > 0.
(59)
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We can go further by introducing

ξ = r −R and w(ξ, τ) = v(R + ξ, τ), (60)

to write (56) as
∂w

∂τ
=

∂2w

∂ξ2
, (61)

with {
w(ξ, 0) = (R + ξ)(ui − qH) for ξ > 0,

w(0, τ) = 0 for τ > 0.
(62)

The solution to this problem is

w(ξ, τ) =
ui − qH√

4πτ

∫ ∞

0

(
e−(ξ−η)2/(4τ) − e−(ξ+η)2/(4τ)

)
(η +R)dη. (63)

Since

u(r, t) = qH +
v(r, κt)

r
= qH +

w(r −R, κt)

r
, (64)

we have
∂u

∂r
=

1

r

∂w

∂ξ
− w

r2
, (65)

and hence
∂u

∂r

∣∣∣
r=R

=
1

R

∂w

∂ξ

∣∣∣
ξ=0

= (ui − qH)
( 1
R

+
1√
πκt

)
. (66)

The second term corresponds to the width of the diffusion layer surrounding the bubble,
which we assume to be much larger than the bubble itself. Hence the rate of change of
the mass of the bubble can be estimated as

dm

dt
= 4πR2κ

∂u

∂r

∣∣∣
r=R

≈ 4πκR(ui − qH). (67)

On the other hand, the mass of the bubble is related to the air density, which in turn is
proportional to the pressure:

m =
4π

3
R3δ =

4π

3
R3 · δ0q

p∞
, (68)

where δ0 = 1.2 kg/m3 is the air density at the atmospheric pressure p∞ = 105 Pa. Fur-
thermore, neglecting vapour pressure, we have the mechanical equilibrium condition

q = p∞ +
2σ

R
, (69)

leading to

m =
4π

3
R3 · (δ0 +

ε

R
), (70)

with

ε =
2σδ0
p∞

≈ 1.73 · 10−6 kg/m2. (71)

After taking the derivative of (70) with respect to t, we equate it to (67), and get

4πκR(ui − p∞H − 2σH

R
) = 4πδ0R

2dR

dt
+

8π

3
εR

dR

dt
. (72)

Since ui − p∞H = 0, we have

−2σκHdt = δ0R
2dR +

2

3
εRdR, (73)
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and a direct integration yields

2σκHt =
δ0R

3
0

3
+

4εR2
0

3
, (74)

finally giving

t =
(δ0R0 + 4ε)R2

0

6σκH
≈ 9 s. (75)

Thus the nucleus collapses in a matter of seconds.

C2. Consider a conical crevice in the wall of a water container, with an aperture angle α.
A small amount of air and vapour is trapped within the cone. Write down the condition
of mechanical and diffusive equilibrium. Determine when the pocket of air stays in the
crevice without disappearing.

Figure 2. Conical crevice

Solution. The equilibrium conditions are

pv + q = p∞ ± 2σ

R
and u = Hq. (76)

The plus sign corresponds to the situation where the water surface is concave, and the
surface tension tends to squeeze the air out of the crevice through diffusion. When the
water surface is convex, we have the opposing sign. Supposing that initially the partial
air pressure q is large, q will decrease as the region of trapped air shrinks due to diffusion.
At some point, a diffusive equilibrium will be found. Thus the pocket of air does not
disappear when the water surface is convex, meaning that

π + α < 2θ. (77)


