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Preface 

Quadratic programs and affine variational inequalities represent 
two fundamental, closely-related classes of problems in the t,heories 
of mathematical programming and variational inequalities, respec- 
tively. This book develops a unified theory on qualitative aspects of 
nonconvex quadratic programming and affine variational inequal- 
ities. The first seven chapters introduce the reader step-by-step 
to the central issues concerning a quadratic program or an affine 
variational inequality, such as the solution existence, necessary and 
sufficient conditions for a point to belong to the solution set, and 
properties of the solution set. The subsequent two chapters discuss 
briefly two concrete nlodels (linear fractional vector optimization 
and the traffic equilibrium problem) whose analysis can benefit a lot 
from using the results on quadratic programs and affine variational 
inequalities. There are six chapters devoted to the study of continu- 
ity and/or differentiability properties of the characteristic maps and 
functions in quadratic programs and in affine variational inequali- 
ties where all the components of the problem data are subject to 
perturbation. Quadratic programs and affine variational inequali- 
ties under linear perturbations are studied in three other chapters. 
One special feature of the presentation is that when a certain prop- 
erty of a characteristic map or function is investigated, we always 
try first to establish necessary conditions for it to hold, then we 
go on to study whether the obtained necessary conditions are suffi- 
cient ones. This helps to clarify the structures of the two classes of 
problems under consideration. The qualitative results can be used 
for dealing with algorithms and applications related to quadratic 
programming problems and affine variational inequalities. 

This book can be useful for postgraduate students in applied 
mathematics and for researchers in the field of nonlinear program- 
ming and equilibrium problems. It can be used for some advanced 
courses on nonconvex quadratic programming and affine variational 
inequalities. 

Among many references in the field discussed in this monograph, 
we would like to mention the following well-known books: "Linear 
and Combinatorial Programming" by K. G. Murty (1976), "Non- 
Linear Parametric Optimization" by B. Bank, J. Guddat, D. Klatt,e, 
B. Kummer and K. Tammer (1982), and "The Linear Complemen- 
tarity Problem" by R. W. Cottle, J.-S. Pang and R. E. Stone (1992). 



As for prerequisites, the reader is expected to be familiar with 
the basic facts of Linear Algebra, Functional Analysis, and Convex 
Analysis. 

We started writing this book in Pusan (Korea) and completed 
our writing in Hanoi (Vietnam). This book would not be possible 
without the financial support from the Korea Research Foundation 
(Grant KRF 2000-015-DP0044), the Korean Science and Engineer- 
ing Foundation (through the APEC Postdoctoral Fellowship Pro- 
gram and the Brain Pool Program), the National Program in Basic 
Sciences (Vietnam). 
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lished some of our research papers in their journals or proceedings 
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this book. We thank them a lot for their kind permission. 

We would like to express our sincere thanks to the following 
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N. H. Dien, Prof. P. H. Dien, Prof. F. Giannessi, Prof. J. S. Jung, 
Prof. P. Q. Khanh, Prof. D. S. Kim, Prof. J .  K. Kim, Prof. 
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Chapter 1 

Quadratic Programming 
Problems 

Quadratic programming problems constitute a special class of non- 
linear mathematical programming problems. This chapter presents 
some preliminaries related to mathematical programming problems 
including the quadratic programming problems. The subsequent 
three chapters will provide a detailed exposition of the basic facts 
on quadratic programming problems, such as the solution existence, 
first-order optimality conditions, second-order optimality conditions, 
and properties of the solution sets. 

1.1 Mathematical Programming 
Problems 

Many practical and theoretical problems can be modeled in the form 

(PI Minimize f (x) subject to x E A, 

where f : Rn -t R is a given function, A c Rn is a given subset. 
Here and subsequently, R = [-cm, +cm] = R U {-cm) U {fcm) 
denotes the extended real line, Rn stands for the n-dimensional 
Euclidean space with the norm 
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for all x = (xl, . . . , x,) E Rn and the scalar product 

for all x = (31,. . . , x,), y = (yl,.  . . , y,) E Rn. Here and subse- 
, I  

quently, the apex denotes the matrix transposition. In the text, 
vectors are expressed as rows of real numbers; while in the ma- 
trix computations they are understood as columns of real numbers. 
The open ball in Rn centered at x with radius 6 > 0 is denoted by 
B(x, 6). The corresponding closed ball is denoted by B(x, 6). Thus 

The unit ball ~ ( 0 ,  1) will be frequently denoted by BRn. For a set 
R c Rn, the notations into, a and bdR, respectively, are used 
to denote the topological interior, the topological closure and the 
boundary of R. Thus fi is the smallest closed subset in Rn containing 
R, and 

We say that U C Rn is a neighborhood of x E Rn if there exists 
E > 0 such that B(x,E)  c U .  Sometimes instead of (P) we write 
the following 

min{f(x) : x E A}. 

Definition 1.1. We call (P) a mathematical programming problem. 
We call f the objective function and A the constraint set (also the 
feasible region) of (P) .  Elements of A are said to be the feasible 
vectors of (P). If A = Rn then we say that (P) is an unconstrained 
problem. Otherwise (P) is called a constrained problem. 

Definition 1.2 (cf. Rockafellar and Wets (1998), p. 4) A feasible 
vector 3 E A is called a (global) solution of (P) if f (3) # +oo and 
f (x )  2 f (2 )  for all x E A. We say that 3 7: A is a local solution 
of (P) if f (3) # +oo and there exists a neighborhood U of such 
that 

f (x) 2 f (3) for all x E A n U. (1.1) 

The set of all the solutions (resp., the local solutions) of (P) is 
denoted by Sol(P) (resp., loc(P)). We say that two mathematical 
programming problems are equivalent if the solution set of the first 
problem coincides with that of the second one. 
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Definition 1.3. The optimal value v(P) of (P) is defined by setting 

v(P)  = inf{f(x) : x E A). (1.2) 

If A = 0 then, by convention, v(P)  = +oo. 

Remark 1.1. It is clear that Sol(P) c loc(P). It is also obvious 
that 

SO~(P )  = {X E a : f ( ~ )  # +w, f ( ~ )  = v(P)). 

Remark 1.2. It may happen that loc(P) \ Sol(P) # 0. For ex- 
ample, if we choose A = [-I, +oo) and f (x) = 2x3 - 3x2 + 1 then 
3 = 1 is a local solution of (P) which is not a global solution. 

Remark 1.3. Instead of the minimization problem (P), one may 
encounter with the following maximization problem 

(PI 1 Maximize f (x) subject to x E A. 

A point Z E A is said to be a (global) solution of (PI) i f f  (3) # -W 

and f (x) 5 f (3) for all x E A. We say that Z E A is a local solution 
of (PI)  if f (3) # -oo and there exists a neighborhood U of Z such 
that f (x) 5 f (3) for all x E A n U. It is clear that 3 is a solution 
(resp., a local solution) of (PI) if and only if 3 is a solution (resp., 
a local solution) of the following minimization problem 

Minimize - f (x) subject to x E A. 

Thus any maximization problem of the form (PI) can be reduced 
to a minimization problem of the form (P) .  

Remark 1.4. Even in the case v(P) is a finite real number, it may 
happen that Sol(P) = 0. For example, if A = [l, +w) c R and 

f (4 = 
for x # 0 

+oo for x = 0 

then v(P) = 0, while Sol(P) = 0. 
There are different ways to classify mathematical programming 

problems: 
0 Convex vs. Nonconvex 

Smooth vs. Nonsmooth 
Linear vs. Nonlinear. 
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1.2 Convex Programs and Nonconvex 
Programs 

Definition 1.4. We say that A c Rn is a convex set if 

t x +  (1  - t ) y  E A for every x  E A, y  E A and t  E ( 0 , l ) .  (1.3) 

The smallest convex set containing a set R C Rn is called the convex 
hull of 52 and it is denoted by coR. 

Definition 1.5. A function f : Rn 4 R is said to be convex if its 
epigraph 

epif : = { ( x , a )  : X E  Rn, a €  R, a >  f ( x ) )  ( I .4 )  

is a convex subset of the product space Rn x R. A convex function 
f is said to be proper if f ( x )  < +m for at least one x  E Rn and 
f ( x )  > -m for all x  E Rn. A function f : Rn 4 is said to be 
concave if the function - f defined by the formula (- f ) ( x )  = - f ( x )  
is convex. 

By the usual convention (see Rockafellar (1970), p. 24), 

a + ( + m ) = ( + m ) + a = + m  for - o o < a < + m ,  
a + ( - - m ) = ( - m ) + a = - m  for - o o < a < + m ,  
a ( + m )  = ( + m ) a  = +m, a(-oo) = (-m)a = -m, 

for O < a <  +m, 
a(+oo) = (+m)a = -m, a ( - m )  = (-m)a = +m, 

for - m < a < O ,  
O(+m) = (+m)O = 0  = O(-m) = (-m)O, 
-(-m) = +oo, inf 0 = +a, sup0 = -m. 

The combinations (+m) + (-m) and (-oo) + (+m) have no mean- 
ing and will be avoided. 

Note that a function f : Rn 4 R U { + m )  is convex if and only 
if 

f ( t x+( l - t )y )  i t f  ( x )+ ( l - t )  f ( y ) ,  V x ,  y E Rn, Y t  E ( 0 , l ) .  (1.5) 

Indeed, by definition, f is convex if and only if the set epi f defined 
in (1.4) is convex. This means that 
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for all t E (0 , l )  and for all x,  y E Rn, a, ,B E R satisfying a 2 
f (x ) ,  ,B 2 f (y). It is a simple matter to show that the latter is 
equivalent to (1.5). 

More generally, a function f : Rn -+ R U {+m) is convex if and 
only if 

f ( X I X I +  . .+Xkxk) < Xl f (xl)+. . + + A k  f (xk) (Jensen's Inequality) 

whenever 21,. . . , xk E Rn and X1 2 0, . . . , Xk 2 0, X1 + . . . + Xk = 1. 
(See Rockafellar (1970), Theorem 4.3). 
Definition 1.6. We say that (P) is a convex program (a convex 
mathematical programming problem) if A is a convex set and f is 
a convex function. 

Proposition 1.1. If (P) is a convex program then 

Proof. It suffices to show that loc(P) C Sol(P) whenever (P) is 
a convex program. Let 3 E loc(P) and let U be a neighborhood 
of 3 such that (1.1) holds. If Z $ Sol(P) then there must exist 
2 E A such that f (2) < f (3). Since f (z) # +m, this implies that 
f (2) E R U {-m). 

We first consider the case f (2) # -m. For any t E (0, I ) ,  we 
have 

Since t i  + (1 - t ) ~  = 3 + t(2 - 3) belongs to A n U for sufficiently 
small t E (0, I ) ,  (1.7) contradicts (1.1). 

We now consider the case f (2) = -m. Fix any t E (0, l ) .  For 
every a E R, since (2, a) E epi f and (3, f (3)) E epi f , we have 

t (2 ,a)  + (1 - t)(3, f(3)) E epif. 

Hence f (t2 + (1 - t ) ~ )  < t a  + (1 - t) f (3) for all a E R. This implies 
that f (t2 + (1 - t ) ~ )  = -m. Since the last equality is valid for all 
t E (0 , l )  and t2 + (1 - t )3 E A n U if t E (0, l )  is sufficiently small, 
(1.1) cannot hold. We have arrived at a contradiction. 

Definition 1.7. If A is nonconvex (= not convex) or f is non- 
convex then we say that (P) is a nonconvex program (a nonconvex 
mathematical programming problem). 
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Example 1.1. Consider the problem 

min{f (x) = (21 - c ~ ) ~  + ( 2 2  - ~ 2 ) ~  : x E A), (1.8) 

whe reA= {x= (x1 , x2 ) : x1  ~ O ) ~ { x = ( x ~ , x ~ ) : x ~ ~ 0 ) a n d c =  
(cl,c2) = (-2, -1). Note that f is convex, while A is nonconvex. 
It is clear that (1.8) is equivalent to the following problem 

min{llx - ell : x E A). (1.9) 

On can easily verify that the solution set of (1.8) and (1.9) consists 
of only one point (-2, O), and the local solution set contains two 
points: (-2,O) and (0, - 1). 

3 
Example 1.2. Let f l(x) = - x+2 ,  f2(x) = x + -, x E R. Define 

2 
f (x) = min{ f l  (x), f2(x)) and choose A = [O, 21 c R. For these f 
and A,  we have 

Note that in this example f is a nonconvex function, while A is a 
convex set. 

Convex functions have many nice properties. For example, a 
convex function is continuous at any interior point of its effective 
domain and it is directionally differentiable at any point in the do- 
main. 

Definition 1.8. For a function f : Rn --t z, the set 

domf := {x E Rn : -oo < f (x) < +oo) (1.10) 

is called the eflective domain of f .  For a point 5 E domf and a 
vector v E Rn, if the limit 

f l (Z;  v) := lim 
f (Z + tv) - f (3) 

tL0 t 

(which may have the values +oo and -GO) exists then f is said to be 
directionally diflerentiable at Z in direction v and the value f1(5; v) 
is called the directional derivative of f at 3 in direction v. If f ' ( ~ ;  v) 
exists for all v E Rn then f is said to be directionally differentiable 
at Z. 

In the next two theorems, f : Rn t R U {+oo) is a proper 
convex function. 
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Theorem 1.1. (See Rockafellar (1970), Theorem 10.1) If 3 E Rn 
and 6 > 0 are such that the open ball B(3 ,  S )  is contained in dom f ,  
then the restriction o f f  to B(3,S) is a continuous real function. 

Theorem 1.2. (See Rockafellar ( I W ' O ) ,  Theorem 23.1) If 3 E dom f 
then for any v E Rn the limit 

f'(3; v) := lim 
f (3  + tv )  - f (3)  

t i0 t 

exists, and one has 

f ' (3;  v )  = inf f (3 + tv )  - f (3)  

t>O t 

Definition 1.9. The normal cone Nn(3) to a convex set A C Rn 
at a point 3 E Rn is defined by the formula 

{x* E Rn : ( x * ,x  - 3) 5 0 for all x E A )  i f  3 E A 
Nn(" = { @  i f  6 A. 

(1.12) 

Definition 1.10. The subdiflerential d f (3)  of a convex function 
f : Rn -+ R at a point 3 E Rn is defined by setting 

d f ( 3 )  = {x* E Rn : f ( z )  + (x* ,x  -3 )  5 f ( x )  for every x E Rn). 
(1.13) 

Definition 1.11. A subset M c Rn is called an afine set i f  t x  + 
(1 - t ) y  E M for every x E M,  y E M and t E R. For a convex 
set A c Rn, the afzne hull a f f A  of A is the smallest affine set 
containing A. The relative interior of A is defined by the formula 

riA = { x  E A : 36 > 0 such that B ( x ,  6 )  n a f f A  C A ) .  

The following statement describes the relation between the di- 
rectional derivative and the subdifferential of convex functions. 

Theorem 1.3. (See Rockafellar (1970), Theorem 23.4) Let f be a 
proper convex function on Rn. If x 6 dom f then df  ( x )  is empty. 
If x E ri(dom f )  then d f ( x )  is nonempty and 

Besides, df ( x )  is a nonempty bounded set if and only zf 

x E int(dom f ) ,  
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i n  which case f ' (x ;  v) is finite for every v E Rn.  

The following result is called the Moreau-Rockafellar Theorem. 
Theorem 1.4. (See Rockafellar (1970), Theorem 23.8) Let f = 

f l  + . . . + f k ,  where f l  , . . . , fk are proper convex functions on Rn. If 

First-order necessary and sufficient optimality conditions for con- 
vex programs can be stated as follows. 

Theorem 1.5. (See Rockafellar (1970), Theorem 27.4) Suppose that 
f is a proper convex function on Rn and A C Rn is  a nonempty 
convex set. If the inclusion 

holds for some 2 E Rn, then 3 is a solution of (P ) .  Conversely, if 

then (1.14) is a necessary and suficient condition for 3 l: Rn to be 
a solution of (P) .  In particular, if A = Rn then 3 is a solution of 
(P) if and only i f 0  E af(3) .  

Inclusion (1.14) means that there exist x* E df(2) and u* E 
NA(z) such that 0 = x* + u*. Note that (1.15) is a regularity 
condition for convex programs of the type (P) .  

The facts stated in Proposition 1.1 and Theorem 1.5 are the 
most characteristic properties of convex mathematical programming 
problems. 

Theorem 1.5 can be used for solving effectively many convex 
programs. For illustration, let us consider the following example. 

Example 1.3. (The Fermat point) Let A, B, C be three points 
in the two-dimensional space R2 with the coordinates 

respectively. Assume that there exists no straight line containing all 
the three points. The problem consists of finding a point M in R2 
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with the coordinates z = ( z l ,  3 2 )  such that the sum of the distances 
from M to A ,  B and C is minimal. This amounts to saying that 3 
is a solution of the following unconstrained convex program: 

In Lemma 1.1 below it will be proved that problem (1.16) has solu- 
tions and the solution set is a singleton. Note that f = f i  + f 2  + f 3 ,  
where f i b )  = IIx - all, f 2 ( 4  = llx - bll, f 3 ( 4  = 115 - 41. BY 
Theorem 1.5, Z is a solution of (1.16) if and only if 0 E d f (3). As 
dom f i = R2 (i = 1,2,3) ,  using Theorem 1.4 we can write the last 
inclusion in the following equivalent form 

We first consider the case where 3 coincides with one of the three 
vectors a, b, c. Let Z = a, i.e. M r A. In this case, 

a - b  a - c  
~ 3 )  = on., af2 (z )  = , ah(?) = } 

a - bll a - cll 

Hence (1.17) is equivalent to saying that there exists u* E BR2 such 
that 

0 = U* -v*  - w*, (1.18) 

where v* := (b - a)/llb - all, w* := (c  - a)/llc - all. From (1.18) it 
follows that 

1 2  1 1 ~ * 1 1 ~  = (u* ,u*)  
= (v* + w*, v* + w*) 
= + I I w * ~ ~ ~  + 2(v*, w*).  

1 
As 11v*11 = 1 and IIw*ll = 1, this yields (v*,  w*) < --. Denoting by 

2 
a the geometric angle between the vectors v* and w* (which is equal 
to angle A of the triangle A B C ) ,  we deduce from the last inequality 
that 

Hence 

COS Q = (v*,  w*) 1 = (v*,w*) < --. 
Ilv* 1 1  IIw* I l  2 

(The case a = T is excluded because there exists no straight line 
containing A ,  B and C.) It is easy to show that (1.19) implies that 
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? := v* + w* belongs to ~ ~ 2 .  Thus (1.19) is equivalent to (1.17). 
This means that (1.19) holds if and only if Z = a is a solution of 
(1.16). 

We now turn to the case where 5 # a ,  3 # b and 3 # c, i.e. M 
does not coincide with anyone from the three vertexes A, B ,  C of 
the triangle ABC. In this case, as 

= { ' - a } , af2(i) = { '- } , af3(z) = { '- } , 
11% - all 1 1 %  - bll llZ - cll 

(1.17) is equivalent to the equality 

where U* := (a - Z)/lla - 311, v* := ( b  - Z)/l lb - 311 and w* := 
(C - Z ) / [ [ C  - 311. By (1.20), 

1 
Since 11v*11 = 1 and IIw*ll = 1, this implies that (v*,w*) = --. 

2 
Hence the geometric angle a between v* and w* is 2 ~ 1 3 .  Similarly, 
we deduce from (1.20) that the geometric angle ,B (resp., y) between 
U* and w* (resp., between u* and v*) is equal to 2x13. (Geometri- 
cally, we have shown that M sees the edges BC, AC and AB of the 
triangle ABC under the same angle 120°.) It is easily seen that if 

then (1.20) is satisfied; hence (1.17) is valid and 5 is a solution of 
(1.16). 

Summarizing all the above in the language of Euclidean Geom- 
etry, we have the following conclusions: 

(i) If one of the three angles of the triangle ABC, say A, is larger 
than or equal to 120°, then M r A is the unique solution of 
our problem. 

(ii) If all the three angles of the triangle ABC are smaller than 
120°, then the unique solution of our problem is the point 
M seeing the edges BC, AC and AB of the triangle ABC 
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under the same angle 120". (This special point M is called 
the Fermat point or the Torricelli point (see Weisstein (1999)). 
It can be proved that the Fermat point belongs to the interior 
of the triangle ABC.) 

If the necessary and sufficient optimality condition stated in 
Theorem 1.5 yields a unique point Z which can be expressed explic- 
itly via the data of the optimization problem (see, for instance, the 
situation in Example 1.6 below) then the problem has solutions and 
the solution set is a singleton. In the other case, information about 
the solution existence and uniqueness can be obtained by analyzing 
furthermore the structure of the problem under consideration. 

For the illustrative problem described in Example 1.3, the fol- 
lowing statement is valid. 

Lemma 1.1. Let a = (al, a2), b = (bl , b2), c = (cl , c2) be given 
points in R2 such that there exists no straight line containing all the 
three points. Then problem (1.16) has solutions and the solution set 
is a singleton. 

Proof. In order to show that (1.16) has solutions, we observe that 

Therefore lim f (x) = +m. Fix any z E R2 and put y = f (2). 
I I + + + ~  

Let Q E [11z11, +oo) be such that 

f (x )  > y for every x E R~ \ B(o,Q). 

By the Weierstrass Theorem, the restriction of the continuous func- 
tion f (x) on the compact set ~ ( 0 ,  Q) achieves minimum at some 
point J: E ~ ( 0 ,  Q) , that is f (2) 5 f (y) for every y E B ( O ,  Q). Since 

f ( ~ )  5 f (x) = r <  f (x )  for all xZ:E R ~ \ B ( o , Q ) ,  

it follows that Z is a solution of (1.16). 
We now prove that f (x)  is a strictly convex function, that is 

for all x, y in R2 with x # y and for all t E (0, l ) .  Given any 
x = (x1,x2), y = (y1,y2) in R2 with x # y and t E (0,1), we 
consider the following vector systems 

{x - a, y - a), {x - b, y - b), { x  - c, y - c). (1.21) 
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We claim that at least one of the three systems is linearly indepen- 
dent. Suppose the claim were false. Then we would have 

det ( x l  - y1 - = 0 ,  det ( X l  - bl Yl - bl 
2 2  - a2 Y2 - a2 2 2  - b2 Y2 - b2 

det ( x1-Cl Y1-Cl 
X 2 - C 2  Y2-C2 

where det Z denotes the determinant of a square matrix 2. These 
equalities imply that 

Since x # y ,  we have ( x l  - y1)2 + ( x 2  - y2)2 # 0.  SO the set 

is a straight line in R2. By (1.22), L contains all the points a ,  b, c. 
This contradicts our assumption. We have thus proved that at least 
one of the three vector systems in (1.21) is linearly independent. 
Without loss of generality, we can assume that the system {x -a ,  y- 
a )  is linearly independent. Then the system { t ( x -  a ) ,  ( 1  - t ) ( y  - a ) )  
is also linearly independent. This implies that 

So we have 

The strict convexity of f has been established. From this property it 
follows immediately that (1.16) cannot have more than one solution. 
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Indeed, if there were two different solutions x and y of the problem, 
then by the strict convexity of f we would have 

This contradicts the fact that x is a solution of (1.16). The proof 
of the lemma is complete. 0 

Remark 1.5. It follows from the above results that (1.16) admits 
a unique solution belonging to the convex hull of the set {a, b, c). 
Hence (1.16) is equivalent to the following constrained convex pro- 
gram 

min{llx - all + IIx - bll + IIx - c I I  : x E co{a, b, c)). 

In problem (P), if A is the solution set of a system of inequalities 
and equalities then first-order optimality conditions can be written 
in a form involving some Lagrange multipliers. 

Let us consider problem (P) under the assumptions that f : 
Rn + R is a convex function and 

where gi : Rn + R for i = 1,. . . , m is a convex function, hj : 
Rn --i R for j = 1,. . . , s is an afine function, i.e. there exist 
a j  E Rn and aj E R such that hj(x) = (aj,  x) + aj for every 
x E Rn. I t  is admitted that the equality constraints (resp., the 
equality constraints) can be absent in (1.23). For abbreviation, we 
use the formal writing m = 0 (resp., s = 0) to  indicate that all the 
inequality constraints (resp., all the equality constraints) in (1.23) 
are absent. 

Theorem 1.6. (Kuhn-Tucker Theorem for convex programs; see 
Rockafellar (1970), p. 283) Let (P) be a convex program where A is 
given by (1.23). Let the above assumptions on f ,  gi ( i  = 1,. . . , m )  
and hj  ( j  = 1 , .  . . s) be satisfied. Assume that there exists a vector 
z E Rn such that 

gi(z) < O  for i =  1 , . . . ,  m and hj(z) = O  for j =  1 , . . . ,  s. 
(1.24) 

Then 3 is a solution of (P) if and only if there exist m +  s real num- 
bers X I , .  . . , A,, p1,. . . , p,, which are called the Langrange multipli- 
ers corresponding to 3, such that the following Kuhn-Tucker condi- 
tions are fulfilled: 
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(a) Xi 2 0, gi(z) 5 0 and Xifi(%) = 0 f o r i  = 1 , . . .  ,m, 

(b) hj(.) = 0 f o r j  = 1, .  . . , s ,  

(c) O E a f (3)  + CE1 Xiagi(3) + C;=, p j a j  

Note that (1.24) is a constraint qualification for convex pro- 
grams. If s = 0 then it becomes 

32 E Rn s.t. gi(x) < 0 for i = 1,. . . , m. (The Slater condition) 

If m = 0 then (1.24) is equivalent to the requirement that A is 
nonempty. Actually, in that case condition (1.24) can be omitted 
in the formulation of Theorem 1.6. 

1.3 Smooth Programs and Nonsmooth 
Programs 

For brevity, if f : Rn -+ R is a continuously Frhchet differentiable 
function then we shall say that f is a C1-function. Similarly, if f is 
twice continuously Fr6chet differentiable function then we shall say 
that f is a C2-function. The vector 

where - af for i = 1,. . . , n denotes the partial derivative of f at 
ax; 

3 with respect to xi, is called the gradient of f at Z.  The matrix 

a2f ('I denotes the second-order partial derivative of f at where - 
axidxi 

3 w.r.t. k j  and xi, is called the Hessian matrix of f at 3. It is 
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well-known that if f is a C1-function on Rn then f is directionally 
differentiable on Rn (see Definition 1.8) and 

for every J: E Rn and v = (vl, . . . , v,) E Rn. 
Definition 1.12. We say that (P) is a smooth program (a smooth 
mathematical programming problem) i f f  : Rn -+ R is a C1-function 
and A can be represented in the form (1.23) where gi : Rn -+ R 
( i  = 1 , .  . . , m) and hj : Rn -t R ( j  = 1, .  . . , s) are C1-functions. 
Otherwise, (P) is called a nonsmooth program. 

We have considered problem (1.16) of finding the Fermat point. 
It is an example of nonsmooth programs. Function f (x )  in (1.16) 
is not a C1-function. However, it is a Lipschitz function because 

Definition 1.13. A function f : Rn -+ R is said to be a locally 
Lipschitz near f E Rn if there exist a constant ! 2 0 and a neigh- 
borhood U of 3 such that 

I f (x l )  - f(x)l  5 ![[XI - $ 1 1  for all x, XI in U 

If f is locally Lipschitz near every point in Rn then f is said to 
be a locally Lipschitz function on Rn. If f is locally Lipschitz near 
5 then the generalized directional derivative of f at Z in direction 
v E Rn is defined by 

f0(3;v)  := limsup f (3 + tv) - f (4) 
x+Z, tL0 t 

= sup{( E R : 3 sequences xk -+ 3 and tk --+ O+ 

such that ( = lim f (xk + t k ~ )  - f ( ~ k )  

k++w tk 1. 

The Clarke generalized gradient of f at  n: is given by 

a f ( z )  := {x* E Rn : fO(?;v) > (x*,v) for all v E Rn). 

Theorem 1.7. (See Clarke (1983), Propositions 2.1.2, 2.2.4, 2.2.6 
and 2.2.7) Let f : Rn -t R be a real function. Then the following 
assertions hold: 
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(a )  I f f  is locally Lipschitz near 5 E Rn then 

for every v E Rn 

( b )  I f f  is a C1-function then f is a locally Lipschitz function and 
a f (3 )  = { o f ( ? ) ) ,  fO (%;v )  = ( V f ( ~ ) , v )  for all 5 E Rn and 
v E Rn. 

( c )  If f is convex then f is a locally Lipschitz function and, for 
every 5 E Rn, the Clarke generalized gradient 8 f (5 )  coincides 
with the subdiflerential of f at 5 defined by formula (1.13). 
Besides, f ' ( 5 ;  v )  = f ' (5 ;  v )  for every v E Rn. 

As concerning the above assertion ( c ) ,  we note that the direc- 
tional derivative f '(5; v )  exists according t o  Theorem 1.2. 

Definition 1.14. Let C c Rn be a nonempty subset. The Clarke 
tangent cone Tc (x )  to  C at x E C is the set o f  all v E Rn satisfying 
d:(x;v) = 0,  where d; (x ;v)  denotes the generalized directional 
derivative o f  the Lipschitzian function dc(z)  := inf { 11 y - 211 : y E 
C )  at x in direction v.  The Clarke normal cone Nc(x )  t o  C at x is 
defined as the dual cone of  Tc (x ) ,  i.e. 

Nc(x )  = {x* E Rn : (x* , v) 5 0 for all v E Tc(x ) ) .  

Theorem 1.8. (See Clarke (1983), Propositions 2.4.3, 2.4.4 and 
2.4.5) For any nonempty subset C C Rn and any point x E C, the 
following assertions hold: 

( b )  If C is convex then Nc(x )  coincides with the normal cone to C 
at x defined by formula (1.12), and Tc (x )  coincides with the 
topological closure of the set cone(C - x )  := { t z  : t > 0 ,  z E 
c - x } .  

( c )  The inclusion v E Tc(x )  is valid if and only if, for every se- 
quence xk in C converging to x and sequence tk  in  (0 ,  +oo) 
converging to 0, there exists a sequence vk in Rn converging 
to v such that xk + tkvk E C for all k .  
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We now consider problem ( P )  under the assumptions that f : 
Rn --t R is a locally Lipschitz function and 

where C c Rn is a nonempty subset, gi : Rn --t R (i = 1 , .  . . , m) 
and h j  : Rn -+ R ( j  = 1 , . . . , s )  are locally Lipschitz functions. 

Theorem 1.9. (See Clarke (1983), Theorem 6.1.1 and Remark 
6.1.2) If 3 is a local solution of ( P )  then there exist m + s + 1 real 
numbers X o  2 0 ,  X 1  2 0 , .  . . ,Am 2 0 ,  p l , .  . . ,p,, not all zero, such 
that 

and 

X ig i (3 )=0 foral l  i = 1 , 2  , . . . ,  m. (1.27) 

The preceding theorem expresses the first-order necessary opti- 
mality condition for a class of nonsmooth programs in the Fritz- John 
form. Under some suitable constraint qualifications, the multiplier 
X o  corresponding to the objective function f is positive. In that 
case, dividing both sides of the inclusion in (1.26) and the equalities - 
in (1.27) by X o  and setting Xi  = X i / X o  for i = 1 , .  . . ,m, Pj = p j /Xo 
for j = 1 , .  . . , s ,  we obtain 

and - 
Xigi(3) = 0 for all i = 1 ,2  , . . . ,  m. (1.29) 

Similarly as in the case of convex programs (see Theorem 1.6), if - 
(1.28) and (1.29) are fulfilled then the numbers x1 2 0 ,  . . . , Am 2 
0 ,  P1 E R, . . . , jYs E R are called the Lagrange multipliers corre- 
sponding to 3. 

It is a simple matter to obtain the following two Lagrange mul- 
tiplier rules from Theorem 1.9. (See Clarke (1983), pp. 234-236). 
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Corollary 1.1. If 3 is a local solution of ( P )  and if the constraint 
qualiification 

[o E Czl  Xidgi (3)  + Cg=l p jdh j  (3)  + N c ( 2 )  
A 1 2 0  , . . . ,  X m 2 0 ,  p 1 E R  , . . . ,  p , E R ;  
Xigi(5) = 0 for i = 1 , .  . . ' ml 

X 1 =  . . . =  X m = O ,  p l =  . . . = p s =  01 [ 
holds, then there exist Lagrange multipliers X I  2 0 , .  . . , Am 2 0 ,  p1 E 
R, . . . , p, E R such that Xigi(3) = 0 for i = 1 , 2 , .  . . , m, and 

Corollary 1.2. Assume that 3 is a local solution of a smooth 
program ( P )  where A is given by formula (1.23). If the following 
Mangasarian-Fromovitz constraint qualification 

The vectors { V h j ( 2 )  : j = 1 , .  . . , s )  are linearly independent, 
and there exists v E Rn such that ( V h j ( 3 ) ,  v) = 0 
for j = 1 , .  . . , S ,  and ( V g i ( 3 ) ,  v) < 0 
for every i = 1, . . . , m satisfying g i (3)  = 0 

is satisfied, then there exist Lagrange multipliers X 1  2 0, .  . . , A, 2 
0 ,  p1 E R,.  . . ,,us E R such that Xigi(5) = 0 for i = 1 , 2 , .  . . ,m, and 

From Theorem 1.9 we can derive the basic Lagrange multiplier 
rule for convex programs stated in Theorem 1.6. Indeed, sup- 
pose that the assumptions of Theorem 1.6 are satisfied and 3 is 
a solution of ( P ) .  Consider separately the following two cases: 
( i )  The vectors { a j  : j = 1 , .  . . , s )  are linearly independent; 
( i i)  The vectors { a j  : j = 1, . . . , s )  are linearly dependent. In 
the first case, Theorem 1.9 shows that there exist real numbers 
X o  2 0 ,  X 1  2 0 , .  . . ,Am 2 0 ,  P I , .  . . , p s ,  not all zero, such that 
(1.26) and (1.27) are satisfied. Condition (1.24) forces X o  > 0.  
Hence there exist Lagrange multipliers satisfying the Kuhn-Tucker 
conditions. In the second case, when aj = 0 for j = 1 , .  . . , s ,  we 
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can obtain the desired result; when a j  # 0 for some j = 1, .  . . , s ,  we 
choose a maximal linearly independent subsystem, say {al, . . . , ak) ,  
of the vector system {al , .  . . , a,). Then we consider the problem 

min{f(x) : gl(x) 0 , .  . . ,gm(x) < 0, hl(x) = 0, .  . . , hk(x) = 0). 
(1.30) 

It is easy to show that the constraint set of this problem coincides 
with A. Hence % is a solution of (1.30). Applying Theorem 1.9 
to problem (1.30) and using condition (1.24) we can find a set of 
Lagrange multipliers satisfying the Kuhn-Tucker conditions. 

1.4 Linear Programs and Nonlinear Pro- 
grams 

Definition 1.15. A subset A c Rn is called a polyhedral convex set 
if A can be represented as the intersection of finitely many closed 
half spaces of Rn; that is, there exist nonzero vectors a l ,  . . . ,am E 
Rn and real numbers Dl, . . . , Dm such that 

A = {x E Rn : (ai, x) 2 pi for i = 1, .  . . , m). (1.31) 

In other words, A is the solution set of a system of finitely many lin- 
ear inequalities. (We admit that the intersection any empty family 
of closed half spaces of Rn is Rn. Hence A = Rn is also a polyhe- 
dral convex set.) A point x E A is called an extreme point of A if 
there is no way to express x in the form x = ty + (1 - t)z where 
y E A, z E A, y # z, and t E (0, l ) .  The set of all the extreme 
points of A is denoted by extrA. 

Let A be the m x n-matrix with the elements aij (i = 1 , .  . . , m, 
j = 1, . . . , n),  where aij stands for the j-th component of ai. Set 
b = (Dl,. . . ,Dm) E Rm. Then (1.31) can be rewritten as 

A = {x E Rn : Ax 2 b). 

Here and subsequently, for any two vectors y = (yl, . . . , y,) E Rm 
and z = (21,. . . , z,) E Rm, we write y > z if yi > zi for all 
i = 1,. . . , m. We shall write y > z if yi > xi for all i = 1, .  . . ,m.  
Since 
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it follows that {x E Rn : Ax = b) is a polyhedral convex set. 

Definition 1.16. Problem (P) is called a linear program (a linear 
programming problem) if f is an affine function and A is a polyhe- 
dral convex set. Otherwise, (P) is said to be a nonlinear program. 

There are three typical forms for describing linear programs 

min{f(x) = (c,x) : x E Rn, Ax 2 b), 
min{f(x)=(c,x) : x c R n ,  A x = b ,  x L O ) ,  
min{f (x) = (c, x) : x E Rn, Ax 2 b, Cx = d) 

which are called the standard form, the canonical form and the 
general form, respectively. Here A E RmXn, C E RSXn are given 
matrices, c E Rn, b E Rm and d E RS are given vectors. 

Example 1.4. Consider the following linear program of the stan- 
dard form: 

It is easy to check that Sol(P) = {(0,1)). Note that the constraint 
set 

A = {X E R~ : XI + x2 2 1, XI 2 0, x2 2 0) 

has two extreme points, namely extrA = {( I ,  O) ,  (0, l )) .  One of 
these points is the solution of our problem. 

Definition 1.17. The dual problems of linear programs of the stan- 
dard, canonical and general forms, respectively, are the following 
linear programs: 

max{(b, y) : y E Rm, ATy = c, y 2 01, 
max{(b, y) : y E Rm, ATy 5 c), 
max{(b, y) + (d, z) : (y, z) E Rm x RS, ATy + CTz = C, y 2 0). 

Of course, linear programs are convex mathematical program- 
ming problems. Hence they enjoy all the properties of the class of 
convex programs. Besides, linear programs have many other special 
properties. 

Theorem 1.10. (See Dantzig (1963)) Let (P) be a linear program 
in one of the three typical forms. The following properties hold true: 

(i) If the constraint set is nonempty and if v(P)  > -00, then 
Sol(P) is a nonempty polyhedral convex set. 
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(ii) If both the sets extrA and Sol(P) are nonempty, then the in- 
tersection extrA n Sol(P) is  also nonempty. 

(iii) If rankA = n and the set A := {x E Rn : Ax = b, x 2 0 )  is  
nonernpty, then A must  have an  extreme point. 

(iv) The optimal value v(P) of (P) and the optimal value v(Pf) 
of the dual problem (Pf) of (P) are equal, provided that the 
constraint set of at least one of these problems is  nonempty. 

Note that the five problems considered in Remarks 1.2, 1.4 and 
Examples 1.1-1.3 are all nonlinear. 

We now consider one important class of nonlinear programs, 
which contains the class of linear programs as a special subclass. 

1.5 Quadratic Programs 

Definition 1.18. We say that f : Rn t R is a linear-quadratic 
function if there exist a matrix D E Rnxn, a vector c E Rn and a 
real number a such that 

1 
f (x) = -X*DX + z x  + a 

1 (1.32) 
= -(x, Dx) + (c,x) + a  

2 

for all x E Rn. 

If 

then (1.32) means that 

f (x) = I (x x dijxixj) + qx i  + a. 
j=l i=1 i=l 

1 
Since xTDx = - x T ( ~  + D ~ ) X  for every x E Rn, representation 

2 
1 

(1.32) remains valid if we replace D by the symmetric matrix - (D+ 
2 

D ~ ) .  For this reason, we will assume that the square matrix in 
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the representation of a linear-quadratic function is symmetric. The 
space of the symmetric n x n-matrices will be denoted by RgXn. 

Definition 1.19. Problem (P) is called a linear-quadratic mathe- 
matical programming problem (or a quadratic program, for brevity) 
if f is a linear-quadratic function and A is a polyhedral convex set. 

In (1.32), if D is the zero matrix then f is an affine func- 
tion. Thus the class of linear programs is a subclass of the class 
of quadratic programs. In general, quadratic programs are noncon- 
vex mathematical programming problems. 

Example 1.5. The following quadratic program is nonconvex: 

It is obvious that f is a nonconvex function. One can verify that 
Sol(P) = {(1,3)) and v ( P )  = -8. 

It is clear that if we delete the constant a in the representation 
(1.32) of f then we do not change the solution set of the problem 
min{ f (x) : x t A), where A c Rn is a polyhedral convex set. 
Therefore, instead of (1.32) we will usually use the simplified form 

1 
1 

f (x) = -xTDx + cTx of the objective function. 
2 

Modifying the terminology used for linear programs, we call the 
following forms of quadratic programs 

1 
- I ~ D X + ~ X  : x t Rn, Ax 2 b}, 
2 
1 
-xTDx + cTx : x E Rn, Ax 2 b, x 2 0) , 
2 
1 
-xTDx + cTx : x E Rn, Ax 2 b, Cx = d 
2 

the standard form, the canonical form and the general form, re- 
spectively. (The meaning of A, C, b and d is the same as in the 
description of the typical forms of linear programs.) Note that the 
representation of the constraint set of canonical quadratic programs 
is slightly different from that of canonical linear programs. The 
above definition of canonical quadratic programs is adopted because 
quadratic programs of this type have a very tight connection with 
linear complementarity problems (see, for instance, Murty (1976) 
and Cottle et al. (1992)). In Chapter 5 we will clarify this point. 
The relation between the general quadratic programs and afme 
variational inequalities will be studied in the same chapter. 
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Definition 1.20. A matrix D E Rnxn is said to be positive definite 
(resp., negative definite) if vTDv > 0 (resp., vTDv < 0) for every 
v E Rn \ (0). If vTDv 2 0 (resp., vTDv < 0) for every v E Rn then 
D is said to be positive semidefinite (resp., negative semidefinite). 

1 
Proposition 1.2. Let f (x) = -xTDx + cTx + Q where D E 

2 
RgXn, c E Rn and Q E R. If D is a positive semidefinite matrix, 
then f is a convex function. 

Proof. Since x H i r x  + a is a convex function and the sum of 
two convex functions is a convex function, it suffices to show that 

r ,  

f l (x) := XI Dx is a convex function. As D is a positive semidefinite 
matrix, for every u E Rn and v E Rn we have 

This implies that 

vTDv < uT DU - 2vT D(U - v). (1.33) 

Given any x E Rn, y E Rn and t E (0, I), we set z = tx + (1 - t)y. 
Taking account of (1.33) we have 

xTDz < yTDY - 2zTD(y - x), 
zTDx I xTDx - 2zTD(x - 2). 

Since y - z = t(y - x) and x - z = (1 - t)(x - y), from the last two 
inequalities we deduce that 

hence 

Thus f l is a convex function. 

If D is negative semidefinite, then the function f given by (1.32) 
is concave, i.e. 

for every x E Rn, y E Rn and t E (0, l ) .  In the case where matrix 
D is neither assumed to be positive semidefinite nor assumed to 
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1 
be negative semidefinite, we say that f (x) = - x T ~ x  + cTx, where 

2 
c E Rn, is an indefinite linear-quadratic function. Quadratic pro- 
gramming problems with indefinite linear-quadratic objective func- 
tions are called indefinite quadratic programs. 

Remark 1.6. It is clear that if f is given by (1.32), where D E 
RzXn, then V2 f (x) = D for every x E Rn. Therefore, the fact stated 
in Proposition 1.2 is a direct consequence of the following theorem 
(see Rockafellar (1970), Theorem 4.5): "If f : Rn + R is a C2- 
function and if the Hessian matrix V2 f (x) is positive semidefinite 
for every x E Rn, then f is a convex function." 

By using Proposition 1.2 one can verify whether a given quadratic 
program is convex or not. 

Let us consider a simple example of convex quadratic programs. 

Example 1.6. Given k points a l l  a2, . . . , ak in Rn, we want to 
find a point x E Rn at which the sum 

attains its minimal value. Observe that 

is a convex linear-quadratic function. By Theorem 1.5, 5 is a solu- 
tion of our problem if and only if V f (5) = 0. Since 

one can write the condition 0 = V f (3) equivalently as 

1 k 

Thus 3 = - Eni is the 
k a=1 

cia1 point 3 is called the 

unique solution of our problem. That spe- 

barycenter of the system {al, az, . . . , ak). 
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Observe that there is a simple algorithm for constructing the barycen- 
1 1 

ter. Namely, first we define zl = l a l  + l a 2 .  Then we put 
2 2 

By induction it is not difficult to show that 5 := zk-l is the barycen- 
ter of the system {al, a2, . . . , ak}. For performing a sequential 
construction of the barycenter of a system of points in R2, it is con- 
venient to use the following equivalent vector form of the formula 
defining zi: 

1 
z Z = -  + "-la: (for every i 2 2). 

The following geometrical example leads to a (nonconvex) qua- 
dratic program of the general form. 

Example 1.7. Let A = {x E Rn : Ax 2 b, Cx = d}, where 
A E Rmxn, C E RSXn, b E Rm and d E RS. (The equality Cx = d 
can be absent in that formula. Likewise, the inequality Ax 2 b - can 
be absent too.) Let ai (i = 1,. . . , n),  Zi (i = 1 , .  . . , n), ,8 and ,8 be 
a family of 2n + 2 real numbers satisfying the conditions 

and - n 

M = { X E  Rn : x ~ i x i + p = 0 }  
i=l 

are two hyperplanes in Rn. The task is to find x E A 
function 

f (x) = (dist(x, M ) ) ~  - (dist(x, G))2, 

(1.34) 

such that the 

where dist(x, 0) = inf{llx - zll : z E fl} is the distance from x to a 
subset R c Rn, achieves its minimum. We have 
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In order to prove this formula we consider the following convex 
program 

min{cp(z) = 112 - z1I2 : z E M). (1.36) 

By Theorem 1.6, 2 = (zl, . . . ,Zn)  E M is a solution of (1.36) if and 
only if there exists p E R such that 

0 E acp(z) + &l,.  . . , a,). 

Since dcp(2) = {Vcp(~)) = {-2(x - z)), this inclusion is valid if and 
only if 

2(x - 2) = p(a l , .  . . , an ) .  
P This implies 2 = x - -a, where a := ( a l , .  . . an ) .  As 2 E M ,  we 
2 

must have 

Taking account of (1.34), we obtain p = 2((a, x) + P). Therefore 

hence (1.35) holds. Similarly, 

Consequently, 

From this we conclude that f (x) is a linear-quadratic function; so 
the optimization problem under consideration is a quadratic pro- 
gram of the general form. 

It is easy to verify that if we choose 
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- 
a =  ( l , O ) ,  P=O, 6 = ( 0 , 1 ) ,  p = 0 ,  

then the preceding problem, where the equation Cx = d is absent, 
becomes the one discussed in Example 1.5. - In this case, we have 
M = {X = ( ~ 1 ~ x 2 )  : XI = 0, 2 2  E R), M = {x = (x1,x2) : XI E - 
R, x2 = 0), dist(x,M) = Ixl/ and dist(x, d l )  = Ix21. 

1.6 Commentaries 

Mathematical Programming is one important branch of Optimiza- 
tion Theory. Other branches with many interesting problems and 
results are known under the names The Calculus of Variations and 
Optimal Control Theory. Of course, the informal division of Opti- 
mization Theory into such branches is only for convenience. In fact, 
research problems and methods of the three branches are actively 
interacted. The classical work of Ioffe and Tihomirov (1979) is an 
excellent textbook addressing all the three branches of Optimization 
Theory. 

Convex Analysis and Convex Programming theory can be stud- 
ied by using the books of Rockafellar (1970) and of Ioffe and Ti- 
homirov (1979). The book of Mangasarian (1969) gives a nice in- 
troductory course to Mathematical Programming. 

Linear Programming can be learned by using the books of Dant- 
zig (1963)) Murty (1976), and many other nice books. 

Nonsmooth Analysis and Nonsmooth Optimization can be lear- 
ned by the books of Clarke (1983), Rockafellar and Wets (1998), 
and many other excellent books. In addition to these books, one 
can study Mordukhovich (1988, 1993, 1994) to be familiar with a 
powerful approach to Nonsmooth Analysis and Nonsmooth Opti- 
mization which has been developed intensively in recent years. 

Some theoretical results on (Nonconvex) Quadratic Program- 
ming are available in the books of Murty (l976), Bank et al. (l982), 
Cottle et al. (1992), and other books. The next three chapters 
of this book are intended to cover the basic facts on (Nonconvex) 
Quadratic Programming, such as the solution existence, necessary 
and sufficient optimality conditions, and structure of the solution 
sets. Eight other chapters (Chapters 10-17) establish various results 
on stability and sensitivity of parametric quadratic programs. 

The geometric problem described in Example 1.3 is called Fer- 
mat's problem or Steiner's problem. It was proposed by Fermat to 



28 1. Quadratic Programming Problems 

Torricelli. Torricelli's solution was published in 1659 by his pupil 
Viviani (see Weisstein (1999), p. 623). 



Chapter 2 

Existence Theorems for 
Quadratic Programs 

In this chapter we shall discuss the Frank-Wolfe Theorem and the 
Eaves Theorem, which are two fundamental existence theorems for 
quadratic programming problems. 

2.1 The Frank-Wolfe Theorem 

Consider a quadratic program of the standard form 

1 
Minimize j (x)  := -X*DX + cTx 

2 
subject to x E Rn, Ax 2 b, 

where D E RzXn, A E Rmxn, c E Rn and b E Rm. For the con- 
straint set. and the optimal value of (2.1) we shall use the following 
abbreviations: 

A(A, - b) = {x E Rn : Ax 2 b ) ,  
0 = inf{j(x) : x E A(A, b)). 

If A(A, b) = 0 then 8 = +oo by convention. If A(A, b) # 0 then 
there are two situations: (i) 0 E R, (ii) 8 = -m. If (ii) occurs 
then, surely, (2.1) has no solutions. It is natural to ask: Whether 
the problem always has solutions when (i) occurs? 

Note that optimization problems with non-quadratic objective 
functions may have no solutions even in the case the optimal value 

is finite. For example, the problem min 
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solutions, while the optimal value 8 = inf - : x E R, x 2 1 = 0 

is finite. 
i: 1 

The following result was published by Frank and Wolfe in 1956. 

Theorem 2.1. (The Frank-Wolfe Theorem; See Frank and Wolfe 
(1956), p. 108) If $ = inf{ f (x) : x E A(A, b)) is a finite real 
number then problem (2.1) has a solution. 

Proof. We shall follow the analytical proof proposed by Blum and 
Oettli (1972). The assumption E R implies that A(A, b) # 8. 
Select a point x0 E A(A, b). Let p > 0 be given arbitrarily. Define 

A, = A(A, b) n B(xO, p). 

Note that A, is a convex, nonempty, compact set. Consider the 
following problem 

min{f(x) : x E A,). (2.2) 

By the Weierstrass Theorem, there exists some y E A, such that 
f (y) = q, := min{ f (x) : x E A,). Since the solution set of (2.2) is 
nonempty and compact, there exists y, E A, such that 

We claim that there exists ,i? > 0 such that 

Indeed, if the claim were false then we would find an increasing 
sequence pk 4 +m such that for every k there exists y,, E A,, 
such that 

f(yPk)=qpk, l l ~ p ~ - ~ O l l = ~ k .  (2.4) 

For simplicity of notation, we write yqnstead of y,,. Since yk E 
A(A, b), we must have Aiy" bi for i = 1 , .  . . , m, where Ai denotes 
the i-th row of A and bi denotes the i-th component of b. For 
i = 1, since the sequence {Alyk) is bounded below, one can choose 
a subsequence {k') c { I c )  such that lim A~ZJ" exists. (It may 

k l+w 

happen that lim ~ ~ y ' " '  = +oo.) Without restriction of generality 
k l+w 

we can assume that { k ' )  = {k), that is the sequence {Alyk) itself 
is convergent. Similarly, for i = 2 there exists a subsequence {k') c 
{k) such that lim A~~~~ exists. Without loss of generality we can 

k l + w  
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assume that {kt) - {k). Continue the process until i = m to find 
a subsequence {kt) c {k) such that all the limits 

lirn A ~ ~ ~ '  (i = 1, . . . , m) 
k'+w 

exist. For simplicity of notation, we will assume that {kt) - {k). 
Let I = (1 , . . . ,  m}, I. = {i E I : lirn bi) and 

k+oo 

II = I \ Io = {i E I : lirn > bi). 
k+oo 

Of course, there exists e > 0 such that 

lim ~ i y ' "  2 bi + E for every i E I l .  
k+oo 

By (2.4), 1 1  (yL xO)lpk 11 = 1 for every k. Since the unit sphere in 
Rn is a compact set, there is no loss of generality in assuming that 
the sequence {y'} 
converges to some 5 E Rn as k -+ oo. Clearly, 1 1 ~ 1 1  = 1. AS 
PIC + +oo, for every i E lo we have 

k 0 = lim (Ai - bi) 
k+m 

AixO - bi 
+ jil( pk ) = Ai5. 

Similarly, for every i E II we have 

= lirn inf 
k+m 

+ 

k'oo 

Therefore 

Ar5 = 0 for every i E lo, A$ > 0 for every i E 11. (2.5) 

From this we can conclude that 5 is a direction of recession of the 
polyhedral convex set A(A, b). Recall (Rockafellar (1970), p. 61) 
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that a nonzero vector v E Rn is said to be a direction of recession 
of a nonempty convex set R C Rn if 

x + tv E R for every t > 0 and x E fl. 

Recall also that the set composed by 0 E Rn and all the directions 
v E Rn satisfying the last condition, is called the recession cone of 
S2. In our case, from (2.5) we deduce immediately that 

y+ttv E A(A,b) for every t > 0 and y E A(A,b). (2.6) 

Since 

f (Yk)  = f ( Y P d  = qp, 
= min{f(x) : x E AP,} 
= min{f (x) : x E A(A, b) n ~ ( x 0 , p k ) )  

and the increasing sequence {pk} converges to +GO, we see that the 
sequence { f (yk)} is non-increasing and f (yk) -+ 8. Consequently, 
for k sufficiently large, we have 

Using the formula of f we can rewrite these inequalities as follows 

Dividing these expressions by pi and taking the limits as k -t oo, 

we get 0 < ltvTDtv < 0. Hence 
2 

yk + ttv E A(A, b) for every t > 0 and k E N, 

where N stands for the set of the positive integers. On account of 
(2.7), we have 

1 T k  f (yk + t g  = -(y% tqTD(y% ttv) + c (y + tv) 
? 

= 5 ( ~ k ) T ~ ~ %  cTyk + t ( ( ~ ~ ) ~ ~ t v  + cTtv). 
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Note that 
(ykITDtv + cTtv ) 0 for every k E N. (2.8) 

Indeed, if (2.8) were false then we would have f ( y k  + ttv) 4 -oo as 
t t -too, which contradicts the assumption 8 E R. 

yk - xO 
Since ( t v ,  tv) = 1 and - t tv,  there exists k1 E N such that 

Pk 
k (5, t v )  > 0 for all k ) k l .  For any fixed index k ) k l ,  we 

. . 

have ( yk  - iO, tv) > 0. Therefore 

k 0 1 1  y - x - t q 2  = l l y k  - x01I2 - 2t(yk - xO, tv)  + t211tv112 < l l y k  - x01I2 

for t > 0 small enough. By (2.5) ,  
(2.9) 

~ ~ ( y ~ - t t v ) = ~ ~ y ' "  2 bi for a l l i  E Io. 

Since lim 2 bi + E for every i E 11, there exists k2 E N,  
k- tco 

& 
k2 2 k l ,  such that Aiyk 2 bi + - for every k ) k2 and i E I l .  Fix 

2 
& 

an index k 2 k2 and choose bk > 0 as small as tAitv 5 , for every 
L 

i E I l  and t  E ( 0 ,  bk) .  (Of course, this choice is made only in the 
case I l  # 0.) Then we have 

for all i E I l  and t E (0 ,  bk) .  From what has already been proved, 
it may be concluded that 

yk- t tv  E A ( A , b )  for all t E (O,bk). 

Combining this with (2.9) we see that yk - ttv E A(A, b) and 

for all t E ( 0 ,  bk)  small enough. By (2.7) and (2.8) ,  we have 

So yk - ttv is a solution of the problem 
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From the inequality 1 1  ( y k  - tfi) - xO 1 1  < 1 1  yk  - xO 1 1  in (2.10) it follows 
that yk cannot be a solution of (2.11) with the minimal distance to 
xO,  a contradiction. 

We have shown that there exists 6 > 0 such that (2.3) holds. 
We proceed to show that 

there exists p > 6 such that q, = 8. (2.12) 

As q, = min{f ( x )  : x E A,), it is easily seen that the conclusion 
of the theorem follows from (2.12). In order to obtain (2.12), we 
assume on the contrary that 

% > # for all p 2 6 .  (2.13) 

Note that q, 2 q,~  whenever p' 2 p. Note also that Q --) e as p + 

+oo. Hence from (2.13) it follows that there exist pi E (6 ,  +oo) (i = 
1 , 2 )  such that pl < p2 and q,, > q,,. Since p2 > 6, by (2.3) we have 

Since q,, > q,,, we must have pl < 1 1  y,, - xO1l. (Indeed, if pl 2 
Ilyp2 - xO1l then YP, E A,, and f(y,,) = q,, < q,, = f(y,,). This 
contradicts the choice of y,, .) Setting p3 = 1 1  yp2 - xO1l we have 
PI < p3 < p2. Since p3 > 6 and pz > 6, from (2.3) it follows that 

Since p2 > p3, we have 

If f (y,,) = f (y,,) then from (2.14) we see that y,, is a feasible 
vector of the problem 

min{ f ( x )  : x E A,,} (2.15) 

at which the objective function attains its optimal value q,, = 

f (yp2) .  Hence yP3 is a solution of (2.15). By (2.14), 

This implies that y,, cannot be a solution of (2.15) with the minimal 
distance to xO, a contradiction. So we must have f(y,,) > f ( y P 2 ) .  
Since lly,,, - xO1l = p3, we deduce that y,, is a feasible vector of the 
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problem mini f (x) : x E A,,). Then the inequality f (y,,) > f (y,,) 
contradicts the fact that y,, is a solution of this optimization prob- 
lem. We have established property (2.12). The proof is complete. 
0 

In Theorem 2.1, it is assumed that f is a linear-quadratic func- 
tion and A is a polyhedral convex set. From Definition 1.15 it 
follows immediately that for any polyhedral convex set A C Rn 
there exists an integer m E N,  a matrix A E Rmxn and a vector 
b E Rm such that A = {x E Rn : Ax 2 b ) .  This means that 
the Frank-Wolfe Theorem can be stated as follows: "If a linear- 
quadratic function is bounded from below on a nonempty polyhedral 
convex set, then the problem of minimizing this function on the set 
must have a solution." 

If f is a linear-quadratic function but A is not assumed to be a 
polyhedral convex set, then the conclusion of Theorem 2.1 may not 
hold. 
Example 2.1. Let f (x) = xl for every x = (xl , x2) E R2. Let 
A = {x = (x1,x2) E R2 : 21x2 2 1, x1 2 0, x2 2 0). We have 

:= inf{f (x) : x E A) = 0, but the problem min{f (x) : x E A) 
has no solutions. 

If A is a polyhedral convex set but f is not assumed to be a 
linear-quadratic function, then the conclusion of Theorem 2.1 may 
not hold. In the following example, f is a polynomial function of 
degree 4 of the variables X I  and x2. 
Example 2.2. (See Frank and Wolfe (l956), p. 109) Let f (x) = 

x:+ (1 for every x = (xl, x2) E R2. Let A = {x = (xl, x2) E 
R2 : x1 2 0, x2 2 0). Observe that f (x )  2 0 for every x E R2. 

Choosing xk := 1 + k , tk E N,  we have ( 5 ,  ) 

This implies that 

It is a simple matter to show that both the problems min{f (x) : 
x E A) and min{f (x) : x E R2) have no solutions. 

In Frank and Wolfe (1956), the authors informed that Irving 
Kaplansky has pointed out that the problem of minimizing a poly- 
nomial function of degree greater than 2 on a nonempty polyhedral 
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convex set may not have solutions even in the case the function is 
bounded from below on the set. 

Given a linear-quadratic function and a polyhedral convex set, 
verifying whether the function is bounded from below on the set is 
a rather difficult task. In the next section we will discuss another 
fundamental existence theorem for quadratic programming which 
gives us a tool for dealing with the task. 

2.2 The Eaves Theorem 

The following result was published by Eaves in 1971. 

Theorem 2.2. (The Eaves Theorem; See Eaves (1971), Theorem 
3 and Corollary 4, p. 702) Problem (2.1) has solutions if and only 
if the following three conditions are satisfied: 

(i) A(A, b) is nonempty; 

(ii) If u E Rn and Av 2 0 then U?'DU 2 0; 

(iii) If u E Rn and x E Rn are such that Av 2 0, vTDu = 0 and 
Ax > b, then (Dx + C ) ~ V  2 0. 

Proof. Necessity: Suppose that (2.1) has a solution 3. Since 3 E 
A(A, b), condition (i) is satisfied. Given any u E Rn with Av 2 
0, since A(z + tu) = AZ + tAu > b for every t 2 0, we have 
3 + tu E A(A, b) for every t 2 0. Hence f (3 + tu) 2 f (3) for 

1 2 T  every t 2 0. It follows that -t u Du + ~ ( D z  + C ) ~ U  2 0 for every 
2 

t 2 0, hence uTDu > 0. This shows that condition (ii) is satisfied. 
We now suppose that there are given any v E Rn and x E Rn 
with the properties that Av 2 0, uTDu = 0 and Ax 2 b. Since 
x + tu E A(A, b) for every t 2 0 and 3 is a solution of (2.1), we 
have f (x + tv) 2 f (3) for every t 2 0. From this and the condition 

1 

uTDu = 0 we deduce that t(Dx + C ) ~ V  + f x T ~ s  + cTx > f (3) for 
.& 

every t 2 0. This implies that ( D X + C ) ~ V  2 0. We have thus shown 
that condition (iii) is satisfied. 

Suficiency: Assume that conditions (i), (ii) and (iii) are satis- 
fied. Define 0 = inf{f(x) : x E Rn, Ax > b). As A(A,b) # 0, we 
have 8 # +oo. If 8 E R then the assertion of the theorem follows 
from the Frank-Wolfe Theorem. Hence we only need to show that 
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the situation e = -oo cannot occur. To obtain a contradiction, 
suppose that e = -oo. We can now proceed analogously to the 
proof of Theorem 2.1. 

Fix a point xO E A(A, b). For every p > 0, define A, = A(A, b)n 
B(xO, p) and consider the minimization problem min{f (x) : x E 
A,}. Denote by q, the optimal value of this problem. Let y, E A, 
be such that f (y,) = q, and 

We claim that there exists @ > 0 such that 11 y,-xOll < p for a11 p 2 
6. Suppose the claim were false. Then we would find an increasing 
sequence pk + +oo such that for every k there exists y,, E A,, 
such that 

f ( ~ P k ) = q ~ k l  ~ ~ Y P ~ - x O I I = P ~ '  
For simplicity of notation, we write yk instead of y,,. Since yk E 
A(A, b), we must have Aiy" bi for i = 1,. . . , m. Analysis sim- 
ilar to that in the proof of Theorem 2.1 shows that there exists a 
subsequence {kt} c {k} such that all the limits 

lirn ~ ~ y "  (i = I , . .  . ,m) 
kl+oo 

exist. Without restriction of generality we can assume that {kt) r 
{k). Let I = (1, . . . , m), I. = {i E I : lirn Aiy" bi) and 

k+oo 

I I  = I \ I. = {i E I : lirn bi). 
k-00 

Let E > 0 be such that 

lim ~i y" bi + E for every i E II . 
k+oo 

Since II(yk - xO)lPkll = 1 for every k, there is no loss of generality 
in assuming that the sequence 

converges to some V E Rn, llfill = 1, as k -t m. Since pk -+ +a, 
for every i E lo we have 

0 = lirn ( A ~  yk - bi) 
k+oo 

Ai yk - bi 
= lirn 
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Similarly, for every i E I I  we have 

AiYk - bi 
0 5 lim inf 

k+m Pk 
( A ,  ;A, AixO - bi 

= lim inf 
k-+m 

+ 
Pk 

( "iX ) + lim AixO - bi = lim Ai- = A@. 
k+m k ' ~  Pk 

Therefore 

A$ = 0 for every i E lo, A$ 2 0 for every i E I l .  

From this we deduce that 

Since 

f ( Y k )  = f ( y p , )  = q p ,  
= min{f ( x )  : x  E A,,) 
= min{f ( x )  : x  E A(A,  b)  n B(xo,pk)) 

and the increasing sequence { p k )  converges to +oo, we see that the 
sequence { f (y" }  is non-increasing and f (y" + $ = -m. Hence 
f ( y k )  < 0 for all k sufficiently large. Using the formula of f we can 
rewrite the last inequality as follows 

Dividing this inequality by pi and taking the limits as k -t oo, we 
get vTDv 5 0. Since A@ > 0, from condition (ii) it follows that 
vTDi 2 0. Hence 

V ~ D V  = 0. (2.17) 

y%tV E A(A,b) for every t 2 0 and k E N. 

By virtue of (2.17), we have 
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Since yk E A(A,  b),  Afi > 0 and i iTDv = 0 ,  by condition (iii) we 
have 

+ cTfi = (Dy% clTv 2 0 for every k E N .  (2.18) 

yk - xO 
Since ( G ,  v )  = 1 and - -+ v ,  there exists k1 E N such that 

Pk 
k (5, G )  > 0 for all k 2 k l .  For any fixed index k 2 61, we 

have ( y k  - xO,  G )  > 0.  Therefore 

I l y L  xO - tfll12 = l l y k  - - 2t(yk - xO,  2l) + t2118112 < l l y k  - x01I2 
(2.19) 

for t > 0 small enough. We have 

( y k  - tfi) = bbi for all i E lo. 

Since lim bi + E for every i E 11, there exists k2 E N ,  
k+w 

& 
k2 2 k l ,  such that Aiyk > bi + - for every k 2 k2 and i E I1.  Fix 

2 
& 

an index k 2 k2 and choose br, > 0 as small as tAiv 5 - for every 
2 

i E I I  and t E ( 0 ,  bc). Then we have 

for all i E I l  and t E (0 ,  6'). From what has already been proved, 
we deduce that 

yLttv E A ( A , b )  for all t E (O,bk).  

Combining this with (2.19) we see that yk - ttv E A(A, b) and 

k 0 
Il(y - tv) - x 1 1  = I I Y k  - x0 - tvll < l l y k  - xOll = pk (2.20) 

for all t E ( 0 ,  bk)  small enough. By (2.17) and (2.18), we have 

f ( y k  - t@) = f ( y k )  - t ( ( y Y T ~ @  + cT6) 5 f ( y k ) .  

So yk - t.is is a solution of the problem 

From the inequality Il(y" t$ - xOII < I l y k  - xOII in (2.20) it follows 
that yk cannot be a solution of (2.21) with the minimal distance to 
xO,  a contradiction. 
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We have shown that there exists ,6 > 0 such that 

lly, - xOll < p for all p 2 ,6. (2.22) 
- 

Note that q, 2 q,, whenever p' 2 p. Note also that q, --t 0 = -00 

as p --t +oo. Hence there must exist pi E (J, +oo) (i = 1 , 2 )  such 
that pl < p2 and q,, > q,,. Since pa > ,6, by (2.22) we have 

Since qpl > qp2, we must have pl < 1 1  yp2 - xOII. (Indeed, if pl 2 
l l ~ P 2  - x0 1 1  then Y,, E A,, and f (Y,,) = q,, < q,, = f (Y,,). This 
contradicts the choice of y,,.) Setting p3 = Ily,, - zOll we have 
pl < p3 < p2. Since p3 > ,6 and pa > ,6, from (2.22) it follows that 

Since pz > p3, we have 

If f (~, , )  = f (y,,) then from (2.23) we see that y,, is a feasible 
vector of the problem 

min{f(x) : x E A,,) (2.24) 

at which the objective function attains its optimal value q,, = 

f (y,,). Hence y,, is a solution of (2.24). By (2.23), 

This implies that y,, cannot be a solution of (2.24) with the minimal 
distance to xO, a contradiction. So we must have f(y,,) > f (y,,). 
Since llyp2 - xO1l = p ~ ,  we deduce that y,, is a feasible vector of the 
problem min{ f ( x )  : x E A,,). Then the inequality f (y,,) > f (y,,) 
shows that yP3 cannot be a solution of this optimization problem, a 
contradiction. The proof is complete. 

Here are several important consequences of the Eaves Theorem. 

Corollary 2.1. Assume that D is a positive semidefinite matrix. 
Then problem (2.1) has solutions if and only i f  A(A, b) is nonempty 
and the following condition is satisfied: 
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Proof. Note that condition (ii) in Theorem 2.2 is satisfied because, 
by our assumption, vTDu 2 0 for every v E Rn. Therefore the 
conclusion follows from Theorem 2.2. 

Corollary 2.2. Assume that D is a negative semidefinite matrix. 
Then problem (2.1) has solutions if and only if A(A, b) is nonernpty 
and the following conditions are satisfied: 

(i) (v E Rn, Av 2 0) + v T ~ v  = 0; 

(ii) (v E Rn, x E Rn, Av 2 0, Ax 2 b) + ( D X + C ) ~ V  2 0. 

Proof. Since vTDv 5 0 for every v E Rn by our assumption, we see 
that condition (ii) in Theorem 2.2 is can be rewritten as condition 
(i) in this corollary. Besides, since Av 2 0 implies vTDu = 0, 
condition (iii) in Theorem 2.2 can be rewritten as condition (ii) in 
this corollary. Therefore the conclusion follows from Theorem 2.2. 
0 

Corollary 2.3. If D is a positive definite matrix, then problem (2.1) 
has solutions if and only if A(A, b) is nonempty. 

Proof. Since D is a positive definite matrix, the equality uTDu = 0 
implies that v = 0. Then the assertion follows from Corollary 2.1 
because condition (2.25) is satisfied. 0 

Corollary 2.4. If D is a negative definite matrix, then problem 
(2.1) has solutions if and only if A(A, b) is nonernpty and compact. 

Proof. Since D is a negative definite matrix, conditions (i) and (ii) 
in Corollary 2.2 are fulfilled if and only if the set L := {v E Rn : 
Av 2 0) contains just one element v = 0. Since L is the recession 
cone of the polyhedral convex set A(A, b) = {x E Rn : Ax 2 b )  (see 
Rockafellar (1970), p. 62), the condition L = (0) is equivalent to 
the compactness of A(A, b) (see Rockafellar ( l V O ) ,  Theorem 8.4). 
Hence the assertion follows from Corollary 2.2. 

Theorem 2.2 allows one to verify the existence of solutions of a 
quadratic program of the form (2.1) through analyzing its data set 
{Dl A, c, b). If any one from the three conditions (i), (ii) and (iii) 
in the theorem is violated, then the problem cannot have solutions. 

Formally, the Eaves Theorem formulated above allows one to 
deal only with quadratic programs of the standard form. It is a 
simple matter to derive existence results for quadratic programs of 
the canonical and the general forms from Theorem 2.2. 
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Corollary 2.5. Let D E R:'", A E Rmxn, c E Rn and b E Rm. 
The quadratic program 

1 
min { j x T ~ x  + cTx : x E Rn, Ax 2 b, x 2 0 }  (2.26) 

has solutions if and only if the following three conditions are satis- 
fied: 

(i) The constraint set { x  E Rn : Ax 2 b, x 2 0 )  is nonempty; 

(ii) If v E Rn, Av 2 0 and v 2 0, then V*DV 2 0; 

(iii) If v E Rn and x E Rn are such that Av 2 0, v 2 0, vTDv = 0, 
Ax  2 b and x 2 0,  then ( D x  + C ) ~ V  2 0.  

Proof. Define E R ( ~ + ~ ) ~ ~  and b E Rm+n by setting 

where E denotes the unit matrix in RnXn and 0 stands for the zero 
vector in Rn. It is clear that (2.26) can be rewritten in the following 
form 

min  ID^ + cTx : x E R". Xz 2 b} . 

Applying Theorem 2.2 to this quadratic program we obtain the 
desired result. 0 

Corollary 2.6. Let D E RzXn, A E Rmxn, C E RSXn, c E Rn, b E 
Rm and d E RS. The quadratic program 

min { a x T ~ x  + cTx : x E Rnl AX 2 6 ,  cx = d } (2.27) 

has solutions if and only if the following three conditions are satis- 
fied: 

(i) The constraint set { x  E Rn : Ax 2 b, C x  = d )  is nonempty; 

(ii) If v E Rn, Av 2 0 and C v  = 0, then vTDv 2 0; 

(iii) If v E Rn and x E Rn are such that Av 2 0, C v  = 0,  
vTDv = 0, Ax > b and C x  = d, then ( D x  + C ) ~ V  2 0. 
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Proof. Define E R ( ~ + ~ ~ ) ~ ~  and b E Rm+2S by setting 

It is clear that (2.27) can be rewritten in following form 

1 
min { i ~ r ~ ~  + C'X : x E RD, X r  2 %) . 

Applying Theorem 2.2 to this quadratic program we obtain the 
desired result. 

2.3 Commentaries 

The Frank-Wolfe Theorem has various applications. For example, 
in (Cottle et al. (1992), Chapter 3) it has been used as the main 
tool for obtaining many existence results for linear complementar- 
ity problems. Usually, existence theorems for optimization problems 
and for variational problems give only suf ic ient  conditions to as- 
sure that the problem under consideration has solutions. Here we 
see that the Frank-Wolfe Theorem and the Eaves Theorem provide 
some criteria (both the necessary and sufficient conditions) for the 
solution existence. This is possible because the quadratic programs 
have a relatively simple structure. 

We realized the importance of the Eaves Theorem when we stud- 
ied a paper by Klatte (1985) and applied the theorem to investi- 
gate the lower semicontinuity of the solution map in parametric 
quadratic programs (see Chapter 15 of this book), the directional 
differentiability and the piecewise linear-quadratic property of the 
optimal value function in quadratic programs under linear pertur- 
bations (see Chapter 16 of this book). We believe that the theorem 
is really very useful and important. 

The proof of the Frank-Wolfe Theorem given in Section 2.1 fol- 
lows exactly the scheme proposed in Blum and Oettli (1972). For 
the convenience of the reader, all the arguments of Blum and Oettli 
are described in detail. Two other proofs of the theorem can be 
found in Frank and Wolfe (1956) and Eaves (1971). 

The proof of the Eaves Theorem given in Section 2.2 is rather 
different from the original proof given in Eaves (1971). The repeti- 
tion of one part of the arguments used for proving the Frank-Wolfe 



44 2. Existence Theorems for Quadratic Programs 

Theorem is intended to show the close interrelations between the 
two existence theorems. 



Chapter 3 

Necessary and Sufficient 
Optimality Conditions for 
Quadratic Programs 

This chapter is devoted to a discussion on first-order optimality 
conditions and second-order optimality conditions for quadratic pro- 
gramming problems. 

3.1 First-Order Optimality Conditions 

In this section we will establish first-order necessary and sufficient 
optimality conditions for quadratic programs. Second-order neces- 
sary and sufficient optimality conditions for these problems will be 
obtained in the next section. 

The first assertion of the following proposition states the Fermat 
rule, which is a basic first-order necessary optimality condition for 
mathematical programming problems, for quadratic programs. The 
second assertion states the so-called first-order suficient optimality 
condition for quadratic programs and its consequence. 

Theorem 3.1. Let Z be a feasible vector of the quadratic program 

where D E R2Xn, c E Rn, and A c Rn is a polyhedral convex set. 

(i) If Z is a local solution of this problem, then 

(Dz + c, x - 2) > 0 for every x E A. (3.2) 
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(ii) If 
( D z +  c , x  - 5)  > 0 for every x E A \  { z ) ,  (3.3) 

then 5 is a local solution of (3.1) and, moreover, there exist 
E > 0 and Q > 0 such that 

f ( x )  - f (5 )  2 ellx-?ll for every x E A n  B ( ~ , E ) .  (3.4) 

Proof. (i) Let 5 E A be a local solution of (3.1). Choose p > 0 so 
that 

f ( Y )  L f (3, 'dy E A n B F ,  1-1). 

Given any x E A \ ( 3 ) )  we observe that there exists 6 > 0 such that 
5 + t ( x  - 5 )  belongs to A n B ( z ,  p)  whenever t E (0 ,d ) .  Therefore 

0 5 lim 
f (3 + t ( x  - 5 ) )  - f (3) 

= f ' ( 5 ; x - f )  
t l0 t 

= (0 f ( 5 ) )  x - 3) 
= ( D z + c , x  - 5).  

Property (3.2) has been established. 
(ii) It suffices to show that if (3.3) holds then there exist E > 0 

and Q > 0 such that (3.4) is satisfied. To obtain a contradiction, 
suppose that (3.3) holds but for every E > 0 and Q > 0 there 
exists x E A n  B ( ~ , E )  such that f ( x )  - f ( j . )  < Qllx - 511. Then 
there exists a sequence { x k )  in Rn such that, for every k E N, we 

1 1 
have xk E A n B ( 5 ,  -) and f ( x k )  - f (j.) < llxk - f 1 1 .  There is 

k 
no loss of generality in assuming that the sequence of unit vectors 
{ ( x k  - 5)/ l lxk - 311) converges to some unit vector @ E Rn. Since 

Dividing the last inequality by llxk - j.11 and taking the limits as 
k + oo, we obtain 

( D 5  + ~ ) ~ i j  5 0. (3.5) 

Since A is a polyhedral convex set, there exist m E N, a l ,  . . . , a, in 
Rn and P l , .  . . , P, in R such that A has the representation (1.31). 
Let I. = {i : (ai,  5 )  = Pi), Il = { i  : (ai,  3) > Pi}. For each 
i  E lo, we have (a i ,  xk - 5)  = (a i ,  x k )  - Pi 2 0. Therefore (a i ,  @) = 

lim (a i ,  ( x k  - z ) /  1 1  xk - 5 1 1 )  2 0. Obviously, there exists dl > 0 such 
k+oo 
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that (ai, + tv) > pi for every i E Il and t E (0, &).  Consequently, 
2 + tv E A for every t E (0, 61). Substituting x = 2 + tv, where 
t is a value from (0, J1), into (3.3) gives (Dz + C ) ~ G  > 0, which 
contradicts (3.5). The proof is complete. 

For obtaining a first-order necessary optimality condition for 
quadratic programs in the form of a Lagrange multiplier rule, we 
shall need the following basic result concerning linear inequalities. 

Theorem 3.2. (Farkas' Lemma; See Rockafellar (1970), p. 200) 
Let ao, a l ,  . . . , ah be vectors from Rn. The inequality (ao, x) 5 0 is 
a consequence of the system 

if and only if there exist nonnegative real numbers XI,. . . , X k  such 
that 

k &ai = ao. 
i= 1 

Theorem 3.3. (See, for instance, Cottle et al. (1992), p. 118) If 
Z E Rn is a local solution of problem (2.1) then there exists X = 

(XI,. . . ,Am) E Rm such that 

Proof. Denote by Ai the i-th row of A, and set ai = AT. Denote 
by bi the i-th component of vector b. Set A = A(A, b) = {x E Rn : 
Ax 2 b). Let Z be a local solution of (2.1). By Theorem 3.l(i), 
property (3.2) holds. Set I = (1,. . . , m), I. = {i E I : (ai, 3) = bi) 
and Il = {i E I : (ai, 2) > bi). For any v E Rn satisfying 

(ai,v) 2 0 for everyi E lo, 

analysis similar to that in the proof of Theorem 3.l(ii) shows that 
there exists 61 > 0 such that (ai, Z + tv) 2 bi for every i E I and 
t E (0, &). Substituting x = Z + tv, where t is a value from (0, S1), 
to (3.2) yields (Dz + c, v) 2 0. We have thus shown that 
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for any v E Rn satisfying 

(-ai, v) < 0 for every i E I. 

By Theorem 3.2, there exist nonnegative real numbers Xi (i E Io) 
such that 

Put Xi = 0 for all i E Il and X = (A1, . . . , A,). Since ai = AT for 
every i E I, from (3.7) we obtain the first equality in (3.6). Since 
2 E A(A, b) and Xi(Ai2 - bi) = 0 for each i E I, the other conditions 
in (3.6) are satisfied too. The proof is complete. 

From Theorem 3.3 we can derive the following Lagrange multi- 
plier rules for quadratic programs of the canonical and the general 
forms. 

Corollary 3.1. (See, for instance, Murty (1972)) If 2 is a local 
solution of problem (2.26), then there exist X = (A1,. . . , A,) E Rm 
such that 

Proof. Define matrix A E R ( ~ + ~ ) ~ ~  and vector b E Rm+n as in the 
proof of Corollary 2.5 and note that problem (2.26) can be rewritten 
in the form 

Applying Theorem 3.3 to this quadratic program we deduce that 
there exists X = (h, . . . , Am+,) E Rm+n such that 

Taking X = (A1,. . . ,A,), we can obtain the properties stated in 
(3.8) from the last ones. 

Corollary 3.2. If Z is a local solution of problem (2.27), then there 
exist X = (A1,. . . , Am) E Rm and p = (p l , .  . . , ps) E RS such that 
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Proof. Define A E a nd 2; E Rmf2' as in the proof of 
Corollary 2.6 and note that problem (2.27) can be rewritten in the 
form 

1 
min { Z x T ~ x  + cTx : x E Rn, Ax 2 6 1 ,  

Applying Theorem 3.3 to this quadratic program we see that there 
exists = (A1 , .  . . , Am+2n) E Rm+2n such that 

Taking A = (A1,. . . , A m )  and p = (p l , .  . . ,ps),  where p j  = Am+j - 
for j = 1, .  . . , s,  we can obtain the properties stated in (3.9) 

from the last ones. 

Definition 3.1. If (5 ,  A) E Rn x Rm is such a pair that (3.6) 
(resp., (3.8)) holds, then we say that (3,  A) is a Karush-Kuhn- 
Tucker pair (KKT pair for short) of the standard quadratic pro- 
gram (2.1) (resp., of the canonical quadratic program (2.26)). The 
point % is called a Karush-Kuhn- Tucker point (KKT point for short), 
and the real numbers XI,. . . , A m  are called the Lagrange multipli- 
ers corresponding to 5. Similarly, if (5 ,  A ,  p) E Rn x Rm x RS is 
such a triple that (3.9) is satisfied then % is called a Karush-Kuhn- 
Tucker point of the general quadratic program (2.27), and the real 
numbers XI,. . . , A,, p1,. . . , p, are called the Lagrange multipliers 
corresponding to 3. Sometimes the vectors A = (A1,. . . , A,) and 
p = (p l , .  . . , p,) are also called the Lagrange multipliers correspond- 
ing to %. 

In the sequel, by abuse of notation, we will abbreviate both the 
KKT point sets of (2.1) and (2.26) to S(D,  A, c, b). Likewise, both 
the solution sets (resp., both the local-solution sets) of (2.1) and 
(2.26) are abbreviated to Sol(D, A, c, b) (resp., to loc(D, A, c, b)). 

From Theorem 3.3 and Corollary 3.1 it follows that 

Sol(D, A, c, b) c loc(D, A, c, b) c S(D, A, c, b). (3.10) 

Later on, we will encounter with examples where the three sets 
figured in (3.10) are different each from others. 
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3.2 Second-Order Optimality 
Conditions 

This section provides a detailed exposition of second-order neces- 
sary and sufficient optimality conditions for quadratic programming 
problems. The main result in this direction was published by Ma- 
jthay in 1971. It is stated in Theorem 3.4 below. The proof given 
by Majthay contains one inaccurate argument (see Contesse (1980), 
p. 331). The first rigorous proof of this result belongs to Contesse 
(1980). 

Theorem 3.4. (See Majthay (1971) and Contesse (1980), Thkorkme 
I )  The necessary and sujJicient condition for a point 3 E Rn to be a 
local solution of problem (2.27) is that there exists a pair of vectors 

( X ,  ,G) = ( X I , .  . . , X,, , G I , .  . . , ,G,) E Rm x RS 

such that 

(i) the system 

D Z - A ~ X - C ~ ~ + C = O ,  
A % -  b > 0 ,  C z  = d ,  X 2 0 ,  (3.11) 
X T ( ~ z  - b) = 0. 

is satisfied, and 

(ii) z f v  E Rn \ ( 0 )  is such that AI,v = 0 ,  AI2v > 0 ,  C v  = 0 ,  where 

- 
I I = { i  : Ai3=bbi ,  X i>O) ,  1 2 = { i  : A i z = b i ,  Xi=O),  

(3.12) 
then vTDv  > 0.  

Consider problem (2.27) and set 

Denote the objective function of (2.27) by f ( x ) .  Let the symbol 
(V f ( x ) ) ' -  stand for the linear subspace of Rn orthogonal to B f ( x ) ,  
that is 

(of(.))' = {V E Rn : ( V f ( x ) , v )  = 0 ) .  

For proving Theorem 3.4 we shall need the following fact. 
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Lemma 3.1. Let 3 E Rn, X E Rm and p E RS be such that the 
system (3.11) is satisfied. Let II and I2 be as in (3.12). Then 

{V E Rn : AIlv = 0, A12v 2 0, CV = 0) 
= {v E Rn : AI,v 2 0, CV = 0) n (of ( z ) ) ~  
= TAW n (of (W, 

where I. := Il U I2 = {i : Ai3 = b i ) ,  and TA(Z) denotes the tangent 
cone to A at 3. 
Proof. Using Theorem 1.8 (b), it is a simple matter to show that 

So it suffices to prove the first equality in the assertion of the lemma. 
Suppose that v E Rn, AI,v = 0, A12v 2 0, Cv = 0. Define 
I = {1,2,. . . ,m). By (3.11) we have 

Hence v E (V f (E))'. It follows that 

{V E Rn : AIlv = 0, AI2v 2 0, CV = 0) 
c {V E Rn : AI0v 2 0, CV = 0) n (Vf ( z ) ) ~ .  

To obtain the reverse inclusion, suppose that v E Rn, AIov 2 
0, Cv = 0, v E (Vf(5)) ' - .  We need only to show that AIlv = 0. 
From (3.11) we deduce that 

Hence AIlv = 0, and the proof is complete. 0 

Note that Theorem 3.4 can be reformulated in the following - 

equivalent form which does not require the use of Lagrange multi- 
pliers. 
Theorem 3.5. (See Cottle et al. (1992), p. 116) The necessary 
and suficient condition for a point 3 E Rn to be a local solution of 
problem (2.27) is that the next two properties are valid: 
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(i) (Vf(Z),v) = (Dz + C ) ~ V  2 0 for every v E Tn(Z) = {v E Rn : 
AIov > 0, Cv = 0), where I. = {i : Ai? = bi); 

(ii) vTDv > 0 for every v E Ta(Z) n (V f (?))l, where (V f (Z))' = 

{V E Rn : ( V f ( ~ ) , v )  = 0). 

The fact that the first property is equivalent to the existence of 
a pair (X ,  p) E Rm x RS satisfying system (3.11) can be established 
by using the Farkas Lemma (see Theorem 3.2) and some arguments 
similar to those in the proof of Lemma 3.1. The equivalence between 
property (ii) in Theorem 3.5 and property (ii) in Theorem 3.4, which 
is formulated via a Lagrange multipliers set (A, p) E Rm x RS, fol- 
lows from Lemma 3.1. Hence Theorem 3.5 is an equivalent form of 
Theorem 3.4. 

Proof of Theorem 3.4. 
Necessity: Suppose that 3 is a local solution of (2.27). Then 

there exists E > 0 such that 

According to Corollary 3.2, there exists ( x , ~ )  E Rm x Rn such 
that condition (i) is satisfied. Let I I  and I2 be defined as in (3.12). 
Suppose that property (ii) were false. Then we could find E 
Rn \ (0) such that 

By Lemma 3.1, (DZ + c)?'ij = (V f (?), ZI) = 0. Consequently, for 
each t E ( 0 , l )  we have 

As 3 + tij E A n B(z, E) for all t E (0 , l )  sufficiently small, the last 
fact contradicts (3.14). Thus (ii) must hold true. 

Suficiency: Suppose that Z E Rn is such that there exists 
(X, p) E Rm x Rn such that conditions (i) and (ii) are satisfied. We 
shall prove that 3 is a local solution of (2.27). The main idea of the 
proof is to decompose the tangent cone Ta(?) into the sum of a sub- 
space and a pointed polyhedral convex cone. Set I = {1,2, . . . , m), 
I. = {i E I : AiZ = bi), and observe that I. = I1 U 1 2 .  Define 

M = {V E Rn : AIov=O, Cv=O) ,  
M'- = {v E Rn : (v,u) = 0 Vu E M). 
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Let 

K = {v E M'- : v = z - u  for some z E TA(3) and u E M )  
= P ~ M I  (TA(z)), 

where P r M ~ ( + )  denotes the orthogonal projection of Rn onto M1. 
Since K = PrML (Ta(3)) and M c TA(Z), it follows that 

We have 
K = MI n TA(iE). (3.16) 

Indeed, if v E K then v E M'- and v = z - u for some z E Tn(3) 
and u E M. Hence 

Therefore 
AI0v = AI0z - AI,u = AI0x 2 0, 
C v = C z - c u = o .  

So v E M1 n TA (3). It follows that K c M I  f l  Tn(if). For proving 
the reverse inclusion, it suffices to note that each v E M I  n TA(3) 
admits the representation v = v - 0 where v E T&), 0 E M. 

We next show that K is a pointed polyhedral convex cone. Re- 
call that a cone K c Rn is said to be pointed if K n (-K) = (0). 
From (3.16) it follows that K is a polyhedral convex cone. So we 
need only to show that K is pointed. If it were true that K is not 
pointed, there would be v E K \ (0) such that -v E K. On one 
hand, from (3.13) and (3.16) it follows that 

This implies that AI0v = 0 and Cv = 0. So v E M. On the other 
hand, since v E K ,  by (3.16) we have v E M1. Thus v E M n ML = 

(0) , a contradiction. 
Define KO = {v E K : (V f (3),v) = 0). Since K is a pointed 

polyhedral convex cone, we see that KO is also a pointed polyhedral 
convex cone. 

From (i) it follows that 

(Vf(iE),v) 2 0 'dv E Ta(5). (3.17) 



54 3. Necessary and Sufficient Optimali ty Conditions 

Indeed, let v E TA(z). By (i) and (3.13), 

Since M C T@) and -v E M whenever v E M, it follows that 

From (3.17) and the definition of KO we have 

Since K is a polyhedral convex cone, according to Theorem 19.1 in 
Rockafellar (1970), K is a finitely generated cone. The latter means 
that there exists a finite system of nonzero vectors {zl , .  . . , z"), 
called the generators of K ,  such that 

4 

K =  { v = x t j z 3  : t j  2 0  for all j =  1, . . . , q ) .  (3.20) 
j=1 

If KO # (0) then some of the vectors xi ( j  = 1, .  . . , q) must belong 
to KO. To prove this, suppose, contrary to our claim, that KO # (0) 
and all the generators zj  ( j  = 1,. . . , q) belong to K \ KO. Let 
ir = C:=, tjzj, where t j  > 0 for all j, be a nonzero vector from KO. 
Since at least one of the values t j  must be nonzero, from (3.19) we 
deduce that 

This contradicts our assumption that ir E KO. If KO # {0), there 
is no loss of generality in assuming that the first qo generators 
zj  ( j  = 1, .  . . , qo) belong to KO, and the other generators zj ( j  = go+ 
1 , .  . . ,q)  belong to K \ KO. Thus ( V f ( ~ ) , z j )  = 0 for j = 1, .  . . ,qo, 
(V f (3)) zj) > 0 for j = qo + 1, . . . , q, and qo E (1, . . . , q). 

We are now in a position to prove the following claim: 
CLAIM. Z is a local solution of (2.27). 

If 3 were not a local solution of (2.27), we would find a sequence 
{xk) c A such that xk + Z, and 
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For each k E N ,  on account of (3.15), we have 

Combining this with (3.20) we deduce that there exist t! 2 0 ( j  = 

1,. . . , q )  and uk E M such that 

k k k k  x - Z = u  + u  + w .  (3.22) 

It is understood that vk (resp., w" is absent in the last represen- 
tation if KO = (0) (resp., K \ KO = 0). There are two possible 
cases: 

0 Case 1: There exists a subsequence {kt) C {k) such that wk' = 0 
for all kt. (If K \ KO = 0, then w q s  vacuous for all k E N. 
Such situation is also included in this case.) 

Case 2: There exists a number k, E N such that wk # 0 for 
every k 2 k,. 

If Case 1 occurs, then without restriction of generality we can 
assume that {kt) = {k). Since xk - 3 = uk + vk, from (3.18) we 
have 

Therefore 

Hence 
(x" Z)T D(X" 3) < 0 tjk E N. (3.23) 

Since xk - Z Z TA(3) and (Vf(3),xk - 3) = 0, we have xk - 
Z E T&) n (V f (3))'. Consequently, from Lemma 3.1 and from 
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assumption (ii) we obtain (x" 3 ) T ~ ( x k  - 3) c) 0, contrary to 
(3.23). 

If Case 2 happens, then there is no loss of generality in assuming 
that wk # 0 for all k E N. For each k ,  since t: ( j  = qo + 1,. . . , q) 
are nonnegative and not all zero, there must exists some j ( k )  E 
{go + 1, . . . , q)  such that 

t:ckl = max{t: : j E { g o  + 1,. . . , q ) )  > 0. 

It is clear that there must exist an index j, E {go + 1,. . . , q)  and a 
subsequence {k ' )  c { k )  such that j (k l )  = j, for every k'. Without 
loss of generality we can assume that {k ' )  = { k ) .  On account of 
(3.21) and (3.22), we have 

In these transformations, we have used the inequality 

which is a consequence of Lemma 3.1 and condition (ii). From what 
has already been proved, it follows that 

9 T 

k k  0 > t j  ( u  +vk)~D.'i: (Di+c)'zj* + i ( 2 t : l j )  Dwk. 
j=go+l =go+l 

(3.24) 
Dividing (3.24) by t:*, noting that 0 < t:/ti < 1 for every j = 
qo + 1,. . . , q, letting k + oo and using the following 

FACT. If xk + 5 then uk + 0, vk + 0, and wk + 0, 
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we get 
0 2 ( D z  + ~ ) ~ z j * ,  (3.25) 

a contradiction. This finishes the proof our Claim. 
What is left is to show that the Fact is true. For proving it, we 

first observe that 

k k llx" % [ I 2  = (x" z7xk  - 3) = (uk + vk + w , u + vk + wk) 
= ( I ~ ~ 1 1 ~  + llvk + w y 2 .  

Since llxk - - 1 1  -+ 0, it follows that uk -+ 0 and 21% wk -+ 0. We 
have 

a 

It suffices to prove that, for any j E (1,. . . , q), t; + 0 as k + oo. 
On the contrary, suppose that there exists jl E (1,. . . , q) such that 
the sequence { t i )  does not converge to 0 as k + oo. Then there 
exist E > 0 and a subsequence {kt) C {k) such that t;: 2 E for 
every k '  Since x;=, t? 2 t# 2 E for every kt, we can write 

Replace {kt) by a subsequence if necessary, we can assume that, for 
every j E { I , .  . . ,q),  

t k '  

for some ;i, E [O,l]. It is clear that Cj4=1 7. -3 = 1. We must have 
C? ]=I i j z j  # 0. Indeed, if it were true that C:=, i jJ  # 0, there 
would be some jo E (1,.  . . , q) such that Tjo # 0. Then 

This implies that -ijOzjO E K ,  TjozjO E K ,  ijOzjO # 0. Hence 
the cone K is not pointed, a contradiction. We have thus proved 
that i := XI=, i j z j  is a nonzero vector. If the sequence {C;=, t;') 
is bounded, then without loss of generality we can assume that it 
converges to some limit .i 2 E. Letting kt + oo, from (3.26) we 
deduce that 0 = .ii, a contradiction. If the sequence {C:=, trl) is 
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unbounded, then without loss of generality we can assume that it 
converges to +m. From (3.26) it follows that 

Letting k' -+ m we obtain 0 = +mll~II, an absurd. 0 

Definition 3.2. (See Mangasarian (1980), p. 201) A point Z E A is 
called a locally unique solution of the problem min{f (x) : x E A), 
where f : Rn -t R is a real function and A c Rn is a given subset, 
if there exists E > 0 such that 

f (x)  > f (z) vx E ( A n  El(?,&)) \{?I. 

Of course, if Z is a locally unique solution of a minimization 
problem then it is a local solution of that problem. The converse is 
not true in general. 

The following theorem describes the (second-order) necessary 
and sufficient condition for a point to be a locally unique solution 
of a quadratic program. 

Theorem 3.6. (See Mangasarian (1980), Theorem 2.1, and Con- 
tesse (1980), Thhorkme 1) The necessary and suficient condition 
for a point Z E Rn to be a locally unique solution of problem (2.27) 
is that there exists a pair of vectors 

such that 

(i) The system (3.11) is satisfied, and 

(ii) If v E Rn \ (0) is such that AI,v = 0, AI2v 2 0, Cv = 0 ,  where 

then vTDv > 0. 

Proof. Necessity: Suppose that Z is a locally unique solution of 
(2.27). Then there exists E > 0 such that 

f ( x )  - f(5) > 0 VX E ( A n  B(z,&))  \ {z). (3.27) 
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According to Corollary 3.2, there exists ( 5 , ~ )  E Rm x Rn such 
that condition (i) is satisfied. Suppose that property (ii) were false. 
Then we could find E Rn \ (0) such that 

By Lemma 3.1, (D3 + c)*v = (V f (3), Z) = 0. Consequently, for 
each t E (0 , l )  we have 

t2 -T 1 f (3 + tv) - f (3) = t (D3 + c)% + -v Dv = -t2VTDV < 0. 
2 2 

As 3 + t@ E A n B(3, E )  for all t E (0 , l )  sufficiently small, the last 
fact contradicts (3.27). Thus (ii) must hold true. 

Suficiency: Suppose that 3 E Rn is such that there exists 
(i, p) E Rm x Rn such that (i) and (ii) are satisfied. We shall show 
that 3 is a locally unique solution of (2.27). Set I = {1,2, . . . , m), 
I. = {i E I : AiZ = bi). Let M,  M 1 

I, K ,  KO, z , . . . ,zq, and 
q0 be defined as in the proof of Theorem 3.4. Then the properties 
(3.15)-(3.20) are valid. 

If 3 were not a locally unique solution of (2.27), we would find 
a sequence {x" C A such that xk + 3, and 

For each k E N, on account of (3.15), we have 

Combining this with (3.20) we conclude that there exist t,fi > 0 ( j  = 
1, .  . . , q) and u% M such that (3.21) holds. Setting vk = CqO 3=1 tkzj 3 

and wk = C&+, $23 we have (3.22). As before, if KO = 10) 
(resp., K \ KO = 8) then it is understood that v"resp., wk) is 
absent in the representation (3.22). We consider separately the 
following two cases: 

Case 1: There exists a subsequence { K )  C {k) such that wk' = 0 
for all kt. (If K \ KO = 0, then w q s  vacuous for all k E N. 
Such situation is also included in this case.) 

Case 2: There exists a number k, E N such that wk # 0 for 
every k > k,. 
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If Case 1 occurs, then without restriction of generality we can 
assume that {k') = {k). Arguing similarly as in the analysis of 
Case 1 in the preceding proof, we obtain 

Since x" 5 E TA (5) and (V f (3) , x" 5) = 0, we have x" 3 E 
TA(Z) fl (V f (5))'. Hence from Lemma 3.1 and from assumption 
(ii) it follows that (xk - z)~D(x"  Z) > 0, contrary to (3.28). 

If Case 2 happens then there is no loss of generality in assuming 
that wk # 0 for all k E N. Construct the sequence {j(k)) (k E N )  
as in the proof of Theorem 3.4. Then there must exist an index j, E 
{qo + 1, . . . , q) and a subsequence {k') c {k) such that j(kl) = j, for 
every k'. Without loss of generality we can assume that {k') r {k). 
Analysis similar to that in the proof of Theorem 3.4 shows that 

(3.29) 
Dividing (3.29) by t$*, noting that 0 < tilt; < 1 for every j = 
q0 + 1, . . . , q, letting k -+ oo and using the Fact established in 
the preceding proof, we get (3.25). This contradicts (3.19) because 
zj* E K\ KO. We have thus proved that 3 is a locally unique solution 
of(2.27). 0 

Note that Theorem 3.6 can be reformulated in the following 
equivalent form which does not require the use of Lagrange multi- 
pliers. 

Theorem 3.7. The necessary and sufficient condition for a point 
3 E Rn to be a locally unique solution of problem (2.27) is that the 
next two properties are valid: 

(i) (V f (z), v) = (Dz + C ) ~ V  2 0 for every v E TA(3) = {v E Rn : 
AI0v 2 0, Cv = 0), where I. = {i : Ai3 = b,); 

(ii) vTDv > 0 for every nonzero vector v E TA(3) fl (Vf (z))', 
where (Vf(3))' = {v E Rn : (Vf(3),v) = 0). 

As it has been noted after the formulation of Theorem 3.5, the 
first property is equivalent to the existence of a pair (1, ji) E Rm x RS 
satisfying system (3.11). The equivalence between property (ii) in 
Theorem 3.7 and property (ii) in Theorem 3.6, which is formulated 
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via a Lagrange multipliers set (A,  p) E Rm x RS, follows from Lemma 
3.1. Hence Theorem 3.7 is an equivalent form of Theorem 3.6. 

It is interesting to observe that if Z is a locally unique solution 
of a quadratic program then a property similar to (3.4) holds. 

Theorem 3.8. If Z E Rn is a locally unique solution of problem 
(2.27) then there exist E > 0 and Q > 0 such that 

where A = {x E Rn : Ax 2 b, Cx = d )  is the constraint set of 
(2.27). 
Proof. Let Z E Rn be a locally unique solution of (2.27). By 
Theorem 3.6, there exists a pair of vectors 

such that 

(i)' The system (3.11) is satisfied, and 

(ii)' If v E Rn\  (0) is such that AI,v = 0, AI,v 2 0, Cv = 0, where 

then vTDv > 0. 

As it has been noted in the proof of Theorem 3.4, from (i)' it follows 
that (3.17) is valid. 

To obtain a contradiction, suppose that one cannot find any pair 
of positive numbers (E, Q) satisfying (3.30). Then, for each k E N ,  

1 
1 

there exists xk E E such that Ilxk - 311 5 - and 
k 

The last inequality implies that $9 3. Without loss of generality 
we can assume that the sequence {(xk - Z)/llxk - 211) converges to 
some fl E Rn with llVll = 1. By (3.31), we have 

I 1 - I I x ~ - z [ [ ~  > f (xk)- f (3) = - ( X ~ - Z ) ~ D ( X ~ - Z ) + ( D Z + C ) ? ' ( X ~ - Z ) .  
k 2 

(3.32) 
Dividing this expression by I(xk - 311 and letting k + oo we get 
0 > (Dz + c)'~. Since x" 3 E TA(Z) for every k E N ,  we must 
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have 2r E Ta(Z). By (3.17), (Dz + ~ ) ~ 2 r  > 0. Thus (V f (z), 2r) = 
(DZ + c)?'2r = 0. As xk - E TA(Z) for every k E N, according to 
(3.17) we have (DZ + c)~(x"  3) 2 0. Combining this with (3.32) 
yields 

Dividing the last inequality by / x k  - % [ I 2  and letting k --+ oo we 
obtain 0 > VTDc. Since E T~ (3) n (V f (3))' , from Lemma 3.1 and 
(ii)' it follows that V*D?~ > 0. We have arrived at a contradiction. 
The proof is complete. 

3.3 Commentaries 

First-order necessary and sufficient optimality conditions for (non- 
convex) quadratic programs are proved in several textbooks. Mean- 
while, to our knowledge, the paper of Contesse (1980) is the only 
place where one can find a satisfactory proof of the second-order 
necessary and sufficient optimality condition for quadratic programs 
which was noted firstly by Majthay in 1971 and which has many 
interesting applications (see, for instance, Cottle et al. (1992) and 
Chapters 4, 10, 14 of this book). The reason might be that the proof 
is rather long and complicated. The proof described in this chapter 
is essentially that one of Contesse. For the benefit of the reader, 
we have proposed a series of minor modifications in the presenta- 
tion. The formulation given in Theorem 3.4 can be used effectively 
in performing practical calculations to find the local solution set, 
while the formulation given in Theorem 3.5 is very convenient for 
theoretical investigations concerning the solution sets of quadratic 
programs (see the next chapter). 

The necessary and sufficient condition for locally unique solu- 
tions of quadratic programs described in Theorem 3.6 and Theorem 
3.7 is also a good criterion for the stability of the local solutions. 
The result formulated in Theorem 3.6 was obtained independently 
by Mangasarian (1980) and Contesse (1980). The proof given in 
this chapter follows the scheme proposed by Contesse. Another 
nice proof of the "Necessity" part of Theorem 3.6 can be found 
in Mangasarian (1980). In Mangasarian (1980) it was noted that 
the "Sufficiency" part of the result stated in Theorem 3.6 follows 
from the general second-order sufficient optimality condition for 
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smooth mathematical programming problems established by Mc- 
Cormick (see McCormick (1967), Theorem 6). Actually, the stud- 
ies of Majthay (1971)) Mangasarian (1980)) and Contesse (1980) 
on second-order optimality conditions for quadratic programs have 
been originated from that work of McCormick. 

In mathematical programming theory, it is well known that the 
estimation like the one in (3.4) (resp., in (3.30)) is a consequence of 
a strict first-order sufficient optimality condition (resp., of a strong 
second-order sufficient optimality condition). In this chapter, the 
two estimations are obtained by simple direct proofs. 





Chapter 4 

Properties of the Solution 
Sets of Quadratic Programs 

This chapter investigates the structure of the solution sets of quadratic 
programming problems. We consider the problem 

1 
(P) m i n { f ( x ) = - x T ~ x + c T x  : x € R n ,  A x > b ,  C x = d ) ,  2 

where D E Rgxn, A E Rmxn, C E RSXn, c E Rn, b E Rm, d E RS 
Let 

A = {X E Rn : AX 2 b, CX = d), I = (1,. . . ,m),  J = (1,. . . , s ) .  

Denote by Sol(P), loc(P) and S(P), respectively, the solution set, 
the local-solution set and the KKT point set of (P ) .  Our aim is to 
study such properties of the solution sets Sol(P), loc(P) and S(P) 
as boundedness, closedness and finiteness. Note that sometimes the 
elements of S(P) are called the Karush-Kuhn- Tucker solutions of 
(P) .  The above notations will be kept throughout this chapter. 

4.1 Characterizations of the Unbound- 
edness of the Solution Sets 

Denote by Sol(Po) the solution set of the following homogeneous 
quadratic program associated with (P) :  
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Definition 4.1. A half-line w = (3 + t3 : t 2 0), where E 
Rn \ {0), which is a subset of Sol(P) (resp., loc(P), S(P)), is called 
a solution ray (resp., a local-solution ray, a K K T  point ray) of (P) .  
Theorem 4.1. The  set Sol(P) i s  unbounded if and only if (P )  has 
a solution ray. A necessary and suf ic ient  condit ion for Sol(P) t o  
be unbounded i s  that  there exist E Sol(P) and E Sol(Po) \ (0) 
such that 

(Dz + C ) ~ V  = 0. (4.1) 
The following fact follows directly from the above theorem. 

Corollary 4.1. If the solution set Sol(Po) i s  empty  o r  it consists 
of just one element 0 then, for any  ( c ,  b, d )  E Rn x Rm x RS, the 
solution set Sol(P) i s  bounded. I n  the case where Sol(Po) contains 
a nonzero element,  if 

(Dz + C ) ~ G  > o 'dz E Sol(P), 'dv E S O ~ ( P ~ )  \ (01, 
then  Sol(P) i s  bounded. 

Proof of Theorem 4.1. 
Suppose that Sol(P) is unbounded. Then there exists a sequence 

{xk) in Sol(P) such that llxkll +m as k -f m .  Without loss of 
xk 

generality we can assume that xk # 0 for all k and - -+ with 
Ilxk l l  

I ~ . u I I  = 1. We will show that f i E Sol(Po). Since x" Sol(P), we 
xk b 

have Ax" b and Cx" d. This implies that A- > - 
11x"I - llxkll and 

xk - C--- 
d 

. Letting k -t m we obtain Afi 2 0 and Cv = 0. 
Ilxkll Ilxkll 

Hence G is a feasible vector of (Po). Since Sol(P) # 0, by the Eaves 
Theorem (see Corollary 2.6), vTDv 2 0 for every v E Rn satisfying 
Av 2 0, Cv = 0. In particular, vTDfi 2 0. Fix a point 2 E A. 
Since xk E Sol(P), we have 

1 
- ( x ~ ) ~ D x ~  + cTxk 5 f ( 2 )  ('dk E N). 
2 

Dividing this inequality by 11x"12 and letting k t m, we obtain 
fil'Dfi < 0. Hence 

V ~ D G  = 0. (4.2) 

Let v E Rn be any feasible vector of (Po), that is Av > 0 and 
Cv = 0. On account of a preceding remark, we have vTDv > 0. 
Combining this with (4.2) we deduce that v E Sol(Po) \ (0). 
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We now show that there exists 2 z: Sol(P) satisfying (4.1). 
Since Axk 2 b for every k  E N ,  arguing similarly as in the proof 
of Theorem 2.1 we can find a subsequence { k ' )  c { k )  such that 
for each i E I  the limit lirn Aixkl exists (it may happen that 

kl'cu 

lirn Aixkl = +m). Obviously, 
kl'cu 

lirn A~X" 2 bb, (Vi E I )  
k"C0 

and 
lirn C ~ X "  = dj (Vj  E J ) .  

kt-403 

Without restriction of generality we can assume that {k ' )  r { k ) .  
Let 

I. = { i  E I  : lirn Aixk = bi), I I  = { i  E I  : lirn > bi). 
k-cc k+cu 

It is clear that there exist e > 0 and ko E N such that 

We have 

and 
xk bi + E 

Aiv = lim Ai- > lim - - - 0 (Vi 1 1 ) .  
k---cu Ilxkll - k+cu Ilxkll 

Let x k ( t )  = xk - t?j, where t > 0 and k  2 ko. We have 

Aixk( t )  = Aixk - tAiU > bi + E - tAiU (Vi E 1 1 ) .  

Fix an index k  > ko. From what has been said it follows that there 
exists 6 > 0 such that, for every t  E (0 ,  d), 

It is obvious that C j x k ( t )  = dj for all j  E J .  Hence x k ( t )  E A for 
every t E (O,6). Since 

0 5 f ( x k ( t ) )  - f ( x k )  
1 T k  

= - ( x k ( t )  - X ' ) ~ D ( X ~ ( ~ )  - x k )  + (Dxk  + C) ( x  ( t )  - x k ) ,  
2  
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we have 

Combining this with (4.2) we get 

On the other hand, applying Corollary 2.6 we can assert that (Dxk+ 
c ) " ~  2 0. Hence (Dxk + c ) " ~  = 0. Taking It: = x h e  see that (4.1) 
is satisfied. 

Let us prove that if there exist 3 E Sol(P) and v E Sol(Po) \ (0) 
such that (4.1) holds, then w := {Z + tv : t 2 0) is a solution ray 
of (P) .  For each t > 0, since 3 E Sol(P) and E Sol(PO), we have 

A(z + tv) = Az + tAv 2 b, 
C ( Z + t t i j = C z + t C v = d .  

Hence 17: + tG E A. Since v E Sol(Po) and 0 is a feasible vector 
of (Po), we have .i~"Di 5 0. If vTD@ < 0 then we check at once 
that (Po) have no solutions, which is impossible. Thus vTD3 = 0. 
Combining this with (4.1) we deduce that 

1 
f ( z  + tv) = -(Z + tq7 'D(z + tv) + cyz + tv) 

2, i 

Since 3 E Sol(P), we conclude that 3 + tv E Sol(P) for all t 2 0. 
We have thus shown that if Sol(P) is unbounded then there exists 
Z E Sol(P) and .Ij E Sol(Po) \ (0) satisfying (4.1) and w = (17: + tv : 
t 2 0) is a solution ray of (P). 

The claim that if (P) has a solution ray then Sol(P) is un- 
bounded is obvious. The proof is complete. 

Theorem 4.2. The set loc(P) is unbounded zf and only zf (P )  has 
a local-solution ray. 

Proof. It suffices to prove that if loc(P) is unbounded then (P) 
has a local-solution ray. Suppose that there is a sequence {xk) in 
loc(P) satisfying the condition IIxklI I +m. Let a C I be an index 
set. The set 
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(which may be empty) is called a pseudo-face (see, for instance, 
Bank et al. (1982)) p. 102) of A corresponding to a .  Recall (Rock- 
afellar (1970)) p. 162) that a face of a convex set X c Rn is a convex 
subset F of X such that every closed line segment in X with a rela- 
tive interior point in F has both endpoints in F .  In agreement with 
this definition, the sets F of the form 

F = {X E Rn : A,x = b,, AI\,x >_ bl\,, CX = d) 

are the faces of the polyhedral convex set A under our consideration. 
Thus pseudo-faces are not faces in the sense of Rockafellar (1970). 
However, the closures of pseudo-faces are faces in that sense. It is 
clear that 

A = ~ { F , :  ac I )  

and 
Fa n Far = 0 whenever a # a'. 

It is a simple matter to show that for any a c I and for any Z E F, 
it holds 

TA(3) = {V E Rn : A,v 2 0, CV = 0). 

Thus the tangent cone TA(z) does not change when Z varies inside 
a given pseudo-face Fa. 

Since the number of pseudo-faces of A is finite, we conclude 
that there exist an index set a, C I and a subsequence {k') C {k) 
such that xkr E Fa* for every k'. There is no loss of generality in 
assuming that {k') r {k). 

We shall apply the construction due to Contesse which helped 
us to prove Theorem 3.4. 

Since xk E Fa for all k E N, we deduce that 

TA(X" = {v E Rn : A,,v > 0, Cv=O)  (Yk E N). 

Let 
M = {v E Rn : A,,v=O, Cv=O).  

Then M is a linear subspace and M C Tn(xk). Let M1 = {v E 
Rn : (v, u) = 0 for every u E M)  and let 

where PrMl( . )  denotes the orthogonal projection of Rn onto the 
subspace M1. We have 
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and T ~ ( X ~ )  = M + K. Let 

From the inclusion xk E loc(P) and from Theorem 3.5 it follows 
that (V f (xk) ), u) = 0 for every u E M and (V f (xk), v) 2 0 for 
every v E K. This implies that Kt  is a face of K. 

Since the polyhedral convex cone K has only a finite number of 
faces, there must exist a face KO of K and a subsequence {kl) C {k) 
such that 

K? = KO Y1E N. 
Xk1 - Xkl 

Consider the sequence of unit vectors { ). Without loss 
Ilxk1 - xk1 11 

of generality we can assume that 

Set w = {xkl + ttz : t 2 0). 
CLAIM 1. w c S(P) .  

Let x = xkl + tz, t > 0. For every v E M + cl 1 E N, since 
M + K = T*(xkL) and xk% loc(P), by Theorem 3.5 we have 

Letting k oo we deduce that 

(D.z)~v 2 o (YV E M + K). (4.3) 

Since M + K = Ta(xkl) and xkl 1 loc(P), by Theorem 3.5 we have 

(DX" + clTv = (V f (xkl), v) 2 0 (Yv E M + K) .  (4.4) 

Combining (4.4) with (4.3) gives 

(of (x), V) = (DX + C ) ~ V  = ( D X ~ ~  + C ) ~ V  + ~ ( D z ) ~ v  2 o (4.5) 

for all v E M + K. We have x E Fa,. Indeed, since xkl 1 Fa, for 
every 1 E N, it follows that 

AiXk1 - ~ . ~ k l  
Aix = Ai(xkl + $2) = Aixkl + t lim = bi ('di E a,). 

l-+m IIxkl - xk' 11 
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For every i E I, we have 

Letting 1 + oo yields 

Aitx 2 0 (b'i E I). 

Consequently, 

Aix = A ~ ( x ~ ~  + ttz) = ~~x~~ + tAiZ > bi (Vi E I \ a*). 

The equality Cx = d can be established without any difficulty. 
From what has already been proved, we deduce that x E Fa,. This 
implies that TA(x) = M + K .  Hence from (4.5) it follows that 

(V f (x) , V) = (Dx + C ) ~ V  2 0 (b'v E TA(x)). 

This shows that x E S(P) .  (Recall that property (i) in Theorem 3.5 
is equivalent to the existence of a pair (X, p) E Rm x RS satisfying 
system (3.11) .) 
CLAIM 2. w c loc(P). 

Let x = xkl + ttx, t > 0. By Claim 1, x E S(P), that is 

We want to show that 

For each 1 E N,  we have 

So, for every v E KO, it holds (Dxkl + c)?'v = (V f (xkl), v) = 0 for 
all 1 E N. Therefore 

Letting k + oo we deduce that 

( D Z ) ~ V  = 0 (Vv E KO). 
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Hence 

( V f ( x ) , v )  = ( V f ( x k l ) , v )  + t ( ~ z ) ~ v = O  (Yv E KO).  

This shows that KO C K ~ ( v  f (2))'. To prove the reverse inclusion, 
let us fix any v E K f l  (V f (x))'. On account of (4.3) and (4.4), we 
have 

0 = ( V f ( x ) , v )  = ( V f ( x k l ) , v )  + ~ ( D z ) ~ v ,  

This clearly forces ( V f ( x h ) , v )  = 0. So v E KO whenever v E 
K n ( V  f (x))'. The equality (4.7) has been established. We now 
show that 

V ~ D V  2 o YV E T ~ ( x )  n (V f (x))'. (4.8) 

In the proof of Claim 1, it has been shown that Tn(x)  = M + K = 

TA(xk1) .  Besides, from (4.6) we deduce that M c (V f (x))'. Hence, 
from (4.7) and the construction of the sequence {xk l }  it follows that 

Since xh E loc(P), Theorem 3.5 shows that 

Combining this with (4.9) we get (4.8). From (4.6), (4.8) and The- 
orem 3.5, we deduce that x E loc(P). This completes the proof of 
Claim 2 and the proof of our theorem. 

Theorem 4.3. The set S ( P )  is unbounded i f  and only if ( P )  has a 
KKT point ray. 

Proof. By definition, x E S ( P )  if and only if there exists ( A ,  p) E 
Rm x R8 such that 

Given a point x E S ( P ) ,  we set I. = {i E I : Aix = bi ) ,  II = 
I \ I. = { i  E I : Aix > bi). From the last equality in (4.10) we get 



4.1 Unboundedness of the Solution Sets 

Hence (x, A, p)  satisfies the following system 

Fix any I. c I and denote by QIo the set of all (x, A, p )  satisfying 
(4.11). It is obvious that QIo is a polyhedral convex set. From what 
has been said it follows that 

where PrRn(x, A, p) := x. Since PrRn(.) : Rn x Rm x RS + Rn is a 
linear operator, PrRn(QIo) is a polyhedral convex set for every I. C 
I .  Indeed, as QIo is a polyhedral convex set, it is finitely generated, 
i.e., there exist vectors xl, . . . , xk, wl, . . . , w1 in Rn x Rm x Rs such 
that 

k 
QIo = {Z = x i = 1  tixi + QjwJ : ti > 0 for all i, 

8, > 0 for all j, and Eel ti = 1) 

(see Rockafellar (1970), Theorem 19.1). Then, by the linearity of 
the operator PrRn(.), we have 

Prp(QIo)  = {x = c;=, tixi + x i = ,  Qjvj : ti 2 0 for all i, 
0, 2 0 for all j ,  and c:=, ti = 1), 

where xi = PrRTL (xi) for a11 i and vi = PrRn (wj) for all j .  This shows 
that the set PrRn (QIo) is finitely generated, hence it is a polyhedral 
convex set (see Rockafellar (l97O), Theorem 19.1). 

If S(P) is unbounded then from (4.12) it follows that there exists 
an index set I. c I such that RIo := PrRn(QIo) is an unbounded 
set. Since RIo is a polyhedral convex set, it is an unbounded closed 
convex set. By Theorem 8.4 in Rockafellar (1970)) RIo admits a 
direction of recession; that is there exists a E Rn \ (0) such that 

Taking any 3 E RIo we deduce from (4.12) and (4.13) that 3 + ta E 
S(P) for all t 2 0. Thus we have proved that (P) admits a KKT 
point ray. Conversely, it is obvious that if (P) admits a KKT point 
ray then S(P) is unbounded. 
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Remark 4.1. Formula (4.12) shows that S(P) is a union of finitely 
many polyhedral convex sets. 

Let us derive another formula for the KKT point set of (P) .  For 
each index set a C I, denote by Fa the pseudo-face of A corre- 
sponding to a; that is 

Fa = {x E Rn : A,x = b,, Aq,x > bq,, Cx = d). 

Since A = u{F, : a C I), we deduce that 

S (P )  = U{S(P) n Fa : a c I ) .  (4.14) 

Lemma 4.1. For every a c I ,  S (P )  n Fa is a convex set. 

Proof. Let a C I be any index set. From the definition of S(P) it 
follows that x E S(P)n Fa if and only if there exist (A ,  p) E Rm x RS 
such that 

D X - A ~ A - C ~ ~ + C =  0, 
A,$= b,, A, 2 0, (4.15) 
&\ax > b~\ff, XI\, = 0, 
Cx = d. 

Let 2, denote the set of all the points (x, A,p) E Rn x Rm x RS 
satisfying the system (4.15). It is clear that 2, is a convex set. From 
what has already been said it follows that S(P) n Fa = PrR"(Zff), 
where PrRn (x, A ,  p) := x. Since PrRn ( a )  is a linear operator, we 
conclude that S (P )  n Fa is a convex set. 0 

Note that, in general, the convex sets S(P) n Fa, a c I, in the 
representation (4.14) may not be closed. 

We know that Sol(D, A, c, b) C loc(D, A, c, b) C S(D,  Ale, b) 
(see (3.10)). We have characterized the unboundedness of these 
solution sets. The following questions arise: 

QUESTION 1: Is it true that Sol(P) is unbounded whenever loc(P) 
is unbounded? 

QUESTION 2: Is it true that loc(P) is unbounded whenever S(P) 
is unbounded? 

The following example gives a negative answer to Question 1. 

Example 4.1. Consider the problem 

2 
(PI) min{ f (x) = -x2 + 2x2 : x = (X I ,  x2), XI 2 0, x2 2 0). 
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Denote by A the feasible region of (PI). We have 

Thus loc(Pl) is unbounded, but Sol(Pl) = 0. In order to establish 
the above results, one can argue as follows. Since I = {1,2), the 
constraint set of (PI) is composed by four pseudo-faces: 

Since V f (x) = (0, -2(x2 - I )) ,  by solving four KKT systems of the 
form (4.15) where C ,  d are vacuous, 

we obtain 

From formula (4.14) it follows that 

Since lim f (0,x2)  = -00 and, for each 2 2  2 0, x = (0,x2) is 
xz-++co 

a feasible vector for (PI), we conclude that Sol(Pl) = 8. For any 
x = (xl, 1) E S(Pl) n FO, we have TA(x) = R2, ( ~ f ( x ) ) '  = R2. 
Then the condition 

which is equivalent to the condition 

cannot be satisfied. By Theorem 3.5, x $! loc(Pl). Now, for any 
x = (xl, 0) E S(P1) n F{2}, we have 
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(V f (x))' = {V = (v1,v2) E R~ : v2 = 0). 

Condition (4.16), which is now equivalent to the requirement 

is satisfied. Applying Theorem 3.5 we can assert that x E loc(Pl). 
In the same manner we can see that the unique point x = (0 , l )  of 
the set S(Pl) n Fill does not belong to loc(Pl), while the unique 
point x = (0,O) of the set S(Pl) n belongs to loc(Pl). Thus 
we have shown that loc(Pl) = {x E R2 : x1 2 0, x2 = 0). 

The following example gives a negative answer to Question 2. 
Example 4.2. Consider the problem 

Analysis similar to that in the preceding example shows that 

4.2 Closedness of the Solution Sets 

Since S(P) is a union of finitely many polyhedral convex set (see 
(4.12)), it is a closed set. The set Sol(P) is also closed. Indeed, we 
have 

Sol(P) = {x E A : f (x) = v(P)), 

where v(P)  = inf{f(x) : x E A). If v(P) is finite then from 
the closedness of A, the continuity of f ,  and the above formula, it 
follows that Sol(P) is closed. If v(P)  = +oo then A = 8, hence 
Sol(P) = 8. If v(P)  = -oo then it is obvious that Sol(P) = 8. 
Thus we conclude that Sol(P) is always a closed set. 

The following question arises: 

QUESTION 3: Is it true that loc(P) is always a closed set? 

The following example gives a negative answer to Question 3. 
Example 4.3. Consider the problem 

2 
min{f (x) = -2, + x1x2 : x = (X I ,  x2), XI L 0, x2 2 0). (P3) 

Analysis similar to that in Example 4.1 shows that 

Our next aim is to study the situation where Sol(P) (resp., 
loc(P), S(P)) is a bounded set having infinitely many elements. 
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4.3 A Property of the Bounded Infinite 
Solution Sets 

Definition 4.2. A line segment wg = {Z + tZ : t t [0, d)) ,  where 
G E Rn \ (0) and 6 > 0, which is a subset of Sol(P) (resp., loc(P), 
S (P) ) ,  is called a solution interval (resp., a local-solution interval, 
a KKT point interval) of (P) .  

Proposition 4.1. If the set Sol(P) is bounded and infinite, then 
(P) has a solution interval. 

Proof. For each index set a C I, denote by Fa the pseudo-face of 
A corresponding to a. As Sol(P) c A has infinitely many elements 
and A = u{F, : a c I), there must exists some a, C I such that 
the intersection Sol(P) n Fa, has infinitely many elements. For each 
x E Sol(P) n Fa, we have TA(x) = {v E Rn : A,,v 2 0, Cv = 0) 
and, by Theorem 3.5, (V f (x) , v) 2 0 for every v E TA(x). Hence 
T := T*(X) is a constant polyhedral convex cone which does not 
depend on the position of x in the pseudo-face Fa, of A, and 

is a face of T.  Since the number of faces of T is finite, from what 
has already been said it follows that there must exist two different 
points x and y of Sol(P) n Fa, such that T," = T;. Set To = T,". By 
Lemma 4.1, the intersection S(P) n Fa* is convex. Since x E Sol(P), 
y E Sol(P) and Sol(P) c S(P), it follows that zt := (1 - t)x + t y  
belongs to S(P) n Fa, for every t E [0, 11 . By the remark following 
Theorem 3.5, for every t E (0, I ) ,  we have 

Therefore 

Since x E Sol(P) and TA(x) n (V f (x))' = To, from Theorem 3.5 it 
follows that 

v T ~ v 2 0  VvETo. 
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We have shown that, for every t E (0, I ) ,  zt E S(P) and 

Combining these facts and applying Theorem 3.5 we deduce that 
zt E loc(P). Consider the function cp : [O, 11 -+ R defined by setting 
'p(t) = f (zt) for all t E [0, 11. It is clear that cp is a continuous 
function which is differentiable at each t E (0 , l ) .  Since xt is a 
local solution of (P), cp attains a local minimum at every t E (0, l ) .  
Hence cpl(t) = 0 for every t E (0, l ) .  Consequently, cp(t) is a constant 
function. Since x E Sol(P), we see that zt E Sol(P) for all t E [O,l]. 
Thus [x, y) := ((1 - t)x + ty : t E [ O , l ) )  is a solution interval of 

(P) .  
Proposition 4.2. (See Phu and Yen (2001), Theorem 3) If the set 
loc(P) is bounded and infinite, then (P) has a local-solution interval. 

Proof. For each index set a C I, denote by Fa the pseudo-face 
of A corresponding to a. As loc(P) c A is an infinite set and 
A = u{F, : a c I), there must exists some a, c I such that 
the intersection loc(P) n Fa, has infinitely many elements. For each 
x E loc(P) n Fa, we have TA(x) = {v E Rn : Aa,v 2 0, Cv = 0) 
and, by Theorem 3.5, (V f (x) , v) 2 0 for every v E TA (x). Hence 
T := TA(x) is a constant polyhedral convex cone which does not 
depend on the position of x in the pseudo-face Fa, of A, and 

is a face of T. Since the number of faces of T is finite, it follows that 
there must exist two different point x and y of loc(P) n Fa, such that 
T," = T,Y. Set To = T,". By Lemma 4.1, the intersection S(P) n Fa* 
is convex. Since x E loc(P), y E loc(P) and loc(P) c S(P), it 
follows that zt := (1 - t)x + ty belongs to S(P) n Fa, for every 
t E [0, 11. According to the remark following Theorem 3.5, for every 
t E (0 , l )  we have 

As in the proof of Proposition 4.1, we have 

Since x E loc(P) and TA(x) n (V f (x))' = To, from Theorem 3.5 it 
follows that 

v T ~ v > O  VvETo. 
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Therefore, for every t E (0, I ) ,  xt E S(P) and 

On account of these facts and of Theorem 3.5, we conclude that zt 
is a local solution of (P) .  Thus [ x ,  y )  is a local-solution interval of 

(PI. 
Proposition 4.3. If the set S(P) is bounded and infinite, then (P) 
has a KKT point interval. 

Proof. For each index set a c I ,  denote by Fa the pseudo-face 
of A corresponding to a. As S(P) c A is an infinite set and 
A = u{F,  : a C I ) ,  there must exists some a, C I such that the 
intersection S(P) n Fa* has infinitely many elements. Hence there 
must exist two different point x and y of S(P) n Fa,. By Lemma 
4.1, the intersection S(P) n Fa, is convex. This implies that [ x ,  y) 
is a KKT point interval of (P) .  0 

4.4 Finiteness of the Solution Sets 

Theorem 4.4. The following assertions are valid: 

(i) If D is a positive definite matrix and A is nonempty, then (P) 
has a unique solution and it holds Sol(P) = loc(P) = S(P) .  

(ii) If D is a negative definite matrix then each local solution of 
(P) is an extreme point of A. In this case, Sol(P) C loc(P) C 
extrA. Hence, if D is a negative definite matrix then the num- 
ber of solutions of (P) (resp., the number of local solutions of 
(P)) is always less than or equal to the number of extreme 
points of A. Besides, if Sol(P) is nonempty then A is a com- 
pact polyhedral convex set. 

(iii) If D is  a positive semidefinite matrix then Sol(P) is a closed 
convex set and it holds Sol(P) = loc(P) = S(P) .  Hence, if 
D is a positive semidefinite matrix then Sol(P) is finite if and 
only if it is a singleton or it is empty. 

Proof. (i) Suppose that the symmetric matrix D is positive definite 
and the set A := { x  E Rn : A x  2 b, C x  = d )  is nonempty. Setting 
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we deduce that xTDx 2 ellx[12 for every x E Rn. Fix any xO E A. 
Note that 

1 
f (x) - f (xo) = -(x - x ' )~D(x  - xO) + (DX' + c ) ~ ( x  - xO) 

3 
t 2~11x - xo1I2 - llDxO + cllllx - xO1l. 

The last expression tends to +m as Ilx - xOll -+ +m. Hence there 
exists y > 0 such that 

From (4.17) it follows that (P) cannot have solutions in A\B(xO, y). 
Since A n B(xO, y) # 0 the problem min{ f (x) : x E A n B(xO, 7)) 
possesses a solution 3. By (4.17), 3 E Sol(P). Assume, contrary 
to our claim, that there are two different solutions 3 and j j  of (P).  
Since jj - 3 E Ta(3) and 3 E Sol(P), by Theorem 3.1 we have 
(D3 + ~ ) ~ ( j j  - 3) 2 0. As y # 3 and D is positive definite, we have 
(jj - z ) ~ D ( ~  - 3) > 0. It follows that 

a contradiction. The equalities Sol(P) = loc(P) = S(P) follow from 
the fact that, under our assumptions, f is a convex function (see 
Proposition 1.2). 

(ii) Let D be a negative definite matrix and 3 x: loc(P). If 
3 $ extra then there exist x E A, y E A, x # y, and t E (0, l )  
such that 3 = (1 - t)x + ty. Since 3 E A, x - 3 E TA(3), y - 3 E 

1 - t  
TA(3), and y - 3 = - - (x - 3) , applying Theorem 3.5 we get 

t 
(V f (3) , x - 3) 2 0 and 

Therefore (V f (z), x - 3) = 0. This equality and the assumption 
3 E loc(P) allows us to apply Theorem 3.5 to obtain (x - z ) ~ D ( x  - 
3) 2 0. This contradicts the fact that matrix D is negative definite. 
We have thus proved that loc(P) c extra. Consequently, Sol(P) c 
loc(P) C extrA. We now suppose that Sol(P) # 8. By Corollary 
2.6, 

(v E Rn, Av > 0, Cv = 0) + vTDv 2 0. 
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Combining this with the negative definiteness of D we conclude that 

Hence A has no directions of recession. By Theorem 8.4 in Rock- 
afellar (1970)) A is a compact set. 

(iii) Let D be a positive semidefinite matrix. By Proposition 
1.2, f is a convex function. Hence Sol(P) is a closed convex set and 
it holds Sol(P) = loc(P) = S(P) .  0 

Example 4.4. Consider problem (P) of the following form 

The matrix D = (i2 !2) corresponding to this problem is neg- 

ative definite. It is easily seen that 

Sol(P) = loc(P) = {( I ,  1), (1, - I) ,  (-1, I ) ,  (-1, - I)) ,  

S ( P )  = S W )  lJ { (O,O) ,  O)7 ('1 I ) ,  (-1, O)1(07 -1)). 

Theorem 4.5. If Sol(P) (resp., S(P), loc(P)) is a finite set, then 
each pseudo-face of A cannot contain more than one element of 
Sol(P) (resp., S(P), loc(P)). Hence, if Sol(P) (resp., S(P), loc(P)) 
is a finite set, then Sol(P) (resp., S(P), loc(P)) cannot have more 
than 2m elements, where m is the number of inequality constraints 
of (PI.  

Before proving this theorem let us establish the following two 
auxiliary results. 

Proposition 4.4. Assume that x E loc(P) n F,, y E S(P) n Fa, 
y # x, where F, is a pseudo-face of A. Then there exists S > 0 such 
that, for every t E (0, S ) ,  a ( t )  := (1 - t)x + t y  is a local solution of 

(PI.  
Proof. Let x E loc(P) n F,, y E S(P) n Fa, y # x ,  where a, c I = 
{ I , .  . . , m )  and F, = {x E Rn : A,x = b,, Aq,x > b+, Cx = d). 
Since x E Fa, we have Ta(x) = {v E Rn : A,v 2 0, Cv = 0). Let 

Then M is a linear subspace and M C Tn(x). Let M1 = {v E Rn 
(v, u) = 0 for every u E M)  and let 
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where PrM1(.) denotes the orthogonal projection of Rn onto the 
subspace M1. We have 

and Tn(x )  = M  + K. Since K is a pointed polyhedral convex cone 
(see the proof of Theorem 3.4), according to Theorem 19.1 in Rock- 
afellar (1970), there exists a finite system of generators { z l ,  . . . , 2 9 1  

of K .  By convention, if K = ( 0 )  then the system is vacuous. In 
the case where that system is not vacuous, we have 

4 

K = { v  = x t j z j  : t j  2 0  for all j  = 1, .  . . ,q )  
j=1 

Let Q =  (1 ,  . . . , q ) ,  

Qo = { j  E Q : ( O f ( x ) , z j )  = 0 ) ,  Q1 = { j  E Q : ( V f ( x ) , z j )  > 0) .  
(4.18) 

Since x  E loc(P),  we must have 

From this we deduce that Q  = Qo U Q1. For every a  E F,, let 
K t  = { v  E K : ( O f ( a ) , v )  = 0) .  For every t E [0,1] ,  we set 
a( t )  = (1  - t ) x  + ty.  Since x  E Fa and y  E Fa, it follows that 
a( t )  E F, for every t  E [0, 11. Consequently, 

TA(a ( t ) )  = Tn(x )  = { v  E Rn : A,v 2 0,  C v  = 0 )  = M + K. 
(4.19) 

It follows from (4.18) that there exists 6  E ( 0 , l )  such that 

( O f ( a ( t ) ) , z j )  > 0  'dt E ( O , S ) ,  'dj E Q1. (4.20) 

For any t  E (0 ,  S ) ,  by Lemma 4.1 we have a( t )  E S ( P ) .  Therefore 
( O f  ( a ( t ) ) ,  v )  2 0  for every v  E Tn(a( t ) ) .  Combining this with 
(4.20) we deduce that 

K,"'~' C K,T = { v  = t jz j  : t3 2 0  for all j  E QO).  (4.21) 
j € Q o  

We claim that a( t )  E loc(P) for every t E (0 ,S) .  Indeed, since 
( O f  ( a ( t ) ) ,  V )  2 0  for every v  E T ~ ( a ( t ) ) ,  we get 

( O f ( a ( t ) ) , v )  = 0  'dv E M ,  'dt E (Old). 
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By (4.19) and (4.21), 

As x E loc(P), by Theorem 3.5 we have 

Combining this with (4.22) yields 

Since a(t) E S(P), from the last fact and Theorem 3.5 we conclude 
thata( t )E loc(P) .  0 

Proposition 4.5. Assume that x and y are two different Karush- 
Kuhn-Tucker points of (P )  belonging to the same pseudo-face of A. 
Then the function cp(t) := f ((1 - t)x + ty) is constant on [ O , l ] .  

Proof. Let a c I, x E S(P )  n F,, y E S(P) n F,, x # y. For 
every t E [0, I], we define a(t) = (1 - t)x + ty. Since a( t )  E F,, it 
follows that TA(a(t)) = {v E Rn : A,v 2 0, Cv = 0). By Lemma 
4.1, a(t) E S(P) .  Hence (V f (a(t)), v) 2 0 for every v E TA(a(t)). 
Combining these facts we see that (V f (a(t)), v) = 0 for every v E 
M := {v E Rn : A,v = 0, Cv = 0). It is easy to check that 
y - x E M. So we have (V f (a(t)) , y - x) = 0. From this and the 
obvious relation 

we deduce that the function cp is constant on [ O , l ] ,  as desired. 

Proof of Theorem 4.5. 
We first consider the case where Sol(P) is a finite set. Suppose, 

contrary to our claim, that there exists a pseudo-face F, of A con- 
taining two different elements x,  y of Sol(P). By Proposition 4.5, 
the function cp(t) := f ((1 - t)x + ty) is constant on [0, 11. From 
this and the inclusion x E Sol(P) we conclude that whole the seg- 
ment [x, y] is contained in Sol(P). This contradicts the finiteness of 
Sol(P). 

The fact that if S (P )  is finite then each pseudo-face of A cannot 
contain more than one element of S(P) follows immediately from 
Lemma 4.1. 
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The fact that if loc(P) is finite then each pseudo-face of A cannot 
contain more than one element of loc(P) is a direct consequence of 
Proposition 4.4. 

Actually, in the course of the preceding proof we have established 
the following useful fact. 

Proposition 4.6. If the intersection Sol(P) f l  F, of the solution 
set of (P) with a pseudo-face of A is nonempty, then S(P) n F, = 

Sol(P) CI Fa. 
Combining the last proposition with Lemma 4.1 we obtain the 

following statement. 

Proposition 4.7. The intersection Sol(P)nF, of the solution set of 
(P )  with a pseudo-face of A is always a convex set (may be empty). 

In connection with Propositions 4.4 and 4.7, t,he following two 
open questions seem to be interesting: 

QUESTION 4: Let x E loc(P) n Fa, y E S(P) f l  Fa, y # x, where 
Fa is a pseudo-face of A and F,  denotes the topological closure of 
Fa. Is it true that there must exist some 6 > 0 such that, for every 
t E (O,6), a ( t )  := (1 - t)x + ty  is a local solution of (P)? 
QUESTION 5: Is it true that the intersection loc(P) n F, of the 
local-solution set of (P)  with a pseudo-face of A is always a convex 
set? 

4.5 Commentaries 

The notion of solution ray has proved to be very efficient for study- 
ing the structure of the solution set of linear complementarity prob- 
lems (see, for instance, Cottle et al. (1992)) and affine variational 
inequalities (see, for instance, Gowda and Pang (1994a)). 

This chapter shows that the notions of solution ray and solution 
interval interval are also useful for studying the structure of the 
solution sets of (nonconvex) quadratic programs. 

Lemma 4.1, Propositions 4.2 and 4.3, and Theorems 4.3 and 4.4 
are well known facts. Other results might be new. 



Chapter 5 

Affine Variational 
Inequalities 

In this chapter, the notions of affine variational inequality and lin- 
ear complementarity problem are discussed in a broader context 
of variational inequalities and complementarity problems. Besides, 
a characterization of the solutions of affine variational inequalities 
via Lagrange multipliers and a basic formula for representing the 
solution sets will be given. 

5.1 Variational Inequalities 

Variational inequality problems arise in a natural way in the frame- 
work of optimization problems. 

Let f : Rn -+ R be a C1-function and A c Rn a nonempty, 
closed, convex set. 

Proposition 5.1. If 3 is a local solution of the optimization prob- 
lem 

min{f(x) : x E A} (5.1) 

then 

( V f ( Z ) , y - 3 ) 2 0  YyEA.  

Proof. Similar to the proof of Theorem 3.1 (i). 
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Setting 

we see that (5.2) can be rewritten as 

(4 (z ) , y -Z )  2 0 b'y E A. (5.4) 

Definition 5.1. If A C Rn is a nonempty, closed, convex subset 
and 4 : A t Rn is a given operator (mapping) then the problem of 
finding some 3 E A satisfying (5.4) is called a variational inequality 
problem or, simply, a variational inequality (VI, for brevity). It is 
denoted by VI(4, A). The solution set Sol(VI(q5, A))  of VI(q5, A) is 
the set of all 3 E A satisfying (5.4). 

It is easy to check that 3 E Sol(VI(q5, A)) if and only if the 
inclusion 

0 E 4(3) + N A ( ~ ,  

where NA(3) denotes the normal cone to A at Z (see Definition 1.9), 
is satisfied. 

Proposition 5.1 shows how smooth optimization problems can 
lead to variational inequalities. A natural question arises: Given a 
variational inequality VI($, A) with a continuous operator q5 : Rn + 

Rn, can one find a C1-function f : Rn + R such that VI(q5, A) can 
be obtained from optimization problem (5.1) by the above-described 
procedure or not? If such a function f exists, we must have 

$(x) = of(.) b'x E A. (5.5) 

One can observe that if f is a C2-function then the operator 
q5 : Rn + Rn defined by (5.3) has a symmetric Jacobian matrix. 
Recall that if a vector-valued function q5 : Rn --t Rn has smooth 
components $ 1 ,  . . . , &  then the Jacobian matrix of q5 at x is defined 
by the formula 

J4W = 
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Since f is assumed to be a C2-function, from (5.3) we deduce that 

for all i, j .  This shows that Jq5(x) is a symmetric matrix. 

Proposition 5.2. (See, for instance, Nagurney (1993)) Let A C Rn 
be a nonempty, closed, convex set. If q5 : Rn -t Rn is such a vector- 

aq5i(4 - aq5.d~) for valued function with smooth components that - - - 
axi axi 

all i and j (a smooth symmetric operator), then there exists a C2- 
function f : Rn -t R such that the relation (5.5) is satisfied. This 
means that the variational inequality problem VI($, A) can be re- 
garded as the first-order necessary optimality condition of the opti- 
mization problem (5.1). 

So, we have seen that C2-smooth optimization problems corre- 
spond to variational inequalities with smooth symmetric operators. 
However, when one studies the VI model, one can consider also 
VI problems with asymmetric discontinuous operators. Thus the 
VI model is a mathematical subject which is treated independently 
from its original interpretation as the first-order necessary optimal- 
ity condition of a smooth optimization problem. 

The following simple statement shows that, unlike the solutions 
of mathematical programming problems, solutions of VI problems 
have a local character. From this point of view, VI problems should 
be regarded as generalized equations (see, for instance, Robinson 
(1979, 1981)), but not as something similar to optimization prob- 
lems. 

Proposition 5.3. Let Z E A. If there exists e > 0 such that 

then Z E Sol(VI(q5, A)). 

Proof. Suppose that e > 0 satisfies (5.6). Obviously, for each 
y E A there exists t = t(y) E (0 , l )  such that y(t) := Z + t(y - Z) 
belongs to AnB(Z,e).  By (5.6), 0 5 (+(Z),y(t)-Z) = t($(Z),y-3). 
This implies that (q5(Z), y - 3) 2 0 for every y E A. Hence Z E 
Sol(VI(q5, A)). 

Problem VI(q5, A) depends on two data: the set A and the op- 
erator 4. Structure of the solution set Sol(VI(q5, A)) is decided by 
the properties of the set and the operator. In variational inequality 
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theory, the following topics are fundamental: solution existence and 
uniqueness, stability and sensitivity of the solution sets with respect 
to perturbations of the problem data, algorithms for finding all the 
solutions or one part of the solution set. 

The following Hartman-Stampacchia Theorem is a fundamen- 
tal existence theorem for VI problems. It is proved by using the 
Brouwer fixed point theorem. 

Theorem 5.1. (See Hartman and Stampacchia (l966), Kinder- 
lehrer and Stampacchia (1980), Theorem 3.1 in Chapter 1) If A C 
Rn is nonempty, compact, convex and q5 : A -t Rn is continuous, 
then problem VI($, A) has a solution. 

Under suitable coercivity conditions, one can have existence the- 
orems for problems on noncompact convex sets. For example, the 
following result is valid. 

Theorem 5.2. (See Kinderlehrer and Stampacchia (1980), p. 14) 
Let A c Rn be a nonempty, closed, convex set and q5 : A -t Rn a 
continuous operator. If there exists xO E A such that 

MY) - 4(x0), Y - xO) llY - xO1l + +00 as llY l l  -$ +00, Y E A, 
(5.7) 

then problem VI(4, A) has a solution. 

The exact meaning of (5.7) is as follows: Given any y > 0 one 
can find p > 0 such that 

('(') - 4(x0)1 - 'O) 2 y for every y E A satisfying llyll > p. 
IlY - xOll 

It is obvious that if A is compact then, for any xO E A, (5.7) 
is valid. If there exists xO E A such that (5.7) holds then one 
says that the coercivity condition is satisfied. Coercivity conditions 
play an important role in the study of variational inequalities on 
noncompact constraint sets. Note that (5.7) is only one of the most 
well-known forms of coercivity conditions. 

If there exists xO E A and a > 0 such that 

then, surely, (5.7) holds. It is clear that there exists a > 0 such 
that 
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then (5.8) is satisfied. 
Definition 5.2. If there exists a > 0 such that (5.9) holds then 
q5 is said to be strongly monotone on A. If the following weaker 
conditions 

and 
MY) - $(x),Y - 4 2 0 YX E A, YY E A, (5.11) 

hold, then q5 is said to be strictly monotone on .A and monotone on 
A,  respectively. 

Example 5.1. Let A c Rn is a nonempty, closed, convex set. Let 
D E Rnxn and c E Rn. If matrix D is positive definite then the 
operator q5 : A + Rn defined by q5(x) = D x  + c, x E A, is strongly 
monotone on A. In this case, it is easily verified that a > 0 required 
for the fulfilment of (5.9) can be defined by setting 

Likewise, if D is positive semidefinite then the formula $(x) = Dx+ 
c, x E A, defines a monotone operator. 

Proposition 5.4. The following statements are valid: 

(i) If q5 is  strictly monotone on A then problem VI(q5, A) cannot 
have more than one solution; 

(ii) If q5 is  continuous and monotone on A then the solution set of 
problem VI(q5, A) is closed and convex (possibly empty). 

For proving the second statement in the preceding proposition 
we shall need the following useful fact about monotone VI problems. 

Lemma 5.1. (The Minty Lemma; Kinderlehrer and Stampacchia 
(1980), Lemma 1.5 in Chapter 3) If A C Rn is  a closed, convex 
set and q5 : A -t Rn is  a continuous, monotone operator, then 
3 E Sol(VI((q5, A)) zf and only if 3 E A and 

Proof. Necessity: Let 3 E Sol(VI((q5, A)). By the monotonicity of 
q5, we have 

MY) - q5(%Y - 3) 2 0 YY E A. 
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Combining this with (5.4) yields 

Property (5.12) has been established. 
Suficiency: Suppose that IF. E A and (5.12) is satisfied. Fix any 

y E A. By the convexity of A, y(t) := Z + t(y - 3)  belongs to A for 
every t E (0 , l ) .  Substituting y = y(t) into (5.12) gives 

This implies that 

($(3 + t(y - 3) ,y  - 3) 2 0 'vt E (0 , l ) .  

Letting t --t 0, by the continuity of q5 we obtain (q5(3), y - Z) 2 0. 
Since the last inequality holds for every y E A, we conclude that 
z E Sol(VI((q5, A)). 

Proof of Proposition 5.4. 
(i) Suppose, contrary to our claim, that q5 is strictly monotone 

on A but problem VI(q5, A) has two different solutions 3 and y. 
Then (q5(~), jj - Z) 2 0 and (q5(jj), 3 - y) 2 0. Combining these 
inequalities we get ($(Z) - q5(jj), y - 3) 2 0. The last inequality 
contradicts the fact that ($(y) - $(Z), y - Z) > 0. 

(ii) Assume that q5 is continuous and monotone on A. For every 
y E A, denote by fl(y) the set of all 3 E A satisfying the inequality 
($(y), y - Z) 2 0. It is clear that fl(y) is closed and convex. From 
Lemma 5.1 it follows that 

Hence Sol(VI((q5, A)) is closed and convex (possibly empty). 

From Theorem 5.2 and Proposition 5.4(i) it follows that if A 
is nonempty and q5 : A --t Rn is a continuous, strongly monotone 
operator then problem VI($, A) has a unique solution. 

In the next section, we will consider variational inequality prob- 
lems in the case where the constraint set A is a cone. 
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5.2 Complementarity Problems 

The following fact paves a way to the notion of (nonlinear) comple- 
mentarity problem. 

Proposition 5.5. If A is a closed convex cone, then problem 
VI($, A) can be rewritten equivalently as follows 

where A+ = { J  E Rn : (c, v) 2 0 Vv E A) denotes the positive 
dual cone of A. 

Proof. Let 5 be a solution of (5.4). For any v E A, since A is a 
convex cone, we have 3 + v E A. From (5.4) we deduce that 

1 
So $(z) E A+. Furthermore, since -5 E A and 23 E A, by (5.4) 

2 
we have 

1 1 
0 5 ($(2), -5 - 5) = --($(3), 2) 

2 2 
and 

0 5 ($(2), 22 - 5) = (q5(z), 3). 

Hence ($(z), 5) = 0. We have proved that (5.13) is satisfied. 
Now, let 3 be such that (5.13) holds. For every y E A, since 

($(5), 3) = 0 and $(3) E A+, we have 

This shows that 2 E Sol(VI((q5, A)). 0 

Definition 5.3. Problem (5.13) where A C Rn is a closed convex 
cone and $ : Rn -t Rn, is denoted by NCP(q5, A) and is called the 
(nonlinear) complementarity problem defined by q5 and A. 

Since complementarity problems are variational inequality prob- 
lems of a special type, existence theorems for VI problems can be 
applied to them. 

5.3 Affine Variational Inequalities 

By Theorem 3.1, if 3 is a local solution of the quadratic program 
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where M E RzXn, q E Rn, and A c Rn is a polyhedral convex set, 
then (MZ + q, y - 2) 2 0 for every y E A. This implies that Z is a 
solution of the problem VI(q5, A) where $(x) = Mx + q is an aSfine 
operator having the constant symmetric Jacobian matrix M. 

Definition 5.4. Let M E RnXn, q E Rn. Let A c Rn be a 
polyhedral convex set. The variational inequality problem 

Find Z E A such that (MZ + q, y - 3) 2 0 Yy E A (5.15) 

is called the aSfine variational inequality (AVI, for brevity) problem 
defined by the data set {M, q, A) and is denoted by AVI(M, q, A). 
The solution set of this problem is abbreviated to Sol(AVI(M, q, A)). 

The remarks given at the beginning of this section show that 
quadratic programs lead to symmetric AVI problems. Later on, in 
the study of AVI problems we will not restrict ourselves only to the 
case of the symmetric problems. 

The following theorem shows that solutions of an AVI problem 
can be characterized by using some Lagrange multipliers. 

Theorem 5.3. (See, for instance, Gowda and Pang (1994b), p. 
834) Vector Z E Rn is a solution of (5.15) where A is given by the 
formula 

A = {x E Rn : Ax > b) (5.16) 

with A E Rmxn, b E Rm, if and only if there exists X = ( I1 , .  . . , 5,) E 
Rm such that 

M Z - A ~ X + ~ = O ,  
AZ 2 b, 5 2 0, (5.17) 
J T ( ~ Z  - b) = 0. 

Proof. The necessity part of this proof is very similar to the proof 
of Theorem 3.3. As in the preceding chapters, we denote by Ai the 
i-th row of A and by bi the i-th component of vector b. We set 
ai = AT for every i = 1, .  . . , m. Let 3 E Sol(AVI(M, q, A)). Define 
I = (1 , . . . ,  m), I. = {i E I : (ai,%) = bi) a n d I I  = {i E I : 
(ai, 2) > bi). For any v E Rn satisfying 

(ai, v) 2 0 for every i E 10, 

it is easily seen that there exists 61 > 0 such that (ai, Z + tv) 2 bi 
for every i E I and t E (0, &). Substituting y = Z + tv, where 
t E (0, dl), into (5.15) gives (Mz + q, v) 2 0. Thus 
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for any v E Rn satisfying 

(-ai, v) 5 0 for every i E lo. 

By the Farkas Lemma (see Theorem 3.2), there exist non-negative 
real numbers Xi (i E Io) such that 

Put Xi = 0 for all i E II and X = (XI,. . . , X,). Since ai = AT for 
every i E I, from (5.18) we obtain the first equality in (5.17). Since 
Z E E(A,  b) and X i ( ~ i ~ -  bi) = 0 for each i E I, the other conditions 
in (5.17) are also satisfied. 

In order to prove the sufficiency part, suppose that there exists 
5 = (XI,. . . , Am) E Rm such that (5.17) holds. Then, for any y E A, 
one has 

(Mz + q, y - 3) = (ATX, - Z) = (1, (Ay - b) - (A2 - b)) 
= X T ( ~ y  - b) + XT(~5  - b) 
= XT(Ay - b) 2 0. 

This shows that 3 is a solution of (5.15). The proof is complete. 
0 

One can derive from Theorem 5.3 the following two corollaries, 
one of which is applicable to the situation where A has the repre- 
sent at ion 

A = { x g R n :  A z > b ,  ~ 2 0 )  (5.19) 

and the other is applicable to the situation where A has the repre- 
sentation 

A = {x E Rn : Ax 2 b, Cx = d). (5.20) 

Here A E Rmxn, b E Rm, C E RSXn, and d E RS 
Corollary 5.1. Vector 1 E Rn is a solution of (5.15) where A is 
given by (5.19) if and only if there exists X = (XI,. . . , im) E Rm 
such that 



94 5. Affine Variational Inequalities 

Proof. Define matrix A E  R ( ~ + ~ ) ~ ~  and vector b E  Rm+n as in the 
proof of Corollary 2.5. Then problem (5.15), where A is given by 
(5.19),  is equivalent to the problem 

Find x: E A := { x  E  Rn : A x  > b)  such that 
( ~ x :  + q, y - Z )  2 0 Vy E A. 

Applying Theorem 5.3 to this AVI problem we deduce that Z is a 
solution of the latter if and only if there exists ;\ = (XI,. . . , Am+,) E 
Rm+n such that 

Taking 1 = ( X I ,  . . . , X m )  where Xi  = X i  for every i E  {I, . . . , m), we 
can obtain the desired properties in (5.21) from the last ones. 

Corollary 5.2. Vector E Rn is a solution of (5.15) where A is 
given by (5.20) if and only if there exist X = ( X l , .  . . , X m )  E Rm and 
p = ( p l ,  . . . , ps)  E RS such that 

M Z - A ~ X - C ~ ~ + ~ = O ,  
Ax: 2 b, Cz= d l  X > 0 ,  (5.22) 
X T ( ~ z  - b) = 0.  

Proof. Define I?. E R("+~")~"  and b E Rm+2S as in the proof of 
Corollary 2.6. Then problem (5.15), where A is given by (5.20), is 
equivalent to the problem 

Find Z E  := { x  E Rn : A x  2 b) such that 
( M x : + q , y - 3 )  2 0  V ~ E A .  

Applying Theorem 5.3 to this AVI problem we deduce that 5 is a 
solution of the latter if and only if there exists ;\ = ( X I , .  . . , E 
Rm+2S such that 

Taking X = ( X l , .  . . , X m )  and p = ( P I , .  . . , ps) where Xi = Xi for ev- 
ery i E { I , .  . . , m) and & = Xm+j - Xm+s+j for every j E  ( 1 , .  . . , s ) ,  
we can obtain the properties stated in (5.22) from the last ones. 
0 

Unlike the solution set and the local solution set of a nonconvex 
quadratic program, the solution set of an AVI problem has a rather 
simple structure. 
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Theorem 5.4. The solution set of any afine variational inequality 
problem is the union of finitely many polyhedral convex sets. 

Proof. This proof follows the idea of the proof of formula (4.12). 
Consider a general AVI problem in the form (5.15). Since A is a 
polyhedral convex set, there exists m E N, A E RmXn, b E Rm such 
that A = {x E Rn : Ax 2 b}. According to Theorem 5.3, x E 
Sol(AVI(M, q, A)) if and only if there exists X = (XI,. . . , Am) E Rm 
such that 

M X - A ~ X + ~ = O ,  
Ax b, X 2 0, (5.23) 
X ~ ( A X  - b) = 0. 

Let I = { I , .  . . , m). Given a point x E Sol(AVI(M, q, A)), we set 
I. = {i E I : Aix = bi), Il = I \ I. = {i E I : Aix > bi). From the 
last equality in (5.23) we get 

Hence (x, A) satisfies the system 

Fix any subset I. c I and denote by QIo the set of all (x, A) satisfy- 
ing (5.24). It is obvious that QIo is a polyhedral convex set. From 
what has been said it follows that 

where PrRn (x, A) := x. Since PrRn (.) : Rn x Rm + Rn is a linear 
operator, for every I. C I, PrRn(QIo) is a polyhedral convex set. 
From (5.25) it follows that Sol(AVI(M, q, A)) is the union of finitely 
many polyhedral convex sets. 

Definition 5.5. A half-line w = {Z + tij : t 2 O}, where 3 E 
Rn \ {0}, which is a subset of Sol(AVI(M, q, A)), is called a solution 
ray of problem (5.15). 

Definition 5.6. A line segment (JJ = {Z + tij : t E [0, S)), where 
ij E Rn \ (0) and S > 0, which is a subset of Sol(AVI(M, q, A)),  is 
called a solution interval of problem (5.15). 

Corollary 5.3. The following statements hold: 
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(i) The solution set of any afine variational inequality is a closed 
set (possibly empty); 

(ii) If the solution set of an afine variational inequality is un- 
bounded, then the problem has a solution ray; 

(iii) If the solution set of an afine variational inequality is infinite, 
then the problem has a solution interval. 

Proof. Statement (i) follows directly from formula (5.25) because, 
for any I. C I, the set PrRn (QIo), being polyhedral convex, is closed. 
If Sol(AVI(M, q, A)) is unbounded then from (5.25) it follows that 
there exists an index set I. c I such that 

is an unbounded set. Since StIo is a polyhedral convex set, it is 
an unbounded closed convex set. By Theorem 8.4 in Rockafellar 
(1970), StIo admits a direction of recession; that is there exists .lj E 
Rn \ (0) such that 

x + tU E RIo'dx E StIo, 'dt 2 0. (5.27) 

Taking any 3 E StIo we deduce from (5.25) and (5.27) that Z + tU E 
Sol(AVI(M, q, A)) for all t 2 0. Thus we have proved that problem 
(5.15) has a solution ray. If Sol(AVI(M, q, A)) is infinite then from 
(5.25) we deduce that there is an index set I. C I such that the 
polyhedral convex set StIo defined by (5.26) is infinite. Then there 
must exist two different points x E StIo and y E StI0. It is clear that 
the set [x, y) := {x + t(y - x) : t E [0, 1)) is a solution interval of 
(5.15). 0 

Using Theorem 5.4 one can obtain a complete characterization 
for the unboundedness property of the solution set of an AVI prob- 
lem. Let us consider problem (5.15) where A is given by (5.16) and 
introduce the following notations: 

S(A) = {v E Rn : Av 2 0), 
S(A)+ = {x E Rn : xTv 2 0 'dv E S(A)), 

[(M) = {x E Rn : xTMx = 0). 

Note that 6(A) and {v E Rn : Av E 6(A)+) are polyhedral convex 
cones, while Q(M) is, in general, a nonconvex closed cone. Note also 
that 6(A) = Of A and S(A)+ = (O+A)+. 



5.3 Affine Variational Inequalities 97 

Theorem 5.5 (cf. Gowda and Pang (1994a)). The solution set 
of (5.15) is unbounded if and only if there exzsts a pair (v,uO) E 
Rn x Rn, v # 0, u0 E Sol(AVI(M, q, A)), such that 

(i) v E 6(A), Mv E b(A)+, v E t (M) ;  

(ii) (Mu0 + q ) T ~  = 0; 

(iii) (Mu, y - uO) 2 0 'dy E A. 

Proof. Suficiency: Suppose that there is a pair (v, uO) E Rn x Rn, 
v # 0, u0 E Sol(AVI(M, q, A)), such that (i)-(iii) are fulfilled. Let 
xt = u0 + tv, t > 0. Given any y E A, we deduce from (i)-(iii) that 

This implies that xt E Sol(AVI(M, q, A)) for every t > 0. Hence the 
solution set is unbounded. 

Necessity: Suppose that the set Sol(AVI(M, q, A)) is unbounded. 
By (5.25), there exists I. C I such that the set R1,, defined by (5.26) 
is unbounded. Applying Theorem 8.4 from Rockafellar (1970), we 
can assert that there exist v E Rn, v # 0, and u0 E RI, such that 

u0 + tv E RIo c Sol(AVI(M, q, A)) 'dt > 0. (5.28) 

Since A(uO + tv) 2 b for every t > 0, we can deduce that Av 2 0. 
This means that v E b(A). By (5.28), we have 

(M(u' + tv) + q, y - (uO + tv)) 2 0 'dy E A. (5.29) 

Fixing any y E A, we deduce from (5.29) that 

Therefore 
(Mu, -v) > 0. 
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Substituting y = u0 + t2v, where t > 1, into (5.29) and dividing the 
inequality by t ( t2  - t ) ,  we obtain 

Letting t + +oo yields (Mu ,  v )  2 0. Combining this with (5.30) 
we get 

( M u ,  v )  = 0. (5.31) 

This shows that v E l ( M ) .  Substituting y = u0 into (5.29) and 
taking account of (5.31) we have (Mu0 + q,v)  5 0. Substituting 
y = u0 + t2v, where t > 1, into (5.29) and using (5.31) we can deduce 
that (Mu0 + q, v )  2 0. This and the preceding inequality shows that 
(ii) is satisfied. By (5.29), (5.31) and (ii), for every y E A we have 

for all t > 0. This implies that the inequality ( M u ,  - uO) < 0 must 
be false. So we have 

Substituting y = u0 + w,  where w E 6(A) ,  into the inequality in 
(5.32) we deduce that ( M u ,  w) 2 0 for every w E &(A) .  This means 
that M v  E 6(A)+. We have thus shown that all the three inclusions 
in (i) are valid. The proof is complete. 

Several simple sufficient conditions for (5.15) to  have a compact 
solution set can be obtained directly from the preceding theorem. 

Corollary 5.4. Problem (5.15) has a compact solution set (possibly 
empty) i f  one of the following conditions is satisfied: 

(71) the cone l ( M )  consists of only one element 0; 

( 7 2 )  the intersection of the cones l ( M )  and { v  E Rn : M v  E 
S(A)+) consists of only one element 0; 

(y3) the intersection of the cones l ( M ) ,  { v  E Rn : M v  E S(A)+)  
and 6(A) ,  consists of only one element 0.  

Examples given in the next section will show how the above 
sufficient conditions can be used in practice. 
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5.4 Linear Complementarity Problems 

We now consider a special case of the model (5.13) which plays a 
very important role in theory of finite-dimensional variational in- 
equalities and complementarity problems (see, for instance, Harker 
and Pang (1990) and Cottle et al. (1992)). 

Definition 5.7. Problem (5.13) with A = Rn+ and $(x) = Mx + q 
where M E Rnxn and q E Rn, is denoted by LCP(M,q) and is 
called the linear complementarity problem defined by M and q. The 
solution set of this problem is denoted by Sol(M, q). 

We can write LCP(M, q) as follows 

Thus LCP problem is a special case of the NCP problem where 
A = Rn+ and q5 is an affine operator. 

If 3 is a local solution of quadratic program (3.1) where A = R;, 
then 5 E R3 and, by Theorem 3.1, 

This amounts to saying that 3 is a solution of the linear comple- 
mentarity problem LCP(D, c) defined D and c. 

By Corollary 3.1, if 3 is a local solution of the quadratic program 
(2.26) then there exists X = (XI,. . . , Am) E Rm such that (3.8) holds. 
Setting 

M =  

we have M 
verified that 

E ~(n+m)  x (n+m) , q E Rn+m, 2 E Rn+m. It is easily 
(3.8) is equivalent to the system 

Thus (3.8) can be interpreted as a LCP problem. 
Definition 5.8. If A is a polyhedral convex cone and there exist 
M E Rnxn, q E Rn, such that $(x) = Mx + q for every z E A, then 
(5.13) is said to be a generalized linear complementarity problem. It 
is denoted by GLCP(M, q, A). 

From the above definition we see that generalized linear comple- 
mentarity problems are the AVI problems of a special type. Com- 
paring Definition 5.8 with Definition 5.7 we see at once that the 
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structure of GLCP problems is very similar to that of LCP prob- 
lems. This explains why many results concerning LCP problems 
can be extended to GLCP problems. 

It is easily seen that if in (5.15) one chooses A = R1;: then 
one obtains the linear complementarity problem LCP(M, q). Hence 
linear complementarity problems are the AVI problems of a special 
type. In this book, as a rule, we try first to prove theorems (on the 
solution existence, on the solution stability, etc.) for AVI problems 
then apply them to LCP problems. 

Theorem 5.5 can be specialized for LCP problems as follows. 

Proposition 5.6. (See Yen and Hung (2001), Theorem 2) The 
solution set of (5.33) is unbounded if and only if there exists a pair 
(v, uO) E Rn x Rn, v # 0, u0 E Sol(M, q), such that 

(ii) (Mu0 + q)'v = 0; 

(iii) (Mu, uO) = 0. 

Corollary 5.4 is specialized for LCP problems as follows. 

Corollary 5.5. Problem (5.33) has a compact solution set (possibly 
empty) if one of the following conditions is  satisfied: 

(yl) the cone Q(M) consists of only one element 0; 

(y2) the intersection of the cones Q(M) and {v E Rn : Mv 2 0) 
consists of only one element 0; 

(y3) the intersection of the cones Q(M), {v E Rn : Mv 2 0) and 
R"+ consists of only one element 0. 

Example 5.2. (See Yen and Hung (2001)) Consider problem (5.33) 

A direct computation shows that the intersection of the cones Q(M), 
{v : Mv > 0) and {v : v > 0), consists of only 0. By Corollary 
5.5, Sol(M, q) is a compact set. 

Observe that M in the above example is a nondegenerate matrix, 
so from the theory in Chapter 3 of Cottle et al. (1982), it follows 
that Sol(M, q) is a finite set. By definition, M = (a i j )  is said to be 
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a nondegenerate matr ix  if, for any nonempty subset a C (1, . . . , n), 
the determinant of the principal submatrix Ma, consisting of the 
elements aij (i E a, j E a) of M is nonzero. 

Example 5.3. (See Yen and Hung (2001)) Consider problem (5.13) 
with 

A direct computation shows that the intersection of the cones Q(M), 
{v : Mv 2 0) and {v : v 2 O), is.the set {v = (0,v2) E R2 : v2 L 
0). For verifying condition (ii) in Proposition 5.6, there is no loss 
of generality in assuming that v = (0 , l ) .  It is easy to show that 
there is no u0 > 0 such that (Mu0 + q ) T ~  = 0 and (Mu, uO) = 0. 
By Proposition 5.6, Sol(M, q) is a compact set. 

Example 5.4. (See Yen and Hung (2001)) Consider problem (5.13) 
with 

The intersection of the cones Q(M), {v : Mv 2 0) and {v : v 2 
0), is the set {v = (0, v2) E R2 : v2 2 0). It is easy to show 
that conditions (i)-(iii) in Proposition 5.6 are satisfied if we choose 
v = (0 , l )  and u0 = (1,O). By Proposition 5.6, Sol(M,q) is an 
unbounded set. 

5.5 Commentaries 

Problem (5.4) is finite-dimensional. Infinite-dimensional VI prob- 
lems are not studied in this book. Systematic studies on infinite- 
dimensional VI problems with applications to mathematical physics 
(obstacle problems, etc.) can be found, for example, in Kinderlehrer 
and Stampacchia (l98O), Rodrigues (1987). 

The important role of finite-dimensional VI problems and com- 
plementarity problems in mathematics and in mathematical appli- 
cations is well known (see, for instance, Harker and Pang (1990), 
Nagurney (1993), and Patriksson (1999)). 

A comprehensive theory on LCP problems was given by Cottle, 
Pang and Stone (1992). Several key results on LCP problems have 
been extended to the case of AVI problems. 
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The first volume of the book by Facchinei and Pang (2003) de- 
scribes the basic theory on finite-dimensional VI problems and com- 
plementarity problems, while its second volume concentrates on it,- 
erative algorithms for solving these problems. The book aims at 
being an enduring reference on the subject and at providing the 
foundation for its continued growth. 

Robinson (see Robinson (l979), Theorem 2, and Robinson ( l98l),  
Proposition 1) obtained two fundamental theorems on Lipschitz 
continuity of the solution map in general AVI problems, which he 
called the linear generalized equations. In Chapter 7 we will study 
these theorems. 



Chapter 6 

Solution Existence for 
Affine Variational 
Inequalities 

In this chapter, some basic theorems on the solution existence of 
affine variational inequalities will be proved. Different conditions 
on monotonicity of the linear operator represented by matrix M 
and the relative position of vector q with respect to the constraint 
set A and the recession cone O+A will be used in these theorems. 
As in the preceding chapter, we denote the problem 

Find Z E A  suchthat ( M Z + q , y - Z ) 2 0  V y E A  (6.1) 

by AVI(M, q, A). Here M E Rnxn, q E Rn, and A is a nonempty 
polyhedral convex set in Rn. 

6.1 Solution Existence under Monoto- 
nicity 

Consider problem (6.1). Since A is a polyhedral convex set, there 
exist m E N, A E Rmxn and b E Rm such that 

Theorem 6.1. (See Gowda and Pang (1994a), p. 432) If the 
following two conditions are satisfied 

(i) there exists Z E A such that ( M Z + q ) T ~  2 0 for every v E O+A; 
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(ii) ( y  - X ) ~ M ( ~  - x )  2 0 for all x E A and y E A ;  

then the solution set Sol(AVI(M, q, A)) is  nonempty. 

Let 

where I denotes the unit matrix in RmXm. Let 

where 

Consider the following auxiliary quadratic program 

Lemma 6.1. The set A is  nonernpty if and only if there exists 
Z E A such that (MZ  + q)Tv 2 0 for every v E O+A. 

Proof. Necessity: If b # 0 then there exists f = ( t )  E Rn+" 

such that 
M Z - A ~ ~ + ~ = O ,  A Z Z : ~ ,  X 2 0 .  (6.4) 

Let v E Ot A. By (6.2), we have Av 2 0. From (6.4) we deduce that 

Hence (MZ  + q ) T ~  = xTAv 2 0. 
Suf ic iency:  Suppose that there exists Z E A such that ( M z  + 

q ) T ~  2 0 for every v E O f  A = 6(A) .  Consider the following linear 
program 

min{cTy : y E A ) ,  (6.5) 

where c := MZ + q. From our assumption it follows that A # 0 and 
( M z  + q ) T ~  2 0 whenever v E Rn, Av 2 0. By Theorem 2.2, (6.5) 
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has a solution. According to Theorem 3.3, there exists X t Rm such 
that 

- A ~ X + C = O ,  X 2 0 .  (6.6) 

Since It. E A, we have AZ 2 b. Combining this with (6.6) we deduce 

that i := (;) belongs to 6. So 6 # 0. 0 

Lemma 6.2. If there exists Z E A such that (M2  + q)Tv 2 0 
for every v E O+A then the auxiliary quadratic program (6.3) has a 
solution. 

Proof. By Lemma 6.1, from the assumption it follows that 6 is 

nonempty. Let z = (;) t 6 We have 

So f (z) is bounded from below on 6. By the Frank-Wolfe Theorem 
(see Theorem 2.1), (6.3) has a solution. 0 

Proof of Theorem 6.1. 
By assumption (i) and by Lemma 6.2, the auxiliary quadratic 

problem (6.3) has a solution i = ( )  Hence, by Corollary 3.2 

there exist Lagrange multipliers 0 = (::) t RZm and t Rn such 
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that 
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\ ,  

A 0 ( o  I )  (F )  2 (;), 0 2 0 ,  

OT [(t Y )  ( t  ) - (;)I = O. 

This system can be written as the following one 

M T  AT ( Y  -iF) ( t )  + ( - A  0 ) ( F )  - (tT ;) (;t) -(s).+ (a) = o  
Ax: > b, X > 0 ,  o1 2 0 ,  o2 2 0 ,  
(01 )T (A5  - b) = 0 ,  (02)TX = 0. 

In its turn, the latter is equivalent to the system (6.7)-(6.10) below: 

From (6.7) and the inclusion 2 = (:) E i\ it follows that 

M T ( %  - p) = AT(# - X ) .  (6.11) 

From (6.8) it follows that 

A(z - p )  = Ax: - e2 - b. (6.12) 

=o + ( o ~ ) ~ X  - X T ( ~ z  - b) + 
=o 

= - X T ( ~ z  - b). 
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Hence, by virtue of (6.9), we have 

(3 - p,)?'MT(z - p,) = -(01)'02 - X T ( ~ l t :  - b) < 0. (6.13) 

From (6.8) it follows that 

So p, E A. Since 3 E A, we can deduce from assumption (ii) that 
(%-- p,)?'MT (3  - p,) > 0. Combining this with (6.9) and (6.13) gives 
X T ( ~ z  - b) = 0. Since (f) E 6, MP - A ~ X  + q = 0. Thus we have 
shown that 

M ~ - A ~ X + ~ = O ,  
A3 2 bb, X 2 0, 
X'(A3 - b) = 0. 

Then, according to Theorem 5.3, 5 E Sol(AVI(M, q, A)). 0 

Assumption (ii) is crucial for the validity of the conclusion of 
the above theorem. It is easily seen that (ii) is equivalent to the 
requirement that the operator q5 : A + Rn defined by setting $(x) = 

Mx + q is monotone on A (see Definition 5.2). 

Definition 6.1 (cf. Cottle et al. (1992), p. 176). By abuse of 
terminology, we say that matrix M E Rnxn is monotone on a closed 
convex set A c Rn if the linear operator corresponding to M is 
monotone on A,  that is 

Matrix M is said to be copositive on A if 

If M is copositive on R v h e n  one simply says that M is a copositive 
matrix. Matrix M is said to be strictly copositive on A if 

Remark 6.1. Monotonicity implies copositivity. But the reverse 
implication, in general, is false. Indeed, if (6.14) holds and if A is 
nonempty then, for any 3 E A and v E O+A, we have 
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Hence M is copositive on A. To show that in general copositivity 
does not imply monotonicity, we consider the following example. 
Let 

For every v E O'A = R: we have V ~ M V  2 0. So M is copositive 
on A. But M is not monotone on A. Indeed, choosing x = (0 , l )  
and y = ( l , O ) ,  we see that 

Remark 6.2. If intA # 0 then matrix M is monotone on A if 
and only if M is positive semidefinite. Indeed, it is clear that if 
M E Rnxn is a positive semidefinite matrix then, for any nonempty 
closed convex set A c Rn, M is copositive on A. On the other 
hand, if intA # 0 then there exists 3 E A and E > 0 such that 
B(3, E) C A. For every z t Rn there exists t > 0 such that y := 
17: + tz t B(3, E) C A. Then we have 

Hence zTMz 2 0 for every z t Rn 

Remark 6.3. It is clear that if M is strictly copositive on A then 
it is copositive on A. The converse is not true in general. For 

example, if A = R: and M = ( i) , then M is copositive but 

not strictly copositive on A. Indeed, choosing = (0 , l )  we see that 
v E O+A \ (0) = R: \ (0) but vTMv = 0. 

We now consider a simple example to see how Theorem 6.1 can 
be used. 

Example 6.1. Let 

Theorem 6.1 can be applied to this problem. Indeed, since M is 
monotone on A, it suffices to show that there exists 3 E A such 
that (M3  + q ) T ~  2 0 for every v E O+A. If q1 < 0 then ? = 
(-ql, 0) satisfies the last condition. If ql > 0 then 3 = (0,O) satisfies 
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that condition. Further investigation on the problem shows that 
Sol(AVI(M, q, A)) = {(-ql,O)) if ql < 0 and Sol(AVI(M, q, A)) = 

((0,O)) if 91 2 0. 
From Theorem 6.1 it is easy to deduce the following result. 

Theorem 6.2. (See Gowda and Pang (1994a), Theorem 1) If M 
is a positive semidefinite matrix and there exists Z L: A such that 
(MZ + q ) T ~  2 0 for every v L: O+A, then problem (6.1) has a 
solution. 

Corollary 6.1. (See Cottle et al. (1982), Theorem 3.1.2) Suppose 
that M is a positive semidefinite matrix. Then the linear comple- 
mentarity problem LCP(M,q) has a solution if and only i f  there 
exists 5 such that 

5 2 0 ,  M Z + q > O .  (6.17) 

Proof. Put A = Rn+. Note that (M5 + q)Tv 2 0 for every v L: 
O+A = Rn+ for some 3 L: A if and only if there exists 3 satisfying 
(6.17). Applying Theorem 6.2 we obtain the desired conclusion. 
0 

In the terminology of Cottle et al. (1992), if there exists 3 L: Rn 
satisfying (6.17) then problem LCP(M, q) is said to be feasible. The 
set of all 3 L: En satisfying (6.17) is called the feasible region of 
that problem. Corollary 6.1 asserts that a linear complementarity 
problem with a positive semidefinite matrix M is solvable if and only 
it is feasible. 

6.2 Solution Existence under Copositiv- 
ity 

In this section we obtain some existence theorems for the AVI prob- 
lem (6.1) where M is not assumed to be monotone on A. It is 
assumed only that M is copositive on A. 

We first establish an existence theorem under strict copositivity. 

Theorem 6.3. If matrix M is strictly copositive on a nonempty 
polyhedral convex set A then, for any q E Rn, problem AVI(M, q, A) 
has a solution. 

The following auxiliary fact shows that the strict copositivity as- 
sumption in the above theorem is, in fact, equivalent to a coercivity 
condition of the form (5.7). 
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Lemma 6.3. Matrix M E RnXn is strictly copositive on a nonempty 
polyhedral convex set A C Rn zf and only if there exists xO E A such 
that 

(My - MxO, y - xO) 
-+ +oo as llyll -f +m, y E A. (6.18) 

I I Y  - xOll 

Proof. Necessity: Suppose that A is nonempty and M is strictly 
copositive on A. If O+A = (0) then, according to Theorem 8.4 
in Rockafellar (1970), A is compact. So, for an arbitrarily chosen 
xO E A, condition (6.18) is satisfied. Now consider the case where 
O+A # (0). select any xO E A. We claim that (6.18) is valid. On 
the contrary, suppose that (6.18) is false. Then there must exist 
y > 0 and a sequence iy" C A such that l ly"I + +oo and 

Since A is a nonempty polyhedral convex set, by Theorems 19.1 and 
19.5 from Rockafellar (1970) one can find a compact set K C A such 
that 

A = K + O+A. 

Hence, for each k E N there exist uk E K and vk E O+A such that 
y" uk + vk. It is easily seen that llvk 1 1  1 +m. Therefore, without 
loss of generality we can assume that 

for some ?i E A and v E O+A with I ~ z I I  = 1. From (6.19) it follows 
that 

for all k E N. Letting k t oo, from the above inequality we obtain 

which contradicts the assumed strict copositivity of M on A. We 
have thus proved that (6.18) is valid. 

Suficiency: Suppose that there exists xO E A such that (6.18) 
is fulfilled. Let v E O+A \ (0) be given arbitrarily. Since y(t) := 
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xO + tv E A for every t > 0 and IIy(t)ll + +m as t -f +m,  
substituting y = y(t) into (6.18) gives 

This implies that vTMv = (Mu, v) > 0. We have thus shown that 
M is strictly copositive on A. 0. 

Proof of Theorem 6.3. 
Suppose that M is strictly copositive on A and q E Rn is an 

arbitrarily given vector. Consider the affine operator 4(x) = Mx + 
q. Applying Lemma 6.3 we can assert that there exists xO E A 
such that the coercivity condition (5.17) is satisfied. According to 
Theorem 5.2, problem VI(4, A) has solutions. Since the latter is 
exactly the problem AVI(M, q, A),  the desired conclusion follows. 
0 

One can derive Theorem 6.3 directly from Theorem 5.1 without 
appealing to Theorem 5.2 and Lemma 6.3. 

Another proof of Theorem 6.3. 
Suppose that A # 0, M is strictly copositive on A,  and q E Rn 

is given arbitrarily. Let m E N,  A E RmXn and b E Rm be such that 
A has the representation (6.2). Then O+A = {v E Rn : Av 2 0) 
(see Rockafellar (1970), p. 62). Select a point xO E A. For each 
k E N,  we set 

A, = A n { x = ( x l ,  . . . ,  X, )E Rn : x p - k ~ x ~ ~ x p + k  
for every i = 1,2, .  . . , n). 

(6.20) 
It is clear that, for every k E N ,  .Ak is a nonempty, compact, poly- 
hedral convex set. Given any k E N,  we consider the problem 
AVI(M, q, A,). According to the Hartman-Stampacchia Theorem 
(see Theorem 5.1), Sol(AVI(M,q,Ak)) # 0. For each k E N,  se- 
lect a point xk e Sol(AVI(M, q, Ak)). We claim that the sequence 
{xk) is bounded. To obtain a contradiction, suppose that {xk) is 
unbounded. Without restriction of generality we can assume that 
xk # 0 for all k, IlxkII t +m as k --+ m ,  and there exists E Rn 
such that 
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Since xO E Ak for every k E N,  we have 

or, equivalently, 

Dividing the inequality in (6.21) by 1 1 ~ ~ 1 1 ~  and letting k -+ oo we 

get 
0 > ( M D , ~ ) .  (6.22) 

Since xk E A, we have Axk > b. Dividing the last inequality by 
IIx"I and taking the limit as k -+ oo we obtain A3 > 0. This shows 
that v E O+A. Since 1 1 ~ 1 1  = 1, (6.22) contradicts the assumed strict 
copositivity of M on A. We have thus proved that the sequence 
{xk} is bounded. There is no loss of generality in assuming that 
xk -+ 3 for some 3 E A. For each x E A one can find and index 
k, E N such that x E Ak for all k > k,. Consequently, for every 
k > k,, it holds 

(Mxk + q , x  - xk) > 0. 

Letting k -+ oo we obtain 

Since the last inequality is valid for any x E A, we conclude that 
3 E Sol(AVI(M, q, A)). The proof is complete. 

Example 6.2. Let 

In Remark 6.1 we have observed that M is not monotone on A. 
However, M is strictly copositive on A. Indeed, since A is a cone, 
we have O+A = A. For any nonzero vector v = (vl, v2) E O+A = R: 
it holds 

V ~ M V  = v; + 4v1v2 + vi > 0. 

This shows that M is strictly copositive on A. According to The- 
orem 6.3, for any q E R2, problem AVI(M, q, A) is solvable. Note 
that Theorem 6.1 cannot be applied to this problem because M is 
not monotone on A. 
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In the following existence theorem we need not to assume that 
the matrix M strictly copositive on A. Instead of the strict copos- 
itivity, a weaker assumption is employed. 

Theorem 6.4. If matrix M is copositive on a nonempty polyhedral 
convex set A and there exists no v E Rn \ (0) such that 

then, for any q E Rn, problem AVI(M, q,  A) has a solution. 

Proof. Suppose that A # 0, M is copositive on A and there exists 
no fl E Rn \ (0) satisfying (6.23). Suppose that q E Rn is given 
arbitrarily. Let m E N ,  A E RmXn and b E Rm be such that A has 
the representation (6.2). Then O+A = {v E Rn : Av 2 0). Let 
xO E A. For each k E N,  we define 

A, = A n B(xO, k). (6.24) 

Note that, for every k E N,  Ak is a nonempty, compact, convex set. 
Given any k E N ,  we consider the VI problem 

Find x E A, such that (Mx + q, y - x) 2 0 b'y E Ak 

and denote its solution set by Sol(VI((M, q, A,)). By Theorem 
5.1, Sol(VI((M, q, Ak)) # 0. For each k E N,  select a point 2% 

Sol(VI((M, q, A,)). We claim that the sequence {xk) is bounded. 
Suppose, contrary to our claim, that 1 x 9  is unbounded. There is 
no loss of generality in assuming that xk # 0 for all k, llxkll -+ +a 
as k --+ co, and there exists .Ij E Rn such that 

Since xO E A, for every k E N ,  we have 

As in the second proof of Theorem 6.3, from the last property we 
deduce that 

0 2 (M f l , ~ ) .  
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Since xk E A, we have Axk 2 b for every k E N. This implies 
As 2 0. So .rj E O+A. Since M is copositive on A,  from what has 
already been said it follows that 

For any w E Of A \ {0), from (6.24) and the fact that xO + t w  E A 
for every t > 0 we deduce that 

Since xk E Sol(VI((M, q, Ak)), we have 

Dividing this inequality by 11xkl12, letting k --t oo and noting that 

lim ' I x k  - x0 -+ 1, by virtue of (6.25) we obtain Ms ,  - 
llxk l l  ( 11:11) ' O. 

Hence (Mv, w) 2 0 for every w E OfA. This means that MG E 
(O+A)+. We see that vector .is E Rn \ (0) satisfies all the three 
conditions described in (6.23). This contradicts our assumption. 
We have thus proved that the sequence {x" is bounded. Without 
loss of generality we can assume that x b  3 for some Z E A. For 
each x E A there exists k, E N such that x E Ak for all k 2 k,. 
Consequently, for every k 2 k,, we have (Mx" q, x - xk) 2 0. 
Letting k --t oo we obtain (MZ + q, x - 3) 2 0. Since this inequality 
holds for any x E A, we can assert that Z E Sol(AVI(M, q, A)). The 
proof is complete. 

Example 6.3. Let M and A be the same as in Example 6.1. It is a 
simple matter to verify that there exists no fl E Rn \ (0) satisfying 
the three conditions in (6.23). Since M is copositive on A, Theorem 
6.4 asserts that, for any q = (ql, q2) E R2, problem AVI(M, q, A) 
has a solution. 

In the sequel, sometimes we shall use the following simple fact. 

Lemma 6.4. Let K c Rn be a nonempty closed cone. Let q E Rn. 
Then q E intK+, where intKf denotes the interior of the positive 
dual cone Kf of K ,  zf and only if 
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Proof. Suppose that q E intK+. If there exists ?j E K \ (0) such 
that ?jTq 5 0 then aTq = 0 because the condition q E K +  implies 
that vTq 2 0 for every v E K.  From this we see that the linear 
functional J -t ?jTJ achieves its global minimum on K +  at q. As 
q E intK+, there exists e > 0 such that B(q, E )  c K+. Then 

This implies that ?j = 0, a contradiction. We have thus proved that 
if q E intK+ then (6.26) is valid. 

Conversely, assume that (6.26) holds. To obtain a contradiction, 
suppose that q @ intK+. Then there exists a sequence {q" in 
Rn \ K +  such that qk 4 q. Consequently, for each k E N there 
exists v" K such that ( ~ " ~ q "  0. Without loss of generality we 

vk 
can assume that - t ?j with 112111 = 1. We have 

llvk 11 

Taking the limits as k + oo we obtain vTq 5 0 and ?j E K ,  contrary 
to (6.26). 

In the case where A is a cone, we have the following existence 
theorem. 

Theorem 6.5. Assume that A is a polyhedral convex cone. If 
matrix M is  copositive on A and 

then problem AVI(M, q, A) has a solution. 

Note that AVI(M, q, A) is a generalized linear complementarity 
problem (see Definition 5.8). From the definition it follows that 
v E Sol(AVI(M, 0, A)) if and only if 

Hence, applying Lemma 6.4 to the cone K : = Sol(AVI(M, 0, A)) we 
see that condition (6.27) is equivalent to the requirement that there 
exists no ?j E Rn \ (0) such that 
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Proof of Theorem 6.5. 
Suppose that A is a polyhedral convex cone, M is copositive on 

A,  and q is such that (6.27) holds. For each k E N ,  we set 

Ak = A n {x E Rn : -k xi 5 k for every i = 1,2 , .  . . ,n). 

It is clear that, for each k E N,  0 E Ak and Ak is a compact, 
polyhedral convex set. Consider the problem AVI(M, q, Ak). By 
Theorem 5.1, we can find a point xk E Sol(AVI((M, q, Ak)). If the 
sequence {xk} is unbounded then without loss of generality we can 
assume that xk # 0 for all k, IIx"I I +w as k -f w, and there 
exists .iS E Rn such that 

Since 0 E Ak, we have 

Hence 
-qTx'" 2 ( x ~ ) ~ M x ~  (Vk E N). (6.29) 

Dividing the inequality in (6.29) by 1 1 ~ ~ 1 1 ~  and taking limits as k -+ 

oo we get 
0 2 V ~ M E .  (6.30) 

It is clear that ij E A. Since M is copositive on A,  we have vTMv > 
0 for every v E A. Combining this fact with (6.30) yields 

From (6.29) and the copositivity of M on A it follows that -qTxk ) 
0 for every k E N .  This implies that 

Fix any w E A \ (0). It is evident that 

Since x'" E Sol(AVI(M, q, Ak)), we have 
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From this and (6.31) we deduce that (Ma, w) > 0. Since the last 
inequality is valid for every w E A \ {0), we see that Ma  E A+. 
Combining this with (6.31) and (6.32) we can assert that (6.28) is 
satisfied. Then (6.27) is false. We have arrived at a contradiction. 
Thus the sequence {xk} must be bounded. Analysis similar to that 
in the final part of the proof of Theorem 6.4 shows that problem 
AVI(M, q, A)  has a solution. 0 

Example 6.4. Let 

Theorem 6.5 can be applied to the problem AVI(M, q, A). Indeed, 
we have 

T MU = U; - U; = o WJ E o+n = A. 

This shows that M is copositive on A. Furthermore, we have 

Therefore 

qTv = v1 + 212 > 0 Vv = (vl, v2) E Sol(AVI(M, 0, A)) \ (0). 

So (6.27) is satisfied. By Theorem 6.5, problem AVI(M, q, A) is 
solvable. In fact, we have 

It is worth pointing that, since M is not strictly copositive on A, 
Theorem 6.3 cannot be applied to this problem. Since all the three 
conditions described in (6.23) are satisfied if one chooses 8 = (1,l) E 
R2 \ {0), Theorem 6.4 also cannot be applied to this problem. 

Remark 6.4. In the case where A is a polyhedral convex cone, 
the conclusion of Theorem 6.4 follows from Theorem 6.5. Indeed, 
in this case, under the assumption of Theorem 6.4 we have 

Sol(AVI(M, 0, A)) = (0). 

Hence [Sol(AVI(M, 0, A))]+ = Rn. So (6.27) is satisfied for any 
q E Rn. By Theorem 6.5, problem AVI(M, q, A) is solvable. 
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Applying Theorem 6.5 to LCP problems we obtain the following 
corollary. 
Corollary 6.2. If M is  a copositive matrix and 

q E int([Sol(M, O)]'), (6.33) 

then the problem LCP(M, q) has a solution. 
Note that condition (6.33) is stronger than condition (6.34) in 

the following existence theorem for LCP problems. 
Theorem 6.6. (See Cottle et al. (1992), Theorem 3.8.6) If M is  a 
copositive matrix and 

4 E [Sol(M, 0)1+, (6.34) 

then problem LCP(M, q) has a solution. 
It is clear that (6.34) can be rewritten in the following form: 

Meanwhile, by Lemma 6.4, condition (6.33) is equivalent to the 
following one: 

[ V E  Rn\{O), v 2 0 ,  M U L O ,  v T ~ v = O ]  [ q T ~ > O ] .  

In connection with Theorems 6.5, the following open question 
seems to be interesting. 

QUESTION: Whether the conclusion of Theorem 6.5 is still valid if 
in the place of (6.27) one uses the following weaker condition 

Note that the last inclusion can be rewritten in the form: 

6.3 Commentaries 

In this chapter, we have considered a variety of solution existence 
theorems for affine variational inequalities. Here the compactness 
of the constraint set A is not assumed. But we have to employ a 
monotonicity property of the matrix M with respect to A. Namely, 
we have had deal with the monotonicity, the strict monotonicity, 
and the copositivity of M w.r.t. A. 

The interested reader is referred to Gowda and Pang (1994a) for 
an insightful study on existence theorems for AVI problems. 



Chapter 7 

Upper-Lipschitz Continuity 
of the Solution Map in 
Affine Variational 
Inequalities 

In this chapter we shall discuss two fundamental theorems due to 
Robinson (1979, 1981) on the upper-Lipschitz continuity of the so- 
lution map in affine variational inequality problems. The theorem 
on the upper-Lipschitz continuity of the solution map in linear com- 
plementarity problems due to Cottle et al. (1992) is also studied 
in this chapter. The Walkup-Wets Theorem (see Walkup and Wets 
(1969)), which we analyze in Section 7.1, is the basis for obtaining 
these results. 

7.1 The Walkup-Wets Theorem 

Let A c Rn be a nonempty subset. Let T : Rn --t Rm be an affine 
operator; that is there exist a linear operator A : Rn -t Rm and a 
vector b E Rm such that T(X) = Ax + b for every x E Rn. Define 

Definition 7.1. (See Walkup and Wets (1969), Definition 1) A 
subset A C Rn is said to have property Cj  if for every affine operator 
T : Rn --t Rm, m E N, with dim(ker(r)) = j ,  the inverse mapping 
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y + A(y) is Lipschitz on its effective domain. This means that 
there exists a constant ! > 0 such that 

A(Y') C A(Y) + lll~' - yllB~n whenever A(y) # 0, A(yf) # 0. 
(7.2) . . 

In the above definition, dim(ker(r)) denotes the dimension of 
the affine set 

ker(r) = { x  E Rn : T(X) = 0). 

The following theorem is a key tool for proving other results in 
this chapter. 

Theorem 7.1 (The Walkup-Wets Theorem; see Walkup and Wets 
(1969), Theorem 1). Let A c Rn be a nonempty closed convex set 
and let j E N ,  1 5 j 5 n - 1. Then A is a polyhedral convex set if 
and only if it has property Cj .  

In the sequel, we will use only one assertion of this theorem: If A 
is a polyhedral convex set, then it has property C j .  A detailed proof 
of this assertion can be found in Mangasarian and Shiau (1987). 

Corollary 7.1. If A C Rn is a polyhedral convex set and if T : 
Rn t Rm is an af ine operator, then there exists a constant ! > 0 
such that (7.2), where A(y) is defined by (7.1) for all y E Rn, holds. 
Proof. If j := dim(ker(r)) satisfies the condition 1 5 j 5 n - 1, 
then the conclusion is immediate from Theorem 7.1. If dim(ker(r)) = 
n then ker(r) = Rn, and we have 

This shows that (7.2) is fulfilled with any ! > 0. We now suppose 
that dim(ker(7)) = 0. Let T(X) = Ax + b, where A : Rn + Rm 
is a linear operator and b E Rm. Since T is an injective mapping, 
Y := r (Rn) is an affine set in Rm with dimY = n, and that n 5 m. 
Likewise, the set & := A(Rn) is a linear subspace of Rm with 
dim& = n. Let 2 : Rn + Yo be the linear operator defined by 
setting x x  = Ax for every x E Rn. It is easily shown that 

for every y E Y and y' E Y. From this we deduce that (7.2) is 
satisfied with ! := 112-' 11. 0 

Remark 7.1. Under the assumptions of Corollary 7.1, for every 
y E Rm, A(y) is a polyhedral convex set (possibly empty). 
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Remark 7.2. The conclusion of Theorem 7.1 is not true if one 
chooses j = 0. Namely, the arguments described in the final part of 
the proof of Corollary 7.1 show that any nonempty set A C Rn has 
property Lo Similarly, the conclusion of Theorem 7.1 is not valid 
if j = n. 

Corollary 7.2. For any nonempty polyhedral convex set A C Rn 
and any matrix C E RSXn there exists a constant ! > 0 such that 

A(C, d") C A(C, dl) + ![Id" - d'll BRn 

whenever A(C, dl) and A(C, dl1) are nonempty; where 

for every d E RS. 
Proof. Set T(X) = Cx. Since 

where A(y) is defined by (7.1), applying Corollary 7.1 we can find 
! > 0 such that the Lipschitz continuity property stated in (7.3) is 
satisfied. 0 

Corollary 7.3. For any nonempty polyhedral convex set A C Rn, 
any matrix A E Rmxn and matrix C E RSXn there exists a constant 
! > 0 such that 

A(A, C, b", d") C A(A, C, b', dl) + !(llbU - blII + [Id" - dlII)BRn (7.4) 

whenever A(A, C, b', d') and A(A, C, b", dl') are nonempty; where 

for every b E Rm and d E RS. 
Proof. Define 

where E denotes the unit matrix in RmXm and 0 denotes the null 
in RSXm. Let 
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By Corollary 7.2, there exists ! > 0 such that 

- - - - 
whenever A(C, b', dl) # 8 and A(C, b", d") # 0, where 

Since 

A(A,C,b,d) = { x E A :  - - 3 w e R m ,  ~ 2 0 ,  A X - w = b ,  C x = d )  
= PrRn (A(C, b, d)) 

where P r p ( x ,  W) = x for every (x, w) E Rn x Rm, we see at once 
that (7.5) implies (7.4). 

7.2 Upper-Lipschitz Continuity with re- 
spect to Linear Variables 

The notion of polyhedral multifunction was proposed by Robinson 
(see Robinson (1979, 1981). We now study several basic facts con- 
cerning polyhedral multifunctions. 

Definition 7.2. If @ : Rn + 2Rm is a multifunction then its graph 
and effective domain are defined, respectively, by setting 

Definition 7.3. A set-valued mapping @ : Rn + 2Rm is called a 
polyhedral multifunction if its graph can be represented as the union 
of finitely many polyhedral convex sets in Rn x Rm. 

The following statement shows that the normal-cone operator 
corresponding to a polyhedral convex set is a polyhedral multifunc- 
tion. 

Proposition 7.1. (See Robinson (1981)) Suppose that A c Rn is 
a nonempty polyhedral convex set. Then the formula 

@(x) = NA (x) (x E Rn) 

defines a polyhedral multifunction @ : Rn + 2Rn 
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Proof. Let m E N ,  A E RnXn and b E Rm be such that A = {x E 
Rn : Ax 2 b). Set I = (1,. . . ,m).  Let 

F, = {x E Rn : A,x = b,, AI\,x > bq,) 

be the pseudo-face of A corresponding to an index set a, C I. For 
every x E F, we have 

(See the proof of Theorem 4.2.) Since 

NA (x) = {J E Rn : (J, V) I 0 'dv E Tn (x) ) , 

we have J E Na(x) if and only if the inequality (J, v) < 0 is a con- 
sequence of the inequality system A,v > 0. Consequently, applying 
Farkas' Lemma (see Theorem 3.2) we deduce that J E Na(x) if and 
only if there exist XI 2 0, .  . . , A, 2 0 such that 

where Ai denotes the i-th row of matrix A. (Note that if a = 8 
and x E Fa, then x E intA; hence J = 0 for every J E NA(x).) 
Define 

Obviously, R, C graph@. Note that 

R, = {(x, J) E Rn x Rn : A,x = b,, AI\,X > b1\,, 
( = C,,, &(-AT) for some A, E R?'}. 

is a convex set. Here la1 denotes the number of elements in a. It 
is easily seen that the topological closure 2, of R, is given by the 
formula 

where PrRnxRn (x, J,  A,) = (x, J). It is clear that the set in the last 
curly brackets is a polyhedral convex set. From this fact, the above 
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formula for n, and Theorem 19.1 in Rockafellar (1970) we deduce 
that 2, is a polyhedral convex set (see the proof of Theorem 4.3). 
Since A = UacI Fa, we have 

Observe that graph@ is a closed set. Indeed, suppose that {(xk, Jk)) 
k k  is a sequence satisfying (xk, Jk) 4 (3, f) E Rn x Rn, and (x , J ) E 

graph@ for every k E N. On account of formula (1.12), we have 

Fixing any y E A and taking limit as k t oo, from the last inequal- 
ity we obtain (f, y - Z) < 0. Since this inequality holds for each 
y E A, we see that f E NA(3). Hence (3, f )  E graph@. We have 
thus proved that the set graph@ is closed. On account of this fact, 
from (7.6) we deduce that 

This shows that graph@ can be represented as the union of finitely 
many polyhedral convex sets. The proof is complete. 0 

The following statement shows that the solution map of a para- 
metric affine variational inequality problem is a polyhedral multi- 
function (on the linear variables of the problem). 

Proposition 7.2. Suppose that M E RnXn, A E Rmxn and C E 
RSXn are given matrices. Then the fomnula 

where (q, b, d) E Rn x Rm x RS, A(b, d) := {x E Rn : Ax > b, Cx = 

d) and Sol(AVI(M, q, A(b, d))) denotes the solution set of problem 
(6.1) with A = A(b, d), defines a polyhedral multifunction 

Proof. According to Corollary 5.2, x E Sol(AVI(M, q, A(b, d))) if 
and only if there exist X = (A1, . . . , Am) E Rm and p = (pl ,  . . . , p,) E 
RS such that 

M X - A ~ A - C ~ ~ + ~ = O ,  
Ax 2 b, Cx = d, X > 0, (7.7) 
XT(AX - b) = 0. 
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Let I = { I , .  . . , m). For each index set a c I, we define 

where 

Pr1(x, q,b, d, A, p) = (x, 9, b, d) 

for all (x, q, b, d, A ,  p) E Rn x Rn x Rm x RS x Rm x RS. Hence Q, 
is a polyhedral convex set. Note that 

graph@ = u Q,. 
a C I  

Indeed, for each (x, q, b, d) E graph@ we have 

x E Sol(AVI(M, q, A(b, d))). 

So there exist A = (A1,. . . , A m )  E Rm and p = (p l , .  . . ,ps)  E RS 
satisfying (7.7). Let a = {i E I : Aix = bi). For every i E I \ a, we 
have Aix > bi. Then from the equality Ai(Aix - bi) = 0 we deduce 
that Xi = 0 for every i E I \ a. On account of this remark, we see 
that (x, q, b, d, A, p) satisfies all the conditions described in the curly 
braces in formula (7.8). This implies that (x, q, b, d) E Q,. We thus 

get 
graph@ C U Qa. 

a C I  

Since the reverse inclusion is obvious, we obtain formula (7.9), which 
shows that graph@ can be represented as the union of finitely many 
polyhedral convex sets. 

Theorem 7.2. (See Robinson (l98l), Proposition 1) If Q, : Rn -t 
2Rm is a polyhedral multifunction, then there exists a constant e > 0 
such that for every 3 t. Rn there is a neighborhood U3 of 3 satisfying 

Definition 7.4. (See Robinson (1981)) Suppose that @ : Rn -t 
2Rm is a multifunction and 3 z: Rn is a given point. If there exist 
e > 0 and a neighborhood Uz of Z such that property (7.10) is valid, 
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then @ is said to be locally upper-Lipschitz at 3 with the Lipschitz 
constant !. 

The locally upper-Lipschitz property is weaker than the locally 
Lipschitz property which is described as follows. 

Definition 7.5. A multifunction @ : Rn t 2Rrn is said to be 
locally Lipschitx at 3 E Rn if there exist a constant ! > 0 and a 
neighborhood Uz of Z such that 

@(x) C @(u) +!llx 'dx E U,,Vu E U,. 

If there exists a constant ! > 0 such that 

for all x and u from a subset R C Rn, then @ is said to be Lipschitz 
on 0. 

From Theorem 7.2 it follows that if @ is a polyhedral multi- 
function then it is locally upper-Lipschitz at any point in Rn with 
the same Lipschitz constant. Note that the diameter diamUZ := 
sup{ll y - xll : x E U,, y E U,} of neighborhood UZ depends on 3 
and it can change greatly from one point to another. 

Proof of Theorem 7.2. 
Since @ is a polyhedral multifunction, there exist nonempty 

polyhedral convex sets Qj C Rn x Rm ( j  = 1, .  . . , k) such that 

where J = (1, . . . , k). For each j E J we consider the multifunction 
Qj : Rn -+ 2Rrn defined by setting 

Obviously, graphaj = Qj. From (7.11) and (7.12) we deduce that 

graph@ = u graph@j, @(a) = U Oj (x). 
j€ J j€ J 

CLAIM 1. For each j E J there exists a constant tj > 0 such that 
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whenever Qj(x) # 0 and Qj(u) # 0. (This means that Qj is Lips- 
chitz on its eflective domain.) 

For proving the claim, consider the linear operator T : Rn x 
Rm t Rn defined by setting T(X, y) = x for every (x, y) E Rn x Rm. 
Let 

Qj(x) = {Z E Qj : T(.z)=x). (7.14) 

By Corollary 7.1, there exists -ej > 0 such that 

whenever Qj(x) # 0 and Qj(u) # 0. From (7.12) and (7.14) it 
follows that 

Qj  (x) = {x) x Qj (x) YX E Rn. (7.16) 

In particular, Qj  (x) # 0 if and only if (Pj (x) # 0. Given any x E Rn, 
u E Rn and y E (Pj (x), from (7.15) and (7.16) we see that there exist 
v E Q(u) such that 

Since II(x, y) - (u, v)ll = (111 - u1I2 + Ily - V I I ~ ) ~ ' ~ ,  the last inequality 
implies that ( 1  y - vll 5 tj llx - ulI. From what has already been 
proved, it may be concluded that (7.13) holds whenever a j (x )  # 0 
and (Pj(u) # 0. 

We set e = max{lj : j E J ) .  The proof will be completed if we 
can establish the following fact. 

CLAIM 2. For each 5 E Rn there exists a neighborhood U5 of 3 such 
that (7.10) holds. 

Let f E Rn be given arbitrarily. Define 

Since domQj = r (Qj) ,  where T is the linear operator defined above, 
we see that domQj is a polyhedral convex set. This implies that 
the set UjEJ1 dom(Pj is closed. (Note that if J1 = 0 then this set is 
empty.) As f $ UjEJl domQj, there must exist E > 0 such that the 
neighborhood U5 := B(3, E) of 3 does not intersect the set 
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Let x E Uz. If x $! UjtJodomQj, then 

So the inclusion (7.10) is valid. If x E Uj, Jo domQj, then we have 

where JA = {j E Jo : x E domQj). For each j E JL, according to 
Claim 1, we have 

Claim 2 has been proved. 
Remark 7.3. From the proof of Theorem 7.2 it is easily seen that 
Q is Lipschitz on the set njE domQj with the Lipschitz constant Q. 

Combining Theorem 7.2 with Proposition 7.2 we obtain the next 
result on upper-Lipschitz continuity of the solution map in a general 
AVI problem where the linear variables are subject to perturbation. 
Theorem 7.3. Suppose that M E RnXn, A E RmXn and C E RsXn 
are given matrices. Then there exists a constant Q > 0 such that the 
multzfunction Q : Rn x Rm x RS -+ 2Rn defined by the formula 

where (q, b,d) E Rn x Rm x RS and A(b,d) := {x E Rn : Ax 2 
b, Cx = d ) ,  is locally upper-Lipschitz at any point (q, z, d) E Rn x 
Rm x Rs with the Lipschitz constant Q. 

Applying Theorem 7.3 to the case where the constraint set A(b, d) 
of the problem AVI(M, q, A (b, d ) )  is fixed (i.e., the pair (b, d )  is not 
subject to perturbations), we have the following result. 
Corollary 7.4. Suppose that M E RnXn is a given matrix and 
A c Rn is a nonempty polyhedral convex set. Then there exists a 
constant Q > 0 such that the multifunction Q : Rn -+ 2Rn defined by 
the formula 

Q(9) = Sol(AVI(M q, A)), 
where q E Rn, is locally upper-Lipschitz at any point tj E Rn with 
the Lipschitz constant Q. 
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7.3 Upper-Lipschitz Continuity with re- 
spect to all Variables 

Our aim in this section is to study some results on locally upper- 
Lipschitz continuity of the multifunction @ : RnXn x Rn --t 2Rn 
defined by the formula 

where Sol(AVI(M, q, A)) denotes the solution set of the problem 
(6.1). First we consider the case where A is a polyhedral convex 
cone. Then we consider the case where A is an arbitrary nonempty 
polyhedral convex set. 

The following theorem specializes to Theorem 7.5.1 in Cottle et 
al. (1992) about the solution map in parametric linear complemen- 
tarity problems if A = R:. 
Theorem 7.4. Suppose that A C Rn is a polyhedral convex cone. 
Suppose that M E Rnxn is a given matrix and q E Rn is a given 
vector. If M is copositive on A and 

q E int ([SO~(AVI(M, 0, A))]+) , (7.17) 

then there exist constants e > 0, 6 > 0 and ! > 0 such that if 
( z ,  9 E RnXn x Rn, R is copositive on A, and if 

then the set s ~ ~ ( A v I ( G ,  F, A)) is nonempty, 

s O ~ ( A V I ( ~ ,  F7 A)) C 6 8 ~ .  , (7.19) 

and 

SO~(AVI(Z,  F, A)) c Sol(AVI(M, q1 A))+e(l lW-~11 + ~ l ~ - q l l ) ~ ~ n .  
(7.20) 

Proof. Suppose that M is copositive on A and (7.17) is satisfied. - 
Since A is a polyhedral convex cone, we see that for every (M,  E 
RnXn x Rn the problem AVI(%, ?,9 A) is an GLCP. In particular, 
AVI(M, 0, A) is a GLCP problem and we have 



130 7. Upper-Lipschi t z  Continuity o f  the Solution Map 

Since Sol(AVI(M, 0, A)) is a closed cone, Lemma 6.4 shows that 
(7.17) is equivalent to the following condition 

q T ~  > 0 'dv E Sol(AVI(M, 0, A)) \ (0). (7.21) 

CLAIM 1. There exists s > 0 such that i f  ( z ,  9 E RnXn x Rn, is 
copositive on A, and if (7.18) holds, then the set S O ~ ( A V I ( ~ ,  F, A)) 
is nonempty. 

Suppose Claim 1 were false. Then we could find a sequence 
{(Mk, qk)) in Rnxn x Rn such that M%S copositive on A for every 
k E N,  (M" qk) t (M, q) as k -t oo, and sol(Av1(Mk7 qk, A)) = 0 
for every k E N. According to Theorem 6.5, we must have 

qk $ int ( [so~(AvI(M~,o,A))]+) 'dk E N. 

Applying Lemma 6.4 we can assert that for each k E N there exists 
vk E Sol(AVI(Mk, 0, A)) \ (0) such that (q"T~k < 0. Then we have 

for every k E N. Without loss of generality we can assume that 

From (7.22) it follows that 

Taking limits as k t oo we obtain 

Zi E A, MU E A', (Mz, 6) = 0. 

k T  k This shows that ij E Sol(AVI(M, 0, A)). Since (q ) v 5 0, we see 
v lc < 0 for every k E N. Letting k t oo yields qTv 5 0. that ( q V T j q  - 

Since Zi E Sol(AVI(M, 0, A)) \ (01, the last inequality contradicts 
(7.21). We have thus justified Claim 1. 

CLAIM 2. There exist E > 0 and b > 0 such that if ( W , a  E 
Rnxn x Rn, z is copositive on A, and if (7.18) holds, then inclusion 
(7.19) is satisfied. 
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To obtain a contradiction, suppose that there exist a sequence 
{(Mk, qk)) in Rnxn x Rn and a sequence {xk) in Rn such that Mk  
is copositive on A for every k E N,  xk E Sol(AVI(Mk, qk,A)) for 
every k E N,  (Mk,q" + (M,q) as k + oo, and Ilxkll + +oo as 
k + oo. Since xk E SO~(AVI(M" qk, A)),  we see that 

for every k E N. There is no loss of generality in assuming that 

From (7.23) it follows that 

From this we conclude that fl E Sol(AVI(M, 0, A)). Since 

and since Of A = A and Mk is copositive on A, we have 

Then 

This contradicts (7.21). Claim 2 has been proved. 

Now we are in a position to show that there exist e > 0, S > 0 
and e > 0 such that if (G, 3 E RnXn x Rn, is copositive on A, 
and if (7.18) holds, then SO~(AVI(G, F, A)) # 0 and (7. lg), (7.20) 
are satisfied. 

Combining Claim 1 with Claim 2 we see that there exist e > 0 
and 6 > 0 such that if ( G , $  E Rnxn x Rn, is copositive on 
A,  and if (7.18) holds, then SOI(AVI(G, F, A)) # 0 and (7.19) is 
satisfied. According to Corollary 7.4, for the given matrix M and 
vector q, there exist a constant eM > 0 and a neighborhood U, of q 
such that 
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for every q' E U,. Let ( z ,  ?j) E RnXn x Rn be such that is 
copositive on A and (7.18) holds. Select any 5 E S O ~ ( A V I ( ~ ,  A)). 
Setting 

q = c + ( z - ~ ) ~  (7.25) 

we will show that 

i E Sol(AVI(M, q, A)). (7.26) 

Since 
( Z Z + ~ , X - ~ ) > O  V X E A ,  

using (7.25) we deduce that 

for every x E A. This shows that (7.26) is valid. From (7.18), (7.19) 
and (7.25) it follows that 

Consequently, choosing a smaller E > 0 if necessary, we can assert 
that g E U, whenever (MI, 3 E RnXn x Rn, &? is copositive on A, 
(7.18) holds. Hence from (7.24) and (7.26) we deduce that there 
exists x E Sol(AVI(M, q, A)) such that 

where Q = max{QM, 6QM). We have thus obtained (7.20). The proof 
is complete. 

Our next goal is to establish the following interesting result on 
AVI problems with positive semidefinite matrices. 

Theorem 7.5. (See Robinson (1979), Theorem 2) Let M E Rnxn be 
a positive semidefinite matrix, A a nonempty polyhedral convex set 
in Rn, and q E Rn. Then the following two properties are equivalent: 

(i) The solution set Sol(AVI(M, q, A)) is nonempty and bounded; 
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(ii) There exists E > 0 such that for each G E RnXn and each 
8 E Rn with 

the set S O ~ ( A V I ( ~ ,  A)) is nonempty. 

For proving the above theorem we shall need the following three 
auxiliary lemmas in which i t  is assumed that M E RnXn is a positive 
semidefinite matrix, A C Rn is a nonempty polyhedral convex set, 
and q E Rn.  We set MA = {Mx : x E A). 

Lemma 7.1. (See, for instance, Best and Chakravarti (1992)) For 
any f i E Rn, if ifTM# = 0 then ( M  + MT)fi = 0. 

Proof. Consider the unconstrained quadratic program 

min f ( x )  := I x T ( ~  + M ~ ) X  : x E R ~ J .  I 2 

From our assumptions it follows that 

for every x E Rn. Hence f i is a global solution of the above problem. 
By Theorem 3.1 we have 

which completes the proof. 0 

Lemma 7.2. The inclusion 

q E int((Of A)' - MA) 

holds if and only if 

Vv E 0' A \ (0) 3 x  E A such that (Mx + q, v) > 0. (7.29) 

Proof. Necessity: Suppose that (7.28) holds. Then there exists 
E > 0 such that 

B(q, E) c (OfA)' - MA. (7.30) 
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To obtain a contradiction, suppose that there exists a E O+A \ (0) 
such that 

( M X + ~ , ~  5 0  ~ x E A .  

By (7.30), for every q' E B(q, E )  there exist w E (O+A)+ and x E A 
such that q' = w - Mx. So we have 

This clearly forces f i = 0, which is impossible. 
Sufficiency: On the contrary, suppose that (7.29) is valid, but 

(7.28) is false. Then there exists a sequence {qk) c Rn such that 
qk $ (Of A)+ -MA  for all k E N ,  and qk + q. From this we deduce 
that 

( M A + ~ " ~ ( o + A ) +  = 0 vk E N. 

Since MA  + q%nd (O+A)+ are two disjoint polyhedral convex sets, 
by Theorem 11.3 from Rockafellar (1970) there exists a hyperplane 
separating these sets properly. Since (O+A)+ is a cone, by Theorem 
11.7 from Rockafellar (1970) there exists a hyperplane which sepa- 
rates the above two sets properly and passes through the origin. So 
there exists vk E Rn with llvkll = 1 such that 

(v" M x  + qk) 5 0 5 (vk, w) tlx E A, tlw E (Of A)'. (7.31) 

(Actually, the above-mentioned hyperplane is defined by the for- 
mula H = {x E Rn : (vk, Z )  = 0)). Without loss of generality we 
can assume that vk 4 V E Rn, 1 1 ~ 1 1  = 1. From (7.31) it follows that 

and 
(8, w) 2 0 vw E (O+A)+. (7.33) 

By Theorem 14.1 from Rockafellar (1970), from (7.33) it follows 
that f i E O+A. Combining this with (7.32) we see that (7.29) is 
false, which is impossible. 

Lemma 7.3. (See Gowda-Pang (1994a), Theorem 7) The solution 
set Sol(AVI(M, q, A))  is nonernpty and bounded if and only if (7.28) 
holds. 

Proof. Necessity: To obtain a contradiction, suppose that the set 
Sol(AVI(M, q, A)) is nonempty and bounded, but (7.28) does not 
hold. Then, by Lemma 7.2 there exists V E O+A \ (0) such that 
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(7.32) holds. Select a point xO E Sol(AVI(M, q, A)). For each t > 0, 
we set xt = xO + tG. Since f l  E O+A, we have xt E A for every t > 0. 
Substituting xt for x in (7.32) we get 

This implies that (a, M5) 5 0. Besides, since M is positive semidef- 
inite, we have (5, MU) 2 0. So 

(5, MU) = 0. (7.34) 

By Lemma 7.1, from (7.34) we obtain 

Fix any x E A. On account of (7.32), (7.34), (7.35) and the fact 
that xO E Sol(AVI(M, q, A)), we have 

50 
-t ( (M + ~ ~ 1 5 ,  xO) - 

Since this holds for every x E A, xt E Sol(AVI(M, q, A)). As the last 
inclusion is valid for each t > 0, we conclude that Sol(AVI(M, q, A)) 
is unbounded, a contradiction. 

Suficiency: Suppose that (7.28) holds. We have to show that 
the set Sol(AVI(M, q, A)) is nonempty and bounded. By (7.28), 

q E (O+A)+ - MA. 

Hence there exist w E (O+A)+ and 3 E A such that q = w - MZ. 
Since MZ + q = w E (Of A)+, for every v E O+A it holds 

Since M is a positive semidefinite matrix, we see that both con- 
ditions (i) and (ii) in Theorem 6.1 are satisfied. Hence the set 
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Sol(AVI(M, q, A)) is nonempty. To show that Sol(AVI(M, q, A)) is 
bounded we suppose, contrary to our claim, that there exists a se- 
quence {x" in Sol(AVI(M, q, A)) such that 11x"1 1 +m. There is 
no loss of generality in assuming that xk # 0 for each k E N ,  and 

Let m E N ,  A E Rmxn and b E Rm be such that A = {x E Rn : 
Ax 2 b}. Since Axk 2 b for every k E N,  dividing the inequality 
by Ilxkll and letting k --+ oo we obtain A i  2 0. This shows that 
8 E O+A. We have 

Hence 

k k  ( M X ~  + q, x) 2 (Mx , x ) + (q, xk) 'dx E A 'dk E N. (7.36) 

Dividing the last inequality by 11x"12 and letting k -+ oo we get 
0 2 ( M i ,  v) . Since M is positive semidefinite, from this we see that 
(M i ,  i) = 0. Thus, by Lemma 7.1 we have 

Fix a point x E A. Since ( M X ' , X ~ )  2 0 for every k E N,  (7.36) 
implies that 

( M X ~  + q, x) 2 (q, x" 'dk E N. 

Dividing the last inequality by IlxkII and letting k -+ oo we obtain 

Combining this with (7.37) we can assert that 

Since i E (OtA) \ {O}, from the last fact and Lemma 7.2 it follows 
that (7.28) does not hold. We have thus arrived at a contradiction. 
The proof is complete. 

Proof of Theorem 7.5. 
We first prove the implication (i) * (ii). To obtain a contradic- 

tion, suppose that Sol(AVI(M, q, A)) is nonempty and bounded, 
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while there exists a sequence (Mk,qk)  E Rnxn x Rn such that 
(Mk7 qk) + (M7 q) and 

Since A is nonempty, for j E N large enough, the set 

is nonempty. Without restriction of generality we can assume that 
Aj  # 0 for every j E N. By the Hartman-Stampacchia Theorem 
(Theorem 5.1) we can find a point, denoted by xkj, in the solution 
set SO~(AVI(M"~~" ,~) ) .  We have 

Note that 
llxkliIl = j 'dj E N. (7.40) 

Indeed, if IlxhiII < j then there exists p > 0 such that B(xhj, p) C 

B(0, j ) .  Hence from (7.39) it follows that 

By Proposition 5.3, this implies that x"j E Sol(AVI(Mk, qk,  A)), 
which is impossible because (7.38) holds. Fixing an index j E N 
we consider the sequence { x ~ T ~ ) ~ ~ N .  From (7.40) we deduce that 
this sequence has a convergent subsequence. There is no loss of 
generality in assuming that 

lim xkj = xj, x j  E Rn, llxj 11 = j .  k+CG 
(7.41) 

Letting k -+ rn we deduce from (7.39) that 

( M X ~  +q ,x  -x j )  > 0 'dx E .Aj. (7.42) 

On account of (7.41), without loss of generality we can assume that 

Let us fix a point x E A. It is clear that there exists an index 
j, E N such that x E Aj for every j > j,. F'rom (7.42) we deduce 
that 

(Mxi + q,x - xj) > 0 'dj > jz. 
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Hence 

As in the last part of the proof of Lemma 7.3, we can show that 
E (O+A) \ (0) and deduce from (7.43) the following inequality 

(Mx + q, 5) I 0. 

Since the latter holds for every x E A, applying Lemma 7.2 we see 
that the inclusion (7.28) cannot hold. According to Lemma 7.3, the 
last fact implies that the set Sol(AVI(M, q, A)) cannot be nonempty 
and bounded. This contradicts our assumption. 

We now prove the implication (ii) + (i). Suppose that there 
exists E > 0 such that if matrix W E RnXn and vector E Rn sat- 
isfy condition (7.27) then the set SO~(AVI(%, ?? A)) is nonempty. 
Consequently, for any E Rn satisfying - qll < E ,  the set 
Sol(AVI(M, F, A)) is nonempty. Let Z t. Sol(AVI(M, if, A)). For 
any v E O+A we have 

Hence MZ + E (O+A)+. So we have q E (O+A)+ - MA. Since 
this inclusion is valid for each F satisfying [IF- qll < el we conclude 
that 

q E int((0'A)' - MA). 

By Lemma 7.3, the set Sol(AVI(M, q, A)) is nonempty and bounded. 
The proof is complete. 

Let us consider three illustrative examples. 

Example 7.1. Setting A = [O, +oo) c R1, M = (-I), and q = 

0, we have Sol(AVI(M, q, A)) = (0). Note that matrix M is not - 
positive semidefinite. Taking M = M and if = -0, where 8 > 0, 
we check at once that S O ~ ( A V I ( ~ ,  F, A)) = 0. So, for this AVI 
problem, property (i) in Theorem 7.5 holds, but property (ii) does 
not hold. This example shows that, in Theorem 7.5, one cannot 
omit the assumption that M is a positive semidefinite matrix. 

Example 7.2. SettingA = (-oo,+oo) = R1, M = (O), andq=O,  
we have Sol(AVI(M, q, A)) = A. So property (i) in Theorem 7.5 
does not hold for this example. Taking MI = (0) and lf = 8,  where 
0 > 0, we have S O ~ ( A V I ( ~ , ~ ~ ,  A)) = 0. This shows that, for the 
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AVI problem under consideration, property (ii) in Theorem 7.5 fails 
to hold. 
Example 7.3. Setting A = [l,+oo) c R1, M = (O),  and q = 0, - 
we have Sol(AVI(M, q, A)) = A. Taking M = M and F = 0, where 
6 > 0, we see that S O ~ ( A V I ( ~ ,  6 A)) = {I). But taking a = (-0) 
and y = 0, where 6 > 0, we see that S O ~ ( A V I ( ~ ,  F, A)) = 0. So, for 
this problem, both the properties (i) and (ii) in Theorem 7.5 do not 
hold. 

In connection with Theorem 7.5, it is natural to raise the fol- 
lowing open question. 
QUESTION: IS it true that property (i) in Theorem 7.5 implies that 
there exists E > 0 such that if matrix a E Rnxn and vector E Rn 
satisfy condition (7.27) then the set sO~(AVI(W, F, A)) is bounded 
(may be empty)? 

The next example shows that property (i) in Theorem 7.5 does 
not imply that the solution sets S O ~ ( A V I ( ~ ,  F, A)), where (z, lj) is 
taken from a neighborhood of (M, q), are uniformly bounded. 
Example 7.4. (See Robinson (1979), pp. 139-140) Let A = 
[0, +oo) C R1, M = (0)) and q = 1. It is clear that 

Sol(AVI(M, q, A)) = (0) - 
Taking M = (-,u) and F =  1, where ,u > 0, we have 

From this we conclude that there exist no E > 0 and S > 0 such 
that if matrix E RIX1 and vector E R1 satisfy condition (7.27) 
then s ~ ~ ( A v I ( ; ~ ~ ,  A)) c 6 ~ ~ 1 .  

The following theorem is one of the main results on solution 
stability of AVI problems. One can observe that this theorem and 
Theorem 7.4 are independent results. 
Theorem 7.6. (See Robinson (1979), Theorem 2) Suppose that 
A c Rn is a nonempty polyhedral convex set. Suppose that M E 
RnXn is a given matrix and q E Rn is a given vector. If M is a posi- 
tive semidefinite matrix and i f  the solution set Sol(AVI(M, q, A)) is 
nonempty and bounded, then there exist constants E > 0, 6 > 0 and 
! > 0 such that if ( a ,  E RnXn x Rn, is positive semidefinite, 
and i f  

m a x m -  MIL [IF-911) < E .  (7.44) 



140 7. Upper-Lipschitz Continuity of the Solution Map 

then the set s~~ (Av I (W,  A)) is nonempty, 

SO~(AVI(%, if, A)) c 6 8p, (7.45) 

and 

SO~(AVI ( ;~~ ,  if, A)) c sol(AVI(M, q, a ) )+e ( l lF -  + I I F ~ I I ) B R ~ .  
(7.46) 

Proof. Since M is positive semidefinite and Sol(AVI(M, q, A)) is 
nonempty and bounded, by Lemmas 7.2 and 7.3 we have 

b'v E O'A \ (0) 32 E A such that (Mx + q, v) > 0. (7.47) 

Moreover, according to Theorem 7.5, there exists EO > 0 such that 
for each matrix E RnXn and each if E Rn satisfying 

the set S O ~ ( A V I ( ~ ,  if, A)) is nonempty. We claim that there exist 
constants E > 0 and 6 > 0 such that (7.45) holds for every ( F ,  @) E 

A* 

Rnxn x Rn satisfying condition (7.44) and the requirement that M 
is a positive semidefinite matrix. Indeed, if the claim were false 
we would find a sequence {(Mk, q"} in RnXn x Rn and a sequence 
{xk) in Rn such that Mk is positive semidefinite for every k E, 

k k ( M  ,q  ) -+ (M,q), xk E S O ~ ( A V I ( M ~ , ~ ~ , A ) )  for every k E N,  and 
lIxkll -+ +m as k + 00. For each x E A, we have 

Without loss of generality we can assume that xk # 0 for every 
k E N, and 

It is easily seen that B E (Of A)+. From (7.48) it follows that 

Dividing the last inequality by llxk112 and letting k -t oo we get 
0 2 (Mfi, Z). Since M is positive semidefinite, from this we see that 
(MB,Z) = 0. By Lemma 7.1 we have 
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Fix a point x E A. Since Mk is positive semidefinite, we have 
(Mkxk, x" ) 0 for every k E N. Hence (7.49) implies that 

Dividing the last inequality by llxkll and letting k + oo we obtain 

Combining this with (7.50) we get 

(Mx + q, 8 )  5 0 'dx E A. 

Since 8  E (O+A)+ \ (01, the last fact contradicts (7.47). Our claim 
has been proved. We can now proceed analogously to the proof of 
Claim 3 in the proof of Theorem 7.4 to find the required constants 
E > O ,  S>Oand!>O. 0 

7.4 Commentaries 

As it has been noted in Robinson (1981), p. 206, the class of poly- 
hedral multifunctions is closed under finite addition, scalar multi- 
plication, and finite composition. This means that if @ : Rn -t 2Rm, 
Q : Rm + 2RS, aj : Rn + 2Rm ( j  = 1 , .  . . ,m) are some given poly- 
hedral multifuntions and X E R is a given scalar, then the formulae 

(X@)(x) = X@(x) (trx E Rn), 

create new polyhedral multifunctions which are denoted by A@, al+ 
. . . + @,+ and Q o @, respectively. 

The proof of Theorem 7.4 is similar in spirit to the proof of 
Theorem 7.5.1 in Cottle et al. (1992). 

The 'elementary' proof of the results of Robinson (see Theorems 
7.5 and 7.6) on the solution stability of AVI problems with positive 
semidefinite matrices given in this chapter is new. We hope that 
it can expose furthermore the beauty of these results. The original 
proof of Robinson is based on a general solution stability theorem 
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for variational inequalities in Banach spaces (see Robinson (1979), 
Theorem 1). 

Results presented in this chapter deal only with upper-Lipschitz 
continuity properties of the solution map of parametric AVI prob- 
lems. For multifunctions, the lower semicontinuity, the upper semi- 
continuity, the openness, the Aubin property, the metric regular- 
ity, and the single-valuedness are other interesting properties which 
have many applications (see Aubin and Frankowska (1990), Mor- 
dukhovich (1993), Rockafellar and Wets (1998), and references 
therein). It is of interest to characterize these properties of the 
solution map in parametric AVI problems (in particular, of the so- 
lution map in parametric LCP problems). Some results in this 
direction have been obtained (see, for instance, Jansen and Tijs 
(l987), Gowda (l992), Donchev and Rockafellar (l996), Oettli and 
Yen (1995), Gowda and Sznajder (1996)). We will study the lower 
semicontinuity and the upper semicontinuity the solution map of 
parametric AVI problems in Chapter 18. 


